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Abstract: When PINNs solve the Navier–Stokes equations, the loss function has a gradient imbalance
problem during training. It is one of the reasons why the efficiency of PINNs is limited. This paper
proposes a novel method of adaptively adjusting the weights of loss terms, which can balance the
gradients of each loss term during training. The weight is updated by the idea of the minmax
algorithm. The neural network identifies which types of training data are harder to train and forces
it to focus on those data before training the next step. Specifically, it adjusts the weight of the
data that are difficult to train to maximize the objective function. On this basis, one can adjust the
network parameters to minimize the objective function and do this alternately until the objective
function converges. We demonstrate that the dynamic weights are monotonically non-decreasing and
convergent during training. This method can not only accelerate the convergence of the loss, but also
reduce the generalization error, and the computational efficiency outperformed other state-of-the-art
PINNs algorithms. The validity of the method is verified by solving the forward and inverse problems
of the Navier–Stokes equation.

Keywords: physics-informed neural networks; dynamic weight strategy; Navier–Stokes equations

1. Introduction

Numerical simulation of fluid systems relies on solving partial differential equations
using computational fluid dynamics (CFD) methods, including finite element, finite volume
and finite difference methods [1–3]. However, it is usually expensive and time-consuming
to generate meshes for solving equations in complex regions. Solving the inverse problem
by CFD methods first requires tedious data assimilation and does not guarantee con-
vergence [4]. Therefore, the use of CFD models in practical applications and real-time
predictions is limited. It is important to develop an effective Navier–Stokes solver that can
overcome these limitations.

In recent years, deep neural networks have received extensive attention in the field
of scientific machine learning [5]. It can be used to construct new methods for solving
partial differential equations, based on their well-known capability as universal function
approximators [6]. The process of analyzing complex physical and engineering systems
usually requires a large amount of data. The cost of data acquisition is often prohibitive,
and we inevitably face the challenge of making decisions with partial information. When
the governing equation is known, a neural network trained under the constraints of this
equation can learn the solution of the partial differential equation with a small amount
of data. The potential of using neural networks to solve partial differential equations has
been recognized. With huge advances in computational power and training algorithms [7],
and the invention of automatic differentiation methods [8], physics-informed neural net-
works(PINNs) were able to take this approach to a different level [9]. PINNs does not
require mesh generation to solve fluid mechanics problems [10–13], so it has advantages
for solving problems in complex regions. This is a good strategy to tackle the problem of
the curse of dimensionality.
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The baseline PINNs has provided new research ideas for solving Navier–Stokes
equations, stochastic PDEs, and fractional PDEs [14–17]. However, it has been argued that
the convergence and accuracy of PINNs are still of tremendous challenge, especially for
Navier–Stokes with multi-scale characteristics. Wang [18] explored the problems existing
in the training process of PINNs, and found that the gradient value of each residual term in
the loss was greatly different in the process of backpropagation, and the training could not
be balanced. Therefore, a method of adaptively adjusting the weights between different
components in the loss is proposed to improve the training convergence. The problems
of gradient vanishing and gradient explosion limit the application of this method. Zhao
et al. also observed that the performance of PINNs is closely related to the appropriate
combination of loss terms [10]. It introduces a non-adaptive weighting strategy and time
adaptive strategy of loss function. However, using fixed weights is always time-consuming,
labor-intensive, and prone to errors and omissions. If gradient descent optimizes multiple
objectives consisting of fixed weights, there is a high probability of obtaining a local optimal
solution [19]. Ref. [20] introduced adaptive weights for configuration and boundary losses,
which are updated through the Neural Tangent Kernel (NTK). The distribution of the
eigenvalues of NTK does not change, and it is more difficult to calculate the eigenvalues
of NTK. The performance improvement is slight. A method that updates the adaptation
weights of configuration points in the loss function concerning the network parameters
was suggested [21]. It performs well for the AC equation. For other equations, the objective
function has a convergence problem due to the existence of the Max system. A strategy for
adaptive resampling of configuration points is proposed to improve the convergence and
accuracy of some partial differential equations with steep gradient solutions [22]. After each
resampling step, the number of residual points grows, increasing computational complexity.

