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Abstract: Slope entropy (Slopen) has been demonstrated to be an excellent approach to extracting 

ship-radiated noise signals (S-NSs) features by analyzing the complexity of the signals; however, its 

recognition ability is limited because it extracts the features of undecomposed S-NSs. To solve this 

problem, in this study, we combined complete ensemble empirical mode decomposition with adap-

tive noise (CEEMDAN) to explore the differences of Slopen between the intrinsic mode components 

(IMFs) of the S-NSs and proposed a single-IMF optimized feature extraction approach. Aiming to 

further enhance its performance, the optimized combination of dual-IMFs was selected, and a dual-

IMF optimized feature extraction approach was also proposed. We conducted three experiments to 

demonstrate the effectiveness of CEEMDAN, Slopen, and the proposed approaches. The experi-

mental and comparative results revealed both of the proposed single- and dual-IMF optimized fea-

ture extraction approaches based on Slopen and CEEMDAN to be more effective than the original 

ship signal-based and IMF-based feature extraction approaches. 
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1. Introduction 

With the increasing complexity of the marine environment, the classification and 

identification of underwater acoustic targets are of great importance in areas such as na-

tional defense and the exploitation of marine resources [1,2]. A ship-radiated noise signal 

(S-NS), as the focus of research in the field of underwater acoustics, contains a variety of 

information such as ship target type, tonnage, speed, and so on, which is helpful in the 

recognition, classification, and tracking of ship targets [3,4]. The key technology of S-NS 

classification is “feature extraction”, and further development of the feature extraction 

technology is conducive to improving the classification performance of S-NSs [5–7]. 

The feature extraction approaches of S-NSs are generally divided into two categories. 

The first category involves directly extracting the features of the undecomposed S-NSs. 

Such feature extraction approaches of S-NS usually use traditional features and entropy-

based features. Traditional features mainly include frequency, energy, spectrum, and so 

on [8–11], while entropy-based features consist of dispersion entropy (DE) [12], reverse 

dispersion entropy (RDE) [13], and fluctuation dispersion entropy (FDE) [14]. Slope en-

tropy (Slopen) was proposed to analyze the complexity of the signal in 2019 [15], and first 

applied to underwater acoustics [16]. In [16], the S-NS feature extraction approach was 

proposed based on Slopen; the performance revealed that Slopen possessed the highest 

classification performance compared to DE, RDE, and FDE. From the above, we can real-

ize the following: (i) compared with some traditional features, entropy-based feature ex-

traction approaches are superior, and (ii) compared with other entropies, Slopen as a new 

complexity feature can better distinguish S-NSs. 
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The second category is to extract the features of mode components, which are ob-

tained with a decomposition algorithm [17,18]. Currently, there are many decomposition 

algorithms, such as empirical mode decomposition (EMD) [19], ensemble empirical mode 

decomposition (EEMD) [20], complete ensemble empirical mode decomposition with 

adaptive noise (CEEMDAN) [21], and variational mode decomposition (VMD) [22]. Sim-

ilar to the first category of approaches, these features are classified as traditional features 

or entropy-based features. In 2016, Li et al., used EMD to process S-NSs and combined it 

with permutation entropy (PE) [23] to identify different S-NSs [24]. Other researchers, in 

[25,26], replaced EMD with EEMD and proposed the feature extraction approaches of S-

NS using sample entropy and multi-scale PE, respectively; their results show that the S-

NS feature extraction approach based on EEMD had a higher recognition rate. To improve 

the classification performance, [27] employed CEEMDAN and energy entropy to classify 

the S-NSs, and the results indicated that the feature extraction approach based on 

CEEMDAN can accurately recognize S-NSs. In addition, Yang et al., presented a novel S-

NS feature extraction approach based on VMD and FDE [28], and the experimental results 

showed that the feature extraction approach based on VMD is better than that based on 

EMD and EEMD. In summary, we draw the following conclusions from the literature: (i) 

compared with the first category of feature extraction approaches, mode components-

based feature extraction approaches have better separability and classification perfor-

mance; and (ii) within the second category of feature extraction approaches, the entropy-

based feature is better than other features—VMD and CEEMDAN have more advantages 

for S-NS feature extraction than EMD and EEMD. However, a limitation of VMD is that 

its influence parameters need to be set in advance [29,30]. 

