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Abstract: In distributed machine learning (DML), though clients’ data are not directly transmitted to
the server for model training, attackers can obtain the sensitive information of clients by analyzing
the local gradient parameters uploaded by clients. For this case, we use the differential privacy (DP)
mechanism to protect the clients’ local parameters. In this paper, from an information-theoretic point
of view, we study the utility–privacy trade-off in DML with the help of the DP mechanism. Specifically,
three cases including independent clients’ local parameters with independent DP noise, dependent
clients’ local parameters with independent/dependent DP noise are considered. Mutual information
and conditional mutual information are used to characterize utility and privacy, respectively. First,
we show the relationship between utility and privacy for the three cases. Then, we show the optimal
noise variance that achieves the maximal utility under a certain level of privacy. Finally, the results of
this paper are further illustrated by numerical results

Keywords: differential privacy; distributed machine learning; mutual information; Gaussian noise;
trade-off

1. Introduction

With the rapid development of data-driven intelligent applications and the increasing
attention on data security, distributed machine learning (DML) has been one of the hottest
research fields in machine learning. The goal of DML is to deploy tasks with a huge
quantity of data and computations to multiple machines in a distributed way, so as to
improve the speed and scalability of data computation, reduce the time consumption of
tasks, and improve the privacy performance. In Ref. [1],the authors summarized the design
principles of a DML platform and algorithm from four aspects: program deployment and
execution, task communication mode, and communication content. In Ref. [2], the authors
analyzed and summarized the research status of machine learning algorithms and parallel
algorithms based on big data. In Ref. [3], the authors compared the scale and availability of
the current mainstream DML platforms, analyzed the fault tolerance and bottlenecks of
these platforms, and compared their effects on handwritten data sets. In Ref. [4], the authors
reviewed the research status and application of parallel machine learning algorithms, and
looked forward to its development trend. In Ref. [5], the authors reviewed some popular
algorithms and optimization techniques in the field of machine learning, and focused on
the current status, applications, and future development trends of related platforms and
algorithms for DML.

However, with the problem of privacy leakage caused by data sharing in DML, re-
searchers have tried to study protection schemes in DML. Specifically, Ref. [6] considered
the privacy protection in DML in the case of arbitrary worker collusion. Random quantiza-
tion was used to convert the data set and weight vector of each round into a finite field, and
Lagrange coding was used to encode the quantized value and random matrix to protect
privacy. Subsequently, Ref. [7] proposed a DML framework for privacy protection, which
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eliminated the assumption of trusted servers and provided users with differentiated privacy
according to the sensitivity of data and the trust of servers. In addition, Ref. [8] proposed a
distributed learning algorithm based on differential privacy, which kept both the data and
the model information theoretically private, while allowing an efficient parallelization of
training across distributed workers. Recently, Ref. [9] compared the impact of two different
privacy protection methods, local differential privacy and federated learning, on DML. The
results showed that differential privacy could achieve the best misclassification rate below
20 percent. To sum up, existing discussions about data privacy in DML mainly focus on
Lagrange coding, differential privacy, and federated learning. Since differential privacy
is promising in the privacy preserving of DML, in this paper, we choose a differential
privacy mechanism as our main tool for analyzing the properties of distributed machine
learning systems.

In differential privacy, data need to be added by noise to ensure data privacy. Utility is
used to characterize the usefulness of the polluted data generated by applying differential
privacy to the original data. From an information theory aspect, mutual information
characterizes the correlation between two random variables, and [10] used the mutual
information as a way to characterize the utility of the polluted data generated by differential
privacy. Hence, in this paper, we also used mutual information to define utility in a
differential privacy mechanism.

In order to avoid reverse data retrieval in DML, the differential privacy mechanism was
introduced to add noise to the parameters uploaded by clients, which protects the privacy
of each client data. DP is a privacy protection mechanism proposed by Dwork et al. [11–16].
This mechanism uses random noise to ensure that the public output does not leak the
client’s privacy. The kinds of added noise generally include Laplacian noise [6], Gaussian
noise [17], and exponential noise [18]. However, among the differential privacy mechanism
studies, most of them focus on how to reduce the amount of privacy leakage and ignore the
utility of the data after noise addition. There is little literature on the relationship between
the utility and privacy of the data after noise addition. For example, Ref. [19] used the
minimum entropy to quantify the amount of information leakage and calculated the upper
bound of information leakage ulog2

veε

v−1+eε when the DP conditions were satisfied. Ref. [20]
and others defined a formula for information privacy by defining the posterior probability
of the same query result of adjacent data sets and proved that if a mechanism satisfies
the information privacy with the security parameter, then it also satisfied the differential
privacy 2ε, and proved the upper limit ε

2n of mutual information between the data sets and
the query return value. In [21], the authors proved that in the joint differential privacy of
two data sets, the upper bound of mutual information between data sets and query results
was further reduced, and the maximum value was 3nε. In [22], the authors studied the
boundary between the maximum allowable distortion and the privacy budget in the case
of noninteractive data release. At the same time, they compared the privacy protection
strength of differential privacy with that of reconfigurable privacy and mutual information
privacy under the same distortion. The degree of distortion could directly measure the
utility of the algorithm mechanism. The optimization problem was established in the
paper, which solved the problem of the maximum degree of distortion of different privacy
protection mechanisms under the condition of satisfying differential privacy.