This paper introduces a dynamic weight strategy for physics-informed neural net-
works(dwPINNs) to balance the contribution of each loss item to the network. The mecha-
nism of weight update in this paper is completely different from other PINNs literature.
It uses trainable weights as a soft multiplicative mask reminiscent of the attention mech-
anism used in computer vision [23]. Adaptive weights are trained simultaneously with
network parameters, and the data are automatically weighted in the loss function, forcing
the approximation of these data to improve. This is achieved by training the network to
minimize loss and maximize weights. The weight update is based on the information of
mean square error. This strategy is conducive to the convergence of loss and can reduce the
generalization error.

This paper is organized as follows: Section 1 is the Introduction, and Section 2 gives a
brief discussion of the effect of the loss terms on the network parameters in the optimization
method. In Section 3 we discuss the construction of the loss function and some theoretical
results on the convergence of weight sequence in the proposed method. Section 4 gives
the results and detailed discussions on dwPINNs solving the Navier–Stokes. Finally, in
Section 5, we summarize the conclusions of our work.

2. Preliminaries
2.1. Partial Differential Equations

The incompressible Navier–Stokes equations is:

∂u
∂t

+ λ1(u · ∇)u +∇p− λ2∇2u = f in Ω× [0, T], (1a)

∇ · u = 0 in Ω× [0, T], (1b)

u(x, 0) = u0 in Ω, (1c)

u = ub on ΓD × [0, T]. (1d)

where u(t, x) = (u(t, x), v(t, x)) is a velocity vector field, p is a scalar pressure field. λ1, λ2
are the unknown parameters, and Ω is the solution domain. ΓD is the boundaries of the
computational domain. Formula (1a) is the Momentum equation, Formula (1b) is the
conservation of mass equation, Formula (1c) is Initial conditions, and Formula (1d) is
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Dirichlet boundary conditions. In this paper, we shall solve both forward problems where
solutions of partial differential equations are inferred given fixed model parameters λ1, λ2
as well as inverse problems, where the unknown parameters λ1, λ2 are learned from the
observed data.

2.2. Fully Connected Neural Networks

Neural networks have well-known function approximation properties [24], so they can
be used to approximate the solution of partial differential equations. The (L− 1) -hidden
layer feed-forward neural network is defined by

Z k(x) = WkΦ
(
Z k−1(x)

)
+ bk ∈ RNk , 2 ≤ k ≤ L,

and Z1(x) = W1x + b1, where in the last layer, the activation function is identity. By letting
Θ̃ = (Wk, bk) as the collection of all weights, biases. Φ is a nonlinear activation function.
We can write the output of the neural network as

uΘ̃(x) = Z
L(x; Θ̃),

where ZL(x; Θ̃) emphasizes the dependence of the neural network output ZL(x) on Θ̃.
The loss function can be defined as

L = min
Θ̃

1
Nu

Nu

∑
i=1

∣∣∣u(xi
u, Θ̃

)
− ui

∣∣∣2.

Here,
{

xi
u, ui}Nu

i=1 denote the training data on u(x). Nu is the number of training data.
The training process requires the loss function minimized with respect to the weights and
biases in each network layer. Fitting in the sense of least squares requires the minimum
mean square error between the fitting function and original data, and it is an approximation
in the overall sense.

2.3. Optimization Method

We seek to find Θ̃∗ that minimizes the loss function L
(
Θ̃
)
. There are several opti-

mization algorithms available to minimize the loss function. In general, a gradient-based
optimization method is employed for the training of parameters [25]. Weights and biases
are initialized from known probability distributions. In the basic form, given an initial
value of parameters Θ̃ using Xavier initialization, the parameters are updated as

Θ̃m+1 = Θ̃m − ηl
∂L
(
Θ̃
)

∂Θ̃

∣∣∣∣∣
Θ̃=Θ̃m

,

where ηl is the learning rate. Θ̃m is the network parameter for step m.
Next, we illustrate the effect of the error on the gradient in backpropagation. The gra-

dient of the loss function to the network parameters in the backpropagation algorithm [26]
is as follows

