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Abstract: Recent deep-learning methods for fault diagnosis of rolling bearings need a significant amount 
of computing time and resources. Most of them cannot meet the requirements of real-time fault 
diagnosis of rolling bearings under the cloud computing framework. This paper proposes a quick 
cloud–edge collaborative bearing fault diagnostic method based on the tradeoff between the ad-
vantages and disadvantages of cloud and edge computing. First, a collaborative cloud-based frame-
work and an improved DSCNN–GAP algorithm are suggested to build a general model using the 
public bearing fault dataset. Second, the general model is distributed to each edge node, and a lim-
ited number of unique fault samples acquired by each edge node are used to quickly adjust the 
parameters of the model before running diagnostic tests. Finally, a fusion result is made from the 
diagnostic results of each edge node by DS evidence theory. Experiment results show that the pro-
posed method not only improves diagnostic accuracy by DSCNN–GAP and fusion of multi-sensors, 
but also decreases diagnosis time by migration learning with the cloud–edge collaborative frame-
work. Additionally, the method can effectively enhance data security and privacy protection. 

Keywords: fast diagnosis; depth-separable convolution; transfer learning; information fusion; data 
security 
 

1. Introduction 
The functioning status of the rolling bearing, a frequently utilized fundamental com-

ponent, has a direct impact on the normal operation of the rotating mechanism and even 
the entire piece of machinery. It plays a crucial role in mechanical equipment and is typi-
cally the component that fails the most frequently. Rolling bearing failures in rotating 
machinery account for 40% of mechanical failures, according to statistics on mechanical 
failures [1,2]. Therefore, research on bearing health monitoring and fault diagnostics is 
crucial to ensuring the safe and reliable functioning of mechanical equipment. 

The algorithms of bearing fault diagnosis are constantly being improved. The equip-
ment collects time series vibration signals, which are then sent to the cloud for unified 
processing and analysis. In terms of algorithms, the wavelet transform [3], envelope anal-
ysis [4], the short-time Fourier transform [5], and other diagnostic techniques are fre-
quently utilized in the cloud. Most of these are theoretically interpretable, but the bearing 
vibration signal’s nonlinearity and non-stationarity faults make diagnostic accuracy poor. 
Compared to conventional signal processing techniques, algorithms such as SVM [6], Na-
ive Bayes [7], K-closest neighbors [8], etc., have significantly increased diagnostic accuracy 
and usability. These techniques, however, are highly dependent on the accuracy of artifi-
cial feature extraction, which depends on professional judgment and past knowledge. 
Some researchers use deep learning technology, such as Convolutional Neural Networks 
(CNNs) [9], Deep Belief Networks (DBNs) [10], Sparse Auto-encoders (SAE) [11], etc., in 
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the field of bearing failure diagnostics in order to solve the aforementioned issues and 
accomplish feature self-extraction. Qiao [12] proposed a novel weighted multi-scale con-
volutional neural network for adaptive multi-scale fusion of features from the original 
vibration signal. Zhang [13] proposed a transfer learning method based on CNNs for fault 
diagnosis in order to utilize data under different working conditions to improve perfor-
mance. Wen [14] used transfer learning to improve the CNN structure for fault diagnosis. 
In order to correlate and coordinate data from many information sources, multi-sensing 
data that takes advantage of the advancements in sensor technology can more precisely 
depict the state of equipment health. Yean [15] combined the results of multisource infor-
mation fusion which can effectively describe the fault type. Chao [16] et al. proposed that 
the multi-sensor data fusion method greatly improves the accuracy and robustness in the 
fault diagnosis of axial piston pumps. As a way to increase target trust evaluation, many 
scholars have used the DS (Dempster–Shafer) evidence theory algorithm to obtain better 
diagnostic performance. Pei [17] et al. proposed a rolling bearing fault diagnostic method 
based on DS evidence theory fusion. DS evidence theory is used to fuse multi-sensor data. 
Sun [18] proposed an improved DS evidence theory, which can produce acceptable out-
comes by reassigning the weighting factors prior to fusion. Due to the high complexity of 
the algorithm, the fault diagnostic model based on deep learning needs a lot of computing 
resources and time, and the diagnostic model based on the edge computing framework 
has emerged as a successful method to address the issue. 

The cloud computing-based fault diagnostic system has a lot of flaws. The data gath-
ered on the device side must be sent to the cloud if the model training is only carried out 
in the cloud. Uploading the data to the cloud computing facility will enhance the danger 
of privacy leaks because the data generated on the device often contains the user’s private 
information [19,20]. Additionally, there is a possibility of high-latency transmission dur-
ing data transmission from the device to the cloud computing facility [21]. Furthermore, 
the deep learning fault diagnostic model needs to be thoroughly trained on a substantial 
amount of labeled sample training data in order to successfully accomplish correct fault 
identification [22,23]. The collecting of labeled data and exact training both take a signifi-
cant amount of time and processing power. With edge computing, the issue of privacy 
leakage is avoided because user data is processed and stored locally on edge computing 
nodes. Edge computing distributes applications, processing, and storage across edge de-
vices and cloud data centers at the same time. Attacks by hackers only affect the local data 
on a particular device or edge node, not the entire data set. Edge computing therefore 
possesses the traits of high security [24]. The edge computing framework uses the benefit 
of the edge node being close to the user in order to tackle the issue of high latency pro-
duced by the data uploaded to the cloud by the device side, and reduces the issue of net-
work delay while increasing processing efficiency. Qian [25] et al. proposed an edge com-
puting-based method for real-time fault diagnosis and dynamic control of rotating ma-
chines which reduced the system response time, transmission bandwidth occupation, and 
storage and computation resources on the cloud. Wang [26] et al. implemented an edge 
computing-based permanent-magnet synchronous motor-bearing fault diagnosis which 
made the execution of a complicated algorithm become practical. Qu [27] et al. demon-
strated one can quickly and effectively diagnose equipment defects through the use of 
edge computing in industrial processing and production, which raises the system operat-
ing efficiency of the controlling system. Considering the problem that model training is 
difficult due to the very limited computing and storage capacity of the edge end in the 
edge computing framework [25,28], this work integrates the deep learning concept of 
merging cloud resources with high-performance computing and storage, as well as edge 
devices with strong individual adaptability and well-controlled time limitations, based on 
the research on cross-domain learning. It suggests the use of a bearing defect diagnostic 
approach for cloud and edge collaboration. This study develops a method for diagnosing 
and analyzing bearing faults based on intelligent edge and cloud–edge collaboration. The 
main contributions of this paper are as follows:  
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(1) This paper designs an overall fault diagnostic framework that aims to coordinate the 
computing resources of the cloud edge and meet the purpose of real-time intelligent 
diagnosis of bearings. It does this by combining the benefits of abundant cloud com-
puting resources, large storage capacity, and good real-time performance of edge 
computing.  