As is known to all, utility is one of the important indicators to measure the performance
of algorithms in DP. Hence, we aim to find the utility–privacy trade-off of DML from
an information-theoretic point of view in this paper. Specifically, three cases including
independent clients’ local parameters with independent DP noise and dependent clients’
local parameters with independent/dependent DP noise are considered. We assume that
the local parameters and added noise in distributed machine learning are subject to a
Gaussian distribution. This is because Gaussian distribution models are widely used in
machine learning. Many machine-learning models with probability distribution as the
core mostly assume that the data have Gaussian distributions, e.g., logistic regression
models, naive Bayes models, and so on. Why can some data be assumed to follow a
Gaussian distribution? The intuitive reason is that real-life examples generally satisfy
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Gaussian distribution, such as the distribution of students’ grades. Furthermore, a Gaussian
distribution has many advantages: (1) It is easy to describe, and only two parameters are
needed to describe it, the mean and variance, which are the essential information of the
distribution. (2) A Gaussian distribution is easy to calculate. It has some good mathematical
properties. The data that obey a Gaussian distribution still obey a Gaussian distribution
after some operations. For example, a linear combination of normal random variables
is still a normal random variable. (3) Many random variables in reality are formed by
the combined influence of a large number of independent random factors, and each of
the individual factors plays a small role in the overall impact. Such random variables
tend to approximately obey a Gaussian distribution (objective background to the central
limit theorem). (4) When the mean and variance are known, the entropy of the Gaussian
distribution is the largest among all distributions. When the data distribution is unknown,
the model with the largest entropy is usually selected. Therefore, it is reasonable to assume
that the local parameters and the added noise in our distributed machine learning follow a
Gaussian distribution.

Based on the above three cases, the main research methods of this paper are as follows.
First, we establish the utility–privacy trade-off for these three cases. Then, we determine the
optimum noise variances that achieve the maximal utility under a certain level of privacy.
Finally, we further explain the results of this paper by numerical examples.

The remainder of this paper is organized as follows. Section 2 mainly introduces the
background knowledge of DML and DP, gives the framework of DML–DP established in
this paper, and uses mutual information and conditional mutual information to characterize
utility and privacy. Section 3 analyzes the relationship between utility and privacy in DML
based on the DP framework and gives the noise level that can obtain the maximum utility
under the condition of privacy with three different cases, including independent clients’
local parameters with independent DP noise and dependent clients’ local parameters with
independent/dependent DP noise. Section 4 summarizes all the results and discusses the
limitations of this paper and future work.

2. Preliminaries and Model Formulation

In this section, the preliminary background knowledge of DML and DP is introduced.
In addition, we present the distributed machine learning–(mutual information-differential
privacy) (DML–(MI-DP)) model that is discussed in the next section.

2.1. Preliminaries

Distributed machine learning: The goal of DML is to solve how to coordinate and utilize
a large number of GPU clusters and massive data to complete the training of a deep
learning model and obtain good convergence, so as to achieve relatively high performance.
DML involves how to allocate training tasks, how to allocate computing resources, and
coordinate various functional modules to achieve the balance between training speed
and accuracy. A DML system usually includes the following main modules: data model
partition module, single machine optimization module, communication module, and model
and data aggregation module. Each module has a variety of implementations, and each
implementation method can also be arranged and combined, which makes the methods of
DML diverse.

In this paper, we mainly studied the privacy disclosure problem from the DML
framework of data partitioning. In order to visualize the problems studied, this paper
adopts the following framework, as shown in Figure 1. The main learning process is as
follows: There is a central server and n clients. An active client inputs the locally owned
data set into the model, and after the model is trained, the model parameter is obtained
by the client and then uploaded to the server. On the server side, after it has received the
model parameters (also called local parameters) provided by each client, it integrates the
local parameters into a global parameter in some way. Here, note that Di represents the
data set owned by the client Ci, and Xi, i ∈ {1, 2, . . . , n} is the gradient variable of the
model trained locally.
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Figure 1. A general distributed machine learning framework.

Differential privacy: DP prevents differential attacks. The goal of DP is to protect the
privacy of each entry in the database while answering queries about the total quantity of
data. There are several definitions of DP, such as traditional DP [23] and Renyi DP [24–26].
Since Shannon’s definition of mutual information has been widely adopted in DP, we
also used Shannon’s definition of mutual information in differential privacy (MI-DP) in
this paper. In [10], the authors proposed the concept of MI-DP by defining similarity and
demonstrated the relationship between MI-DP and the two types of traditional DP in terms
of security strength. In fact, the MI-DP is sandwiched between ε-differential privacy and
(ε, δ)-differential privacy in terms of its strength [27]. MI-DP is fundamentally related to
conditional mutual information. The conceptual advantage of using mutual information,
aside from yielding a simpler and more intuitive definition of differential privacy, is that its
properties are well understood. Several properties of differential privacy are easily verified
for the conditional mutual information [27].

