
Citation: Yan, M.; Qin, D.; Zhang, G.;

Zheng, P.; Bai, J.; Ma L. Nighttime

Image Stitching Method Based on

Guided Filtering Enhancement.

Entropy 2022, 24, 1267. https://

doi.org/10.3390/e24091267

Academic Editors: Chun-Hung Liu,

Jwo-Yuh Wu and Peter Y. Hong

Received: 9 August 2022

Accepted: 7 September 2022

Published: 9 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Nighttime Image Stitching Method Based on Guided
Filtering Enhancement
Mengying Yan 1, Danyang Qin 1,* , Gengxin Zhang 1, Ping Zheng 1, Jianan Bai 1 and Lin Ma 2

1 Department of Electronic Engineering, Heilongjiang University, Harbin 150080, China
2 Department of Electronics and Information Engineering, Harbin Institute of Technology,

Harbin 150080, China
* Correspondence: qindanyang@hlju.edu.cn

Abstract: Image stitching refers to stitching two or more images with overlapping areas through
feature points matching to generate a panoramic image, which plays an important role in geological
survey, military reconnaissance, and other fields. At present, the existing image stitching technologies
mostly adopt images with good lighting conditions, but the lack of feature points in scenes with weak
light such as morning or night will affect the image stitching effect, making it difficult to meet the
needs of practical applications. When there exist concentrated areas of brightness such as lights and
large dark areas in the nighttime image, it will further cause the loss of image details making the
feature point matching unavailable. The obtained perspective transformation matrix cannot reflect
the mapping relationship of the entire image, resulting in poor splicing effect, and it is difficult to
meet the actual application requirements. Therefore, an adaptive image enhancement algorithm is
proposed based on guided filtering to preprocess the nighttime image, and use the enhanced image
for feature registration. The experimental results show that the image obtained by preprocessing
the nighttime image with the proposed enhancement algorithm has better detail performance and
color restoration, and greatly improves the image quality. By performing feature registration on the
enhanced image, the number of matching logarithms of the image increases, so as to achieve high
accuracy for images stitching.

Keywords: image stitching; guided filtering; nighttime image enhancement; feature matching

1. Introduction

The panorama image is a seamless wide-view image generated by stitching multiple
narrow-view images with overlapping areas in the same scene using image stitching
technology [1]. When stitching an image, one of the source images is selected as a reference
image, the other adjacent images are transformed to match the coordinate system of the
reference image, and the transformation matrix is used to calculate the single response
between the adjacent images to construct a panoramic image. In recent years, image
stitching has become an active research area in the field of image processing and plays
an important role in several applications of computer vision and computer graphics, and
has been widely used in various applications, such as image rendering, medical imaging,
image stabilization, 2D and 3D image mapping, satellite imaging [2], soil water balance
assessment [3], and disaster prevention and control [4]. Moreover, image stitching provides
support for unmanned aerial vehicle (UAV) hyperspectral remote sensing technology [5].

Most of the current mature image stitching techniques are based on clear, easy-to-
process images taken in scenes with good lighting conditions, while image stitching tech-
niques in scenes with uneven lighting, such as morning and evening, are not yet perfect.
High-quality images are the basis for stitching. Due to the limitations of image capture
equipment and the current capture environment, high or low illumination of the captured
images can cause serious image degradation. For example, the captured nighttime im-
ages often have low signal-to-noise ratio, low brightness and low contrast. As shown in
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Figure 1, due to the influence of street lights or building lights, the captured nighttime
images are not evenly divided, and the image brightness is relatively concentrated, while
the brightness of the surrounding scene is often very dark, making it difficult to observe the
dark information of the images, which makes the loss of image details a serious issue [6].
When feature extraction is performed on the image, the feature points are not extracted
enough, and when stitching the night image, it is very easy to cause an image stitching
failure. In addition, the night image affects the visual effect due to poor visibility, weak
recognition function, and serious detail loss, resulting in the stitched image not meeting
the actual application requirements. In order to improve the image quality and stitching
success rate, this paper uses image enhancement techniques to preprocess nighttime images.
The main contributions are summarized as follows:

• An enhancement algorithm based on guided filtering is proposed, so as to obtain
nighttime images with good enhancement effect.

• A nighttime image stitching method based on enhancement algorithm is constructed
to increase the number of night image matching pairs, so as to achieve high accuracy
for images stitching.

Figure 1. Non-uniform illumination image at night and its feature extraction image.

2. Related Work

The low-illumination image enhancement algorithm mainly achieves the purpose of
improving the overall contrast and brightness of the image by increasing the brightness of
the dark part and suppressing the gray value of the over-bright area. As a classic problem
in the field of digital image processing, the low illumination image enhancement algorithm
has been developing continuously for a long time. The commonly enhancement methods
of low illumination color image consist of retinex theory, gray-scale transformation, etc.

Retinex theory is a classic low-light image enhancement method. Multi-scale retinex
(MSR) [7] and multi-scale retinex with color restoration (MSRCR) [8] are representative
Retinex algorithms. However, these algorithms are prone to problems such as color dis-
tortion, halo, and over-enhancement. Aiming at the problem of blurred image details
under low-light conditions, Liu et al. [9] proposed a low-illumination image enhancement
algorithm that combines homomorphic filtering and Retinex. In RGB color space, the
original image is processed using the wavelet transform and an improved Butterworth
filter to obtain a detail-enhanced image. After that, in the HSV space of the original im-
age, a color-enhanced image is obtained by using the improved bilateral filter function to
process the V channel; by weighted fusion of detail-enhanced image and color-enhanced
image, a high-quality image is obtained. Tang et al. [10] proposed a light map estimation
method based on Retinex theory. First, the initial light map was estimated by calculating
the maximum value in the three channels of R, G, and B, and anisotropic filtering was used
to refine the initial light map. The illumination map is processed by adapting the gamma
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function, and finally, the reflection image is calculated according to the Retinex model, and
the reflection image is de-sharp-masked to enhance the details.

