
Citation: Wang, J.; Gong, Z.; Liu, X.;

Guo, H.; Lu, J.; Yu, D.; Lin, Y.

Multi-Feature Information

Complementary Detector: A

High-Precision Object Detection

Model for Remote Sensing Images.

Remote Sens. 2022, 14, 4519. https://

doi.org/10.3390/rs14184519

Academic Editor: Józef Lisowski

Received: 15 August 2022

Accepted: 6 September 2022

Published: 9 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Multi-Feature Information Complementary Detector:
A High-Precision Object Detection Model for Remote
Sensing Images
Jiaqi Wang, Zhihui Gong, Xiangyun Liu, Haitao Guo *, Jun Lu, Donghang Yu and Yuzhun Lin

Institute of Geospatial Information, PLA Strategic Support Force Information Engineering University,
Zhengzhou 450001, China
* Correspondence: ghtgjp2002@163.com

Abstract: Remote sensing for image object detection has numerous important applications. However,
complex backgrounds and large object-scale differences pose considerable challenges in the detection
task. To overcome these issues, we proposed a one-stage remote sensing image object detection model:
a multi-feature information complementary detector (MFICDet). This detector contains a positive
and negative feature guidance module (PNFG) and a global feature information complementary
module (GFIC). Specifically, the PNFG is used to refine features that are beneficial for object detection
and explore the noisy features in a complex background of abstract features. The proportion of
beneficial features in the feature information stream is increased by suppressing noisy features.
The GFIC uses pooling to compress the deep abstract features and improve the model’s ability to
resist feature displacement and rotation. The pooling operation has the disadvantage of losing
detailed feature information; thus, dilated convolution is introduced for feature complementation.
Dilated convolution increases the receptive field of the model while maintaining an unchanged
spatial resolution. This can improve the ability of the model to recognize long-distance dependent
information and establish spatial location relationships between features. The detector proposed
also improves the detection performance of objects at different scales in the same image using a
dual multi-scale feature fusion strategy. Finally, classification and regression tasks are decoupled
in space using a decoupled head. We experimented on the DIOR and NWPU VHR-10 datasets to
demonstrate that the newly proposed MFICDet achieves competitive performance compared to
current state-of-the-art detectors.

Keywords: remote sensing imagery; object detection; multi-scale; complementary information

1. Introduction

Remote sensing technology is one of the most important ways to observe the Earth [1]
as it provides a broader perspective. Remote sensing image object detection has been
applied in several fields. Recently, with the development of deep learning technology,
substantial progress has been made in object detection methods, which has led to a new
wave of object detection processing and applications based on remote sensing images.

Object detection via deep learning models can be classified into two categories: two-
stage series models based on region proposal and one-stage series models based on regres-
sion. The main difference between the two is that the former pre-generates candidate boxes
that may contain objects using heuristics and then performs fine-grained classification
and regression on the candidate boxes, whereas the latter is densely sampled directly
on the feature map, and the sampled regions contain different scales and aspect ratios,
which in turn leads to the direct classification and regression of the extracted features. A
representative algorithm of the two-stage approach is R-CNN [2]. An improved version
of R-CNN, Faster R-CNN [3], provided the idea for subsequent two-stage methods. The
two-stage algorithm generates candidate boxes in advance, followed by an exact regression;

Remote Sens. 2022, 14, 4519. https://doi.org/10.3390/rs14184519 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14184519
https://doi.org/10.3390/rs14184519
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-5858-7671
https://doi.org/10.3390/rs14184519
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14184519?type=check_update&version=2


Remote Sens. 2022, 14, 4519 2 of 25

thus, its accuracy is higher. However, this group of models is computationally complex and
slow to detect. The one-stage model regresses directly to the object boundary, thus saving a
lot of computational resources while obtaining sufficient accuracy. At present, one-stage
models are commonly used in industry, and classical algorithms include the YOLO [4]
series and the SSD [5] series. General-purpose object detection algorithms have achieved
excellent performance; however, there are still outstanding problems in applying these
models directly to remote sensing images.

Compared with images in natural scenes, remote sensing images are characterized
by strong background information interference, large variations in object scale, and rich
appearance and shapes. These characteristics pose considerable challenges during clas-
sification and regression. Many scholars have proposed solutions to the difficulties in
remote sensing image object detection. However, there is still room for improvement in
the accuracy of these models applied to complex remote sensing image datasets. The wide
field of view of remote sensing images leads to strong interference from the background in
the object detection task. Several methods have recently been proposed to solve complex
backgrounds. Liu et al. [6] proposed a relationally connected attention module that obtains
global information by stacking features and relative features between features to enhance
the foreground information and weaken the background information, making the features
of interest more distinguishable. Bai et al. [7] proposed an object detection method based
on time-frequency analysis, which enables the detector to focus on the object region rather
than the background region through a discrete wavelet multi-scale attention mechanism.
Cheng et al. [8] applied a priori scene information and Bayesian criteria to infer the rela-
tionship between scenes and objects, using various scene semantics as a specific prior to
improve the performance of object detection in remote sensing images.

From the above information, the current methods used to solve the complex back-
ground of remote sensing images are as follows.

(1) Using feature enhancement methods, such as the attention mechanism, to improve
the feature representation of the object, thus indirectly weakening the background
information. This method is the current mainstream approach and offers a substantial
improvement in accuracy. However, this approach requires a targeted design for the
corresponding modules and is relatively computationally complex.

(2) The relationship between the object and background selectively eliminates back-
ground features or enhances features of the object. This approach considers the
features of the object and attends to background features. However, a better strategy
is needed to distinguish the beneficial background from the interfering background;
otherwise, this will lead to confusion between the object and the background.

(3) Using prior information, the impact of complex background information on detector
performance is reduced manually. This method is simple and easy to use but results
in a limited improvement in accuracy and requires a considerable labor force to select
data with a single background for pretraining, which increases the cost of training.

The large variation in object scales in remote sensing images poses a great chal-
lenge to the task of object detection and regression. To address this difficulty, extensive
research has been conducted from various perspectives. Lin et al. [9] proposed an adap-
tive feature pyramid network to effectively solve multi-scale and dense object detection;
this contains a selective refinement module to selectively refine different feature maps.
Wu et al. [10] proposed a feature refinement module that combines different branches to con-
volve multiple receptive fields for object instances with drastic changes in scale and shape,
thus further refining the features and improving feature discrimination at different scales.
Ma et al. [11] proposed a feature split-and-merge module to distribute large and small
objects in a scene across multiple levels of feature maps for subsequent detection, alleviating
feature confusion between multi-scale objects, and proposed an offset-error rectification
module to correct inconsistencies in the spatial layout of objects among multiple levels of
feature maps. The above models perform well but suffer from the following shortcomings:
(1) a lack of more effective feature-aware strategies for small-scale objects; (2) failure to
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deeply mine contextual information for object detection; (3) most of the proposed modules
target different scale objects on different images but lack the consideration of the same class
of objects with different scales in the same image.