Definition 1 (Mutual-Information Differential Privacy [10]). A randomized mechanism PR|Mn

satisfies ε-mutual-information differential privacy if

max
i

I(Mi; R|M−i) ≤ ε, (1)

where R is the output of randomized mechanism PR|Mn , Mn = (M1, . . . , Mn) is a database, M−i

denotes the other data in the database except for the Mi element, and ε > 0 represents the privacy
budget: the larger ε, the lower the privacy requirements, and the smaller ε, the stronger the privacy.

This definition clearly reveals what kind of privacy is guaranteed by DP and what
kind of privacy is not, which is easy to understand intuitively. For example, we can suppose
that an adversary already knows about all except a certain data element, and they want to
use the randomized mechanism to analyze the remaining data information. This is also
known as the strong adversary hypothesis. This hypothesis is clearly revealed in MI-DP by
conditional mutual information [10].

By adding random noise, DP ensures that the public output results will not be signifi-
cantly changed due to an entity being in the data set and gives a quantitative model for
the degree of privacy leakage. Different kinds of noise can be added to this model. For
example, Laplace noise, exponential noise, or Gaussian noise can be chosen.
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2.2. Model Formulation

Our framework, a general distributed machine learning framework based on dif-
ferential privacy: DML can train large quantities of data locally due to its distributed
structure. However, in the process of DML, an attacker can analyze the model parameters
Xi (i ∈ {1, 2, . . . , n}) uploaded by each client to obtain the client’s sensitive informa-
tion [28,29]. Therefore, we use the method of combining DP with Gaussian noise and
distributed machine learning to deal with the risk of such privacy leakage. The model
architecture is shown in Figure 2. In fact, it adds random noise on the basis of the general
DML framework to complete DP. After the clients have trained the model locally, the model
parameters Xi (i ∈ {1, 2, . . . , n}) are not directly uploaded to the server, but are handed
over to a trusted third party. We assume that the channel through which the clients transmit
the local parameters to the trusted third party is absolutely safe and reliable. The third
party adds random Gaussian noise Zi to each local parameter Xi (i ∈ {1, 2, . . . , n}), and
finally, after adding noise, the local parameters are transmitted to the server by a trusted
third party to complete the aggregation and obtain the global parameter.

Figure 2. The general distributed machine learning framework based on differential privacy.

In this model, the key step is to design the noise Zi (i ∈ {1, 2, . . . , n}), which should
not only meet the MI-DP condition, but also maximize the utility of local parameters after
adding noise. The relationship between Xn, Zn and Yn is represented by Figure 3,

Yn = Xn + Zn. (2)
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Figure 3. The relationship between Xn, Zn and Yn.

Here, note that Xn = (X1, . . . , Xn), Zn = (Z1, . . . , Zn), Yn = (Y1, . . . , Yn), Xn is the set
of local parameters obtained from the local training model of all clients, and Zn is the set of
Gaussian random noise added to the local parameters. Yn is the set of all local parameters
after adding noise.

Through the definition of MI-DP, we know that Xi, Zi and Yi (i ∈ {1, 2, . . . , n}) must
meet the following condition:

max
i

I(Xi; Yn|X−i) ≤ ε, (3)

where X−i = (X1, . . . , Xi−1, Xi+1, . . . , Xn). In this paper, we regard the left side of (3) as the
expression of satisfying privacy.

By the meaning of mutual information, the expression that measures the utility of the
noisy local parameters is denoted by,

U =
I(Xn; Yn)

n
, (4)

which is regarded as the expression of utility.
In the next section, we mainly introduce the two important tasks of this paper: The first

part focuses on how to design the variance of the noise to make the noisy local parameters
have the best utility (the maximum value of (4) while satisfying the Equation (3)). The
second part focuses on exploring the relationship between the utility and privacy of the
noisy local parameters, in other words, the relationship between U and ε.

3. Analysis of the Amount of Noise Added and Exploration of the Relationship
between Utility and Privacy

In this section, the local parameter Xi (i ∈ {1, 2, . . . , n}) obtained by the client’s
local training is a Gaussian random variable, and the added noise Zi (i ∈ {1, 2, . . . , n})
is also a random Gaussian variable. We used the conditional expression of privacy and
the expression of utility so that the most suitable noise variance could be designed after
calculation, and the designed noise could not only meet the definition of DP, but also
optimize the utility of noisy local parameters.

Therefore, this problem could be mathematized and expressed as: How should the
variance of the added noise be designed to make U = I(Xn ;Yn)

n maximum under the
conditions max

i
I(Xi; Yn|X−i) ≤ ε? The three cases are described below:

Case 1: independent noise added to the independent local parameters.
Case 2: independent noise added to the dependent local parameters.
Case 3: dependent noise added to the dependent local parameters.
After solving this problem, the most suitable noise variances were designed. Next,

we studied theoretically the relationship between the utility and privacy of the noisy local
parameters in the DML based on the DP framework.

3.1. Case 1: Independent Noise Added to Independent Local Parameters

In Case 1, we assumed that the parameters of each client were independent of each
other. Consequently, this case corresponded to the actual application scenario, which could
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be used for training data with little or no correlation between them, e.g., word recognition,
spam classification, etc.