δ(L) = −
(

u− a(L)
)
� f ′

(
z(L)

)
, (2a)

δ(l) =

((
W(l+1)

)>
δ(l+1)

)
� f ′

(
z(l)
)

, (2b)

∂L
∂W(l)

= δ(l)
(

a(l−1)
)>

, (2c)

∂L
∂b(l)

= δl . (2d)
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� represents the Hadamard product; nl represents the number of neurons in layer l;
f (·) represents the activation function of the neuron; W(l) ∈ Rnl×nl−1 represents the weight

matrix from l − 1 to l; b(l) =
(

b(l)1 , b(l)2 , · · · , b(l)nl

)>
∈ Rnl represents the bias from l − 1

layer to l layer; z(l) =
(

z(l)1 , z(l)2 , z(l)nl

)>
∈ Rnl represents the output of neurons in the l layer;

a(l) =
(

a(l)1 , a(l)2 , · · · , a(l)nl

)>
∈ Rnl represents the activation value of neurons in the l layer.

Formula (2c) is the gradient of the loss function to the weight of the output layer and the
hidden layer. Formula (2d) is the gradient of the loss function to the bias of the output layer
and the hidden layer. We calculate the δ(l) of the l layer through the δ(l+1) of the l + 1 layer,
and then obtain the gradient of the weight of the hidden layer by the Formula (2c).

The error has a great influence on the backpropagation gradient, which can be obtained
from (2). When the objective function consists of many terms, it always tends to optimize
the loss term with a larger error. Formulas (2b) and (2d)shows that the more hidden layers
in the network, the easier the problem of gradient disappearance and explosion. Therefore,
the network structure used in the experiment is a wide and shallow structure, and the
number of hidden layers does not exceed five layers.

3. Methodology

The combination of multiple loss functions plays a significant role in the convergence
of PINNs [10]. The most common way to combine losses of each constraint is the weighted
summation. These are either nonadaptive or require training many times at an increased
computational cost. Here, we propose a simple procedure using fully trainable weights. It
is in line with the idea of neural network adaptation, that is, the dynamic weights in the
loss function are updated together with network parameters through backpropagation.

3.1. Dynamic Weights Strategy for Physics-Informed Neural Networks

We define residuals to be given by the left-hand-side of Equations (1a) and (1b); i.e.,

f1 :=
∂u
∂t

+ λ1(u · ∇)u +∇p− λ2∇2u− f, f2 := ∇ · u. (3)

and proceed by approximating u(t, x) by neural networks. This assumption, along with
Equation (2b) results in physical constraints f1, f2. f1 indicates that the numerical solution
satisfies the conservation of momentum, and f2 indicates that the numerical solution
satisfies the conservation of mass. The physical constraints of the network can be derived
by applying the chain rule for differentiating compositions of functions using automatic
differentiation. In order to balance the training of the residuals in each part of the loss, we
multiply the trainable weights before each residual term of the PINNs loss function. The
objective function is defined as follows

J = wu MSEu + w0MSE0 + wb MSEb + w f MSE f , (4)

where

MSEu =
1

Nu

Nu

∑
i=1

∣∣∣u(ti
u, xi

u, Θ̃
)
− ui

u

∣∣∣2,

MSE0 =
1

N0

N0

∑
i=1

∣∣∣u(ti
0, xi

0, Θ̃
)
− ui

0

∣∣∣2,

MSEb =
1

Nb

Nb

∑
i=1

∣∣∣u(ti
b, xi

b, Θ̃
)
− ui

b

∣∣∣2,

and

MSE f =
1

N f

N f

∑
i=1

(
∣∣∣f1

(
ti

f , xi
f , Θ̃

)∣∣∣2 + ∣∣∣f2

(
ti

f , xi
f , Θ̃

)∣∣∣2).
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Here, wu, w0, wb, w f are the newly introduced balance parameters.
{

ti
u, xi

u, ui}Nu
i=1

denote observed data (if any)
{

ti
0, xi

0, ui
0
}N0

i=1,
{

ti
b, xi

b, ui
b
}Nb

i=1 denote the initial and boundary

training data on u(t, x) and
{

ti
f , xi

f

}N f

i=1
specify the collocations points for f1(t, x), f2(t, x).