To address these issues, we propose a high-precision object detection model, which
we term the multi-feature information complementary detector (MFICDet). The detector is
designed based on an efficient one-stage detection architecture that combines multi-feature
supervision and information complementation to achieve the highly accurate detection
of objects with multiple scales and complex backgrounds in remote sensing images. First,
MFICDet uses CSPDarkNet53 [12] as the backbone of the model to extract features. Second,
we propose a global feature information complementation module (GFIC) for the deep
semantic enhancement of abstract features. Then, considering the effect of the complex
background on the object detection performance, we propose a positive and negative feature
guidance module (PNFG) to remove the interference of noisy features in the background.
Finally, the spatially decoupled head (DHead) is used to decouple the object localization
task from the classification task in spatial terms, improving the object localization accuracy
and reducing the training time of the network.

The main contributions of this work are as follows.

(1) A global feature information complementary (GFIC) module which combines the
advantages of pooling and dilated convolution to deeply fuse the primary features
and enhance the semantic representation of the model. Aimed at the characteristics of
remote sensing images with large-scale changes in objects, a dual multi-scale feature
fusion strategy is used to solve the challenges posed by different scale objects in the
same image.

(2) A positive and negative feature guidance (PNFG) module. We define noise informa-
tion in a complex background that is useless for object detection as negative features.
In contrast, the features that provide valuable information for object detection are de-
fined as positive features. Because positive and negative features are coupled with the
features extracted by the backbone network, a PNFG strategy is designed to eliminate
negative features while enhancing and refining positive features.

(3) A highly accurate object detection model for remote sensing images that achieves
state-of-the-art performance on publicly available remote sensing image object detec-
tion datasets.

The remainder of this paper is organized as follows. Section 2 presents the latest
research results on solving the complex background of remote sensing images and multi-
scale objects. Section 3 provides a detailed description and analysis of the proposed model.
An experimental analysis and discussion are presented in Section 4. Section 5 discusses
future research work and the limitations of the proposed detector. Finally, Section 6 gives
the conclusions of this study.

2. Related Work
2.1. Object Detection for Complex Backgrounds

In recent years, many scholars have contributed to the solution to the complex back-
ground problem in remote sensing images. Li et al. [13] proposed a saliency pyramid mod-
ule that combines a saliency algorithm with a feature pyramid network to suppress back-
ground noise information and reduce the influence of complex backgrounds. Shi et al. [14]
proposed a position attention module for error detection caused by complex backgrounds
in remote sensing images. The complex internal structure feature representation was ex-
tracted by calculating the similarity of the features between any two pixels on the target
feature map to improve the ability to distinguish between the background and foreground.
Cheng et al. [15] proposed a diverse contextual information fusion framework based on
convolutional neural networks to improve object detection and recognition in complex
backgrounds using structured object-level relationships. Song et al. [16] designed an en-
hancement network to overcome the diversity and complexity of the background and object
through adaptive multi-scale anchors and improved the loss function. Other scholars have
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used the attention mechanism to process fused multi-scale features to enhance the feature
information of the object region [17–19]. Yu et al. [20] used deformable convolutional
layers to extract high-level features of an object from the background by the irregular sam-
pling of locally pooled features. Zhang et al. [21] designed a feature relationship module
to improve the distinction between the foreground regions of the feature map using a
contextual representation of the foreground. The foreground regions were weighted to alle-
viate the background–foreground imbalance problem. Wang et al. [22] used a multi-scale,
feature-focused attention module to enhance the ability of the network to represent features
in different regions, weakening the information interference from the background and
negative sample objects. Zhu et al. [23] reduced the interference of complex backgrounds
by pretraining images with a single and uniformly distributed background. In addition,
the decoupling of the background and the object was achieved.

2.2. Object Detection of Multi-Scale Objects

The feature pyramid network (FPN) is a common method for solving multi-scale
objects in object detection tasks; many scholars have applied it to remote sensing object
detection and have produced targeted improvements. Wang et al. [24] proposed a feature
reflow pyramid structure that improves the detection performance of multi-scale objects by
fusing fine-grained features from adjacent lower levels to generate a high-quality feature
representation for each scale. Liu et al. [25] proposed a gated trapezoidal FPN to construct
a more representative feature pyramid to detect objects of different sizes in optical remote
sensing images. Cheng et al. [26] found that feature pyramids have features at different
levels that interact when performing top-down operations. Therefore, a perceptual FPN
was proposed to improve the detection performance of multi-scale objects.

In addition, some scholars have separately enhanced the features of different scale
objects in feature maps. Zhou et al. [27] introduced three parallel convolutional branches
with the same structure and a cascaded feature-fusion module to generate effective multi-
scale features. A code—decode architecture was used to treat depth-feature fusion as
a decoding process and integrate multi-scale depth features in a progressive manner.
Cong et al. [28] proposed a parallel multiscale attention module to efficiently recover
detailed information and resolve scale variations of salient objects using low-level features
refined by parallel multi-scale attention.

Scholars have also addressed the problem of multi-scale object detection in remote
sensing images from a receptive field viewpoint. Han et al. [29] proposed a multiscale
residual block to capture multi-scale contextual information and designed a multiscale
receptive field enhancement module to enhance the multi-scale feature representation
of remote sensing objects. Liu et al. [6] constructed a new multi-receptive field feature
extraction module that enables the network to aggregate multi-receptive field information
for multi-scale object features, providing a powerful representation of feature multi-scale
objects. Zhang et al. [30] proposed a receptive field enhancement module that focuses on
different receptive fields by multi-branching different convolutions; this is committed to
more stable multi-scale feature extraction.

Finally, this study summarizes the work related to solving the complex background
and diverse object scales of remote sensing images, as shown in Table 1.
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Table 1. A summary of recently proposed object detectors.

Targeted
Questions Methods Literatures Advantages Unresolved Issues

Complex
backgrounds

Diminish
background
features and

highlight object
features

[7,11,13,14,16,20,22,23]

1. Using attention mechanism or
priori information to highlight
the features of the object for
interest effectively improves the
performance of the detector.

2. The designed feature
enhancement strategies are
targeted to discriminate different
feature regions and effectively
suppress the influence of noise
information on the detector.

1. Focusing too much on the
features of the objects, the role
of background information
may be ignored. The detection
accuracy of objects strongly
coupled with the background
is limited.

2. Detection of objects with
extremely complex
backgrounds remains
unsatisfactory.

Explore the
relationship

between
background
and object

[6,8,15,21]

1. Contextual information about
the object is considered and
explores the dependency
relationships between features.

2. The scene information is better
utilized, and the relationship
between the object and the
backgrounds is analyzed from
the semantic level.