The gamma correction function is a commonly used method in gray level transforma-
tion. The implementation method is simple, but it is usually necessary to manually set the
parameters according to the characteristics of the low illumination image, and the image
cannot be adaptively enhanced. Al-Ameen [11] proposed a new illumination enhancement
algorithm, which employs specialized logarithmic and exponential functions to process
images, and fuses the images processed by two different functions through the adaptive
logarithmic processing (LIP) method. A modified S-curve function is used to improve
the overall brightness of the image. Finally, low-light image enhancement is achieved by
processing the image using a linear scaling function to redistribute the intensity of the
image to standard dynamic range. However, the algorithm must manually set the threshold,
and it is difficult to set an optimal parameter for enhancement for different scenarios.

In recent years, intelligent algorithms have developed rapidly and have also been
applied to image enhancement. Qian et al. [12] proposed an adaptive image enhancement
algorithm based on visual saliency, and introduced the cuckoo search algorithm and
bilateral gamma adjustment function in the Hue Saturation Intensity (HSI) color space. This
method improves the overall brightness of the image by finding the best parameter values
for different scenes. In addition, a brightness-preserving bi-histogram construction method
based on the visual saliency method (BBHCVS) is proposed to enhance the contrast of the
region of interest while maintaining the image brightness. Finally, the image is adjusted
using the improved saturation stretch function, which enriches the color information of
the image. Considering to the characteristics of low-illumination color images, Li et al. [13]
used the proposed adaptive particle swarm optimization algorithm combined with gamma
correction to improve the overall brightness of the image. Furthermore, in order to enhance
the saturation of the image, the image is processed using an adaptive stretching function.
This method can not only improve the contrast of low illumination color images and avoid
color distortion, but also effectively improve the brightness of the image and provide
more detail enhancement while maintaining the naturalness of the image. Processing low-
light images through intelligent algorithms improves the quality of the images. However,
the introduction of intelligent algorithms undoubtedly increases the complexity of the
enhancement algorithm. Moreover, image filtering algorithms are also used in image
enhancement. Shan et al. [14] proposed a globally optimized linear windowed (GOLW)
tone mapping algorithm, which introduces a novel highly dynamic range compression
method by using local linear filtering. This algorithm realizes the enhancement of high-
dynamic range (HDR) images. Noise in low-light images cannot be ignored. Hamza and
Krim [15] proposed a variational approach to maximize the a posteriori estimation for image
denoising, which can improve the filtering performance of Gaussian noise. Ben Hamza
et al. [16] presented a variational approach to maximize the a posteriori (MAP) estimation.
The approach uses geometric insight to help construct regularization functions that yield
well-denoised images.

These algorithms are commonly validated using images from publicly available
datasets, and are not validated for actual captured low-light images. Since there is a
large amount of noise in the dark region of the actual captured nighttime images, the en-
hancement algorithm is very likely to amplify the noise in the dark region while enhancing
the image brightness, which will have an impact on the subsequent stitching. In addition,
this paper uses enhancement techniques to preprocess images, which are applied in image
stitching, and if the complexity of the enhancement algorithm is too high, the stitching
speed of the images will be affected. Therefore, an adaptive image enhancement algorithm
based on guided filtering is proposed. First, the V component is extracted by converting
the color space, and then, the illumination component is estimated by multi-scale guided
filtering. The illumination components are corrected by an improved enhancement function
based on the Weber–Fechner law, and an adaptive factor is introduced. The illumination
components before and after the correction are combined by fusion technology, and finally
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transferred to the RGB color space. This algorithm achieves fast adaptive nighttime image
enhancement and obtains higher quality and more detailed nighttime images, which is
beneficial to the subsequent image stitching. The algorithm framework of this paper is
shown in Figure 2.

Figure 2. Overall framework of proposed enhancement method.

The remaining contents of this paper are arranged as follows. Section 3 presents the
proposed enhancement algorithm. Section 4 presents the stitching method based on the
proposed enhancement algorithm preprocessing. Section 5 contains experimental results
and discussions. Finally, Section 6 presents the conclusions.

3. The Proposed Nighttime Image Enhancement Method
3.1. Space Conversion

The enhancement processing on the RGB color space is easy to cause the color distor-
tion of the image, so this paper chooses the HSV color space that is closer to the human
visual expectation to enhance the image. The RGB space of the image is converted into the
HSV space [17], and three components are obtained, which are H (hue), S (saturation), and
V (luminance). The mathematical expressions are as follows:

V = Ymax (1)

S =


0, Ymax = 0
Ymax −Ymin

Ymax
= 1− Ymin

Ymax
, otherwise

(2)

H =

{
H′, H′ ≥ 0

H′ + 360, otherwise
(3)
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H′ =



60× G− B
Ymax −Ymin

, V = R

60×
(

B− R
Ymax −Ymin

+ 2
)

, V = G

60×
(

R− G
Ymax −Ymin

+ 4
)

, V = B

(4)

where Ymax = max(R, G, B), Ymin = min(R, G, B). H′ can be represented by Equation (4).
Through spatial transformation, the H, S, and V components of the image are obtained,
which are expressed as IH(x, y), IS(x, y), and IV(x, y), respectively.

