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Abstract

This dissertation addresses the modeling of pedestrians in dynamic and
urban environments interacting with autonomous vehicles. The collision
avoidance system of an autonomous vehicle has contrary safety and effi-
ciency requirements. On the one hand, there might be collisions in following
a risky driving policy. On the other hand, a safe driving policy might bring
the passenger very slow to the target to prevent all kinds of risks. The au-
tonomous vehicle does not know or perceive all relevant information, such
as the unknown intention and the environmental and situational factors
influencing the pedestrian’s behavior. There is a resulting decision dilemma
for autonomous vehicles between road safety for all road users and efficient
motion planning in environments with vulnerable road users. There also
exists a lack of knowledge by predicting the future movements of pedestri-
ans, where one could compute worst-case reachable state-sets. The areas
of possible reach sets could get very large. An autonomous vehicle is not
allowed to drive into these areas, making motion planning inefficient. The
adaption to real-world scenarios is not trivial. The decision-making process
in motion planning is challenging due to the enormous variety of situations
and the uncertainty of predicting future human movements with absolute
certainty. There is a potential risk of accidents in adapting and predicting
human locomotion. These problems influence the trust and acceptance of
autonomous vehicles with additional technological and legal challenges.
This dissertation aims not to ensure total safety because of pedestrians’
technical and diverse physical, cognitive, situational, and environmental
complexity. This work uses a new method that combines machine learning
with reachability analysis (resulting in an adaptive funnel, hull, or belief set
computation). Machine learning adapts the reachability analysis to current
situations. Therefore adaptive reachability analysis and corresponding mo-
tion planning are presented and evaluated in vehicle simulations. Adaptive
hull computational methods for adaptive implementation of reachability
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analysis lead to risky pedestrian bypassing. These computational methods
provide a trade-off between safety and efficiency in motion planning. How-
ever, the proposed approach cannot guarantee an exact threshold for overall
safety due to the complexity of the problem (unknown intent and environ-
mental factors). A very intuitive approach predicts the future situation’s
maximal velocity, acceleration, and jerk of a pedestrian. Afterward, it com-
putes the adaptive reach sets with conventional methods. Adapting classical
worst-case reachability analysis could drastically reduce the cumulative
volume of adaptive reachable sets compared to classical reachable sets (less
than 70 percent of the cumulative area compared to classical computation
in a presented use case). The results show a massive potential to reduce
the areas from reach sets to belief sets. The causal inference could model
the intention change. Intent changes are modeled with causal inference
without considering structural learning and tested with model predictive
control and adaptive hull computation in a simulation environment. This
thesis also presents a similarity of human locomotion with (Partially Observ-
able) Markov Decision Processes (MDPs and POMDPs). Nevertheless, many
causal relationships describing pedestrian behavior are still unexplored.
Concepts for building novel test environments provide an outlook on fun-
damental research. New test environments might bring new insights into
the causal information structure between cognition and human locomotion
in different settings to improve accident statistics further. These new test
environments could help make the adaptive reachable sets more robust and
provide a quantitive guarantee for trusting novel hull computations.
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Kurzfassung