Nu, N0, Nb, N f is the number of corresponding data. The sampling method of initial and
boundary training data is random selection at the corresponding boundary. The selection
method of the collocations points is Latin hypercube sampling. We determine unknown
parameters by performing the following tasks

min
Θ̃

max
wu ,w0,wb ,w f

J
(

Θ̃, wu, w0, wb, w f

)
. (5)

This can be accomplished by a gradient descent/ascent procedure, with updates
given by

Θ̃k+1 = Θ̃k − ηk∇Θ̃J
(

Θ̃k, wk
u, wk

f , wk
b, wk

0

)
, (6a)

wk+1
u = wk

u + ηk
w∇wuJ

(
Θ̃k, wk

u, wk
f , wk

b, wk
0

)
, (6b)

wk+1
0 = wk

0 + ηk
w∇w0J

(
Θ̃k, wk

u, wk
f , wk

b, wk
0

)
, (6c)

wk+1
b = wk

b + ηk
w∇wbJ

(
Θ̃k, wk

u, wk
f , wk

b, wk
0

)
, (6d)

wk+1
f = wk

f + ηk
w∇w fJ

(
Θ̃k, wk

u, wk
f , wk

b, wk
0

)
, (6e)

where ηk is the learning rate for the kth step in the process of updating the network
parameters, ηk

w is the learning rate for the kth step in the process of updating the balance
parameters. Considering the dynamic weight w0, to fix ideas, we see that

∇w0J
(

Θ̃k, wk
u, wk

0, wk
b, wk

f

)
= MSEk

0 ≥ 0, (7)

The sequence of weights
{

wk
0; k = 1, 2 . . .

}
is monotonically nondecreasing, provided

that w1
0 is initialized to a non-negative value. Furthermore, (7) shows that the magnitude

of the gradient, and therefore of the update, is larger when the mean squared error MSEk
0

is large. This progressively penalizes the network more for not fitting the initial points
closely. Notice that any of the weights can be set to fixed, non-trainable values if desired.
For example, by setting wk

b ≡ 1, only the weights of the initial and collocation points would
be trained. If necessary, the weight can also be changed to other types of functions. The
convergence of the weight sequence plays an important role in the stability of the Min
system. Next, we prove the convergence of wk

0. From (6), we can obtain∣∣∣wk+1
0 − wk

0

∣∣∣ = ηk
w∇w0J

(
Θ̃k, wk

u, wk
f , wk

b, wk
0

)
,

∣∣∣wk
0 − wk−1

0

∣∣∣ = ηk−1
w ∇w0J

(
Θ̃k−1, wk−1

u , wk−1
f , wk−1

b , wk−1
0

)
.

According to (7) ∣∣∣wk+1
0 − wk

0

∣∣∣ = ηk
w MSEk

0,
∣∣∣wk

0 − wk−1
0

∣∣∣ = ηk−1
w MSEk−1

0 ,

ηk
w MSEk

0 ≤ ηk−1
w MSEk−1

0 . (8)

Therefore
∣∣∣wk+1

0 − wk
0

∣∣∣ ≤ ∣∣∣wk
0 − wk−1

0

∣∣∣. According to the principle of compression

mapping, {wk
0} is convergent. {wk

0} has an upper bound. The analysis for wk
u,wk

b,wk
f is the

same as wk
0.
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Remark 1. From Formula (8), it can be seen that the convergence of the sequence {wk
0} depends

on the monotonous decrease in the MSEk
0. The mean square error is theoretically monotonically

decreased, so the weight sequence is theoretically convergent. However, in actual training, the mean
square error is not strictly monotonically decreasing, which may have a little adverse effect on the
performance of our method.