(2) This study suggests an enhanced deep learning lightweight method based on 
DSCNN–GAP that enhances the timeliness and accuracy of fault diagnosis. 

(3) In this paper, DS evidence theory was used to create decision fusion for the diagnos-
tic results of each edge node, and multi-sensor technology was used in this study to 
prevent the signal obtained from a single vibration sensor from being unable to fully 
monitor the running state of the bearing. 

(4) In this study, the transfer learning approach was used, and the deep learning ideas 
of fusing cloud resources and high-performance computing storage were combined. 
The edge nodes received the trained weights from the cloud, and experiments with 
the transfer of the signals from various sensors were conducted in turn. 
The rest of the paper is structured as follows. The second section presents the cloud–

edge collaboration diagnostic architecture and algorithm, the third introduces the DS ev-
idence theory, and the fourth introduces the relevant experiments and results analysis. 
The summary and recommendations for further study are included in Section 5 of this 
paper. 

2. The Cloud–Edge Collaboration Diagnostic Framework and Algorithm 
2.1. The Cloud–Edge Collaboration Diagnostic Framework 

This research, which focuses on the quick detection of bearing problems, examines 
the benefits and drawbacks of cloud and edge technologies and develops a cloud–edge 
collaborative framework for intelligent fault diagnosis of bearings, as seen in Figure 1. The 
framework is made up of three layers: device side, edge side, and cloud. Devices that are 
aware of data and sensor clusters that gather data are included in the device layer, which 
is at the bottom. The personalized bearing’s real-time status data is collected at the edge 
by the edge node using a data-sensing device, and after being processed is uploaded to 
the cloud for storage and analysis. Mainstream deep learning model libraries and training 
sample data are primarily stored in the cloud. Public bearing fault data sets, such those 
from Case Western Reserve University, are included in the training sample data, as well 
as individual bearing fault data sets that each edge node has acquired. 
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Figure 1. (a) Description of Fault bearing diagnostic framework based on cloud and edge collabo-
ration. (b) Description of a larger view of Generalized Model Training in the cloud side. 

The specific diagnostic process and steps are as follows: 
1. The sensor cluster continuously gathers and uploads the manufacturing equipment 

layer’s vibration signal data to neighboring edge nodes. 
2. The edge nodes’ collection of vibration signal data creates training samples of cus-

tomized conditions at each node. The data is then time-stamped, compressed, and 
sent to the cloud. 

3. The cloud initially trains the public defective bearing data using the improved 
DSCNN–GAP algorithm, and it then gradually adds personalized training data to 
update the global model over time. 

4. The cloud-trained universal model is downloaded by the edge nodes, which then use 
the training samples of customized conditions created at each edge node to transfer 
and learn the model. This allows the edge nodes to create customized models at each 
node to meet the demands of real-time bearing fault diagnosis. 
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5. The DS evidence theory is applied at other nodes to perform decision fusion on each 
edge node’s diagnostic results and output the diagnostic results once more in order 
to more fully explain the running health condition of the equipment. 

6. The system will immediately issue a matching warning if the output is a certain type 
of defect. 

2.2. Diagnostic Algorithm Adapted to Cloud–Edge Collaboration 
In order to take into account that the diagnostic algorithm has strong applicability in 

both the cloud and the edge, from the perspective of a lightweight algorithm, this work 
presents a fault diagnosis research based on the DSCNN–GAP algorithm for cloud–edge 
collaboration. As seen in Figure 2, data reconstruction is used to transform the initial one-
dimensional time series signal into a two-dimensional training sample for feature maps. 
Next, feature extraction is carried out using deep separable convolution. The precise pro-
cedure is to carry out point-by-point convolution after connection, train with separate 
channel characteristics, and then perform spatial convolution independently on the input 
data channels. After numerous iterations of convolution pooling, the fully connected layer 
will provide a large number of parameters and take a long time to train and test. A global 
average pooling layer (GAP) is created to replace the fully connected layer structure in the 
conventional DSCNN network in order to address the aforementioned issues. The final 
diagnostic result is generated directly by the softmax layer, and the global average pooling 
layer will automatically complete dimension transformation as well as parameter com-
pression and reduction. The entire procedure is separated into four layers: input layer, 
feature extraction layer, global average pooling layer, and output layer. 

Softmax

Fault 1

Fault 2

Fault n

Feature Extraction 
LayerInput Layer Output Layer

Data 
Reconstruction

 
Figure 2. DSCNN–GAP diagnostic algorithm. 

The input layer is primarily used to accept the original data and carry out data nor-
malization and standardization tasks, producing batch training samples that the deep 
learning model can recognize. The initial data collected by the equipment monitoring sys-
tem, however, is frequently a one-dimensional time-series of vibration signals mingled 
with noise interference. The original time-series data are converted into grayscale picture 
signals for feature extraction in order to enhance the signal quality, which can greatly al-
leviate this issue. The data is processed in accordance with Formula (1), and the signals 
are converted into pixels with data between [0, 255], which can effectively prevent the 
influence of significant differences between signals collected by different sensors on diag-
nostic outcomes. This method is inspired by the composition principle of computer pixels. 
The limited fault data is then expanded, lowering the likelihood of over-fitting. 
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max min

( , ) 255ix xP p n round
x x

 −= ∗ − 
  (1)

P stands for the converted pixel signal, round () stands for rounding, xi stands for the 
data’s ith sample point, and xmax and xmin stand for the data’s maximum and minimum 
values, respectively. Figure 3 illustrates the data reconstruction principle. In order to re-
duce the impact of technician experience on diagnostic outcomes, this data processing 
approach can be calculated without any specified parameters while also maintaining the 
two-dimensional properties of the original signal. 