3.2. Estimation of Illumination Components Based on Guided Filtering

In Retinex-based image enhancement algorithms, Gaussian filtering and bilateral filter-
ing are usually used as surround functions to estimate the light components [18]. Gaussian
filtering can extract the illumination components, but the computational complexity in-
creases significantly with the increase of the filtering window. The time complexity of the
bilateral filtering is O(Nr2), where r is the filter window radius and N is the total number
of pixels in the image. When the window radius r is large or processing large-resolution
images, the calculation time is too long, so the bilateral filtering method is less efficient. In
addition, when a color image is smoothed by bilateral filtering, gradient inversion occurs
near the edges of objects in the image, resulting in halo, which affects the quality of the
output image and interferes with subsequent image processing [19].

In this paper, a linear guided filter with smoothing and edge-preserving functions is
used to estimate the illuminance components. Guided filtering refers to the idea of least
squares and performs operations through box filtering and integral image techniques. The
time complexity is only O(N), and the execution speed is independent of the filter window
size. Compared with bilateral filtering and Gaussian filtering, it is more efficient to estimate
the illumination component.

Guided filtering [20] represents the output image q as a linear model related to the
guide image I, the formula is as follows:

qj = ak Ij + bk, ∀j ∈ ωk (5)

where qj is the linearly transformed gray value of image I at pixel j in the window ωk. k is
the center pixel of the window ωk. ak and bk are the linear coefficients of the guide image
within a window ωk of radius r centered on pixel k. The cost function is set as follows:

E(ak, bk) = ∑
j∈ωk

((
ak Ij + bk − gj

)2
+ δa2

k

)
(6)

where δ is a regularization parameter to prevent ak from being too large and is used to
adjust the filtering effect of the filter. The local linear coefficients ak and bk can be solved by
the least square method:

ak =

1
Nωk

∑j∈ωk
Iigi − µk ḡk

σ2
k + δ

(7)

bk = ḡk − akµk (8)

where µk and σk are the mean and standard deviation of pixels in the window ωk with
radius r and center pixel k, respectively. ḡk is the mean value of the image to be filtered in
the window ωk. Nωk is the total number of pixels in the window ωk.

When calculating the linear coefficients of each window, it is considered that a pixel i
can be covered by Nωk windows at the same time, that is, each pixel is described by multiple
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linear functions. Therefore, when solving the output of a certain point, it is necessary to
average all the linear function values including this point, and finally get:

qj =
1

Nωk
∑

j∈ωk

(
ak Ij + bk

)
= āj Ij + b̄j

(9)

We calculate the gradient of both sides of Equation (5) simultaneously to obtain
∇q = ak∇I. It can be found that the guided filtering model has the edge preservation
characteristics, and the coefficient ak determines the gradient preservation degree of the
final image, which represents the image edge preservation degree. When ak is equal to 1, the
output and input images have the same gradient change. When ak is smaller, the gradient
information in qj is less, the smoothing force is greater, and the edge of the image is blurred.
The δ in Equation (6) is a fixed regularization parameter that prevents ak from being too large
and takes a value between 0 and 1. The smaller δ is, the smaller the smoothing multiplier
of the superposition. Therefore, guided filtering uses ak and δ together to determine the
degree of edge retention and smoothing of the output image [20,21]. Guided filtering adopts
a linear method to realize the filtering process, which ensures that the output image has the
gradient structure similar to the input image, and finally achieves the edge-preserving effect.

The framework of the estimation of illumination components based on guided filtering
is shown in Figure 3. In this paper, we use the luminance component IV(x, y) as the input
image and guide image. Considering the slow change of illumination in most areas, and
the sudden change of brightness in local areas due to factors such as lighting, two guided
filtering processes are performed on the brightness components, which are fused together
by weighting as the final illumination component estimation.

F1(x, y) = GFr1,δ1[IV(x, y), IV(x, y)] (10)

F2(x, y) = GFr2,δ2[IV(x, y), F1(x, y)] (11)

IV−gi f = η1 × F1(x, y) + η2 × F2(x, y) (12)

where GF(r,δ) represents the guided filter function with the window radius as r and the
regularization parameter δ. The weighting coefficients are η1 = r1

r1+r2 , η2 = r2
r1+r2 , IV−gi f

denotes the filtered illumination component.

Figure 3. A framework for estimating illumination components based on guided filtering.
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After two guided filtering processes, the illumination component image is obtained.
The processed illumination component removes texture details and retains edge informa-
tion, and the effect is better than Gaussian filtering and bilateral filtering. The comparison
results are shown in Figure 4.

Figure 4. Comparison of filtering methods.

3.3. Adaptive Brightness Enhancement

The human eye is able to distinguish between different objects because different
objects reflect light with different intensities, thus creating a contrast in brightness and
color between them. The Weber–Fechner law indicates the law of the relationship between
mental and physical quantities, which expresses the laws of the human visual system for
the perception of the intensity of light.

Weber–Fechner’s law shows that the difference between the same visual stimulus must
reach a certain ratio before it can be distinguished by the human eye, and this ratio is called
the discrimination threshold of the human eye. When the brightness change is less than
the discrimination threshold, the human eye cannot detect it. The threshold is not fixed, it
varies with the brightness of the object’s background. Its mathematical relationship is:

∆S =
∆V
V

(13)

After integrating Equation (13), the subjective visual luminance of the human eye is
obtained as

S = k× log V + c (14)

where S is the perceptual quantity. k is a constant. V is the physical brightness. c is the
integral constant.

From Equation (14), it can be seen that there is a logarithmic relationship between the
subjective perception of the intensity of light by the human visual system and the intensity
of the stimulus change of light.

The Weber–Fechner law proves that the human visual system is a nonlinear processing
process. By setting the enhancement function according to Weber–Fechner’s law, the ob-
tained image is more in line with human vision. Due to the high complexity of logarithmic
operations, the literature [22] proposed to simplify Equation (14) with Equation (15) for
fitting the illumination component.