The main contributions of this study are as follows: (i) CEEMDAN is an adaptive 

decomposition algorithm, which overcomes the parameter selection limitation of VMD; 

(ii) compared with other traditional features and entropy-based features, Slopen has bet-

ter recognition performance in the first category of S-NS feature extraction approaches; 

and (iii) this study used the advantages of CEEMDAN and Slopen to propose optimized 

S-NS feature extraction approaches for single-IMF and dual-IMFs. The rest of this paper 

is structured as follows: Section 2 introduces the concepts of CEEMDAN and Slopen; Sec-

tion 3 describes the main steps of the proposed single- and dual-IMF optimized feature 

extraction approaches; Section 4 presents the experimental validations using three com-

parative experiments; and finally, Section 5 provides the conclusion. 

2. Theoretical Background 

2.1. CEEMDAN 

There is some white noise in the mode components that is obtained by the decom-

posing signal with EEMD and complementary ensemble empirical mode decomposition 

(CEEMD), which impacts signal analysis and processing. Therefore, in order to solve this 

problem, CEEMDAN was proposed. 

CEEMDAN changes the way that noise is added. The algorithm adds the intrinsic 

mode components (IMFs) with auxiliary noise after EMD decomposition to the original 

signal, but does not directly add Gaussian white noise. Additionally, CEEMDAN changes 

the method of determining the IMF. CEEMDAN determines a mode component every 

time noise is added, which is an iterative process, rather than decomposing the noisy sig-

nal only once to obtain the IMF of each order. The specific steps are as follows: 

Step 1: Add Gaussian white noise �� ∗ ��(�) to the initial signal x(t) to obtain a new signal 

y(t) and apply the EMD algorithm to decompose the signal y(t) to obtain the first mode 

component of CEEMDAN: 

��(t)=
�

�
∗ � ��

�(�)
�

���
, � = 1,2, . . . � (1)
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where �� is the standard deviation of the added white noise, �� is Gaussian white noise 

with unit variance under the condition of the j-th ensemble number, N is the total ensem-

ble, and ��
�
 is defined as the j-th mode component of EMD decomposition. 

Step 2: Determine the residual component ��(�) after the first decomposition. 

��(�) = �(�) − ��(t) (2)

Step 3: Use the residual signal after adding white noise as a new signal ��(�)+�� ∗ ��(��(�)) 

to be decomposed, and, through the same process, obtain the second mode component 

��(t) and residual component ��(�). 

��(t)=
�

�
∗ � ��(��(�) + �� ∗ ��(��(�)))

�

���
 (3)

��(�) = ��(�) − ��(t) (4)

where ��(*) is the function of extracting the j-th IMF, which is decomposed of the EMD 

decomposition. 

Step 4: Repeat the above steps until the stop condition is met. That is, once the residual 

signal is a monotonic function the cycle ends to obtain the K IMF components and remain-

ing residual components �(�). The original signal �(�) is decomposed as follows: 

�(�) = � ��(t) + �(�)

�

���

 (5)

2.2. Slopen 

Slopen is an algorithm that can characterize the complexity of a time series. It is pri-

marily based on single-threshold and symbolic patterns, where every symbol is largely 

determined by the distinction between consecutive samples of the input time series [31,32]. 

The specific steps of the slope entropy algorithm are as follows: 

Step 1: Given a time series � = {��, � = 1, 2, . . . , �} , the extracted sequences are �� =
{��, ��, . . . , ��}, �� = {��, ��, . . . , ����} , ..., �� = {��, ����, ��} , where the embedded di-

mension is m and � = � − � + 1. 

Step 2: Dividing symbolic patterns by two thresholds (γ and δ). If ���� − �� > �, the sym-

bol is defined as +2; if � < ���� − �� < �, the symbol is defined as +1; if |���� − ��| ≤ �, the 

symbol is defined as 0; if −� < ���� − �� < −�, the symbol is defined as −1; and if ���� −

�� < −�, the symbol is defined as −2, where � > � > 0. Figure 1 shows the division of 

symbol patterns. 

Step 3: The symbol pattern sequences obtained from the previous step are �� =

{��, ��, . . . , ����}, �� = {��, ��, . . . , ��}, ..., �� = {��, ����, . . . , ����}, where �� is the symbol 

corresponding to ���� − �� and � = � − � + 1. 

Step 4: The total number of types of symbol pattern sequences is recorded as � = 5���, 

the corresponding number of different types of sequences is recorded as ��, � = 1, 2, . . ., S, 

and the relative frequency of occurrence is recorded as ��: 

�� =
��

�
, � = 1, 2, . . . , � (6)

Step 5: Therefore, Slopen is defined as follows: 

��(�) = − � ������

�

���

 (7)

where �� is the relative frequency of occurrence. 
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Figure 1. The division of symbol patterns. 