One-dimensional Time 
Series Fault Signal

Two-dimensional 
Characteristic Map

1024 32*321024  
Figure 3. Schematic diagram of data reconstruction. 

In the entire feature extraction process, the feature extraction layer can be separated 
into two parts: deep convolution and point-by-point convolution. Deep convolution is the 
initial step of deeply separable convolution, as depicted in Figure 4. For each input chan-
nel, a different filter is used in deep convolution. The number of output feature maps is 
equal to the number of input channels after the deep convolution of the input channel. 
The deep convolution procedure can be described as follows when the total number of 
channels is unaltered after deep convolution: 

( )
,

( , ) ( , )( , )
,

D_Conv ,
M N

m n i m j ni j
m n

w x w x + += •   (2)

Among them, x is the input feature map of the convolution layer, w is the weight 
matrix of the convolution kernel, (i, j) is the coordinate point of the output feature map, 
and m, n and k are the three dimensions of the convolution kernel. 

input
feature map

N@3*3

depthwise pointwise
output

feature map

N@1*1

C@H*W

 
Figure 4. Schematic diagram of depth-separable convolution feature extraction. 

The second step of deeply separable convolution is the point-by-point convolution, 
that is, a 1 × 1 convolution is performed on the output of the deep convolution of the first 
step. The point-by-point convolution can extract spatial features, will change the size of 
the feature map, and is expressed as: 

( ) ( , )( , )P_Conv ,
K

k i ji j
k

w x w x= •   (3)

The fully connected layer structure of DSCNN is replaced with GAP with adaptable 
dimensions in order to further the goal of quick defect diagnostics of bearings. Specifi-
cally, the average value of each feature map is directly mapped to a class label or an output 
node after the final pooling in the feature extraction layer. The GAP expression is: 
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where Oi represents the result of global average pooling of the layer I feature map; 𝑌௠,௡௜  
is the (m, n) element of the ith feature graph in the convolution layer. 

The global average pooling layer converts the extracted features into a one-dimen-
sional vector via numerous deep separable convolution and pooling operations. The soft-
max classifier recognizes the bearing defect category. The probability of the output 𝑦௜  

matching the category label is set as follows if the input consists of N different types of 
signals: 

( )
( )

1

exp
, 1,2,3 ,

exp

i i
i N

i i
i

w x b
y i N

w x b
=

+
= =

+
   

(5)

The categorical cross-entropy function is used to determine the output’s correspond-
ing loss. The discrepancy between the expected and actual output values is represented 
by the cross-entropy. The value of the associated cross-entropy increases with the size of 
the difference. The loss function must be minimized as much as possible to obtain the 
actual output value as close to the predicted output value as possible. The cross-entropy 
loss function is expressed as follows: 

1 1

1 exp( ) log( )
m n

i i i
i j

L w x b y
m = =

= − +   (6)

In the formula: m is the number of batch samples, n is the class to which the samples 
belong, xij is the output value of the fully connected layer, 𝑦௜ is the actual output value of 
the sample, and 𝑒𝑥𝑝( 𝑤௜𝑥 + 𝑏௜) is the predicted output value. 

3. DS Evidence Theory 
Taking into account that a single acceleration vibration sensor’s vibration signal can-

not accurately represent the rolling bearing’s actual running condition, the utilization of 
multi-sensor information can now more accurately depict the bearing’s running condition 
thanks to advancements in multi-sensor technology. The vibration signals of the bearing 
to be diagnosed are gathered from various dimensions in accordance with the real config-
uration of the experimental apparatus in this work, and the diagnostic experiments are 
conducted accordingly. The diagnostic results of each sensor are fused using the DS evi-
dence theory, and the combined diagnostic results are output once more. 

The DS evidence theory, a style of reasoning based on mathematical uncertainty, was 
created and improved by Dempster and Shafer [29]. Multiple pieces of evidence are used 
to characterize an issue in the DS evidence theory, and these pieces of evidence are then 
combined in accordance with predetermined principles to arrive at the final conclusion. 
Some contradicting and unnecessary information can be removed using this fusion tech-
nique. The DS evidence theory must create bodies of evidence for each event and provide 
fusion rules in order to combine numerous pieces of evidence. Finally, the foundation for 
decision making is fusion evidence.  

Making final decisions is DS evidence theory’s main objective. Therefore, it is neces-
sary to introduce a finite non-empty set as the recognition framework, which contains a 
variety of events. Each event is independent and in a relatively exclusive relationship. 
Basic Probability Assignment (BPA) is assigned to various events and is expressed as a 
function: 𝑚: 2ఏ → ሾ0,1ሿ which is satisfied as follows: 
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The function assigns each event a probability representing the level of trust in the 
event, which represents the degree to which the evidence supports the event, where m () 
represents the uncertainty of the evidence. A confidence interval is introduced to more 
accurately reflect the level of trust in occurrences. It is made up of two functions, Belief 
(Bel) and Plausibility (Pl), and has the following expression: 

( ) ( )

( ) ( )
B A

B A

Bel A m B

Pl A m B
⊆

∩ ≠∅

 =



=





  (8)

The function of trust Bel(A) reflects the level of support for the event A, and Pl(A), 
which measures the level of acceptability for the event A, represents the level of uncer-
tainty. Figure 5 depicts their relationship to one another. 

Bel(A) Pl(A) 10

Probability Interval

Confidence 
Interval

Uniquely 
Deterministic Interval

Interval of Distrust

 
Figure 5. Uncertain description of proposition A. 

The application of DS evidence theory in fusion is realized through different levels 
of trust for the same event. 𝑚௝(𝐴௜) represents the trust function of the event 𝐴௜ to obtain 
evidence i. 