The clients’ local parameters Xi ∼ N (0, σ2
i ) were independent of each other, where

∼ denoted “distributed as”, and σ2
i varied with i (i ∈ {1, 2, . . . , n}), that is to say, the

distribution of local parameters of each client was different. The noise added to each local
parameter was also independent and is distributed as Zi ∼ N (0, σ2).

Theorem 1. The optimum Gaussian noise variance σ2 in Case 1 is given by

σ2 =
σ2

xmax
22ε − 1

,

where σ2
xmax = max{σ2

1 , . . . , σ2
n}, and σ2 achieves the maximal utility U = I(Xn ;Yn)

n under a
certain secrecy level max

i
I(Xi; Yn|X−i) ≤ ε.

Proof of Theorem 1. Since the relationship between Yi, Xi and Zi is Yi = Xi + Zi (i ∈
{1, 2, . . . , n}), we easily obtain that Yi are independent of each other and distributed as
Yi ∼ N (0, σ2

i + σ2). From the definition of (3), we have

I(Xi; Yn|X−i)

= h(Yn|X−i)− h(Yn|Xn)

= h(Xi + Zi, Z−i))− h(Zn)

=
1
2

log[(2πe)n(σ2
i + σ2)σ2(n−1)]− 1

2
log[(2πe)nσ2n]

=
1
2

log(1 +
σ2

i
σ2 ) ≤ ε. (5)

From (5) we deduce that the variance σ2 of the designed noise Zi should satisfy the
following inequality

σ2 ≥ σ2
xmax

22ε − 1
, (6)

where σ2
xmax = max{σ2

1 , . . . , σ2
n}. After clarifying the value range of the noise variance

under the privacy condition, the next step is to select the most suitable variance value in
the value range to get the best utility (make U = I(Xn ;Yn)

n maximal). From (4), we have

U =
1
n

I(Xn; Yn)

=
1
n
[h(Yn)− h(Yn|Xn)]

=
1
n
[h(Yn)− h(Zn)]

=
1

2n
log[(2πe)n(σ2

1 + σ2) ∗ . . . ∗ (σ2
n + σ2)]

− 1
2n

log[(2πe)nσ2n]

=
1

2n

n

∑
i=1

log(1 +
σi

2

σ2 ). (7)

From (8), it can be clearly observed that U = I(Xn ;Yn)
n is a monotonically decreasing

function of σ2. Therefore, when σ2 takes the minimum value

σ2 =
σ2

xmax
22ε − 1

, (8)
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the expression of utility U takes the maximum value

Umax =
1

2n

n

∑
i=1

log
[

1 +
σi

2(22ε − 1)
σ2

xmax

]
. (9)

In summary, the problem of how to design the size of the noise variance in Case 1 was
solved and the first part of the work of Case 1 completed.

After obtaining the optimum noise variance, the next step was to study the relationship
between utility and privacy in Case 1 (that is, the relationship between Umax and ε), where
(9) is the functional relationship between Umax and ε.

Figure 4 plots the relationship between Umax and ε based on (9). In this figure, we
assumed that n = 101, σ2

i (i ∈ {1, 2, . . . , 101}) to be a random value between 0 and 1. It can
be seen from the figure that when the local parameters of clients are independent of each
other, and the noise is also designed to be independent, the amounts of the privacy budget
and utility are proportional. The larger the privacy budget value (the greater the risk of
privacy leakage), the bigger the value of utility.

Figure 4. The relationship between utility and privacy in Case 1.

3.2. Case 2: Independent Noise Added to Dependent Local Parameters

Case 2 was different from Case 1, as we assumed that the clients’ local parameters were
dependent of each other. This case is used for practical application scenarios of correlation
between training data. For example, machine learning can be applied to explore the impact
of age on health in humans. It is well known that there is a certain correlation between age
and human health indicators.

The clients’ local parameters Xi ∼ N (0, σ2
m) were dependent of each other. When

i 6=j, E[XiXj] = σ2
k (j ∈ {1, 2, . . . , n}). The distributions of local parameters of each client

were the same. The noise added to each local parameter Zi ∼ N (0, σ2) (i ∈ {1, 2, . . . , n})
was independent.

Theorem 2. The optimum Gaussian noise variance in Case 2 is given by

σ2 =
σ2

m
22ε − 1

+
(n− 1)σ4

k
(22ε − 1)[σ2

m + (n− 2)σ2
k ]

,

which achieves the maximal utility U = I(Xn ;Yn)
n under a certain secrecy level max

i
I(Xi; Yn|X−i) ≤ ε.
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Proof of Theorem 2. Since Yi = Xi + Zi (i ∈ {1, 2, . . . , n}) and Xi are dependent of each
other, Yi ∼ N (0, σ2

m + σ2) are dependent of each other. We assume that when i 6=j, E[YiYj] =

σ2
k (j ∈ {1, 2, . . . , n}). We put the value of each variable into the expression of satisfying

privacy, and it is calculated as

I(Xi; Yn|X−i)

= h(Yn|X−i)− h(Yn|Xn)

= h(Xi + Zi, Z−i|X−i)− h(Zn)

= h(Xi + Zi|X−i) + h(Z−i)− h(Zn)

= h(Xi + Zi, X−i)− h(X−i) + h(Zi)

=
1
2

log[(2πe)n|COV(Xi + Zi, X−i)|]− 1
2

log[(2πe)n−1|COV(X−i)|]− 1
2

log(2πeσ2)

=
1
2

log(
|COV(Xi + Zi, X−i)|
|COV(X−i)|σ2 ) ≤ ε. (10)

for |COV(Xi + Zi, X−i)| and |COV(X−i)|, we have

|COV(Xi + Zi, X−i)|

=

∣∣∣∣∣∣∣∣∣
E(Xi + Zi)

2 EXiX1 · · · EXiXn
EX1Xi EX2

1 · · · EX1Xn
...