I′V =
IV(255 + k)

IV + k
(15)
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where I′V is the enhanced image, IV is the image before enhancement, the value 255 is
the gray level of the image. k is the adjustment coefficient. The adjustment amplitude
decreases as k increases. The literature [22] adjusts the magnitude of k by the product
of a weight coefficient α and the mean value of the S component. The weight coefficient
α is set empirically, and the enhancement amplitude of the image is adjusted by setting
different values of α. Obviously, this method cannot achieve adaptive enhancement, and
the effect of the enhanced images obtained for different types of low-light image processing
varies significantly.

To address this problem, this paper introduces ĪV as an adaptive enhancement factor.
The magnitude of enhancement is determined based on the average brightness of the
image. When the brightness of the image is low, the brightness adjustment intensity of
the enhancement function to the image is increased, and when the brightness of the image
light is high, the enhancement intensity of the image is automatically weakened to prevent
the image from being over-enhanced.

In this paper, the average luminance value is introduced as the adaptive factor of the
enhancement function to realize the adaptive enhancement of the image. The adaptive
enhancement function formula used is as follows:

I′V =
IV(255 + ĪS × ĪV)

max
(

IV , IV−gi f

)
+ ( ĪS × ĪV)

(16)

where ĪS = 1
N ∑N

i=1 IS, ĪV = 1
N ∑N

i=1 IV , N is the number of pixels of image IV .

3.4. Image Fusion

The image fusion technique enables the extraction of effective information from the
image. In this paper, the enhanced brightness image is fused by weighted fusion and the
maximum value method. The maximum value method performs fusion by comparing the
size of the pixel values of the corresponding points in the image.

The maximum pixel method is used to further enhance the image when the average
brightness of the input image is too low. Conversely, the average weighting method is used
to prevent over-enhancement. Therefore, it is reasonable to use the average brightness value
as the threshold to determine the fusion algorithm. Experiments verify that a threshold of
0.2 can achieve better enhancement effects for nighttime images.

IV−F(x, y) =

{
max

(
IV−gi f (x, y), I′V(x, y)

)
, ĪV ≤ 0.2

0.5× IV−gi f (x, y) + 0.5× I′V(x, y), otherwise
(17)

where IV−F(x, y) represents the fused image, IV and I′V denote the images to be fused.

3.5. Saturation Enhancement

After the brightness of the image is increased, the saturation of the image will be
reduced to a certain extent. In order to prevent the increase of brightness from affecting the
saturation, an adaptive nonlinear stretching function is constructed in the literature [12] to
stretch the saturation of the image. The coefficient value of the function is too small, which
often leads to unsaturation when enhancing low-light images, so as to obtain images with
poor visual effects. Experiments show that the supersaturation phenomenon of the image
will appear as the coefficient value increases. Therefore, an improved adaptive nonlinear
stretching function is proposed to enrich the image details.

The improved stretch function used in this paper is as follows:

I′S=
(

0.5 + 0.5× max(R, G, B) + min(R, G, B) + 1
2× mean (R, G, B) + 1

)
IS (18)

where IS and I′S denote the saturation of the image before and after stretching. max(R, G, B)
indicates maximum value of pixels in R, G and B color channels. min(R, G, B) refers to
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minimum value of pixels in the three channels. mean(R, G, B) refers to the average value of
pixels in the three color channels.

Figure 5 shows the image comparison results processed by the improved saturation
stretching function. It can be seen that after stretching the S component, the image has
higher saturation, and the color information of the image is more abundant.

Figure 5. (a) Original image; (b) saturation component of original image; (c) nonlinear stretching
result image; (d) saturation component of nonlinear stretching result image.

4. Image Stitching Based on the Proposed Enhancement Algorithm Preprocessing

The main steps of image stitching include image preprocessing, image registration,
and image fusion. After the nighttime image is preprocessed by the enhancement algorithm,
the SIFT algorithm is used to extract the features, and the RANSAC algorithm is used to
eliminate the mismatched pairs, and then, the transformation matrix is solved to obtain
the transformation relationship between the images. Finally, the weighted position fusion
algorithm is used to fuse the pixels of the spliced images to eliminate the splicing traces
and generate a panoramic image.

4.1. Elimination of Mismatch Points by Ransac Algorithm

Considering the large number of mismatched pairs in the rough matching obtained by
the SIFT algorithm, this paper uses the RANSAC (Random Sampling Consensus) algorithm
to eliminate the mismatched pairs. The RANSAC algorithm regards the data that meet the
estimated model as an interior point, and the data that do not conform to the estimated
model as an exterior point. Through parameter estimation, a reasonable result under a
certain probability is generated, and repeated testing and continuous iteration increase
the probability. When the number of iterations is sufficient over time, the true model is
estimated from the dataset.

Assuming that the global homography matrix to be solved is H, the error threshold ε
is set, and the number of iterations is k, the operation steps of the RANSAC algorithm to
eliminate the mismatch points are as follows:

1. Randomly select 4 groups of non-collinear matching point pairs from the rough
matching results;

2. Solve the projection transformation matrix H according the selected matched pairs
of points;

3. Among the remaining matching pairs, apply the H derived from the above step to
count the reprojection error less than the set threshold ε of the matching pairs, noting
the matching pair as an inner point and counting the number.
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4. If the number of current interior points is greater than the previous optimal projection
transformation, the current projection transformation is recorded as the optimal
projection transformation;

5. If the current probability is within the range allowed by the model or the number of
iterations is greater than the specified number of times, the calculation is completed. If
it does not meet the requirements, the above process is repeated until the requirements
of the model are met or the specified number of iterations is completed.

Through the processing of RANSAC algorithm, the homography matrix of global
projection transformation is obtained while eliminating the mismatched pairs, which
represents the optimal spatial transformation relationship between the two images to
be spliced.