1

1
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1 ( )
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i j j i
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i j j i

B A A m A
M A

B A m A
=

=

∩ = ∏
=
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  (9)

The fusion order and result of various pieces of evidence are unrelated. The final 
evidence following fusion is 𝑀௙௜௡௔௟(𝐴). The decision principle allows for the acceptance 
of the new evidence. The maximum value in final evidence 𝑀௙௜௡௔௟ is 𝑀௙௜௡௔௟(𝑚𝑎𝑥), and 𝑀௙௜௡௔௟(𝑚𝑎𝑥)  is at least 𝜆ଵ  greater than the other values. While 𝑀௙௜௡௔௟(𝑚𝑎𝑥)  and 𝑀௙௜௡௔௟(𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛) differ by more than 𝜆ଶ, 𝑀௙௜௡௔௟(𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛) differs by less than 𝜆ଵ. The 
three average decision thresholds in DS evidence theory are 𝜆ଵ, 𝜆ଶ, and 𝜆ଷ, respectively. 
These three values will be established in the actual reference in accordance with the actual 
reference scenario. 

1
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3

(max)
(max) ( )
( )

final

final final
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M other
M M uncertain
M uncertain

λ
λ

λ

 > +


≥ +
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  (10)

4. Relevant Experiments and Results Analysis 
The experimental platform of this research equipment consists of two parts: cloud 

computing and edge computing. The computing side of the cloud is primarily powered 
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by AMD R7-5800H@4.4MHZ, RAM: 16G, and mostly using the public data set and algo-
rithm library, after which the universal model is loaded and trained. Three machines with 
the same configuration environment and AMD Ryzen 5 3600 6-Core Processor@3.6GHz, 
RAM: 16G were used for the edge end. The main work of the edge terminal is to transform 
the real-time signals collected from the device terminal into trainable sample data, and to 
load the transformed personalized samples on the universal model unloaded from the 
cloud to further fine-tune the model weight arranged on the edge node. The Win10 × 64-
bit operating system was selected for both the cloud and the edge, a deep learning frame-
work was built based on Python, and the implementation of the entire model training was 
completed using this framework. 

4.1. Cloud Diagnostic Algorithm 
Case Western Reserve University’s electrical engineering laboratory open motor ex-

perimental data collection (http://csegroups.case.edu/bearingdatacenter/home accessed 
on 1 March 2022) [30] provided the bearing fault data used in this paper’s cloud. The 
power source is a 2-hp three-phase asynchronous motor, and the acceleration vibration 
sensor was utilized to record vibration data at the motor fan and drive ends, respectively. 
At the driving end, an SKF 6205 bearing was utilized, while an SKF 6203 bearing was used 
at the fan end. In Figure 6, the test platform is displayed. 

Electromotor Drive EndFan End Torque Sensor Load

 
Figure 6. CWRU rolling bearing data acquisition test rig. 

In order to replicate various pitting flaws frequently seen in actual operation, single 
pits of varying sizes were consecutively carved on the inner and outer race of the bearing 
and the rolling body using electric discharge machining (EDM) technology. The size of 
each flaw was 0.2 mm, 0.3 mm, and 0.5 mm, respectively. The damage sites of the bearing 
outer ring were among them and were positioned at the three, six, and twelve o’clock 
positions, respectively. Table 1 displays a cloud-based experimental data collection. 
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Table 1. Cloud experimental sample dataset. 

Sensor Installation Position the Fault Size Fault Location Label 

Normal bearing 0 

Drive End 

0.2 mm 
inner race 1 

the ball 2 
outer race X/Y/Z 3 

0.3 mm 
inner race 4 

the ball 5 
outer race X/Y/Z 6 

0.5 mm 
inner race 7 

the ball 8 
outer race X/Y/Z 9 

Fan End 

0.2 mm 

inner race 10 

the ball 11 

outer race X/Y/Z 12 

0.3 mm 

inner race 13 

the ball 14 

outer race X/Y/Z 15 

0.5 mm 

inner race 16 

the ball 17 

outer race X/Y/Z 18 

When the training samples are too little, deep learning models frequently overfit. 
Enhancing the data set is required to fulfill the needs of the quantity of training in order 
to obtain more efficient training data. This study uses random sampling as a method of 
data improvement, which not only improves the correlation between sample area infor-
mation and training samples, but also lowers the likelihood that the model would become 
overfitted. The length of the chosen vibration data serves as the training sample, and by 
choosing an acceptable sample length, one could also control the training accuracy and 
convergence time. The number of fault spots the sensor detected in each rotation of the 
rotating shaft was between 400 and 416 ((12,000 × 60/ 1797) ≈ 400), taking into account the 
bearing speed range of 1730 to 1797 r/min and the sampling frequency of 12 kHz. The 
number of sampling points for each type of fault was set to 1024 in order to guarantee the 
reliability of fault data. 

This article proposes a DSCNN–GAP (Depthwise Separable Convolution combined 
with Global Average Pooling, DSCNN–GAP) algorithm. Regarding the source dataset, 
Figure 7 displays the accuracy and loss of the DSCNN–GAP algorithm. It is evident that 
the diagnostic outcomes produced by the deeply separable convolution and global aver-
age pooling combination strategy are generally favorable. After loading 10 training 
rounds, the improved DSCNN showed convergence phenomenon in terms of conver-
gence speed, and the accuracy rate on the test set was 95.46%. When the total number of 
training rounds reached 10~30, the test accuracy varied slightly, but after it reached 30, it 
stabilized. The model’s failure recognition rate is currently 99.89%, and the loss value has 
dropped to 0.007. This is due to the fact that DSCNN has improved spatial convolution 
capabilities and can successfully extract fault features. Additionally, the incorporation of 
GAP can decrease the number of model parameters, shorten model training, and enhance 
model robustness to a certain amount. It can be concluded that the DSCNN–GAP 
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algorithm can successfully extract fault features and successfully prevent the occurrence 
of test set overfitting based on the training speed and diagnostic accuracy.  

 
Figure 7. Diagnostic effect of DSCNN–GAP algorithm in the cloud. 

The experiment compares the suggested approach with the existing mainstream 
CNN, CNN-GAP, WDCNN [31], and DSCNN algorithms in order to further demonstrate 
the superiority of the intelligent diagnosis of DSCNN–GAP algorithm described in this 
research. The sequential input of the aforementioned comparison method is still the data 
set displayed in Table 1 for testing purposes. The average training time, the average diag-
nostic accuracy, and the average loss accuracy are all calculated from the experimental 
data of 10 repeats to ensure the experiment’s validity. Table 2 displays the initial parame-
ters and diagnostic outcomes for the five algorithms. 