Diese Dissertation befasst sich mit der Modellierung von Fußgängern in
dynamischen und urbanen Umgebungen, die mit autonomen Fahrzeugen
interagieren. Das Kollisionsvermeidungssystem eines autonomen Fahrzeugs
hat konträre Anforderungen an Sicherheit und Effizienz. Einerseits kann
es zu Kollisionen kommen, wenn eine riskante Fahrweise verfolgt wird.
Andererseits könnte eine sichere Fahrweise den Mitfahrer sehr langsam
zum Ziel bringen, um alle Arten von Risiken zu vermeiden. Das autonome
Fahrzeug (er-)kennt nicht alle relevanten Informationen, wie die unbekan-
nte Absicht des Fußgängers und die Umwelt- und Situationsfaktoren, die
sein Verhalten beeinflussen. Daraus ergibt sich für autonome Fahrzeuge ein
Entscheidungsdilemma zwischen Verkehrssicherheit für alle Verkehrsteil-
nehmer und effizienter Bewegungsplanung in Umgebungen mit gefährdeten
Verkehrsteilnehmern. Es besteht auch ein Wissensdefizit bei der Vorher-
sage der zukünftigen Bewegungen von Fußgängern. Man könnte hierbei
worst-case Zustandsmengen berechnen. Die Flächen der möglichen Erre-
ichbarkeitsmengen könnten sehr groß werden. Ein autonomes Fahrzeug
dürfte nicht in diese Bereiche hineinfahren, was die Bewegungsplanung inef-
fizient macht. Die Anpassung an reale Szenarien ist daher nicht trivial. Der
Entscheidungsprozess bei der Bewegungsplanung ist aufgrund der enor-
men Vielfalt an Situationen und der Ungewissheit, zukünftige menschliche
Bewegungen mit absoluter Sicherheit vorherzusagen, eine Herausforderung.
Es besteht ein potenzielles Unfallrisiko bei der Anpassung und Vorhersage
menschlicher Fortbewegung. Diese Probleme beeinflussen das Vertrauen
und die Akzeptanz von autonomen Fahrzeugen und stellen zusätzliche tech-
nische und rechtliche Herausforderungen dar. Aufgrund der technischen
und vielfältigen physischen, kognitiven, situativen und umweltbedingten
Komplexität von Fußgängern kann diese Dissertation keine absolute Sicher-
heit gewährleisten. In dieser Arbeit wird ein neues Verfahren eingesetzt,
bei dem maschinelles Lernen mit der Erreichbarkeitsanalyse verknüpft
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wird (was zu einer adaptiven Trichter-, Hüllen- oder Belief-Set-Berechnung
führt). Maschinelles Lernen passt die Erreichbarkeitsanalyse an aktuelle
Situationen an. Daher werden die adaptive Erreichbarkeitsanalyse und die
entsprechende Bewegungsplanung vorgestellt und in Fahrzeugsimulatio-
nen evaluiert. Adaptive Hull-Berechnungsmethoden zur adaptiven Umset-
zung der Erreichbarkeitsanalyse führen zu einer riskanten Umgehung von
Fußgängern. Diese Berechnungsmethoden bieten einen Kompromiss zwis-
chen Sicherheit und Effizienz bei der Bewegungsplanung. Allerdings kann
der vorgeschlagene Ansatz aufgrund der Komplexität des Problems (un-
bekannte Absicht und Umweltfaktoren) keinen exakten Schwellenwert für
die Gesamtsicherheit garantieren. Ein sehr intuitiver Ansatz sagt die max-
imale Geschwindigkeit, Beschleunigung und den Ruck eines Fußgängers
in einer zukünftigen Situation voraus. Anschließend werden die adap-
tiven Reichweitensätze mit herkömmlichen Methoden berechnet. Durch die
Anpassung der klassischen Worst-Case-Erreichbarkeitsanalyse konnte das
kumulative Volumen der adaptiven Erreichbarkeitsmengen im Vergleich
zu klassischen Erreichbarkeitsmengen drastisch reduziert werden (weniger
als 70 Prozent der kumulativen Fläche im Vergleich zur klassischen Berech-
nung in einem vorgestellten Anwendungsfall). Die Ergebnisse zeigen ein
massives Potential zur Reduzierung der Flächen von reach sets auf belief
sets. Die kausale Inferenz könnte die Absichtsänderung modellieren. Ab-
sichtsänderungen werden mit kausaler Inferenz ohne Berücksichtigung von
strukturellem Lernen modelliert und mit Model Predictive Control und
adaptiver Rumpfberechnung in einer Simulationsumgebung getestet. In
dieser Arbeit wird auch eine Ähnlichkeit der menschlichen Fortbewegung
mit (teilweise beobachtbaren) Markov-Entscheidungsprozessen (MDPs und
POMDPs) vorgestellt. Dennoch sind viele kausale Zusammenhänge, die das
Verhalten von Fußgängern beschreiben, noch unerforscht. Konzepte zum
Aufbau neuartiger Testumgebungen geben einen Ausblick auf die Grundla-
genforschung. Neue Testumgebungen könnten neue Einblicke in die kausale
Informationsstruktur zwischen Kognition und menschlicher Fortbewegung
in verschiedenen Umgebungen bringen, um die Unfallstatistik weiter zu
verbessern. Diese neuen Testumgebungen könnten dazu beitragen, die
adaptiven erreichbaren Mengen robuster zu machen und eine quantitative
Garantie für das Vertrauen in neuartige Rumpfberechnungen zu bieten.
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1. Introduction