...
. . .

...
EXnXi EXnX1 · · · EX2

n

∣∣∣∣∣∣∣∣∣
n×n

=

∣∣∣∣∣∣∣∣∣
σ2

m + σ2 σ2
k · · · σ2

k
σ2

k σ2
m · · · σ2

k
...

...
. . .

...
σ2

k σ2
k · · · σ2

m

∣∣∣∣∣∣∣∣∣
n×n

= (σ2
m − σ2

k )
n−1(σ2

m + σ2)− (n− 1)(σ2
k − σ2

m − σ2)σ2
k (σ

2
m − σ2

k )
n−2, (11)

|COV(X−i)|

=

∣∣∣∣∣∣∣∣∣
EX2

1 EX1X2 · · · EX1Xn
EX2X1 EX2

2 · · · EX2Xn
...

...
. . .

...
EXnX1 EXnX2 · · · EX2

n

∣∣∣∣∣∣∣∣∣
(n−1)×(n−1)

=

∣∣∣∣∣∣∣∣∣
σ2

m σ2
k · · · σ2

k
σ2

k σ2
m · · · σ2

k
...

...
. . .

...
σ2

k σ2
k · · · σ2

m

∣∣∣∣∣∣∣∣∣
(n−1)×(n−1)

= [σ2
m + (n− 2)σ2

k ](σ
2
m − σ2

k )
n−2. (12)

According to (11), (12) and (10) can be expressed as

I(Xi; Yn|X−i)

=
1
2

log(
(σ2

m − σ2
k )

n−1(σ2
m + σ2)

[σ2
m + (n− 2)σ2

k ](σ
2
m − σ2

k )
n−2σ2

−
(n− 1)(σ2

k − σ2
m − σ2)σ2

k (σ
2
m − σ2

k )
n−2

[σ2
m + (n− 2)σ2

k ](σ
2
m − σ2

k )
n−2σ2

)

≤ ε. (13)
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From (13), we deduce that the variance σ2 of the designed noise Zi should satisfy the
following inequality

σ2≥ σ2
m

22ε − 1
+

(n− 1)σ4
k

(22ε − 1)[σ2
m + (n− 2)σ2

k ]
. (14)

After clarifying the value range of the noise variance under the privacy condition, the
next step is to select the most suitable variance value in the value range to get the best
utility (make U = I(Xn ;Yn)

n maximal).

U =
1
n

I(Xn; Yn)

=
1
n
[h(Yn)− h(Yn|Xn)]

=
1
n
[h(Yn)− h(Zn)]

=
1

2n
log[(2πe)n|COV(Y1, . . . , Yn)|]−

1
2n

log[(2πe)nσ2n]

=
1

2n
log(
|COV(Y1, . . . , Yn)|

σ2n ). (15)

For |COV(Y1, . . . , Yn)|, we have

|COV(Y1, . . . , Yn)|

=

∣∣∣∣∣∣∣∣∣
E(Y1)

2 EY1Y2 · · · EY1Yn
EY2Yn EY2

2 · · · EY2Yn
...

...
. . .

...
EYnY1 EYnY2 · · · EY2

n

∣∣∣∣∣∣∣∣∣
n×n

=

∣∣∣∣∣∣∣∣∣
σ2

m + σ2 σ2
k · · · σ2

k
σ2

k σ2
m + σ2 · · · σ2

k
...

...
. . .

...
σ2

k σ2
k · · · σ2

m + σ2

∣∣∣∣∣∣∣∣∣
n×n

= [σ2
m + σ2 + (n− 1)σ2

k ](σ
2
m + σ2 − σ2

k )
n−1, (16)

From (16) and (15), this can be expressed as

U =
1
n

I(Xn; Yn)

=
1

2n
log(

σ2
m + σ2 + (n− 1)σ2

k
σ2n ) +

1
2n

log(
(σ2

m + σ2 − σ2
k )

n−1

σ2n ). (17)

From (17), it can be clearly observed that U = I(Xn ;Yn)
n is a monotonically decreasing

function of σ2. Therefore, when σ2 takes its minimum value (σ2 = σ2
m

22ε−1 +
(n−1)σ4

k
(22ε−1)[σ2

m+(n−2)σ2
k ]

is denoted as σ2
min), the expression of utility U takes its maximum value

Umax =
1

2n
log[σ2

m + σ2
min + (n− 1)σ2

k ] +
1

2n
log(

(σ2
m + σ2

min − σ2
k )

n−1

σ2n
min

). (18)

In summary, the problem of how to design the size of the noise variance in Case 2 was
solved and the first part of the work of Case 2 completed.