3. Feature Extraction Approach 

Based on the theoretical analyses of CEEMDAN and Slopen, the signal-IMF and dual-

IMF optimized feature extraction approaches for S-NSs, termed “CEEMDAN-Single-

Slopen” and “CEEMDAN-Dual-Slopen,” were proposed, respectively. The flow chart de-

picting the feature extraction for S-NSs is shown in Figure 2 and the specific steps of the 

study were as follows: 

(1) Four types of S-NSs were obtained and used as the study subjects for the experiments; 

(2) S-NSs were decomposed into several IMFs using CEEMDAN; subsequently, using 

Slopen as the feature, the first six IMFs were selected for feature extraction; in addi-

tion, comparisons with some classical decomposition algorithms, such as EMD and 

EEMD, were made; 

(3) The Slopens of the first six IMFs were extracted and the single-IMF and dual-IMF 

optimized feature extraction experiments were carried out; concurrently, the DE, 

RDE, and FDE of the IMF were extracted, respectively, and comparative experiments 

were performed. 

(4) KNN was adopted to classify four types of S-NSs; then, the recognition rates were 

obtained and compared with the other single-feature and dual-feature extraction ap-

proaches based on the original S-NSs. 
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Figure 2. The flow chart of feature extraction for S-NSs. 

4. Feature Extraction and Classification of S-NSs 

4.1. Four Types of S-NSs 

Four types of S-NSs were used in the feature extraction experiments, consisting of Ship-

1, Ship-2, Ship-3, and Ship-4. Ship-1 and Ship-2 were obtained from a database named 

ShipsEar (Available at: http://atlanttic.uvigo.es/underwaternoise/, accessed on 13 July 2022) 

and represent an ocean liner and a motorboat, respectively. Ship-3 and Ship-4 were obtained 

from the official website of the National Park Service (Available at: 

https://www.nps.gov/glba/learn/nature/soundclips.htm, accessed on 15 July 2022) and repre-

sent an Alaska state ferry and a cruise ship, respectively. For all four types of S-NSs, the sam-

pling point’s length was 400,000. Figure 3 shows the normalized waveform of the four types 

of S-NSs. 
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Figure 3. The normalized waveform of the four types of S-NSs. (a) Ship−1; (b) Ship−2; (c) Ship−3; (d) 

Ship−4. 

4.2. The Decomposition of S-NSs 

All four types of S-NS were decomposed into several IMFs using CEEMDAN. For 

each type of S-NS, there were 200 samples and each sample consisted of 2000 sampling 

points. For CEEMDAN, the noise standard deviation was set to 0.2, the number of noise 

additions was 500, and the maximum number of sifting iterations permitted was 3000. 

The decomposition results for one sample of the four types of S-NSs decomposed by 

CEEMDAN are shown in Figure 4. 
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Figure 4. The decomposition results for one sample of the four types of S-NSs decomposed by 

CEEMDAN. (a) Ship−1; (b) Ship−2; (c) Ship−3; (d) Ship−4. 
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4.3. Feature Extraction 

The first six IMFs obtained from CEEMDAN were used as the object of the experiment 

for feature extraction. The Slopen of each IMF was extracted separately, and the DE, RDE, and 

FDE of each IMF were extracted for comparison. The feature distributions of Slopen, DE, RDE, 

and FDE in every IMF of four types of S-NSs are presented in Figures 5–8. 
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(c) (d) 

  
(e) (f) 

Figure 5. The feature distributions of Slopen in each IMF of four types of S-NSs. (a) IMF1; 

(b) IMF2; (c) IMF3; (d) IMF4; (e) IMF5; (f) IMF6. 
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Figure 6. The feature distributions of DE in each IMF of four types of S-NSs. (a) IMF1; (b) 

IMF2; (c) IMF3; (d) IMF4; (e) IMF5; (f) IMF6. 
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Figure 7. The feature distributions of RDE in each IMF of four types of S-NSs. (a) IMF1; (b) 

IMF2; (c) IMF3; (d) IMF4; (e) IMF5; (f) IMF6. 
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Figure 8. The feature distributions of FDE in each IMF of four types of S-NSs. (a) IMF1; (b) 

IMF2; (c) IMF3; (d) IMF4; (e) IMF5; (f) IMF6. 