4.2. Fusion of Stitched Images

Image fusion is the process of combining two images to be stitched together in a
common coordinate system. In order to make the resulting stitched image more natural, it
is necessary to fuse the overlapping parts of the two images to be stitched together.

This paper adopts the position-weighted fusion algorithm. The position-weighted
fusion algorithm is a gradual and gradual-out fusion algorithm. When calculating the
fusion transition area pixels, the overlapping area pixels are generated with linear weights.
The formula is as follows:

f (x, y) =


f1(x, y), (x, y) ∈ ( f1 ∩ ¬ f2)

ω1 f1(x, y) + ω2 f2(x, y), (x, y) ∈ ( f1 ∩ f2)
f2(x, y), (x, y) ∈ ( f2 ∩ ¬ f1)

(19)

where ω1 and ω2 are the pixel weighting coefficients corresponding to the images f1 and
f2, respectively, which control the smooth transition of the overlapping area from the left
border to the right border. The calculation formula is as follows:{

ω1 = x−L
R−L

ω2 = 1−ω1
(20)

where L and R are the left and right boundaries of the overlapping region, respectively.
The weight of the position-weighted fusion algorithm changes with the width of the
overlapping area, so as to realize the smoothness of the pixel change in the fusion area,
which can effectively improve the hard boundary effect of the stitched image, and realize
the slow transition from the reference image to the target image in the overlapping part.

5. Experiments and Discussions
5.1. Experiment Setting

For the proposed image enhancement algorithm, specific images are used for valida-
tion, followed by feature matching and stitching for comparison. All experiments in this
research were run on MATLAB R2018a on a PC with 1.6 GHz CPU and 8 GB RAM.

To evaluate the effectiveness of the proposed enhancement algorithm, we compare the
proposed method with conventional image enhancement algorithms and state-of-the-art
technologies, i.e., multi-scale retinex (MSR) [7], multi-scale retinex with color restoration
(MSRCR) [8], retinex-based Multiphase algorithm (RBMP) [23], and adaptive image en-
hancement method (AIEM) [22]. Six representative images with uneven illumination
(image #1–6) are selected from the MEF [24] and NPE [18] image sets and combined with
four nighttime images actually taken as the experimental test images (image #7–10). The
pictures collected in this article were taken in front of the tennis court and dormitory
building of Heilongjiang University. This experiment evaluates the proposed enhancement
algorithm and other comparison algorithms in terms of both subjective evaluation and
objective evaluation metrics. The subjective visual evaluation of images can truly reflect
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the image quality from the visual perspective, and the evaluation is simple and reliable.
The objective evaluation metrics judge the image quality from the specific metric level.

The relevant parameters of the algorithm are set as follows:

1. In order to balance the smoothness of the image and the edge-holding effect, this
paper sets the guided filtering parameters as r1 = 3, r2 = 5, δ1 = 0.14, δ2 = 0.14.

2. The AIEM algorithm uses the parameters in the authors’ original paper, and the
3 Gaussian scale parameters are: σ1 = 15, σ2 = 80, σ3 = 250, the weights are set as
α1 = 0.1, α2 = 1.

5.2. Subjective Evaluation of Image Enhancement

The unevenly illuminated images in the public low-light dataset are processed using
different enhancement algorithms, and the results are shown in Figure 6. The brightness of
the image processed by the MSR algorithm is improved, but there is an over-enhancement
phenomenon, and the overall image appears white, such as the clouds in image #2 (b) and
yellow houses in image #4 (b). Image details are lost due to excessive image brightness
enhancement. The MSRCR algorithm can improve the brightness of the image, but the color
preservation effect of the image is still poor. For example, the sky color of image #1 (c) and
image #6 (c) cannot maintain the color effect in the original image. The overall color of the
image is lighter, with obvious color distortion. The brightness of the dark areas of the image
processed by the RBMP algorithm is not significantly improved, and the color retention
ability is slightly insufficient, such as the street signs in image #1 (d) and the balloons in
image #5 (d). The color preservation effect of the image processed by the AIEM algorithm
is good, but the halo phenomenon occurs in the alternating light and dark areas, such as
around the street lights in image #3 (e). In addition, the images processed by the AIEM
algorithm have artifacts on the edges of foreground objects, which affect the visual effect of
the image, such as the edges of buildings and the edges of alternating light and dark clouds
in image #2 (e). The brightness of the dark area of the image processed by the algorithm
proposed in this paper is improved, and there is no overexposure phenomenon, and the
color preservation effect is close to that of the AIEM algorithm. Due to the introduction of
guided filtering, the edge of the image processed by the proposed method is sharper, such
as the edge of the house in image #4 (f) and the edge of the lighthouse in image #6 (f). The
image processed by the proposed algorithm has more natural brightness processing at the
intersection of light and dark, without halos and artifacts. As shown in image #1 (f), the
edge of the sign is clear and the color transition is natural.

The collected nighttime images (images #7–10) were enhanced using different algo-
rithms, and the results are shown in Figure 7. The MSR algorithm improves the overall
brightness of the image, but also for high-brightness areas, where overexposure occurs at
the light source, as shown in the brightness area of images #6–7 (b). The MSRCR algorithm
also has an overexposure phenomenon, the overall picture is bluish, and the “block effect”
in the dark area is obvious, which affects the visual effect of the image, such as the window
areas of image #7 and image #8. Compared with the MSR and MSRCR algorithms, the
enhancement effect of the RBMP algorithm is improved, and the brightness of the dark
areas of the image is improved, such as the steps and trees in image #8 (d). This algorithm
improves the image over-enhancement phenomenon, but the detail preservation effect in
the brightness area is still not good, such as the window in image #8 (d) and the light sign
area in image #9 (d), the brightness enhancement is unnatural. The AIEM algorithm has a
better effect on color retention, but in the edge area where light and dark alternate, such as
in image #7 (e) and image #8 (e), there are the artefacts around the window, which affect the
visual effect. In addition, the color of the image processed by AIEM algorithm is unnatural,
such as the color of the light sign in image #9 (e) and image #10 (e). The image processed
by the proposed algorithm maintains good brightness in areas with strong illumination,
and improves the brightness in dark areas. As shown in image #7 (f) and image #8 (f), the
edges of the windows are sharp, and the images have moderate brightness and good color
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retention. The brightness and color of the lights in image #9 (f) and image #10 (f) are natural
with no over-enhancement.