Next, we carried out the second part of the work: After obtaining the optimal noise
variance, the next step was to study the relationship between utility and privacy in Case 2
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(the relationship between Umax and ε), where (18) is the functional relationship between
Umax and ε.

Figure 5 plots the relationship between Umax and ε based on (18). In this figure, we
assumed that σ2

m = 2, σ2
k = 1.8, and n = 101. It can be seen from the figure that when the

local parameters of clients are dependent of each other, and the added noise is designed
to be independent, the amounts of the privacy budget and utility are proportional. We
conclude that the larger the privacy budget value (the greater the risk of privacy leakage),
the bigger the value of utility.

Figure 5. The relationship between utility and privacy in Case 2.

3.3. Case 3: Dependent Noise Added to Local Parameters

Case 3 was different from Case 2, as we assumed that the noise added to each local
parameter was dependent. In order to check whether dependent noise performed better
than independent noise, we studied Case 3. The application scenario of Case 3 is still that
the parameters are correlated, for example, the study of the correlation between human
lifespan and gender.

In Case 3, the noise added to each local parameter Zi ∼ N (0, σ2) (i ∈ {1, 2, . . . , n}) was
dependent. When i 6=j, E[ZiZj] = σ2

e , j ∈ {1, 2, . . . , n}. The clients’ local parameters Xi ∼
N (0, σ2

m) were also dependent of each other. When i 6=j, E[XiXj] = σ2
k , j ∈ {1, 2, . . . , n}.

The distributions of local parameters of each client were the same.
For the problem to be solved, we made the following analysis. Case 3 was different

from Cases 1 and 2. There were two noise parameters in Case 3. We had to design the most
suitable noise to make U = I(Xn ;Yn)

n maximum under the conditions max
i

I(Xi; Yn|X−i) ≤ ε.

Thus, the computational difficulty was also much higher than in Cases 1 and 2. As we
know, Yi = Xi + Zi, i ∈ {1, 2, . . . , n}, so Yi ∼ N (0, σ2

m + σ2) are dependent of each other.
We assumed that when i 6=j, E[YiYj] = σ2

k + σ2
e , E[XiYj] = σ2

k , j ∈ {1, 2, . . . , n}. We put the
value of each variable into the expression of satisfying privacy, which could be calculated as

I(Xi; Yn|X−i)

= h(Yn|X−i)− h(Yn|Xn)

= h(Yn, X−i)− h(X−i)− h(Zn)

=
1
2

log[(2πe)2n−1|COV(Yn, X−i)|]− 1
2

log[(2πe)n−1|COV(X−i)|]− 1
2

log(2πe)n|COV(Zn)|)

=
1
2

log(
|COV(Yn, X−i)|

|COV(X−i)||COV(Zn)|
) ≤ ε. (19)
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Lemma 1. For |COV(Yn, X−i)|, even if i ∈ {1, 2, . . . , n} takes different values, the result of
determinant |COV(Yn, X−i)| is the same.

Proof. When i = 1,

|COV(Yn, X−i)| = |COV(Yn, X−1)|

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

EY2
1 EY1Y2 · · · EY1Yn EY1X2 EY1X3 · · · EY1Xn

EY2Y1 EY2
2 · · · · · · EY2X2 EY2X3 · · · · · ·

· · · · · ·
. . . · · · · · · · · ·

. . . · · ·
EYnY1 · · · · · · EY2

n EYnX2 · · · · · · EYnXn
EX2Y1 EX2Y2 · · · EX2Yn EX2

2 EX2X3 · · · EX2Xn
EX3Y1 EX3Y2 · · · · · · EX3X2 EX2

3 · · · · · ·

· · ·
. . . · · · · · · · · · · · ·

. . . · · ·
EXnY1 · · · · · · EXnYn EXnX2 · · · · · · EX2

n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(2n−1)×(2n−1)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

σ2
m + σ2 σ2

k + σ2
e · · · σ2

k + σ2
e σ2

k σ2
k · · · σ2

k
σ2

k + σ2
e σ2

m + σ2 · · · · · · σ2
m σ2

k · · · · · ·

· · · · · ·
. . . · · · · · · · · ·

. . . · · ·
σ2

k + σ2
e · · · · · · σ2

m + σ2 σ2
k · · · · · · σ2

m
σ2

k σ2
m · · · σ2

k σ2
m σ2

k · · · σ2
k

σ2
k σ2

k · · · · · · σ2
k σ2

m · · · · · ·

· · ·
. . . · · · · · · · · · · · ·

. . . · · ·
σ2

k · · · · · · σ2
m σ2

k · · · · · · σ2
m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(2n−1)×(2n−1)

. (20)
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When i = 2,

|COV(Yn, X−i)| = |COV(Yn, X−2)|

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

EY2
1 EY1Y2 · · · EY1Yn EY1X1 EY1X3 · · · EY1Xn

EY2Y1 EY2
2 · · · · · · EY2X1 EY2X3 · · · · · ·

· · · · · ·
. . . · · · · · · · · ·

. . . · · ·
EYnY1 · · · · · · EY2

n EYnX1 · · · · · · EYnXn
EX1Y1 EX1Y2 · · · EX1Yn EX2

1 EX1X3 · · · EX1Xn
EX3Y1 EX3Y2 · · · · · · EX3X1 EX2

3 · · · · · ·

· · ·
. . . · · · · · · · · · · · ·

. . . · · ·
EXnY1 · · · · · · EXnYn EXnX1 · · · · · · EX2

n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(2n−1)×(2n−1)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