In order to overcome the above problems as much as possible, Algorithm 1 is adopted.
To strengthen the condition of balancing weight update, we update the weight only when
the condition MSEk+1

0 < MSEk
0 is satisfied. As far as possible, to make the weight sequence

meet the convergence conditions, reducing the fluctuation of MSE has an adverse effect
on our method. In our implementation of dwPINNs, we use Tensorflow with a fixed
number of iterations of Adam followed by another fixed number of iterations of the L-BFGS
quasi-newton method [27,28]. This is consistent with the PINNs formulation in [9], as
well as follow-up literature [11]. The adaptive weights are only updated in the Adam
training steps and are held constant during L-BFGS training. The dwPINNs algorithm
is summarized.

Algorithm 1: Dynamic weights strategy for PINNs

Step 1: Set Training steps K, the learning rate η, ηw, initial values balance weights
w =

{
wu, w0, wb, w f

}
and neural network parameters Θ̃.

Step 2: Consider a physics-informed neural network to define the weighted loss function
J
(

Θ̃, wu, w0, wb, w f

)
based on (4).

Step 3: Then use K steps of a gradient descent algorithm to update the parameters w
and Θ̃ as:
for k = 1 to K do

if MSEk+1
0 < MSEk

0 and MSEk+1
u < MSEk

u and MSEk+1
b < MSEk

b and MSEk+1
f < MSEk

f
Tune the balance weights w via Adam to maximize the meeting constraints

wk+1 ← Adam1
(
J
(
wk; Θ̃; K

)
; η; ηw

)
Update the parameters Θ̃ via Adam to minimize J

Θ̃k+1 ← Adam2
(
J
(
wk; Θ̃k; K

)
; η; ηw

)
end for

3.2. A Brief Note on the Errors Involved in the dwPINNs Methodology

Let F and u be the family of functions that can be represented by the chosen neural
network and the exact solution of PDE. Then, we define ua = arg min f∈F‖ f − u‖ as the
best approximation to the exact solution u. Let ug = arg minΘ̃ J

(
Θ̃
)

be the solution of
net at global minimum and ut = arg minΘ̃ J

(
Θ̃
)

be the solution of net at local minimum.
Therefore, the total error consists of an approximation error Eapp = ‖u− ua‖, the opti-
mization error Eopt =

∥∥ut − ug
∥∥ and the generalization error Egen =

∥∥ug − ua
∥∥. In PINNs,

the number and location (distribution) of residual points are two important factors that
affect the generalization error [13]. The optimization error is introduced due to the com-
plexity of the loss function. The performance of PINNs is closely related to the appropriate
combination of loss terms, which may avoid local optimization. Thus, the total error in
PINNs as

EPINN := ‖ut − u‖ ≤
∥∥ut − ug

∥∥+ ∥∥ug − ua
∥∥+ ‖ua − u‖. (9)

3.3. Advantages of Dynamic Weight Strategy for Physics-Informed Neural Networks

1. The optimization error can be reduced by using the dynamic weight strategy for
physics-informed neural networks. During training, each part of the loss function can
be dropped more evenly, and the loss can become smaller and converge faster.
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2. This method can reduce the generalization error by increasing the weights of hard-to-
train points during training. It also makes the error of such hard-to-train points smaller.

4. Numerical Examples

In this section We apply the proposed dwPINNs to simulate different incompress-
ible Navier–Stokes flows. First, we consider two-dimensional unsteady equations with
the analytic solution to investigate the effectiveness of dwPINNs. Then, we employ the
dynamic weights strategy to steady lid-driven cavity flow in two dimensions. Compared
with other PINNs methods, the efficiency of this method is highlighted. Finally, the inverse
problem of the flow around a cylinder is solved by the dwPINNs method. In the numerical
experiments, we strictly control the non-experimental variables of the two test methods
to be the same, such as training data, network structure, optimization method, etc. The
activation functions used in the following numerical experiments are tanh. G.Cybenkot [29]
found that it has a strong linear superposition approximation ability and is more suitable
for function approximation. We keep the amount of training data roughly equal to the pa-
rameters of the neural network to avoid the overfitting problem. To illustrate the efficiency
of the proposed method, the accuracy of the trained model is assessed through the relative
L2 error of the exact value ū(xi, ti) and the trained approximation u(xi, ti) inferred by the
network at the data

{
ti, xi}Nt

i=1, Nt is the number of test data. The deep learning framework
used in this experiment is tensorflow2.3. In terms of hardware, the CPU is Intel CORE i5
7th Gen, the memory is 4G, and the GPU is NVIDIA GeForce 940MX.