Figure 6. Comparison with various methods on the dataset image. (a) Original images. (b) MSR
results. (c) MSRCR results. (d) RBMP results. (e) AIEM results. (f) Our results.
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Figure 7. Comparison with various methods on the collecting image. (a) Original images. (b) MSR
results. (c) MSRCR results. (d) RBMP results. (e) AIEM results. (f) Our results.

5.3. Objective Evaluation of Image Enhancement

In order to objectively reflect the enhancement effect of each algorithm in processing
low-light images, this paper uses average value (AVG), average gradient (AG), information
entropy (IE), and peak signal-to-noise ratio (PSNR) to measure the quality of the enhanced
low-light images [25–27].

The mean of the image is used to represent the average brightness of the image. The
calculation formula is given by Equation (21).

AVG =
∑M

i=1 ∑N
j=1 I(i, j)

M× N
(21)

where M is the image height, N is the image width. I(i, j) refers to the gray value of the
pixels in row i and column j of the image.
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The average gradient is used to measure the sharpness of the image. The larger the
average gradient of the image, the more layers of the image, and the clearer the image. AG
is calculated by Equation (22).

AG =
1

M× N

M

∑
i=1

N

∑
j=1

√√√√(
∂ f
∂x

)2
+
(

∂ f
∂y

)2

2
(22)

where
(

∂ f
∂x

)
and

(
∂ f
∂y

)
respectively represent the horizontal and vertical gradients of the

M× N image.
Information entropy is an index used to measure the richness of image information.

The greater the image information entropy, the better the detail performance of the image.
The Information entropy (IE) is calculated by Equation (23).

H = −∑
x∈k

q(x) ln q(x) (23)

where q(x) represents the distribution density of the image gray level x. k is the gray level
of the image.

The peak signal-to-noise ratio is used to measure the degree of image distortion or the
anti-noise level. The larger the value, the smaller the image distortion and the higher the
anti-noise level. PSNR is calculated by Equation (24).

PSNR = 10 log10

(
(max(Ii))

2

MSE

)
(24)

where max(Ii) is the maximum gray level value of the input image Ii. MSE is the Mean
Square Error of the enhanced image and the input image. MSE is given by Equation (25).

MSE =
1

M× N

M

∑
i=1

N

∑
j=1

(x(i, j)− y(i, j))2 (25)

where x(i, j) is the gray value of the pixels in row i and j column of the orignal image. y(i, j)
is the gray value of the pixels in row i and column j of the enhanced image.

Table 1 lists the comparison of various indicators of the 6 dataset images enhanced by
different algorithms. It can be seen from Table 1 that the average value of the processed
images is improved, indicating that the brightness of the image is enhanced, but because
the MSR and MSRCR over-enhance the image, the image is white, so the average value is
too large. The average value of the image enhanced by the proposed algorithm is moderate,
which shows that the brightness of the image is adaptively enhanced, and there is no over-
enhancement phenomenon, which is in line with the human eye observation effect. From
the point of view of the average gradient, the five enhancement algorithms all improve the
image clarity to a certain extent, among which the proposed algorithm and AIEM have
better average gradient values. The image information entropy values processed by each
enhancement algorithm are improved, among which AIEM and the proposed algorithm
obtain relatively high values. It can be seen from the PSNR value that the AIEM and RBMP
algorithms and the proposed algorithm have better effect on image noise suppression.
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Table 1. Objective Evaluation Metrics for dataset Images.

Image Index Methods AVG AG IE PSNR

Image#1

Unprocessed 106.2343 8.3369 6.9185
MSR 175.9547 8.7906 6.4680 10.3850

MSRCR 168.3584 8.2684 7.0153 11.3675
RBMP 135.2965 8.9986 6.9556 17.2985
AIEM 147.3297 14.3700 7.5040 14.0416
OURS 144.5374 13.2811 7.3775 14.5312

Image#2

Unprocessed 48.2641 2.0051 6.8375
MSR 145.1272 3.3525 6.5330 7.8575

MSRCR 143.5546 3.3842 7.3012 8.0074
RBMP 104.2055 2.7525 6.7742 12.4023
AIEM 148.2635 5.5219 7.4767 7.3040
OURS 120.7855 4.4995 7.4282 10.1089

Image#3

Unprocessed 48.2371 1.3825 6.7409
MSR 166.7816 2.4035 7.0180 6.6202

MSRCR 149.7294 2.3618 7.0570 7.8877
RBMP 119.2852 2.1157 7.2369 11.0260
AIEM 144.3214 4.1107 7.4897 8.2008
OURS 106.7472 2.9637 7.2551 12.5561

Image#4

Unprocessed 42.8373 2.1314 6.0142
MSR 155.9016 3.5015 6.7860 6.9969

MSRCR 154.5647 3.4134 7.0101 7.3259
RBMP 103.6729 3.5788 6.8242 11.9598
AIEM 117.5364 5.9300 7.1468 10.0802
OURS 152.4410 7.2409 7.2610 6.8059