As can be seen from Figures 5–8, within the four types of entropies, the distributions 

of SN-Ss in different IMFs were relatively chaotic and the overall entropy value became 

smaller from IMF1 to IMF6. Compared with the other five IMFs of Slopen, the Slopen 
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Table 1. The average recognition results of each IMF for three feature extraction approaches. 

Approach 
Average Recognition Rate (%) 

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 

EMD-Single-Slopen 60.3 59.8 64 58.1 43 29.6 

EEMD-Single-Slopen 50 48.6 50.8 41.1 42.5 25 

CEEMDAN-Single-Slopen 47.3 51.3 90.5 68.3 48.5 37.5 

As shown in Table 1, under the single-IMF feature, compared with EMD-Single-

Slopen and EEMD-Single-Slopen approaches, the CEEMDAN-Single-Slopen approach 

had the highest average recognition rate of 90.5%. Moreover, from IMF3 to IMF6, the av-

erage recognition rate of the CEEMDAN-Single-Slopen approach was higher than that of 

the two comparative feature extraction approaches. The highest average recognitions of 

EMD-Single-Slopen and EEMD-Single-Slopen were 60.3% and 50.8%, respectively, which 

were 30.2% and 39.7% lower than that of the CEEMDAN-Single-Slopen approach. 

Since the recognition rates of the single-IMF optimized feature extraction approach 

were not high, experiments based on the dual-IMF optimized feature extraction were car-

ried out. Similar to the single-IMF feature extraction experiments, and in contrast to 

CEEMDAN, we used EMD and EEMD to decompose the S-NSs. We then selected the first 

six IMFs, extracted the Slopen of any two IMFs, and selected the optimized combinations 

of dual-IMFs, which we named “EMD-Dual-Slopen” and “EEMD-Dual-Slopen”. For any 

dual-IMF extraction method, there were a total of 15 combinations for any two IMFs. The 

highest average recognition results of the dual-IMF optimized feature extraction ap-

proaches are shown in Table 2. 

Table 2. The highest average recognition results of the dual-IMF optimized feature extraction ap-

proaches. 

Method Choose the IMFs Average Recognition Rate (%) 

EMD-Dual-Slopen IMF3, IMF4 85.5 

EEMD-Dual-Slopen IMF1, IMF5 68.3 

CEEMDAN-Dual-Slopen IMF3, IMF5 97.6 

It can be found in Table 2 that under the dual-IMF feature, for different approaches, 

the combinations of IMFs were different. For example, for the CEEMDAN-Dual-Slopen 

approach, the highest recognition rate was obtained by extracting IMF3 and IMF5; the 

highest average recognition rate based on CEEMDAN-Dual-Slopen was 97.6%, which was 

12.1%, and 29.3% higher than that of the EMD-Dual-Slopen and EEMD-Dual-Slopen ap-

proaches, respectively. Thus, the proposed CEEMDAN-Dual-Slopen approach is better 

than the other two dual-IMFs optimized feature extraction approaches. The experimental 

results reveal that in both the case of single-IMF or dual-IMF, the recognition rate of the 

proposed extraction approach based on CEEMDAN is better than that of EMD and EEMD. 

4.4.2. Comparative Experiments of Different Entropies 

To explore the influence of different entropies in single-IMF feature extraction, while 

extracting the Slopen of each IMF, the DE, RDE, and FDE of each IMF were extracted 

separately for comparative analysis. The average recognition rate of every IMF of the four 

types of entropies are shown in Table 3. 
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Table 3. The average recognition results of every IMF of the four types of entropies. 

Entropy 
Average Recognition Rate (%) 

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 

Slopen 47.3 51.3 90.5 68.3 48.5 37.5 

DE 70.3 89.5 66.5 47 55 51 

RDE 72 85.3 64.6 49.6 52.1 50.1 

FDE 76 90.3 52.1 52.8 58.8 51.1 

It can be seen from Table 3 that compared with the other three entropies, the IMF3 of 

Slopen had the highest recognition rate of 90.5%, which was 1%, 4.8%, and 0.2% higher 

than that of DE, RDE, and FDE, respectively. Overall, the recognition rates of the four 

types of entropies for each IMF were not high. To further improve the recognition rate, 

the dual-IMF extraction method was used to extract S-NSs. The feature distributions of 

the highest recognition rate of the four types of entropies under the dual-IMFs feature are 

presented in Figure 9, where Slopen(i) denotes the Slopen of the i-th IMF, and the same 

for DE, RDE, and FDE. 