4.1. Navier–Stokes Equations with Analytic Solution

We first solve forward problems. We use the 2D unsteady Navier–Stokes with an
analytical solution as the first test case to demonstrate the feasibility of dwPINNs. The
analytical solution is as follows

u∗ = − sin(t) sin2(πx) sin(πy) cos(πy),

v∗ = sin(t) sin(πx) cos(πx) sin2(πy),

p∗ = sin(t) sin(πx) cos(πy).

(10)

Based on Section 3.1, the problem loss is defined as follows

MSE0 = 1
N0

∑N0
i=1

∣∣u(ti
0, xi

0, Θ̃
)
− ui

0

∣∣2,

MSEb = 1
Nb

∑Nb
i=1

∣∣u(ti
b, xi

b, Θ̃
)
− ui

b

∣∣2,

MSE f =
1

N f
∑

N f
i=1(

∣∣∣f1

(
ti

f , xi
f , Θ̃

)∣∣∣2 + ∣∣∣f2

(
ti

f , xi
f , Θ̃

)∣∣∣2). (11)

λ1 = 1, λ2 = 0.01. The computational domain is defined by Ω = [0, 1]× [0, 1] and the
time interval is [0, 1]. There are 40 points with fixed spatial coordinate on each boundary,
Nb = 4× 40. For computing the equation loss of dwPINNs, 10,000 points are randomly
selected inside the domain. Adam training time is 10,000.

The numerical results of the two methods are shown in Table 1. We see that the
dwPINNs perform better than the PINNs, and also that applying the dynamic weights
can improve the simulation accuracy. A snapshot of the velocity fields together with the
absolute errors at t = 1 is displayed in Figure 1. It shows that this method is feasible and
qualitatively accurate. The convergence of dynamic weights during the training process is
displayed in Figure 2.

Next, considering whether dwPINNs can still work in the middle and later stages
of training, we design the following experiment. After PINNs are normally trained 5000
times, we conduct dynamic weight strategy training 5000 times and take PINNs as the
control group of the experiment. The results are shown in Figure 3. It can be clearly seen
from the figure that the dynamic weight strategy can accelerate the convergence of error in
the middle and later stages of training.
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Figure 1. Navier–Stokes: A snapshot of analytical solution (top) prediction solution (middle) and
error (bottom) at t = 1.

Figure 2. Navier–Stokes: Dynamic weights w f , wu diagrams are shown.

Figure 3. Navier–Stokes: The history of relative L2 error (left) of dwPINNs and PINNs and the
training process of dynamic weights (right).
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Table 1. Relative L2 Error and Training Time of dwPINNs and PINNs. The NN size is 4× 50.

Error u Error v Error p Training Time (s)

dwPINNs 2.890× 10−3 2.973× 10−3 5.522× 10−1 5412.53
PINNs 1.180× 10−2 1.204× 10−2 7.761× 10−1 5314.67

4.2. Comparison of the Different PINNs Methods for 2D Navier–Stokes Equations

The lid-driven cavity flow is a standard test case for verifying the accuracy of new
computational methods for incompressible Navier–Stokes equations. Although, there are
many papers in the literature that present results of the lid-driven cavity with different
formulations, grids and numerical methods, we shall compare the results with Wang [18],
where they used a Learning rate annealing for PINNs. The domain is [0, 1]× [0, 1] and
no-slip boundary conditions are applied at the left, bottom and right boundaries. The top
boundary moves with constant velocity in the positive x direction. u(x) = (u(x), v(x)) is a
velocity vector field, p is a scalar pressure field. λ1 = 1, λ2 = 0.01.