Table 2. Comparison of diagnostic accuracy of different diagnostic models in CRWU dataset. 

Diagnostic 
Model 

Depth of 
Network 

Learning 
Rate 

Number of 
Parameters 

Average 
Training 

Time 

Average 
Accuracy 

Average 
Loss 

CNN 3 0.005 668787 47.2735 0.9512 0.1949 
CNN-GAP 3 0.005 126451 36.9851 0.9575 0.1797 
WDCNN 5 0.01 42419 61.9839 0.8907 0.6077 
DSCNN 3 0.005 188691 43.4858 0.9799 0.0719 

DSCNN–
GAP 3 0.005 39571 30.8380 0.9989 0.0071 

The table makes it very evident that the diagnostic accuracy of CNN, CNN-GAP, 
WDCNN, and DSCNN was 95.12%, followed by 95.75%, 89.07%, and 97.99%. DSCNN–
GAP achieved a diagnostic accuracy of 99.89%, which is much higher than previous com-
parable methods. The proposed algorithm’s diagnostic accuracy and loss are clearly su-
perior to those of WDCNN, despite the fact that its average training time is slightly slower 
than that of WDCNN. It is important to note that the proposed DSCNN–GAP model uses 
an approach that combines deeply separable convolution with global average pooling, 
and because there are fewer model parameters than other comparison algorithms, the 
model training time is dramatically reduced. According to the experimental findings, the 
suggested DSCNN–GAP algorithm outperforms other diagnostic algorithms. 

4.2. Effect Analysis of Edge End before and after Transfer Experiment 
The CUT-2 experimental platform gathered some data at the edge that is comparable 

to the fault in the cloud data set. A deep groove ball bearing with model 6900 ZZ was 
chosen for this experiment. EDM technology pitted the defective bearing. The fault diam-
eters were 0.2 mm and 0.3 mm, and they were dispersed across the bearing’s inner race, 
outer race, and the ball. When the rotating shaft speed was 2000 r/min, the vibration sig-
nals of the defective bearing in the X, Y, and Z-axis directions were gathered in accordance 
with the various distribution directions of the acceleration vibration sensors. The data ac-
quisition card’s sample frequency was set to 5 k, and the sensor collected 150 (5000 × 
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60/2000 ≈ 150) points per shaft revolution. The chosen sample length was 512 to guarantee 
the accuracy of the fault data. Table 3 displays the chosen rotating bearing defect data sets 
for the X, Y, and Z axes. 

Table 3. Edge end experimental data set. 

Axial Direction 
Fault Location and Diameter 

Sample Length Sample Label Outer Race Fault Inner Race Fault Ball Fault 
Diameter /mm Diameter /mm Diameter /mm 

X 

Normal 512 0 
0.2 Null Null 512 1 

Null 0.2 Null 512 2 
Null Null 0.2 512 3 
0.3 Null Null 512 4 

Null 0.3 Null 512 5 
Null Null 0.3 512 6 

Y 

Normal 512 0 
0.2 Null Null 512 1 

Null 0.2 Null 512 2 
Null Null 0.2 512 3 
0.3 Null Null 512 4 

Null 0.3 Null 512 5 
Null Null 0.3 512 6 

Z 

Normal 512 0 
0.2 Null Null 512 1 

Null 0.2 Null 512 2 
Null Null 0.2 512 3 
0.3 Null Null 512 4 

Null 0.3 Null 512 5 
Null Null 0.3 512 6 

The direct application of the cloud DSCNN–GAP pre-training model to the edge side 
may not produce the best results due to variances in the training data of the participating 
cloud-side models. This paper introduces transfer learning knowledge in order to im-
prove performance [14,32]. Transfer learning is seen to have a significant deal of promise 
for completing varying but related activities from the source domain to the target domain. 
The most popular transfer learning technique is parameter transfer, which aims to offer 
useful parameter knowledge for the target model from a good pre-training model (source 
model). The specific operation is the method of training some layers (the retraining layer) 
while first freezing the parameters of other layers (the frozen layer) in the pre-training 
model, which is a practical technique to apply the pre-training model to different scenar-
ios. In the structure of the deep learning model, the earlier layers contain more general 
functions, while the later layers gradually become focused on class details. Here, all fea-
ture extraction layers are frozen, and the classification and complete connection layers are 
adjusted to the target state. Figure 8 depicts the suggested transfer learning technique. 
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Figure 8. Schematic diagram of the transfer learning method. 

4.2.1. Experimental Results of No-Transfer Learning at the Edge End 
The same device adopted multisensory technology, meaning that pertinent sample 

data were made in accordance with Table 3 for the data acquired along the X, Y, and Z 
axes, and were fed to the associated edge nodes in turn for diagnosis. The experimental 
results are displayed in Tables 4–6. 

Table 4. Experimental results of X-axis without migration. 

Number of Samples 
Epoch 

1 5 10 20 30 40 

10 0.1429 0.1429 0.2857 0.4286 0.5 0.7143 

20 0.1429 0.1429 0.3571 0.6786 0.7143 0.8214 
50 0.1429 0.3286 0.7286 0.9857 0.9714 1.0 

100 0.1643 0.6929 0.8214 0.9571 0.9786 0.9929 

200 0.2964 0.8464 0.9750 0.9893 0.9893 0.9929 

300 0.2857 0.9810 0.9952 0.9929 0.9929 0.9976 

Table 5. Experimental results of Y-axis without migration. 

Number of Samples 
Epoch 

1 5 10 20 30 40 

10 0.1429 0.1429 0.3571 0.4286 0.6429 0.7143 
20 0.1429 0.2143 0.2857 0.7143 0.8214 0.8571 
50 0.1429 0.4 0.7 0.9286 0.8857 0.8857 
100 0.1429 0.8643 0.8571 0.9643 0.9786 0.9929 
200 0.1429 0.9643 0.9857 0.9929 0.9929 0.9964 
300 0.2881 0.7738 1.0000 0.9976 1.0 1.0 
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Table 6. Experimental results of Z-axis without migration. 