1. The effectiveness of the feature
relationship mining strategies
is required highly.

2. The suppression of useless
noise information is relatively
poor.

Scale diversity

Feature
pyramid
network [9,11,24–27]

1. It can effectively enhance the
semantic information of the
multi-scale feature map, and
significantly improve the
detection performance of the
detector.

2. The structure is simple and
suitable for various detectors.

1. Due to the increase in
parameters, it is more
expensive to occupy memory
during training.

Increase the
receptive field
of multi-scale

features
[6,29,30]

1. The actual receptive field of the
network is enlarged, and the
stability of multi-scale features
extraction is improved.

1. Most of them are built based
on a feature pyramid network.

2. Compared to FPN, the
detector performance is not
significantly improved.Refine

multi-scale
features [10,24,28]

1. The feature awareness of the
network for the object is
improved and obtains
high-quality feature
representation.

2.3. One-Stage Remote Sensing Image Object Detection

Although the two-stage detectors achieved high accuracy, the algorithms operated
with low efficiency, limiting their practical application. YOLO was proposed in 2015 as
the first one-stage detector, which achieved real-time object detection and substantially
improved the operational efficiency of the detector, although its detection accuracy was
inferior to that of the two-stage detectors. SSD was proposed as another classical one-stage
detector, which has been widely used in engineering because of its excellent performance
in terms of detection speed and accuracy by the regression and classification of default
boxes on feature maps of different scales. In 2018 RetinaNet [31] was proposed, and this
detector proposed focal loss as a classification loss function, which greatly improves the
samples’ imbalance problem that exists in one-stage detectors.

To achieve a balance between the operational efficiency and accuracy of remote sensing
image object detectors, many scholars have conducted an in-depth exploration of one-stage
detectors. Yang et al. [32] proposed a unified framework of aggregation and detection
for the two problems of dense small objects and sparse with non-uniform object distribu-
tion in aerial images, which effectively improves the detection accuracy of small objects.
Wang et al. [24] proposed an end-to-end multiscale object detection method based on a
dual-attention mechanism, which enhances feature reuse by a multiscale, feature-focused
attention module and improves the correlation between feature sets using a two-level
depth feature fusion module to achieve the accurate detection of multiscale and multi-pose
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objects. There exist more large aspect ratio objects in remote sensing images, Li et al. [33]
proposed a double-aligned, one-stage rotational detector, which achieves feature alignment
at the image level by adjusting the receptive fields of neurons, and then uses a rotational
feature alignment module to achieve feature alignment at the instance level. Hou et al. [34]
designed asymmetric convolutional blocks embedded in an asymmetric feature pyramid
network for processing objects with extreme aspect ratios. Xu et al. [35] proposed an effi-
cient feature-aligned, one-stage detector that solves the spatial misalignment between the
anchor and its corresponding object, and then uses the contextual feature alignment module
to adaptively adjust the sampling points of the convolution kernel to collect contextual
information. Huang et al. [36] designed a channel separation aggregation structure to sim-
plify the convolutional complexity and developed a dynamic receptive field mechanism to
dynamically customize the convolutional kernel and its perceptual range to maintain high
accuracy while reducing the network complexity. Wei et al. [37] proposed to represent the
object as a pair of midlines, based on which an oriented detection network was proposed to
encode and detect the paired middle lines. Liu et al. [38] proposed a semantic supervised
branch used only during training, which extracts additional key point features from bound-
ary points and interior points to help the network localize the objects. Huang et al. [39]
proposed a refined U-shaped module for the multi-level fusion of features to form a feature
pyramid for object detection.

In recent years, anchor-free detectors have been widely studied. Shi et al. [40] proposed
a center-aware network based on the observation that remote sensing image objects typically
maintain symmetry, and the proposed multiscale center descriptor and feature selection
module can select the best semantic information around the center region, allowing the
network to gradually fit the symmetric shape of remote sensing objects. Law et al. [41]
detected the objects by treating them as pairs of key points and introduced corner point
pooling to help the network better localize the corner point locations.

3. Methodology
3.1. Network Architecture

Figure 1 illustrates the overall architecture of the MFICDet proposed in this study. As
shown in Figure 1, MFICDet comprises four parts: a feature extraction backbone network,
a PNFG, a GFIC, and a spatial decoupled head (DHead). Specifically, CSPDarkNet53 was
used as the feature extraction backbone network to acquire the primary features of the
image. The successful application of the YOLOv4 object detection model demonstrated
that CSPDarkNet53 can effectively extract semantic information for feature enhancement.
The PNFG module proposed in this work can adaptively perceive the spatial location of
beneficial features and the contribution of semantic information. The background noise
information is removed from the feature stream of the model to suppress the interference
of noisy features in the complex background and highlight the refined object features.
The PNFG module effectively reduces the impact of complex backgrounds in remote
sensing images on model performance while improving the sensitivity of the model to
difficult classification objects. Subsequently, the GFIC module is designed to extract the
abstract semantic information of the objects and noise information in the background. The
module achieves a deep fusion of contextual information and the multi-level perception of
background information. Therefore, it solves problems such as large feature differences and
sparse detailed information on remote sensing image objects. Finally, the network fuses
different scale feature maps using a top-down strategy. This strategy forms a dual multi-
scale feature fusion with multi-scale feature stitching in the GFIC module, which improves
the detection performance of different scale objects in the same image. Furthermore, a
spatially decoupled head is introduced to resolve feature conflicts between classification
and regression tasks in object detection.
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Figure 1. MFICDet overall architecture.

3.2. Global Feature Information Complementary Module

To improve the ability of the model to perceive a global scene and enhance the expres-
sion of features, we proposed a GFIC module. Inspired by the pyramid pooling module in
PSPNet [42], this effectively aggregates non-neighborhood multi-scale contextual informa-
tion to improve the global feature extraction capability of the model. The pyramid pooling
module is implemented using the global average pooling method. Global average pooling
leads to a slower convergence of the model, and the operation of global averaging of the
feature map leads to the loss of many textural features; therefore, it is not suitable for object
detection tasks. The GFIC module proposed in this study enhances the detailed feature
information of the object while considering global semantic information. Furthermore,
background noise features are extracted and removed during downstream processing.
The structure of the GFIC module is shown in Figure 2; it comprises an object feature
extraction block (OFEB) and a background feature extraction block (BFEB) with an identical
structure. The difference between the two methods is that the OFEB in the pooling branch
uses maximum pooling to extract abstract features, whereas the BFEB uses average pooling
for information compression. The OFEB is used to extract beneficial object features from
the positive feature information stream and perform a multi-scale enhancement. The BFEB
is used to explore the background noise information from the negative feature information
stream, which interferes heavily with the detection task.
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(1) Object Feature Extraction Block

The OFEB is applied to extract the feature information of the object with interest in the
positive feature information stream and perform a multi-scale semantic enhancement. This
section first uses the maximum pooling method for sibling multi-scale feature information
compression to increase the receptive field of the network. Maximum pooling can resist
the translation and rotation of features, so it can overcome the effects of spatial position
transformations, such as the displacement and rotation of objects, on detection. The critical
features of the object are efficiently extracted using maximum pooling to filter redundant
feature information. Maximum pooling loses numerous detailed features during downsam-
pling to alleviate the redundancy of network information. Therefore, to address feature
overcompression, we introduce a dilated convolution. Dilated convolution contributes to a
larger receptive field per pixel than the output of the pooling operation without changing
the image resolution. The beneficial features lost in the pooling process are supplemented
by dilated convolution, and the spatial location relationships between the global context
features are established using dilated convolution. In addition, dilated convolution with
different dilation factors can capture multi-scale contextual information, thus further en-
hancing the receptive field of multi-scale features and improving the ability of the model to
recognize multi-scale information.