Image#5

Unprocessed 41.5932 2.6622 6.0279
MSR 132.5138 5.4725 6.1532 8.6901

MSRCR 128.1398 6.6046 5.7902 9.1541
RBMP 91.5238 4.3335 7.4906 13.3060
AIEM 95.9058 5.2659 7.4171 12.0187
OURS 108.3902 6.0585 7.4950 10.1912

Image#6

Unprocessed 68.7553 2.9095 7.4913
MSR 163.0143 4.0134 7.1714 7.2353

MSRCR 172.4398 3.9305 7.4066 7.9513
RBMP 121.1455 3.5583 7.5343 13.2318
AIEM 120.7220 5.2254 7.7427 12.5621
OURS 119.3843 4.8976 7.8425 12.6054

Table 2 lists the comparison of the evaluation indexes of the 4 nighttime images
actually shot through 5 different enhancement algorithms. As shown in Table 2, the mean
value of the images enhanced by MSR and MSRCR is still too high, indicating that the
image has been enhanced and the peak signal-to-noise of the image is low. After the image
is enhanced by the proposed algorithm, the mean value is increased compared with the
original image, but the brightness of the enhanced image is moderate, and there will be no
excessive enhancement. The image processed by the proposed algorithm has the highest
PSNR value, indicating that the suppression effect of nighttime image noise is better than
other algorithms. Although the IE or AG values of individual images processed by AIEM
are higher than those obtained by the method proposed in this paper, the comprehensive
performance of our method is much better than that of the other methods.
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Table 2. Objective evaluation index of collected images.

Image Index Methods AVG AG IE PSNR

Image#7

Unprocessed 41.3997 2.9346 6.4685
MSR 150.8871 2.1873 7.0354 7.0697

MSRCR 134.3781 2.1236 7.1479 8.2082
RBMP 105.6925 2.6895 7.1079 11.8398
AIEM 123.9911 4.3936 7.3721 9.3905
OURS 102.2740 3.5814 7.1135 12.1219

Image#8

Unprocessed 41.0353 2.5788 6.3299
MSR 157.8570 1.9959 6.8064 6.5846

MSRCR 143.3581 1.9618 6.9119 7.6316
RBMP 110.1061 2.4717 6.9227 11.1967
AIEM 135.3832 4.2874 7.2146 8.3248
OURS 110.3024 3.2543 6.9137 11.0764

Image#9

Unprocessed 48.8969 2.8815 6.8573
MSR 158.1191 2.4676 7.3004 7.0982

MSRCR 143.4791 2.5297 7.3939 8.2073
RBMP 109.2115 2.8726 7.0313 12.3069
AIEM 133.7210 4.9648 7.5166 8.9848
OURS 92.9747 4.0274 7.2507 14.6012

Image#10

Unprocessed 48.8969 3.9367 7.0113
MSR 165.9230 3.4260 7.2678 7.0697

MSRCR 149.2280 3.4045 7.3891 8.2082
RBMP 117.8824 4.1512 7.3876 12.0753
AIEM 141.2429 7.0486 7.5878 8.9907
OURS 99.3570 5.6238 7.4180 14.8902

In general, the proposed image enhancement algorithm can effectively improve image
brightness and clarity. In addition, more detailed texture information of the image can
be recovered, the color information is also protected, and the noise in the dark place is
suppressed, resulting in a higher quality image, which is conducive to subsequent stitching.

5.4. Time Complexity

Table 3 shows the processing time comparison of each algorithm. The MSRCR algo-
rithm requires Gaussian filtering of the logarithmic domains of R, G, and B components of
the original image to estimate the illumination components, so the complexity is higher;
RBMP uses gamma-corrected sigmoid function processing for image enhancement, which
is a simple method and less complex than the MSR algorithm. The AIME algorithm is less
time consuming than MSR and MSRCR, but it employs multiscale Gaussian filtering to
extract the illumination components, which leads to an increase in the running time and a
sharp increase in the complexity of the algorithm as the Gaussian window increases. Com-
pared with the AIEM algorithm, the proposed algorithm uses guide filtering in estimating
the illuminance components, which reduces the complexity of the algorithm and makes
the processing time decrease, and lays the foundation for the subsequent fast stitching.
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Table 3. Comparison of different methods on computational complexity.

Image Index Size MSR (s) MSRCR (s) RBMP (s) AIEM (s) OURS (s)

Image#1 533 × 800 0.5618 1.1672 0.7213 0.5870 0.3854
Image#2 399 × 700 0.5216 0.9731 0.5211 0.3967 0.2399
Image#3 960 × 1280 1.1909 1.7947 1.1530 0.8450 0.9827
Image#4 1728 × 2592 3.4892 5.8912 3.2968 3.8341 3.5704
Image#5 339 × 512 0.4320 0.7815 0.5012 0.3445 0.2308
Image#6 340 × 512 0.2708 0.7146 0.5434 0.3635 0.2313
Image#7 1280 × 916 1.4676 2.8420 1.3880 1.2532 0.9239
Image#8 1280 × 916 1.4965 2.8091 1.2366 1.1743 0.9160
Image#9 1280 × 916 1.4500 2.8855 1.2483 1.2714 0.9767

Image#10 1280 × 916 1.6385 2.8574 1.2577 1.2801 0.9079

5.5. Feature Matching

For the sake of description, image #7 and #8 are named ‘building1’, ‘building2’, image
#9 and #10 are named ‘light plate1’, ‘light plate2’. After enhancing the images with different
enhancement algorithms, the SIFT algorithm in the VLFeat library was used for feature
extraction and matching. The comparison of the number of feature points extracted and
the number of matched pairs are shown in Figures 8 and 9, and the matching results are
shown in Figures 10 and 11.

Figure 8. Comparison of the number of feature points.