Parameters during training are as follows: N f = 10,000, Nb = 3000. The network
structure is a 4-layer deep fully-connected network with 50 neurons per layer. The results
of this experiment are summarized in Table 2. It represents average relative L2 error of
|u(x)| =

√
u2(x) + v2(x) across 10 runs with random restarts. Figure 4 summarizes the

results of our experiment, which shows the magnitude of the predicted solution u, v and
absolute point-wise error predicted by dwPINNs, after 32,000 stochastic gradient descent
updates using the Adam optimizer. Figure 5 is the convergence process of dynamic weights
and the relative L2 error of u and v.

Table 2. Relative L2 errors of velocity the different PINNs methods. Adam training time is 32,000.
The network architecture is fixed to 4 layers with 50 neurons per hidden layer.

dwPINNs PINNs SAPINNs Learning Rate Annealing for PINNs

Relative L2 error 6.710× 10−2 2.713× 10−1 3.415× 10−1 2.492× 10−1

Figure 4. Flow in a lid-driven cavity: Reference solution using a comsol solver, prediction of dynamic
weights strategy of PINNs, and absolute point-wise error. The relative L2 error of u is 6.512× 10−2.
The relative L2 error of v is 8.973× 10−2.
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Figure 5. The training process of dynamic weights (left) and the relative L2 error of u and v (right).

Learning rate annealing for PINNs is one of the important loss balancing methods [18].
Compared with Learning rate annealing for PINNs, the error of dwPINNs is reduced.
The SAPINNs outperformed other state-of-the-art PINN algorithms in L2 error by a wide
margin [21]. However, the SAPINNs failed to solve the Navier–Stokes equations. Therefore,
the performance of dwPINNs is the best at present.

In order to further analyze the performance of our method, we carried out the fol-
lowing systematic research to quantify its prediction accuracy for different numbers of
training points and configuration points, as well as different neural network structures. In
Table 3, we report the relative L2 error obtained under the conditions of different initial and
boundary training data Nu and different configuration points NF, while keeping the 4-layer
network architecture fixed. With a sufficient number of configuration points N f , the overall
trend of prediction accuracy continues to improve with the increase in the total number
of training data Nu. Finally, Table 4 shows the resulting relative L2 for different numbers
of hidden layers, and different numbers of neurons per layer, while the total number of
training and collocation points is kept fixed to Nu = 3000 and N f = 10, 000, respectively.
As expected, we observed that the prediction accuracy improved with the increase in the
number of layers and neurons.

Table 3. Relative L2 error between the predicted and the exact |u| for different number of initial
and boundary training data Nu, and different number of collocation points N f . Here, the network
architecture is fixed to 4 layers with 50 neurons per hidden layer.

2000 4000 8000 10,000

200 3.2× 10−1 2.7× 10−1 1.3× 10−1 1.5× 10−1

1000 3.1× 10−1 2.5× 10−1 9.1× 10−2 9.0× 10−2

3000 1.4× 10−1 1.2× 10−1 8.2× 10−2 6.7× 10−2

Table 4. Relative L2 error between the predicted and the exact |u| for different numbers of hidden
layers and different numbers of neurons per layer. Here, the total number of training and collocation
points is fixed to Nu = 3000 and N f = 10, 000, respectively.

20 30 40 50

2 3.5× 10−1 1.5× 10−1 1.3× 10−1 1.5× 10−1

3 2.7× 10−1 1.3× 10−1 9.7× 10−2 8.2× 10−2

4 1.4× 10−1 1.0× 10−1 7.4× 10−2 6.7× 10−2
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4.3. Inverse Problem: Two-Dimensional Navier-Stokes Equations