Section 1.1 gives the motivation of the thesis, section 1.2 specifies the current
state of the art, and section 1.3 specifies the thesis contributions and the pub-
lications published during the Ph.D. thesis. The non-goals are summarized
in section 1.4.

1.1. Motivation

During the Covid 19 pandemic, the number of road accidents reduced dras-
tically from 2.6 to 2.2 million accidents (statistics from 2021 from [Kords,
2021]). The reduced mobility during lockdowns causally influenced this
number of accidents. Nevertheless, traffic accidents are too serious. This
thesis contributes to reducing accidents. Pedestrians are the most influential
group admitted to hospital after a non-fatal road accident ( [Observatory,
2018], [Safetynet, 2009]). The fatality of a collision depends on multimodal
factors (age of the person, speed of the vehicle, and others) [Observatory,
2018], [Safetynet, 2009]. Safety and collision avoidance play a crucial role in
developing autonomous vehicles in accepting this new technology. However,
efficiency (traffic speed in urban environments) is also essential for accept-
ing autonomous vehicles. This thesis focuses on autonomous driving for
restricted areas(with speed limitations), where direct interaction between
autonomous vehicles and pedestrians is plausible. This topic has scientific,
philosophical, and social value. The scientific value is how we develop
autonomous vehicles to understand human behavior. Human behavior de-
pends on several factors (intention change, body movements, and others).
The philosophical component relates to the freedom of vulnerable road
users and whether the actions are predictable. The development of safe
and intelligent transport has an enormous social impact. The driver must
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1. Introduction

make intuitive decisions and compromise on contrary targets (speed vs.
safety). In some situations, a driver has to take some risks into account. This
risk-taking might lead to some decision conflicts. The cognitive ability of
the driver’s brain can predict a pedestrian’s future movements and decide
which future trajectory to take. This introduction should give a simple real-
world example in an urban environment for an intuitive introduction and
an application for an automotive use-case, and figure 1.1 shows an example
for addressing the topics discussed in the Ph.D. thesis. It illustrates an urban
environment with a street, two sidewalks on each side, and a crosswalk. A
vehicle is coming in the right direction. The autonomous vehicle drives and
gets information on the historical positions of the pedestrian with the use
of sensors. It might be possible to predict the person’s movements to avoid
collisions. However, the degree of certainty to trust these predictions cannot
be well-defined (unknown intention of the pedestrian and situation factors).
In figure 1.2a the vehicle is driving, but due to a movement prediction and
the recognition of the crosswalk the vehicle stops in figure 1.2b and figure
1.2c. The autonomous vehicle predicts that the pedestrian will reach the
sidewalk, and the vehicle will drive in the figure. If the movement prediction
is false, it might lead to a collision between the vehicle and the pedestrian
(compare figure 1.2d). This example is further used in chapter 3 to highlight
developed concepts.
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1.1. Motivation