(2) Background Feature Extraction Block

A BFEB is used in the negative feature information stream. The purpose is to improve
the sensitivity of the negative feature information stream to background noise information.
Specifically, the multi-scale global semantic information of the feature maps is extracted
using adaptive average pooling. Average pooling can maintain the local smoothing of
feature information and improve the problem of increasing the variance of estimates
caused by the restricted domain size, retaining more information of the image, and is
more suitable for the extraction of background information. However, average pooling
has the disadvantage of obfuscating detailed features, resulting in pooled deep features
that obscure semantic information during upsampling. Therefore, in line with the OFEB,
dilated convolution is also introduced in the BFEB for information addition. However, the
dilation factor of the dilated convolution is different for the BFEB compared to the OFEB.

We introduce the structure of the GFIC module, with the BFEB as an example, as
shown in Figure 2. The channels of the input features are reduced in dimension using a
1 × 1 convolution. The results are then normalized using batch normalization and further
activated using the ReLU function. In this study, the above process is defined as CBR. The
output features are passed into the adaptive average pooling branch and upsampled (UP)
to obtain global semantic information. Then, the feature map outputs from the adaptive
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pooling branch are fused with the feature maps extracted from the dilated convolutional
branch in the pixel space to obtain deep-feature maps with complementary information.
Adaptive average pooling and dilated convolution use different pooling kernel sizes and
dilation factors, respectively, thus generating multi-scale depth-feature maps. The feature
maps on each scale are concatenated in the channel dimension after passing through CBR.
Finally, the concatenated feature maps are passed through CBR again, and then fused
with the initial feature maps in the spatial dimension to obtain the output of the module.
The OFEB operates through the same process as described, except that adaptive average
pooling is replaced by maximum pooling in the pooling branch.

3.3. Positive and Negative Feature Guidance Module

The complex background of remote sensing images has a serious impact on object
classification and localization, and it is difficult to identify objects with geometric and
radiometric features extremely similar to the background. The spatial resolution of different
sensors affects the size of object imaging; therefore, remote sensing images with poor
imaging quality pose a challenge for object detection tasks. Furthermore, there are large
differences in the radiometric resolutions of different sensors, resulting in the same objects
showing a diversity of detailed features in different images. To mitigate the impact of these
problems on remote sensing image object detection, in this study, a PNFG is designed. The
design of the PNFG is inspired by the focus module for refinement prediction in PFNet
proposed by Mei et al. [43]. The PNFG comprises two major steps: (1) Generate positive and
negative features using the spatial attention mechanism (SAM) and the channel attention
mechanism (CAM); (2) Use parallel information streams to achieve positive and negative
feature guidance.

(1) Generation of Positive and Negative Features.

Positive and negative features in this study are generated by spatial attention and
CAMs. Specifically, spatial attention is sensitive to the spatial location information of an
object, whereas channel attention focuses more on the semantic information of the input
image. Therefore, combining spatial and channel attention can effectively explore the
critical features of an object and improve the flow of beneficial information in the network.

Although each channel of the feature map provides feature information for the predic-
tion task, the effective features contributed by different channels are limited [44]. Therefore,
channel attention is used to calculate the weight of the contribution of each channel to
the final predicted result. The convolutional block attention module (CBAM) [45] is a
lightweight attention module widely used, and in this study, only the channel attention
mechanism is used in CBAM. The structure is shown in Figure 3. For an input X with
channel number C, the CAM first aggregates spatial information to generate spatial context
descriptors using the maximum pooling and average pooling methods. Then, a channel
attention map is generated using a multilayer perceptron (MLP). Finally, the attention map
is fused using element-by-element summation and then passed through a sigmoid function.
This formula is expressed as follows:

Mc(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F)))
= σ(W1(W0(Favg

c)) + W1(W0(Fmax
c)))

(1)

where Mc(F) represents the attention map of the channel attention output, σ represents
the sigmoid function, W0 ∈ RC/r×C, W1 ∈ RC×C/r The weights, W0 and W1, are shared
between maximum pooling and average pooling by the MLP.
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Figure 3. Structure of the channel attention mechanism.

The SAM can divide different regions of an image based on feature contribution. In
this study, we use spatial attention in PFNet to achieve an effective discovery of the spatial
location of an object. The structure of the SAM is shown in Figure 4, where the input
features are convolved through three 1 × 1 convolution layers to produce three matrices,
Q, K, and V, respectively. Then, matrix multiplication is performed between the transpose
matrices of Q and K. To accelerate convergence, the above results are normalized using the
softmax function. Subsequently, the spatial attention map, Xa, is obtained. This process can
be expressed as follows:

Xa = xij =
exp(Q:i · K:j)

∑N
j=1 exp(Q:i · K:j)

(2)

where xij represents the effect of the jth position on the ith position, and Q:i represents
the ith column of the matrix. Finally, matrix multiplication is performed between V and
the transpose of the attention weight matrix to obtain the output of spatial attention. To
balance the learning process, a learnable parameter, γ, is introduced into the above results.
Furthermore, the input feature maps are fused with the output in a shortcut manner to
obtain the final output of the SAM.
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Figure 4. Structure of the spatial attention mechanism.

Complementary spatial attention and channel attention improve the ability of the
model to explore deep semantic information and establish a correlation of features in
the channel dimension. Information beneficial to the object detection task is markedly
enhanced in the feature output by the two attention mechanisms, which are defined as
positive features in this study. The absolute complementary set of positive features in the
generated information space set is then defined as a negative feature used to accurately
discriminate the background noise features.