(a) (b) 

(c) (d) 

Figure 9. The feature distribution of the highest recognition rate of four types of entropies using the 

dual-IMF feature. (a) Slopen; (b) DE; (c) RDE; (d) FDE. 

Figure 9 shows that, for Slopen, the distribution of features belonging to each type of 

S-NS was highly concentrated and there was little overlap. In addition, for DE, RDE, and 

FDE, the feature distribution of Ship-2 was highly scattered, and the entropy values of 

Ship-3 and Ship-4 were similar; especially for RDE, in which the entropy values for all 

four types of S-NSs were very close. The highest average recognition rates of the dual-

IMFs of the four types of entropies are shown in Table 4. 

  

2.5 3 3.5 4 4.5 5 5.5 6

Slopen(3)

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

Ship-1

Ship-2

Ship-3

Ship-4

4 4.2 4.4 4.6

2.7

2.8

2.9

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

DE(2)

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.8 0.85 0.9

0.4

0.42

0.44

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

RDE(1)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ship-1

Ship-2

Ship-3

Ship-4

0.01 0.02
0

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

FDE(2)

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

Ship-1

Ship-2

Ship-3

Ship-4

0.65 0.7 0.75 0.8
0.26

0.28

0.3

0.32



Entropy 2022, 24, 1265 13 of 17 
 

 

Table 4. The highest average recognition rates of the dual-IMFs of the four types of entropies. 

Entropy Choose the IMFs Average Recognition Rate (%) 

Slopen IMF3, IMF5 97.6 

DE IMF2, IMF6 95.6 

RDE IMF1, IMF2 92.5 

FDE IMF2, IMF5 94.8 

From Table 4, it is clear that for the four types of entropy, all of the highest recognition 

rates were higher than 92%. The highest average recognition rate of the Slopen was the 

highest at 2%, 5.1%, and 2.8% higher than that of DE, RDE, and FDE, respectively. As such, 

the proposed CEEMDAN-Dual-Slopen approach is significantly better than the optimized 

feature extraction approaches based on the other three types of entropies. 

4.4.3. Comparative Experiments of Feature Extraction Approaches 

Aiming to demonstrate the excellence of the proposed CEEMDAN-Single-Slopen ap-

proach, we compared four single-feature approaches which directly extracted the Slopen, 

DE, RDE, and FDE of the four types of S-NSs, respectively. The average recognition rates 

of the proposed CEEMDAN-Single-Slopen approach and the four single-feature extrac-

tion approaches are shown in Table 5. 

Table 5. The average recognition rates of the proposed CEEMDAN-Single-Slopen approach and the 

four single-feature extraction approaches. 

Subject Feature Average Recognition Rate (%) 

IMFs of S-NSs Slopen(3) 90.5 

S-NSs Slopen 64.6 

S-NSs DE 74.3 

S-NSs RDE 76.1 

S-NSs FDE 78.0 

As can be seen in Table 5, the CEEMDAN-Single-Slopen approach extracted the 

Slopen of IMF3, Slopen(3), which represented the highest average recognition rate among 

the six IMFs at 90.5%. The four single-feature approaches directly extracted the different 

entropies of S-NSs and had the highest average recognition rate of 78%, which is 12.5% 

lower than that of the CEEMDAN-Single-Slopen approach. Thus, the recognition rate of 

the CEEMDAN-Single-Slopen approach was much higher than the highest recognition 

rate of the four single-feature extraction approaches. 

We also compared the dual-feature approaches, which directly extracted two of the 

entropies for the four types of S-NSs. The distributions of the proposed CEEMDAN-Dual-

Slopen approach and the dual-feature extraction approaches are shown in Figure 10. In 

Figure 10a, Slopen(3) and Slopen(5) represent the Slopens of IMF3 and IMF5. In Figure 

10b, Slopen and DE represent both the Slopen and DE of S-NSs, and so on for Slopen and 

DE, Slopen and RDE, etc. 
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(a) (b) 

(c) (d) 

  
(e) (f) 

 
(g) 

Figure 10. The distributions of the proposed CEEMDAN-Dual-Slopen approach and the dual-fea-

ture extraction approaches. (a) Slopen(3) and Slopen(5); (b) Slopen and DE; (c) Slopen and RDE; (d) 

Slopen and FDE; (e) DE and RDE; (f) DE and FDE; (g) FDE and RDE. 