Here, we use a dynamic weight strategy for Physics-informed neural networks to
simulate the 2D vortex shedding behind a circular cylinder at Re = 100. The cylinder
diameter D is 1. The simulation domain size is [0, 8]× [−2,−2]. In this example, λ1 =
1.0, λ2 = 0.01. High-fidelity data from [9] is used as a reference and for providing training
data for dwPINNs. We sample N f = 5000 collocation points, Nu = 5000 exact points.
Our goal is to identify the unknown parameters λ1, λ2, as well as to obtain a qualitatively
accurate reconstruction of the entire pressure field p(t, x, y) in the cylinder wake, which by
definition can only be identified up to a constant. Each loss item is as follows

MSEu = 1
Nu

∑Nu
i=1

∣∣u(ti
u, xi

u, Θ̃
)
− ui

u
∣∣2,

MSE f =
1

N f
∑

N f
i=1(

∣∣∣f1

(
ti

f , xi
f , Θ̃

)∣∣∣2 + ∣∣∣f2

(
ti

f , xi
f , Θ̃

)∣∣∣2). (12)

Numerical results of the Navier–Stokes equation in the way of the dwPINNs are
displayed in Table 5. Compared with PINNs, dwPINNs have less training time and higher
prediction accuracy. Then, after applying noise to the original training data, the calculation
was performed using the dwPINNs method. We observed that even if the training data
are corrupted with 1% uncorrelated Gaussian noise, the method can identify unknown
parameters very accurately λ1 and λ1, indicating that our method has good stability.

Figure 6 shows the loss history of two methods and dynamic weights history. Addi-
tionally, the convergence of loss dwPINNs is quicker than PINNs in Figure 6. The scalar wu
increases rapidly and is more punitive to the MSEu, which leads to faster convergence. The
loss of PINNs would attain 9.268× 10−1, while dwPINNs would converge to 1.206× 10−1.
Also plotted are representative snapshots of the predicted velocity components u(t, x, y),
v(t, x, y) after the model was trained in Figure 7. Based on the predicted versus instanta-
neous pressure field p(x, y, t) shown in Figure 7, the error between the predicted value and
the true value is extremely low in the entire calculation domain. An interesting result is
that, in the absence of any training data on the pressure itself, the network can provide a
qualitatively accurate prediction of the entire pressure field p(t, x, y). The neural network
architecture used here consists of 4 hidden layers with 50 neurons in each layer. The
predicted λ1 = 1.00065, λ2 = 0.00991.

Figure 6. Flow past a circular cylinder: Loss history (left) two methods and dynamic weights
history (right).
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Figure 7. Flow past a circular cylinder: A snapshot of reference solution (left) with the result
approximated by dwPINNs (middle) based on the error (right) at t = 10.

Table 5. Relative L2 error of velocity field u, v and relative error unknown parameters λ1, λ2.

u v λ1 λ2 Training Time (s)

dwPINNs (clean) 1.421× 10−3 3.832× 10−3 0.06% 0.9% 30,574
dwPINNs (1% noise) 2.811× 10−3 5.215× 10−3 0.23% 2.1% 30,575

PINNs 2.103× 10−3 6.813× 10−3 0.99% 2.30% 51,475

5. Conclusions

In this paper, we introduced a dynamic weights strategy for loss balanced in physics-
informed neural networks. The strategy is helpful to the training of PINNs in solving
incompressible Navier–Stokes equations. It can effectively improve unbalanced back-
propagated gradients during model training. The most appropriate weights are added to
the optimization system through the objective function minimax alternating optimization,
which makes the training more balanced. It is theoretically analyzed that the balanced
weights are convergent under the condition of monotonic mean square error. The advan-
tages of the method are verified by studying the forward and inverse problems of the
Navier–Stokes equation. Various experimental results can support our view that the loss
function decays slightly faster and the relative error is lower than the state-of-the-art PINNs.
This paper also provides a reference for the application of adaptive mechanisms in the
PINNs framework. Code and data accompanying this manuscript are publicly available
at https://github.com/1shirong/dwPINNs.git (accessed on 7 July 2022). In this method,
the convergence of the maximum system and the convergence of the minimum system are
interdependent. Adam and other algorithms can not guarantee to find the global minimum,
which will limit the optimal performance of this method. How to design an optimization
algorithm specifically for PINNs is an open and meaningful problem.
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