Number of Samples 
Epoch 

1 5 10 20 30 40 

10 0.1429 0.1429 0.1429 0.2857 0.3571 0.5000 

20 0.1429 0.1429 0.25 0.4643 0.4643 0.5357 

50 0.1429 0.1429 0.4429 0.6857 0.8857 0.9286 

100 0.1429 0.4857 0.6286 0.7000 0.9286 0.9786 

200 0.1429 0.5929 0.7821 0.9786 0.9893 0.9893 

300 0.2833 0.8310 0.9786 1.0 0.9976 1.0 

Tables 4–6 display the diagnostic accuracy of various fault data obtained by the X, Y, 
and Z-axis vibration sensors under various sample sizes and training iterations without 
migration. First of all, we can observe that there are variations in the diagnostic accuracy 
of bearings since the signals gathered by vibration sensors in various directions represent 
the operating state of bearings. In particular, as sample size and training rounds increased, 
the average diagnostic accuracy eventually became close to or achieved 1. For instance, 
when the sample size was 50, after adequate training, edge nodes organized in the X-axis 
direction had superior diagnostic accuracy than vibration sensors arranged in the Y and 
Z directions, which were, respectively, 1.0, 0.8857, and 0.9286. 

4.2.2. Experimenting with Transfer Learning at the Edge 
Firstly, the ideal model weight was preserved once the DSCNN–GAP algorithm had 

been fully trained using the open fault bearing data set in the cloud. Figure 9 illustrates 
that when the ideal model weight is kept, the defect diagnostic accuracy can reach 99.89%. 
The weight of the model was unloaded to each edge node, and then the transfer learning 
experiment was carried out and the edge nodes positioned on the X, Y, and Z-axis vibra-
tion sensors were each put to the test in turn. The outcomes are displayed in Tables 7–9. 

Table 7. X-axis migration experiment results. 

Number of Samples 
Epoch 

1 5 10 20 30 40 

10 0.1786 0.3571 0.7143 0.7857 0.7857 0.8571 
20 0.2143 0.5714 0.8214 0.8929 0.9286 0.9643 
50 0.5857 0.9286 0.8571 0.9429 0.9714 0.9857 

100 0.6929 0.9786 0.9643 0.9786 0.9929 1.0 
200 0.8214 0.9786 0.9821 0.9929 0.9929 0.9964 
300 0.8667 0.9929 0.9976 0.9952 1.0 1.0 

The findings of the migration experiment on the X-axis are provided in Table 7 as a 
diagnosis. The diagnostic accuracy after migration has often greatly increased when com-
pared to the findings of the experiment without migration on the X-axis. It is noteworthy 
that the diagnostic accuracy can reach 92.86% when there are 20 samples in each category 
and 30 training rounds, whereas the diagnostic accuracy in the absence of the migration 
experiment is only 71.43% under the same conditions. Similar to this, the diagnostic accu-
racy is as high as 92.86% when each type of fault sample is 50 and there are only 5 training 
rounds, but under the same conditions, the diagnostic accuracy without migration 
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experiment is only 32.86%. From the data above, it is clear that the X-axis transfer experi-
ment’s diagnostic effect has greatly improved and that a better diagnostic effect may be 
attained despite the dual restrictions of a small number of training samples and training 
rounds. 

Table 8. Y-axis migration experiment results. 

Number of Samples 
Epoch 

1 5 10 20 30 40 

10 0.1429 0.5714 0.5 0.6429 0.7857 0.8571 
20 0.2857 0.75 0.8214 0.8929 0.8929 0.9286 
50 0.4143 0.8429 0.9143 0.9286 0.9571 0.9714 
100 0.6429 0.9286 0.9286 0.9643 0.9786 0.9857 
200 0.8179 0.9536 0.9714 0.9786 0.9929 0.9964 
300 0.8810 0.9738 0.9833 0.9905 0.9952 1.0 

The outcome of the migration experiment on the Y-axis is displayed in Table 8. The 
diagnostic accuracy after migration is likewise much better than the outcome of the ex-
periment without migration on the Y-axis. When there are 20 samples in each category 
and the diagnostic accuracy is fully trained, the Y-axis transfer experiment’s diagnostic 
accuracy can reach 92.86%, whereas the diagnostic accuracy without the experiment is 
only 85.71% under the same circumstances. With the same number of samples, the X-axis 
data transfer experiment would require 10 training rounds to reach the same diagnostic 
accuracy. In a similar vein, the diagnostic accuracy in the Y-axis migration experiment is 
as high as 91.43% when each type of fault sample is 50 and the number of training rounds 
is just 10, compared to only 70% in the case without the migration experiment. Only 5 
training rounds were required to reach a superior diagnostic accuracy of 92.86% in the X-
axis transfer diagnostic trial. As can be seen from the analysis above, even if the Y-axis 
produces a decent diagnostic result when performing a migration experiment, when the 
sample size is the same, the X-axis can produce a superior diagnostic result by quickly 
fine-tuning the parameters. 

Table 9. Z-axis migration experiment results. 

Number of Samples 
Epoch 

1 5 10 20 30 40 

10 0.1429 0.3571 0.5714 0.5714 0.7143 0.7857 

20 0.2857 0.5714 0.6786 0.7143 0.75 0.8214 

50 0.4143 0.7429 0.8143 0.8286 0.9143 0.9286 

100 0.6786 0.8429 0.8857 0.9857 0.9357 0.9929 

200 0.7536 0.9964 0.9964 1.0 0.9964 1.0 

300 0.8095 0.9048 0.9952 1.0 0.9976 1.0 

The diagnostic outcomes of the Z-axis migration experiment are displayed in Table 
9. In general, both before and after the migration, the Z-axis was weaker than the X-axis 
and Y-axis. The diagnostic impact of the data gathered on the X-axis was the best before 
and after migration, according to a summary of the experimental results before (Tables 4–
6) and after (Tables 7–9) migration. This suggests that both the sensor’s position and the 
bearing’s operational condition are different. Because the bearing rotor experiment plat-
form is vertically oriented when collecting vibration signals, this makes the vertical 
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direction vibration sensor response by the running state of the bearing the most sensitive. 
This offers the suggestion to put sensors along the vertical axis, which would be the least 
expensive and would best reflect the equipment’s operational state. 