Figure 9. Comparison of feature point logarithms.
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Figure 10. Comparison of feature matching for ‘building’ image. (a) Original image. (b) MSR result.
(c) MSRCR result. (d) RBMP result. (e) AIEM result. (f) Our result.

Figure 11. Comparison of feature matching for ‘light plate’ image. (a) Original image. (b) MSR result.
(c) MSRCR result. (d) RBMP result. (e) AIEM result. (f) Our result.

As can be seen from the data comparison in Figure 8, the number of feature points
extracted from the enhanced nighttime image increases significantly, among which the
feature extraction effect of the proposed algorithm is more significant for four nighttime
images. The extraction ability is relatively stable, and will not fluctuate greatly due to
different images. Figure 9 shows that the number of correctly matched feature pairs is
greatly improved for the images enhanced by the proposed algorithm.

Figures 10a and 11a show that the matched feature points of the images before en-
hancement are fewer and mainly concentrated in the regions with stronger lighting, while
there are almost no successfully matched feature points in the dark places. When stitching
the nighttime images with uneven illumination, the feature points are clustered in the
bright places, which makes the obtained transformation matrix error large and eventually
leads to poor stitching. As shown in Figures 10f and 11f, through the proposed enhance-
ment algorithm, the dark area of the road surface is matched to the feature points. This
experiment proves that the proposed enhancement algorithm is beneficial to the feature
extraction and registration of images with nighttime images, and provides guarantee for
subsequent stitching.
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5.6. Image Stitching

The two groups of images of ‘building’ and ‘light plate’ are spliced. The spliced
images are shown in Figures 12 and 13. The comparison of evaluation indicators is shown
in Table 4.

Figure 12. Comparison of stitching of ‘building’ image. (a) Original image. (b) MSR result. (c) MSRCR
result. (d) RBMP result. (e) AIEM result. (f) Our result.

Figure 13. Comparison of stitching of ‘light plate’ image. (a) Original image. (b) MSR result. (c) MSRCR
result. (d) RBMP result. (e) AIEM result. (f) Our result.
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Table 4. Objective evaluation index of collected images.

Image Index Methods AVG AG IE PSNR

building

Unprocessed 37.0289 1.8757 5.9837
MSR 127.5154 1.6164 6.3534 7.7301

MSRCR 115.3205 1.5652 6.3684 8.9447
RBMP 90.8140 1.8731 6.4962 11.9741
AIEM 108.2368 3.0621 6.6693 9.5082
OURS 88.4005 2.3571 6.4294 12.3991

light
plate

Unprocessed 36.1945 1.8956 6.1002
MSR 122.8710 1.9617 6.5805 8.0107

MSRCR 109.6623 1.8978 6.5875 9.1976
RBMP 83.1930 2.1151 6.6198 13.0639
AIEM 109.0777 4.0151 7.0048 9.1821
OURS 72.6646 2.9110 6.6502 13.9791

After the image is preprocessed by the enhancement algorithm, the details of the image
are more abundant, and the information of the dark area of the image is enhanced. Objects
originally in dark areas, such as steps and trees in Figure 12f, can be clearly observed after
enhancement. It can be observed from Figure 13a that when splicing the original image,
there is an obvious ghost at the step, which is caused by the inaccuracy of the transformation
matrix due to insufficient matching logarithms. After stitching using the comparison
enhancement algorithm, as shown in Figure 13b–f, the ghosting phenomenon is improved,
but not eliminated. It can be seen from Figure 13f that the ghosting phenomenon at the steps
in the image disappears after stitching and after enhancement by the proposed algorithm,
indicating that the proposed algorithm can obtain matching pairs with better quality, and
then solve a more accurate transformation matrix, which improves the stitching accuracy.

As indicated in Table 4, the stitched images processed by the enhancement algorithm
have improved in mean, average gradient, information entropy, and signal-to-noise ratio,
indicating that the quality of the stitched image can be effectively improved by using
the enhancement algorithm to preprocess the image. The MSR and MSRCR algorithms
over-enhance bright areas, resulting in too large average image values and dazzling images.
The five enhancement algorithms have little difference in the improvement of information
entropy, indicating that the enhancement algorithms all enrich the image details. The AG
value of the images processed by the proposed algorithm is slightly lower than that of the
AIEM algorithm. The image processed by the proposed enhancement algorithm has the
highest PSNR value, indicating that the proposed algorithm can improve the brightness
while suppressing noise. Overall, the proposed algorithm improves nighttime image
quality and achieves better image quality, which supports practical applications.

6. Conclusions

Aiming at the problem of the poor nighttime image stitching effect, an enhancement
algorithm applicable to nighttime image stitching is proposed. The V component obtained
by converting the color space of the image is used to extract the lighting component of the
scene via multi-scale guided filtering. Then, the correction function based on the Weber–
Fechner law is used to enhance the light component, and an adaptive factor is introduced
to realize the adaptive brightness enhancement. Additionally, the S component is processed
using a nonlinear stretching function. Finally, a nighttime image with better enhancement
effect is obtained through color space conversion.

In this paper, the proposed method is verified by selected low-illumination dataset
images and the collected nighttime images, and compared with four other enhancement
algorithms. From the experimental results, it can be seen that the images with rich details,
good color retention, high signal-to-noise ratio, and rich texture information are obtained
by processing the image through the proposed enhancement algorithm. Compared with
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other algorithms, the proposed algorithm has the lowest complexity and can meet the
demand of fast stitching. By performing feature matching on the enhanced image, more
matching logarithms can be obtained. The proposed method has higher stitching accuracy.
In conclusion, the proposed adaptive enhancement method based on guided filtering can
meet the requirements of fast and efficient nighttime image stitching, which provides value
for the application of nighttime surveillance image stitching.
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