σ2
m + σ2 σ2

k + σ2
e · · · · · · σ2

k + σ2
e σ2

m σ2
k · · · · · · σ2

k
σ2

k + σ2
e σ2

m + σ2 · · · · · · · · · σ2
k σ2

k · · · · · · σ2
k

· · · · · ·
. . . · · · · · · σ2

k σ2
m · · · · · · σ2

k

· · · · · · · · ·
. . . · · · · · · · · · · · ·

. . . · · ·
σ2

k + σ2
e · · · · · · · · · σ2

m + σ2 σ2
k σ2

k · · · · · · σ2
m

σ2
m σ2

k σ2
k · · · σ2

k σ2
m σ2

k · · · · · · σ2
k

σ2
k σ2

k σ2
m · · · σ2

k σ2
k σ2

m · · · · · · · · ·

σ2
k σ2

k · · ·
. . . · · · · · · · · ·

. . . · · ·

· · · · · · · · · · · · · · · · · · · · · · · ·
. . . · · ·

σ2
k σ2

k · · · · · · σ2
m σ2

k · · · · · · · · · σ2
m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(2n−1)×(2n−1)

= (−1)2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

σ2
m + σ2 σ2

k + σ2
e · · · · · · σ2

k + σ2
e σ2

k σ2
k · · · · · · σ2

k
σ2

k + σ2
e σ2

m + σ2 · · · · · · · · · σ2
m σ2

k · · · · · · σ2
k

· · · · · ·
. . . · · · · · · σ2

k σ2
m · · · · · · σ2

k

· · · · · · · · ·
. . . · · · · · · · · · · · ·

. . . · · ·
σ2

k + σ2
e · · · · · · · · · σ2

m + σ2 σ2
k σ2

k · · · · · · σ2
m

σ2
k σ2

m σ2
k · · · σ2

k σ2
m σ2

k · · · · · · σ2
k

σ2
k σ2

k σ2
m · · · σ2

k σ2
k σ2

m · · · · · · · · ·

σ2
k σ2

k · · ·
. . . · · · · · · · · ·

. . . · · ·

· · · · · · · · · · · · · · · · · · · · · · · ·
. . . · · ·

σ2
k σ2

k · · · · · · σ2
m σ2

k · · · · · · · · · σ2
m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= |COV(Yn, X−1)|. (21)

Consequently, |COV(Yn, X−1)| = |COV(Yn, X−2)|. Similarly, we can prove that
|COV(Yn, X−2)| = |COV(Yn, X−3)| = . . . = |COV(Yn, X−n)|. That is to say, no matter
what value i ∈ {1, 2, . . . , n} takes, the result of the determinant |COV(Yn, X−i)| is the same.
So the proof of Lemma 1 is completed.

Therefore, we could calculate |COV(Yn, X−i)| as |COV(Yn, X−1)|,
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|COV(Yn, X−i)| = |COV(Yn, X−1)| =

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

σ2
m + σ2 σ2

k + σ2
e · · · σ2

k + σ2
e σ2

k σ2
k · · · σ2

k
σ2

k + σ2
e σ2

m + σ2 · · · · · · σ2
m σ2

k · · · · · ·

· · · · · ·
. . . · · · · · · · · ·

. . . · · ·
σ2

k + σ2
e · · · · · · σ2

m + σ2 σ2
k · · · · · · σ2

m
σ2

k σ2
m · · · σ2

k σ2
m σ2

k · · · σ2
k

σ2
k σ2

k · · · · · · σ2
k σ2

m · · · · · ·

· · ·
. . . · · · · · · · · · · · ·

. . . · · ·
σ2

k · · · · · · σ2
m σ2

k · · · · · · σ2
m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(2n−1)×(2n−1)

= (σ2
m + σ2)(σ2 − σ2

e )
n−1(σ2

m − σ2
k )

n−1 + (−1)n+1(σ2
e − σ2

m − σ2)(n− 1)σ2
e (σ

2
e − σ2)n−2(σ2

m − σ2
k )

n−1

+σ2
k [(n− 1)σ2

e +
(σ2

e − σ2)σ2
k

−σ2
k − σ2

e + σ2
m + σ2

](σ2
e − σ2)n−2[(n− 1)(−σ2

k − σ2
e + σ2

m + σ2)](σ2
k − σ2

m)
n−2. (22)

For |COV(Zn)|, we had

|COV(Zn)|

=

∣∣∣∣∣∣∣∣∣
EZ2

1 EZ1Z2 · · · EZ1Zn
EZ2Z1 EZ2

2 · · · EZ2Zn
...

... · · ·
...

EZnZ1 EZnZ2 · · · EZ2
n

∣∣∣∣∣∣∣∣∣
n×n

=

∣∣∣∣∣∣∣∣∣
σ2 σ2

e · · · σ2
e

σ2
e σ2 · · · σ2

e
...

... · · ·
...