4.2.3. Experimental Results of Multi-Edge Node Decision Fusion 
The vibration signals gathered by the vibration sensors on the X, Y, and Z-axis have 

substantially enhanced the diagnostic accuracy of the experiment after migration, as can 
be observed from the above diagnostic results. The organization of numerous sensors in 
various directions can precisely address this issue, as the fault data gathered by a single 
dimensional sensor cannot adequately reflect the running state of rolling bearings. In or-
der to increase the accuracy of the diagnosis, this paper employs the multi-classifier deci-
sion fusion method. First, the DS evidence fusion algorithm is used to make decision fu-
sion for the classifiers in three directions under each circumstance based on the aforemen-
tioned diagnostic results of the single-direction vibration sensor migration experiment. 

 
Figure 9. Results of DS decision fusion. 

Table 10 and Figure 9 illustrate the accuracy of the bearing diagnosis following the 
fusion of the defect data from vibration sensors oriented differently using the DS evidence 
theory. It is important to note that when only 10 samples and 10 training rounds were 
used, a diagnostic accuracy of more than 94.38% could be attained. The highest diagnostic 
result of a single sensor after migration was only 78.57%. The model after multi-edge node 
decision fusion achieved 99.05% diagnostic accuracy when the training sample count was 
200 only by fine-tuning the training parameters, while the best diagnostic accuracy of a 
single sensor was 82.14%. The reason for this is that the signal fusion of differently-posi-
tioned vibration sensors is successful, because the vibration fault characteristics of the var-
ious position vibration sensors were combined using the DS evidence theory. This allowed 
for a more thorough reflection of the running state of the bearings and, ultimately, pro-
duced good diagnostic results. In conclusion, because the actual factory environment is 
much more complex than the experimental conditions, it is difficult to determine which 
direction of the sensor can accurately diagnose the equipment’s running status. In this 
paper, the migration after learning of the bearing fault diagnosis results fusion was used 
to address this issue. It aimed to jointly reflect the running state of bearings by capturing 
the signal of multi-azimuth sensors. 
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Table 10. Experimental results of DS decision fusion. 

Number of Samples 
Epoch 

1 5 10 20 30 40 

10 0.1448 0.7143 0.8571 0.9286 0.9286 0.9438 

20 0.2857 0.8571 0.9643 0.9785 1.0 1.0 

50 0.6857 0.9857 0.9857 1.0 1.0 1.0 

100 0.9071 1.0 1.0 1.0 1.0 1.0 

200 0.9857 1.0 1.0 1.0 1.0 1.0 

300 0.9976 1.0 1.0 1.0 1.0 1.0 

The experimental results of a small number of samples in relevant experiments be-
fore and after migration were respectively intercepted and summarized for comparative 
analysis. The summarized table is shown in Table 11, and the following conclusions can 
be made: 
(1) The accuracy of fault diagnosis can be considerably increased by using transfer learn-

ing on small sample data. The diagnostic accuracy of the X-axis, Y-axis, and Z-axis 
without migration was 71.43%, 71.43%, and 50%, respectively, when the training sam-
ples for each category were only 10, and the average diagnostic accuracy was 64.29%. 
However, the edge nodes’ accuracy of diagnosis after migration was 85.71%, 85.71%, 
and 78.57%; the average diagnostic accuracy was 83.33%. As can be observed, the ac-
curacy of the diagnosis after migration was 19.04% greater than that of the diagnosis 
prior to migration. The highest diagnostic accuracy of a single edge node after transfer 
learning was 96.43%, which is 12.51% higher than that in the unmigrated state, when 
training samples of each category were increased to 20. The highest diagnostic accu-
racy of each category, however, was 85.71% in the unmigrated state. 

(2) The training period can be drastically cut down using the transfer learning method. 
The average training time of various sample counts on the X-, Y-, and Z-axis is pre-
sented here in order to reduce experimental error while taking into account the con-
sistency of the hardware equipment of each edge node. When transfer learning was 
not used, the fault data was imported directly with training sample sizes of 10 and 20. 
The times were 2.7031 s and 3.8712 s, respectively, after 40 training rounds, while the 
greatest diagnostic accuracy was only 85.71%. The model’s training took 2.1889 and 
3.0531 s in the migration state, respectively, and its best diagnostic precision was 
96.43%. As can be shown, the speed of transfer learning-based model fine-tuning is 
slower than that of a new training model in the case of tiny sample data, but the diag-
nostic outcome is better. 

(3) After migration, the DS evidence theory’s diagnostic precision greatly increased. The 
diagnostic effect of transfer learning greatly improves the recognition rate when there 
are few training examples, yet it still exhibits instability. Multi-sensor fusion technol-
ogy can more precisely identify bearing fault categories. 
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Table 11. Comparison of the effect before and after migration under the condition of few samples. 

Adopt Strategy 
Epoch 

1 5 10 20 30 40 

Unmigrated10-X 0.1429 0.1429 0.2857 0.4286 0.5 0.7143 

Unmigrated 20-X 0.1429 0.1429 0.3571 0.6786 0.7143 0.8214 

Unmigrated 10-Y 0.1429 0.1429 0.3571 0.4286 0.6429 0.7143 

Unmigrated 20-Y 0.1429 0.2143 0.2857 0.7143 0.8214 0.8571 

Unmigrated 10-Z 0.1429 0.1429 0.1429 0.2857 0.3571 0.5000 

Unmigrated 20-Z 0.1429 0.1429 0.25 0.4643 0.4643 0.5357 

Fine-tuning10-X 0.1786 0.3571 0.7143 0.7857 0.7857 0.8571 

Fine-tuning20-X 0.2143 0.5714 0.8214 0.8929 0.9286 0.9643 

Fine-tuning10-Y 0.1429 0.5 0.5714 0.6429 0.7857 0.8571 

Fine-tuning20-Y 0.2857 0.75 0.8214 0.8929 0.8929 0.9286 

Fine-tuning10-Z 0.1429 0.2857 0.3571 0.5714 0.7143 0.7857 

Fine-tuning20-Z 0.2857 0.5714 0.6786 0.7143 0.75 0.8214 

DS-10 0.1448 0.7143 0.8571 0.9286 0.9286 0.9438 

DS-20 0.2857 0.8571 0.9643 0.9785 1.0 1.0 

4.3. Time Analysis of Cloud—Edge Collaborative Diagnosis 
The time of cloud-side collaborative diagnosis must be further examined in light of 