(2) Positive and Negative Features Guidance

Spatial attention and channel attention aggregate the spatial and semantic information
used for feature mapping and extract the positive and negative features of the object of
interest. This information enables the model to efficiently explore the spatial location and
deep semantic features of an object and remove irrelevant background noise. To achieve
the above process, we here propose a positive and negative feature guidance strategy. As
shown in Figure 5, this strategy comprises parallel information streams with positive and
negative features. The positive feature stream is shown in blue, and the negative feature
stream is shown in green.
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Specifically, the output of CAM is applied to the input feature map X, and then
normalized to generate a weight matrix Mtrc. Mtrc is multiplied with X to produce a
positive feature information stream. The attention map output from the SAM is normalized
(NM) to generate the weight matrix Mtrs. Then, Mtrc and Mtrs are subtracted element-
by-element from Mn, where Mn is a matrix with all elements of 1. The procedure is
to obtain the absolute complement set (CuP) of the positive feature information. The
result obtained is also multiplied by the input feature map, X, to generate the negative
feature stream. To balance the learning process, the learnable parameters, α and β, are
introduced into the above positive and negative feature information stream generation
processes, respectively. The information streams are then fed into the GFIC module. The
positive feature information is used to guide the model to learn useful information strongly
related to the object, whereas the negative feature information is used to discover noise
in the background and remove useless features that interfere with the model. Finally, the
negative feature information stream is excluded from the positive feature information
stream, whereas a learnable parameter, χ, is introduced. To prevent the disappearance of
features, the input features are fused with the above results, before being passed through a
CBR. Finally, the position information generated by the SAM is added to the information
flow to assist the model in localizing the objects.

Using the PNFG strategy, the model adaptively determines the features that are
beneficial for the task of subsequent feature enhancement. Moreover, the PNFG module
efficiently discovers useless noise features with low contributions and eliminates them in
the subsequent feature stream. Therefore, the weight of valid information in the feature
stream increases. In addition, the PNFG strategy can effectively enhance the features of the
object while eliminating the negative impact of complex background information on the
object detection task. This improves the regression accuracy and feature awareness of the
model for the object.

3.4. Decoupled Head

The spatial feature mismatch problem for classification and boundary regression tasks
in object detection is first proposed in IoU-Net [46], whereby features that improve clas-
sification confidence are not conducive to the prediction of bounding boxes; the IoU-Net
model solves this problem by calculating the localization accuracy of the detected boxes.
Song et al. [47] explored the nature of spatial feature misalignment for classification and
localization and proposed task-aware spatial disentanglement to decompose the gradient
flow of classification and localization in space. Through task-aware proposal estimation
and the detection head, task-specific feature representation can be generated to eliminate
compromises between classification and localization. Several experiments have demon-
strated the effectiveness of decoupling features in space to improve the performance and
convergence speed of object detection [31,48–50].

In this contribution, we introduce the decoupled head proposed in YOLOX [51], which
is a prediction head that improves the detection accuracy of the model and accelerates
model convergence. The structure of the decoupled head is shown in Figure 6. Specifically,
the channels are first reduced to 256 dimensions for each input feature layer. Then, the
classification and localization subtasks of the model are performed in two parallel branches
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using 3 × 3 convolutional layers, whereas the IoU computation branch is implemented in
parallel in the regression branch.
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3.5. Loss Function

The MFICDet loss function contains localization loss and classification loss. Complete-
IoU (CIOU) [52] is used as the localization loss function. CIOU further optimizes distance-
IoU (DIOU) [52] considering the overlap area, centroid distance, and aspect ratio between
the prediction and truth boxes to improve the accuracy and stability of the regression.
Specifically, the penalty term of CIOU introduces an impact factor, αν, which is based on
DIOU. The penalty term is expressed as follows:

RCIOU =
ρ2(b, bgt)

C2 + αν (3)

where ρ2(b, bgt) represents the Euclidean distance between the center point of the prediction
box and that of the truth box. C denotes the diagonal distance of the smallest closed area
that encompasses both the prediction and the truth boxes. In αν, α is the parameter used
for balancing and ν is used to measure the consistency of the prediction box aspect ratio.
The formulas are as follows:

α =
ν

(1− Iou) + ν
(4)

ν =
4

π2 (arctan
wgt

hgt − arctan
w
h
)

2

(5)

The overall formula for the CIOU loss function is:

LCIOU = 1− IoU +
ρ2(b, bgt)

C2 + αν (6)

In [31], it was pointed out that one-stage object detection methods suffer from severe
category imbalances during the training process, leading to inefficient training because easy-
to-classify useless information dominates the gradient. In addition, negative samples can
guide the training process and lead to model degradation. Therefore, in this study, focal loss
is used to calculate classification loss. The formula to calculate the focal loss is as follows:

Lcon f = FL(Pt) = −α(1− Pt)
γ log(pt) (7)

where Pt represents the probability that the sample belongs to positive samples, (1− Pt)
γ

is an adjustment factor introduced based on a balanced cross-entropy loss function, and
α controls the weight of the positive and negative sample contributions to the loss.
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The focal loss function effectively improves the problem of training instability caused
by the imbalance between positive and negative samples and reduces the influence of
easy-to-classify samples that dominate the gradient descent during model training.

4. Experiments and Analysis
4.1. Data Introduction

To evaluate the effectiveness of MFICDet, experiments are conducted on two widely
used benchmark datasets for remote sensing image object detection: DIOR [53] and NWPU
VHR-10 [54]. The NWPU VHR-10 dataset contains 10 categories with 650 annotated images;
herein, this dataset is divided into training, validation, and testing sets in a ratio of 6:2:2.

DIOR is one of the largest and most diverse open-source datasets in remote sensing
image object detection. The dataset contains 23,463 images covering 20 common categories:
aircraft, airport, baseball field, basketball court, bridge, chimney, dam, expressway ser-
vice area, expressway toll station, harbor, ship, golf course, ground track field, overpass,
stadium, storage tank, tennis court, train station, vehicle, and windmill. The training
set contained 5862 images, the validation set contained 5863 images, and the remaining
11,738 images are used as the testing set. A schematic of each category is shown in Figure 7.
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4.2. Evaluation Metrics

In this study, four commonly used metrics are employed to evaluate the performance
of the method: precision, recall, harmonic mean (F1), and mean average precision (mAP).
Precision refers to the ratio of the number of correctly detected positive samples to the
number of all predicted positive samples among all objects predicted by the model on the
test dataset. Recall reflects the probability that positive samples are correctly identified
among all detection results and measures the false detection of true objects by the detector.
The formulas are as follows:

Precision =
TP

(TP + FP)
(8)

Recall =
TP

(TP + FN)
(9)

where TP represents the number of samples correctly classified as positive, FN represents
the number of samples incorrectly classified as negative, and FP represents the number of
samples incorrectly classified as positive.