σ2
e σ2

e · · · σ2

∣∣∣∣∣∣∣∣∣
n×n

= [σ2 + (n− 1)σ2
e ](σ

2 − σ2
e )

n−1. (23)

From (12), we calculated |COV(X−i)| = [σ2
m + (n − 2)σ2

k ](σ
2
m − σ2

k )
n−2. Thus, (19)

could be expressed as

I(Xi; Yn|X−i)

=
1
2

log(
A + B + C + D

[σ2
m + (n− 2)σ2

k ](σ
2 + (n− 1)σ2

e )(σ
2 − σ2

e )
)

≤ ε, (24)

where A = (σ2
m + σ2)(σ2 − σ2

e )(σ
2
m − σ2

k ), B = (−1)n+1(n− 1)σ2
e (σ

2
e − σ2

m − σ2)(σ2
m − σ2

k ),
C = (n− 1)σ4

k (σ
2
e − σ2), and D = (n− 1)2σ2

e σ2
k (σ

2
m + σ2 − σ2

k − σ2
e )

As shown, Equation (24) is very complicated, and it was difficult for us to directly
derive the range of values of σ2 and σ2

e , the two parameters of the noise. Instead, we
calculated the utility expression U = I(Xn ;Yn)

n , and then we used the nonlinear constraint
optimization function to obtain the optimal values of σ2 and σ2

e which could maximize
the U.
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Equation (4) could be further computed as

U =
1
n

I(Xn; Yn)

=
1
n
[h(Yn)− h(Yn|Xn)]

=
1
n
[h(Yn)− h(Zn)]

=
1

2n
log[(2πe)n|COV(Y1, . . . , Yn)|]

− 1
2n

log[(2πe)n|COV(Z1, . . . , Zn)|]

=
1

2n
log(
|COV(Y1, . . . , Yn)|
|COV(Z1, . . . , Zn)|

). (25)

For |COV(Y1, . . . , Yn)|, we had

|COV(Y1, . . . , Yn)|

=

∣∣∣∣∣∣∣∣∣
EY2

1 EY1Y2 · · · EY1Yn
EY2Yn EY2

2 · · · EY2Yn
...

... · · ·
...

EYnY1 EYnY2 · · · EY2
n

∣∣∣∣∣∣∣∣∣
n×n

=

∣∣∣∣∣∣∣∣∣
σ2

m + σ2 σ2
k + σ2

e · · · σ2
k + σ2

e
σ2

k + σ2
e σ2

m + σ2 · · · σ2
k + σ2

e
...

... · · ·
...

σ2
k + σ2

e σ2
k + σ2

e · · · σ2
m + σ2

∣∣∣∣∣∣∣∣∣
n×n

= [σ2
m + σ2 + (n− 1)(σ2

k + σ2
e )](σ

2
m + σ2 − σ2

k − σ2
e )

n−1. (26)

We calculated |COV(Zn)| = [σ2 + (n − 1)σ2
e ](σ

2 − σ2
e )

n−1. Thus, (25) could be ex-
pressed as

U =
1
n

I(Xn; Yn)

=
1

2n
log[σ2

m + σ2 + (n− 1)(σ2
k + σ2

e )] +
1

2n
log

(σ2
m + σ2 − σ2

k − σ2
e )

n−1

[σ2 + (n− 1)σ2
e ](σ2 − σ2

e )n−1
. (27)

The next step was to combine (24) with (27). The aim was to find the most suitable
values of σ2 and σ2

e so that (27) could obtain the maximum value under the condition of
(24). In order to solve this problem, we used MATLAB’s nonlinear optimization function
for the simulation. We varied the privacy budget ε values and searched for σ2 and σ2

e that
would maximize utility.

Figure 6 shows the simulation results when the privacy budget ε takes different values
(ε = {1, 3, 4, 5, 8, 10}). In this figure, we assumed that σ2

m = 30, σ2
k = 2, and n = 101.

We found that when the privacy budget ε increased within a certain range, the value for
measuring utility also increased. However, there was an upper bound, that is, when the
privacy budget ε was out of range, the value of Umax remained unchanged. Figure 7 plots
the relationship between Umax and ε. In Figure 7, we obtained the value of the expression
of utility when the privacy budget ε = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. In this figure, we assumed
that σ2

m = 30, σ2
k = 2, and n = 101. The ten points (ε = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}) were

connected into a line, and finally we obtained the relationship trend between Umax and ε.
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Figure 6. The impact of noise level on utility with different privacy budget ε.

Figure 7. The relationship between utility and privacy in Case 3.

4. Conclusions

In this paper, we used the DP mechanism to protect the clients’ local parameters. From
an information-theoretic point of view, we studied the utility–privacy trade-off in DML
with the help of the DP mechanism. Specifically, three cases including independent clients’
local parameters with independent DP noise and dependent clients’ local parameters with
independent/dependent DP noise were considered. Mutual information and conditional
mutual information were used to characterize utility and privacy, respectively. First, we
showed the relationship between utility and privacy for the three cases. Then, we show the
optimal noise variance that achieved the maximal utility under a certain level of privacy.
Finally, the results of this paper were further illustrated by numerical results.

The limitations of this paper are that the local parameters and the added noise of the
client were only assumed to be Gaussian distributed, and multiround model training was
not considered, which we will in our future work.
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