2.5 3 3.5 4 4.5 5 5.5 6

Slopen(3)

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

Ship-1

Ship-2

Ship-3

Ship-4

4.2 4.4 4.6

2.8

2.9

3

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

Slopen

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ship-1

Ship-2

Ship-3

Ship-4

3.5 4 4.5
0.4

0.45

0.5

0.55

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

Slopen

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Ship-1

Ship-2

Ship-3

Ship-4

3.5 4 4.5
0.14

0.16

0.18

0.2

0.22

Ship-1

Ship-2

Ship-3

Ship-4

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

Slopen

0

0.1

0.2

0.3

0.4

0.5

0.6

Ship-1

Ship-2

Ship-3

Ship-4

3.5 4 4.5

0.2

0.25

0.3

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

DE

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Ship-1

Ship-2

Ship-3

Ship-4

0.44 0.46 0.48 0.5 0.52

0.16

0.18

0.2

Ship-1

Ship-2

Ship-3

Ship-4

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

DE

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ship-1

Ship-2

Ship-3

Ship-4

0.45 0.5 0.55

0.2

0.25

0.3

0.1 0.2 0.3 0.4 0.5 0.6 0.7

FDE

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Ship-1

Ship-2

Ship-3

Ship-4

0.2 0.25 0.3

0.12

0.14

0.16

0.18

0.2

0.22

Ship-1

Ship-2

Ship-3

Ship-4



Entropy 2022, 24, 1265 15 of 17 
 

 

As shown in Figure 10, for Slopen(3) and Slopen(5), Slopen and DE, and Slopen and 

RDE, compared to Slopen(3) and Slopen(5), the Ship-4 distribution was relatively more 

diffuse. For DE and RDE, DE and FDE, and FDE and RDE distributions, the distributions 

were mainly in the shape of bars. The distributions of Ship-1 and Ship-3 consistently over-

lapped each other in all seven feature approaches. The average recognition rates of the 

proposed CEEMDAN-Dual-Slopen approach and the dual-feature extraction approaches 

are shown in Table 6. 

Table 6. The average recognition rates of the proposed CEEMDAN-Dual-Slopen approach and the 

dual-feature extraction approaches. 

Subject Features Average Recognition Rate (%) 

IMFs Slopen(3) and Slopen(5) 97.6 

Signals Slopen and DE 95.6 

Signals Slopen and RDE 96.3 

Signals Slopen and FDE 95.3 

Signals DE and RDE 79.5 

Signals DE and FDE 94.5 

Signals RDE and FDE 92.0 

As can be seen from Table 6, in comparison to other dual-feature extraction ap-

proaches, the average recognition rate of the CEEMDAN-Dual-Slopen approach, based 

on Slopen(3) and Slopen(5), was the highest at 97.6%, which was 0.2%, 1.3%, 2.3%, 18.1%, 

3.1%, and 5.1% higher than that of the dual-feature extraction approaches based on Slopen 

and DE, Slopen and RDE, Slopen and FDE, DE and RDE, DE and FDE, and RDE and FDE, 

respectively. To summarize the above findings, the proposed CEEMDAN-Single-Slopen 

and CEEMDAN-Dual-Slopen approaches are preferable to both the single-feature extrac-

tion approaches and the dual-feature extraction approaches based on S-NSs. 

5. Conclusions 

With the aim of improving the recognition of S-NSs, CEEMDAN decomposed the S-NSs 

into several IMFs. The Slopen was used as the feature of the IMFs, and two IMF-based feature 

extraction approaches for S-NSs were proposed. The experimental results of this study prove 

the effectiveness of the proposed approaches, and the main conclusions are as follows: 

(1) Slopen was introduced as the new feature in the feature extraction of S-NSs; moreo-

ver, combined with CEEMDAN, this paper proposed CEEMDAN-Single-Slopen and 

CEEMDAN-Dual-Slopen approaches for S-NSs. 

(2) Under the condition of a single feature, whether altering the decomposition algo-

rithm, altering the entropy, or directly extracting the features of the S-NSs, the pro-

posed CEEMDAN-Single-Slopen approach had the highest recognition rate of 90.5%. 

(3) The proposed CEEMDAN-Dual-Slopen approach further improved the classification 

performance of the CEEMDAN-Single-Slopen approach with a 7.1% improvement in 

recognition rate, and was better than other ship signal-based and IMF-based ap-

proaches under the dual-feature condition. 

(4) Slopen was shown to be a good approach for extracting S-NSs features by analyzing 

the complexity of S-NSs. In the future, we will improve the slope entropy by combin-

ing the concepts of multi-scale and hierarchy to further improve the performance of 

the feature extraction approach. 
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