the aforementioned conclusions in order to confirm that the cloud-side collaboration sug-
gested in this study may speed up model training speed and accomplish quick diagnosis. 
The following limiting criteria are suggested in order to verify the validity of the experi-
mental results and minimize the interfering variables impacting the results: 
(1) Special problems in network communication, such as packet loss rate, are not con-

sidered. 
(2) When communicating, data compression technology (calculation in professional 

communication) is not considered. 
Sampling time is 𝑇௧ଵ, 𝑇௧ଶ represents the data upload time from the edge layer to the 

cloud layer, 𝑇௧௥௔௜௡_௖ represents the training time of the model in the cloud, and 𝑇ௗ௜௔௚_௖ 
represents the testing time of the model in the cloud. 𝑇௧ଷ represents the transmission time 
from cloud layer to edge layer. 𝑇௧௥௔௜௡_௘ represents the training time of the model in the 
edge end, and 𝑇ௗ௜௔௚_௘ represents the testing time of the model in the edge end. 

The amount of time needed to gather the sample size that the cloud requires is re-
ferred to as the data sampling time. 𝑇௧ଵ is the time required to collect X points in sample 
M, the frequency is f, and the data sampling time is as follows: 

1t
MXT
f

=   (11)

The amount of time needed to send data from the edge to the cloud is shown by the 
data upload time 𝑇௧ଵ. This section is heavily impacted by network fluctuations. Shannon’s 
theorem [333] states that the quickest way to send data of size C over a network channel 
with bandwidth of size B is as follows: 
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2 / ( (1 / ))tT C Blb S N= +   (12)

where S is the average signal power, N is the average noise power, and S/N is signal-to-
noise ratio. 

The total time of diagnosis using the cloud–edge collaborative framework is: 

1 3 _ _total t t train e diag eT T T T T= + + +   (13)

The total time of diagnosis using the cloud computing framework is: 

1 2 _ _total t t train c diag cT T T T T= + + +   (14)

The diagnostic tests conducted by each edge node under the transfer learning sce-
nario demonstrate that good diagnostic outcomes can be obtained with a modest sample 
size and few training cycles. From the aforementioned diagnostic results, it can be seen 
that when the number of samples in each category is set to 50, the diagnostic accuracy of 
edge nodes on the X-, Y-, and Z-axis is 98.57%, 97.14% and 95.86%, respectively, after full 
fine-tuning, and the average diagnostic accuracy is 97.19%, which can satisfy the diagnos-
tic objective. The aforementioned non-transfer learning experiment shows that when 95% 
of the diagnostic accuracy is achieved, each edge node should have at least 100 training 
samples. Therefore, the time needed for diagnosis using cloud–edge collaboration and 
cloud computing frameworks was calculated, both under the assumption of obtaining a 
same level of diagnostic accuracy. 

Table 12 shows that, in the case of greater cloud computing resources, the training 
time needed by the cloud is 76.143 s, whereas the training and diagnostic time needed by 
the edge utilizing transfer learning is just 8.219 s, or roughly 1/9 of the time required by 
the cloud. The overall diagnostic time for cloud computing is 97.647 s, while the total di-
agnostic time for cloud–edge collaboration is 18.971 s, or around 1/5 of the latter, assuming 
that the two methods achieve comparable diagnostic accuracy. For the same diagnostic 
accuracy as cloud computing, cloud–edge collaboration requires fewer samples and a 
shorter sampling period. A significant amount of feature extraction time can be saved by 
using the transfer learning method. The use of GAP rather than a full connection layer can 
significantly reduce the amount of model parameters, allowing for the speedy fine-tuning 
of a customized diagnostic model appropriate for edge nodes even while the output layer 
still needs to be retrained. 

Table 12. Comparison of diagnostic time under different frames. 

Frames Tt1 Tt3/Tt3 Ttrain_e + Tdiag_e/Ttrain_C + Tdiag_C Ttotal 

Cloud Edge Collabo-
ration 

10.24 s 0.512 s 8.219 s 18.971 s 

Cloud Computing 20.48 s 1.024 s 76.143 s 97.647 s 

5. Conclusions and Future Work 
This paper proposes an improved DSCNN–GAP lightweight method to conduct di-

agnostic research on a cloud–edge collaborative architecture for real-time diagnosis of 
bearing problems. First, the cloud model’s training was carried out using the improved 
DSCNN–GAP algorithm and the common bearing fault data set. The cloud model was 
continuously updated to be more appropriate for edge-end diagnosis with the uploading 
of individualized fault data at each edge node and the expansion of the cloud database. 
The cloud initial training model was then downloaded to each edge node. A small number 
of personalized fault samples gathered at the edge node were then used to quickly fine-
tune the universal model’s parameters, and the customized model created could then 
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quickly perform diagnostic experiments on the source data. Additionally, it is frequently 
impossible for a single acceleration vibration sensor to fully monitor the running condi-
tion of rolling bearings. In order to make decision fusion for the diagnostic findings at 
each edge node, multi-sensor technology was therefore introduced in this research. DS 
evidence theory was then employed to do so, and the fusion results further increase the 
reliability of diagnostic results. The bearing fault diagnostic method can be used to finish 
training the diagnostic model in the cloud through experimental verification and compar-
ative analysis, while the edge end only needs to make minor adjustments to the universal 
model that was downloaded from the cloud in order to take part in the diagnosis. Model 
training time can be significantly reduced with this cloud–edge collaborative diagnostic 
approach. At the same time, the edge only needs to collect a small number of personalized 
samples to meet the needs of diagnosis, saving a lot of sample data collection and labeling 
time. The experimental findings demonstrate that the strategy suggested in this paper has 
a positive impact on the bearing defect diagnosis’s real-time performance, accuracy, and 
sample limitation.  Moreover, it offers a fresh concept and a broad framework for defect 
diagnostics that may be easily applied to mechanical and industrial systems. 

Unsupervised migration learning situations are not covered in this study; only the 
fault diagnostic scenarios with supervised migration learning have been covered. In the 
subsequent study, a feature network is constructed for the fault data between the source 
domain and destination domain from the standpoint of feature correlation in order to cre-
ate a fault diagnostic scenario that is more appropriate. 
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