The above precision and recall metrics are contradictory in practice, as reflected in
recall being usually lower when precision is high and vice versa. Therefore, F1 is proposed,
which combines the two metrics as follows:

F1 = 2× Precision · Recall
Precision + Recall

(10)

The mAP is a comprehensive metric for evaluating model performance in object
detection and represents the average of all categories of average precision (AP). The AP
values for each category are calculated using the area under the precision–recall (PR) curve,
composed of precision and recall using the following formulas:

APi =
∫ 1

0
Pi(Ri)dRi =

n

∑
k=0

Pi(k)∆Ri(k) (11)

mAP =
1
C

C

∑
c=1

APi (12)

4.3. Training Details

All experiments in this study are performed using PyTorch architecture, and the hard-
ware environment for training and testing is NVIDIA GeForce RTX 3090. The mosaic data
enhancement strategy is used to improve the data diversity, and the regularization method
of label smoothing is effectively applied to suppress model overfit during the training
phase. The parameters of the backbone network of this model are initialized using the
pre-weights of YOLOv4. The Adam optimizer combines the advantages of the adaptive
learning rate gradient descent algorithm with those of the momentum gradient descent
algorithm. Therefore, applicability to sparse gradients is achieved, and the gradient oscil-
lation problem can be effectively improved. Moreover, in this study, an Adam optimizer
with a weight decay of 1 × 10−5 is adopted. The initial learning rate is set to 0.001, and the
learning rate decay strategy is implemented using a combination of cosine annealing and
equal-interval methods.

4.4. Ablation Experiments

Detailed ablation experiments are performed on the DIOR and NWPU VHR-10
datasets to evaluate the effectiveness of different modules. Our ablation experiments
use CSPDarknet53 as the backbone network, and the same pretrained model is used for the
initialization of the backbone network. The other parameters are set as initial values by
fitting a normal distribution. We introduce the feature pyramid strategy as a baseline based
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on the CSPDarknet53 backbone network. The effectiveness of each module is compared
separately using the control-variable method.

(1) Ablation Experiments on the DIOR Dataset

Impact of the PNFG module: As shown in Table 2, the overall mAP of the model
is improved by 1.21% using the PNFG strategy. The results show PNFG can effectively
promote the network to learn the features of the object of interest and weaken the negative
influence of background noise information on the model. The spatial and channel attention
mechanisms can explore the location of the object and the semantic content of the feature
information stream. Figure 8 shows the AP of each category for the different models,
highlighting a substantial improvement in accuracy for objects with high feature similarity
or severe background interference. Examples include bridges and dams, bridges, and
overpasses, expressway toll stations and service areas, baseball fields, and aircraft. We have
demonstrated that the PNFG strategy enables the model to effectively distinguish object
features from background noise in the feature response region, suppress background noise
interference, and adaptively locate the spatial position where the object is located.

Table 2. Results of ablation experiments on the DIOR dataset.

Model Recall Precision mF1 mAP

Baseline 56.51 87.61 67.50 66.17
Baseline + DHead 57.33 89.98 68.45 66.77

Baseline + GFIC + DHead 63.18 87.58 72.70 70.87
MFICDet 62.77 88.55 72.65 72.08
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airplane, airport, baseball field, basketball court, bridge, chimney, dam, expressway service area,
expressway toll station, golf field, ground track field, harbor, overpass, ship, stadium, storage tank,
tennis court, train station, vehicle, and windmill, respectively.

Impact of the GFIC module: The GFIC module deeply fuses the global multi-scale
feature information and improves the mAP from 66.77% to 70.87%. For the classification
task, the model focuses on whether a feature appears without focusing on the specific
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location of its appearance. The pooling operation desensitizes the network to the location
of the object, obtaining a powerful prior. Dilated convolution complements the internal
data structure during upsampling to avoid the loss of spatially hierarchical information.
This obtains a larger receptive field while maintaining a lower number of parameters. The
multi-scale feature maps obtained using different dilation factors contain more detailed
features. As shown in Figure 8, this module offers a relatively large improvement for objects
with complex geometric and radiometric features. For example, the internal features of the
stadium and the ground track field are almost the same, and only the edge features are
different. Moreover, there are large variations in size between the two images. Therefore,
the advantages of a larger receptive field of the GFIC module and the ability to cope with
different scales of the same object are exploited. The improvement in the accuracy of objects
such as expressway toll stations and dams proves that the GFIC module has a powerful
detail-capturing capability. Furthermore, with the addition of detailed information, the
model has better resistance to the interclass similarity and intraclass diversity of objects.

Impact of the DHead: To verify the effect of decoupling the two tasks of classification
and localization, we conduct comparison experiments of decoupled and shared heads
separately. As shown in Table 2, this module improves mAP by only 0.6%. However, the
model obtains the highest precision after introducing the decoupled head at the baseline.
As shown in Figure 8, the model with the introduction of the decoupled head exhibits
a substantial performance improvement for objects with diverse and fuzzy boundaries,
such as airports, train stations, and stadiums. Therefore, decoupling the classification and
localization tasks allows the model to perform better feature alignment; thus, the boundary
localization accuracy of the object is improved.

In this study, the log-average miss rate is used to evaluate the impact of the different
modules of the detector on the object discovery ability; this is calculated using the false
positive per image (FPPI) as the horizontal axis and the logarithm of the miss rate as the
vertical axis of the curve. Specifically, nine FPPI ratios between 0.01 and 1 are uniformly
selected in the logarithmic space, the logarithm of the corresponding miss detection rate is
obtained and averaged, and the percentage is reduced by the exponential operation as the
evaluation index.

As shown in Figure 9d, the leakage detection of all object categories except the ship,
train station, storage tank, and stadium, is improved after adding the PNFG modules.
The ship is closely associated with the harbor, and the appearance of the docked ship
is small compared to the wharf. The introduction of the PNFG strategy resulted in the
harbor being modeled with excessively weak background information, thus weakening
the features of the ship. The appearance of the train station is like other buildings, and
there is a great similarity between the features of the object and the background; this
resulted in a contradiction during model learning, causing the missed detection of the train
station. As shown in Figure 9c, the GFIC module enhances the discovery capability of the
network for all objects because of its powerful deep-feature mining capability. Therefore,
the effectiveness of the information complementation strategy is demonstrated.
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Figure 9. Log-average miss rate of each model. (a) Baseline; (b) Baseline + DHead; (c) Baseline +
GFIC + DHead; (d) MFICDet.

(2) Ablation Experiments on the NWPU VHR-10 Dataset

To demonstrate the generality of MFICDet in the remote sensing image object detection
task, the ablation experiment is repeated on the NWPU VHR-10 dataset. The results
are presented in Table 3, where the evidence shows that mAP improves by 1.03% after
decoupling the classification and regression tasks in space. The GFIC and PNFG proposed
in this study improve the mAP to 95.35% and 96.41%, respectively. As the designed
modules are increased sequentially, both the recall and the mF1 of the model improve
steadily, indicating that each module remains valid for different datasets. However, when
the baseline detection head is replaced by DHead, the precision decreases. We speculate
that this may result from the overfitting of the classification caused by decoupling the
classification from the regression, which increases the false detection rate. The results of
the ablation experiments on NWPU VHR-10 are like those on the DIOR dataset.

Table 3. Results of ablation experiments in the NWPU VHR-10 dataset.

Model Recall Precision mF1 mAP

Baseline 87.80 90.56 88.70 92.57
Baseline + DHead 90.26 89.42 89.60 93.60

Baseline + GFIC + DHead 93.66 91.03 92.30 95.35
MFICDet 95.47 90.59 92.60 96.41
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To visually compare the gains brought to the model by different modules, the PR
curves for each category of different ablation experiments on the NWPU VHR-10 dataset
are visualized; the results are shown in Figure 10, where Model_1–Model_4 correspond to
Baseline, +DHead, +GFIC, and MFICDet, respectively.
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4.5. Quantitative Comparison and Analysis

Comparison experiments are conducted on two commonly used remote sensing image
datasets to verify the progress of the proposed model. Widely used and recently proposed
models that include not only general object detection methods but also models designed for
remote sensing image object detection are selected as comparison groups. These methods
contain three common object detection architectures: one-stage and two-stage, as well as
anchor-free.

(1) Comparison and Analysis Using the DIOR Dataset

The most challenging DIOR dataset for remote sensing image object detection is
used to test the proposed model in detail. Comparison experiments are conducted with
the classical general object detection model and the latest remote sensing image object
detection model; the results are shown in Table 4. First, widely used, general-purpose
object detectors without solutions for remote sensing image characteristics cannot obtain
satisfactory results on the complex and variable DIOR dataset. For example, Faster-RCNN
is a two-stage model that lacks an effective feature enhancement strategy, such as multi-
scale feature fusion. The features of multi-scale objects cannot be modeled effectively,
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and thus the detection accuracy is lower. The YOLOv4 one-stage detector model has
multi-scale feature fusion capability; however, its feature enhancement method, by stack-
ing multiple convolutional layers, only focuses on the features of the object, so it cannot
achieve advanced performance when facing remote sensing images with complex back-
grounds. This proves that there are still shortcomings in general object detection models
directly applied to remote sensing images.

Furthermore, our proposed approach is compared with advanced remote sensing
image object detection models (i.e., CF2PN [39], FENet [55], ASSD [35], and CSFF [56]). As
shown in Table 4, the model proposed in this study obtains the highest detection accuracy
because the PNFG module and the GFIC module effectively solve the problems of complex
background information and the multi-scale variation of the object. CF2PN uses only
the loss function to solve the problem of complex backgrounds within remote sensing
images, leading to poor results. Our model achieved a 4.83% increase in mAP compared
to the CF2PN model. FENet uses an attention mechanism to enhance object features and
introduces contextual feature enhancement methods to achieve advanced performance
in two-stage detectors. The accuracy of the one-stage detector proposed in this study is
considerably better than a two-stage detector.

As seen in the last four rows in Table 4, anchor-free detectors suffer from semantic
ambiguity because of the lack of more effective coupled semantic relations. Therefore, such
detectors perform poorly with complex datasets such as DIOR. The recently proposed
MSFC-Net [57] incorporates a composite semantic feature fusion method to handle complex
scenes in remote sensing images and achieves excellent performance in anchor-free detec-
tors. However, the mAP of MFICDet is still higher than MSFC-Net, although MSFC-Net
expands the DIOR dataset using multiple data enhancement methods.

Table 4. Accuracy comparison of our proposed model with other advanced models available, using
the DIOR dataset.

Model mAP A B C D E F G H I J K L M N O P Q R S T

Faster R-CNN [3] 63.10 54.10 71.40 63.30 81.00 42.60 72.50 57.50 68.70 62.10 73.10 76.50 42.80 56.00 71.80 57.00 63.50 81.20 53.00 43.10 80.90
YOLOv4 [12] 66.71 75.27 69.95 70.95 88.78 39.99 76.61 54.02 59.94 60.65 67.68 70.15 58.76 57.34 87.71 50.21 75.66 86.58 52.62 52.74 78.62

SSD [5] 58.60 59.50 72.70 72.40 75.70 29.70 65.80 56.60 63.50 53.10 65.30 68.60 49.40 48.10 59.20 61.00 46.60 76.30 55.10 27.40 65.70
CF2PN [39] 67.25 78.32 78.29 76.48 88.4 37.00 70.95 59.9 71.23 51.15 75.55 77.14 56.75 58.65 76.06 70.61 55.52 88.84 50.83 36.89 86.36
FENet [55] 68.30 54.10 78.20 71.60 81.00 46.50 79.00 65.20 76.50 69.60 79.10 82.20 52.00 57.60 71.90 71.80 62.30 81.20 61.20 43.30 81.20
ASSD [35] 71.10 85.60 82.40 75.80 89.50 40.70 77.60 64.70 67.10 61.70 80.80 78.60 62.00 58.00 84.90 65.30 65.30 87.90 62.40 44.50 76.30
CSFF [56] 68.00 57.20 79.60 70.10 87.40 46.10 76.60 62.70 82.60 73.20 78.20 81.60 50.70 59.50 73.30 63.40 58.50 85.90 61.90 42.90 86.90

CornerNet [41] 64.90 58.80 84.20 72.00 80.80 46.40 75.30 64.30 81.60 76.30 79.50 79.50 26.10 60.60 37.60 70.70 45.20 84.00 57.10 43.00 75.90
AOPG [58] 64.41 62.39 37.79 71.62 87.63 40.90 72.47 31.08 65.42 77.99 73.20 81.94 42.32 54.45 81.17 72.69 71.31 81.49 60.04 52.38 69.99

O2-DNet [37] 68.40 61.20 80.10 73.70 81.40 45.20 75.80 64.80 81.20 76.50 79.50 79.70 47.20 59.30 72.60 70.50 53.70 82.60 55.90 49.10 77.80
MSFC [57] 70.08 85.84 76.24 74.38 90.10 44.15 78.12 55.51 60.92 59.53 76.92 73.68 49.55 57.24 89.62 69.21 76.52 86.74 51.82 55.23 84.31

Our 72.08 86.78 75.28 75.96 89.46 44.13 80.33 63.53 64.88 64.40 78.76 75.01 62.67 59.45 90.65 63.97 80.41 89.86 57.22 56.49 82.30

Note: The bold font in the table represents the optimal value. A–T represent the following categories: airplane,
airport, baseball field, basketball court, bridge, chimney, dam, expressway service area, expressway toll station,
golf field, ground track field, harbor, overpass, ship, stadium, storage tank, tennis court, train station, vehicle, and
windmill, respectively.

(2) Comparison and Analysis Using the NWPU VHR-10 Dataset

Generalization experiments are conducted on the NWPU VHR-10 dataset to verify
the generality of the proposed model for the remote sensing image object detection task.
Comparison experiments are also conducted with the latest proposed remote sensing
image object detectors, as shown in Table 5. Compared with the latest models, the model
in this study achieves higher detection accuracy. ABNet is an excellent detector based on
Faster R-CNN improvements; however, our model achieves a 2.2% higher mAP compared
with ABNet. SMENet and MSGNet [59] are the latest high-precision one-stage detectors
proposed to solve the problems of complex backgrounds and diverse object scales in remote
sensing images. As shown in Table 4, the model in this study obtains a higher accuracy
than both SMENet and MSGNet. MPFPNet [60] is the latest weakly supervised detector
proposed for multi-scale objects, and the model in this study achieves a 1.84% higher mAP
compared with it. Furthermore, our model achieves the highest detection accuracy for all
four categories. The above results are similar to those obtained using the DIOR dataset.
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These results demonstrate the effectiveness and generality of the proposed method for
multicategory remote sensing image object detection tasks.

Table 5. Accuracy comparison of our proposed model with other advanced models available, using
the NWPU VHR-10 dataset.

Model mAP Airplane Basketball Bridge Ground Harbor Ship Storage Tennis Vehicle Baseball

Yolov4 90.39 99.93 95.73 69.79 99.26 93.25 75.98 97.88 84.24 90.16 97.72
ABNet [9] 94.21 100 95.98 69.04 99.86 94.26 92.58 97.77 99.26 95.62 97.76

SMENet [11] 95.64 99.06 98.56 99.06 100 93.98 95.65 91.92 98.15 81.28 98.76
MPFPNet [60] 94.57 99.84 91.69 92.30 99.73 94.82 92.63 96.98 89.83 89.15 98.49
MSGNet [59] 95.53 98.93 92.02 91.07 99.98 99.09 93.68 97.90 91.82 92.22 98.60
MRNet [28] 92.50 99.50 95.40 82.20 99.20 98.60 88.40 90.20 89.20 92.90 98.70
EVCP [61] 94.10 98.80 91.60 87.80 99.70 91.80 92.50 99.80 91.10 88.60 99.80

Our 96.41 99.99 99.99 92.13 99.62 95.17 86.43 97.86 99.62 95.90 97.42

4.6. Visualization

To verify the ability of the proposed model to perceive object features more visually,
the predicted feature maps of the model for several typical objects are visualized; the
results are shown in Figure 11. The transition from blue to red indicates an increase in
the sensitivity of the model. The visualization results show that the method proposed in
this study can better adapt to various optical remote sensing image objects in multi-scale,
irregular aspect ratio, and complex background environments.
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For example, there is a substantial scale difference between the chimney and the oil
tank, but the model can accurately locate both. This result indicates that the model has
excellent multi-scale detection capability. Airports typically have irregular aspect ratios.
The feature heat map indicates that the model in this work can accurately identify the center
of the airport, which verifies the adaptability of the model to objects with irregular aspect
ratios. The athletic field is a complex environment with strong background interference,
but the model accurately recalls it, demonstrating the strength of the detector in processing
complex background information interference.

Remote sensing images usually have a large field of view, resulting in objects with
large differences in the same image. In this study, this image is visualized and analyzed.
As shown in Figure 12, the proposed method can accurately respond to images with
different object sizes and types. Simultaneously, a good coupling between the semantic
information of the scene and the object is established; thus, it can be concluded that the
model adequately considers the contextual information of the region of interest.
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Figure 13 shows a visualization of the representative test results. The large gap in
the spatial resolution of different sensors in remote sensing images leads to large-scale
differences and different background interference information for the same object, which
poses a great challenge to the detector. As seen in Figure 13a, the method proposed in this
study can achieve excellent detection results for objects with large-scale variations, which
indicates that the proposed network has a strong generalization capability for object-scale
variations. Another challenge of remote sensing images is strong interclass interference.
Differences in the size and shape of objects of the same class are not negligible. As shown
in Figure 13b, MFICDet can effectively distinguish bridges from dams, which indicates that
the method proposed in this study can effectively extract the salient detailed features of an
object and has a certain resistance to interclass interference. The detector also accurately
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identified chimneys with large differences in appearance, which proves that MFICDet
can accurately model the feature space of an object. Remote sensing imaging can be
affected by numerous factors, such as sensor height, radiation resolution, atmospheric
conditions, imaging season, and ground radiation. Therefore, the quality of images acquired
under different imaging conditions will vary. Better robustness to image quality is also an
important measure of network performance. Figure 13c,d shows that the method proposed
in this study is highly robust to image quality and can resist the interference of different
imaging conditions.
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5. Discussion
5.1. Limitations

We demonstrated the effectiveness and advancement of our method using extensive
experiments in Section 4. During the experiments, we discovered the shortcomings of our
detector. In scenes where the objects are extremely similar to the background, the detector
cannot maintain advanced performance. We analyzed the performance degradation caused
by the failure of the PNFG module in such scenarios. The reason for that is the lack of tar-
geted samples in this scene during the training process, resulting in a number of images with
significant differences dominating the model. Therefore, when the object is extremely simi-
lar to the background, the PNFG module may incorrectly confuse the object feature with the
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background feature. In addition, our detector is more computationally intensive, although
it obtains strong performance. This limits its deployment in lightweight mobile devices.

5.2. Future Works

Our research will focus on maintaining the current performance of the detector while
enabling it to be deployed on edge computers, which is critical to the practical application
of the detector. For example, drones are widely used. However, limited by their size and
workload, only lightweight computing devices can be deployed. Moreover, based on the
limitations of the detector proposed in this study, camouflaged object detection is also one
of the directions of our research.

6. Conclusions

In this study, we aimed to solve the challenges posed by the complex background and
large variation in object scales in remote sensing image object detection. A one-stage object
detection model based on the concept of divide and conquer was proposed: a multi-feature
information complementary detector. First, we proposed a PNFG module for the complex
background problem of remote sensing images. The module was used to extract features
from coupled feature information beneficial for the detection and suppression of invalid
noise information. Subsequently, a GFIC module was proposed to solve the problem
of the large-scale variation of objects, which combines pooling operations with dilated
convolution. The abstract features were compressed by a pooling operation to improve
the resistance of the model to object translation and rotation. Detailed features lost during
the pooling operation were complemented using dilated convolution while increasing the
receptive field of the model. In addition, we proposed a dual multi-scale feature fusion
strategy to solve the problem of low detection accuracy caused by multi-scale objects in
the same image. Extensive experiments were conducted on two remote sensing image
datasets, DIOR and NWPU VHR-10. The results showed that the detector proposed in
this work overcomes the effect of the complex background on performance. Moreover, the
challenges posed by multi-scale objects, especially multi-scale objects in the same image, are
solved. Compared with other models, the model proposed here achieved state-of-the-art
performance. However, this study did not consider the operational efficiency of the model,
resulting in a relatively expensive computation. Future research should focus on improving
the model’s detection speed while maintaining its current performance.
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