Autonomous vehicle

sidewalk

sidewalk
Pedestrian Measurements

Velocity vector

(a) Description of the example for the introduction

Prediction

Detection area

(b) Perception of the pedestrian with sensors

Figure 1.1.: Introduction example

3



1. Introduction

(a) Movement of the pedestrian and autonomous vehicle
with movement prediction

(b) Pedestrian passing the crosswalk and the autonomous
vehicle is stopping

(c) Autonomous vehicle predicts movement of the pedes-
trian to the sidewalk

�

(d) False prediction of the movements due to an intention
change of the pedestrian and collision risk

Figure 1.2.: Scenario of pedestrian movement prediction

1.2. Focused problem

This section discusses current challenges of existing state of the art (section
1.2.1) and the gap of existing methods (section 1.2.2).

1.2.1. Challenges

The current challenge in autonomous vehicles is to program computa-
tional intelligence to perform adequate and safe driving policies. An au-
tonomous vehicle cannot observe all relevant factors influencing the pedes-
trian, so there exists a non-reducible uncertainty in each movement predic-
tion (Aleatoric uncertainty). A movement prediction with absolute certainty
is impossible, and some risky driving policies could lead to collisions. How
can an autonomous vehicle handle this decision-risk dilemma technically?
Reachable sets addressing pedestrians’ situations compute worst-case sce-
narios, which might lead to conservative motion planning. This thesis can
not solve the question of which situation the reachable sets (worst-case) or
the unreliable movement prediction (risky bypassing). On the one hand,
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a pedestrian’s sure and confident movement prediction is impossible. On
the other hand, the autonomous vehicle must admit risk-taking to not
stop in each situation. These contradicting targets lead to the challenge of
developing autonomous vehicles.

1.2.2. Gap of existing methods

Reachable sets use simple formulations for dynamic systems to compute
worst-case scenarios. On the other side, machine learning models, such as
movement prediction, try to predict future positions. However, this thesis
assumes that there is no absolute certainty of the movement prediction for
pedestrians (because the person’s intention is not measurable). Therefore
this thesis introduces belief sets. We use machine learning models to predict
the most probable areas in future movements. Reachability analysis might
reference the belief set, which computes the plausible areas (what areas
are physically possible under physical laws). How reachable sets could
be adapted to situations by machine learning is a new field for intelligent
computing funnels capturing the pedestrian trajectory. Causal inference
forms another aspect of the interaction between the vehicle and pedestrian.
There are methods for causal inference but no direct application to the
interaction process between vehicle and pedestrian.
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1.3. Contribution

Subsection 1.3.1 discusses the topics of the thesis and summarize the achieve-
ments (section 1.3.2) and publications (section 1.3.3).

1.3.1. Topic of the thesis

The thesis explores set-based movement prediction algorithms. It focuses
on complex dynamic systems with elements of aleatoric- and epistemic
uncertainty. Aleatoric uncertainty is non-reducible uncertainty. Epistemic
uncertainty is reducible uncertainty due to measurements. An example
is the cognitive process of human decisions and the resulting actions and
movements (compare section B.2). It should highlight some challenges in un-
derstanding the whole complexity of the interaction between autonomous
vehicles and humans. The thesis discusses set-based prediction models
(adaptive reachability analysis and funnel prediction) and new environ-
ment descriptions using differential geometry and causal inference. The
causal inference is for the interaction process in chapter 3 and gives a pro-
posal for a pedestrian in the loop environments for the basic research on
the biological cybernetic cycle (compare section B.2). This thesis gives an
overview of the complexity of the interaction with vehicles and pedestrians
and considers aspects from the environment, biomechanics, and neuro-
science (compare section B.2). This thesis uses the concept of epistemic
and aleatoric uncertainty. This distinction helps to see the limitations of
movement prediction.

1.3.2. Achievements

The main contributions of this thesis are the development of set-based
movement prediction algorithms for uncertain dynamic systems (e.g., pedes-
trian movements). The urban environment might influence a road user in
several ways. It is not certain that a movement prediction algorithm leads
to a guaranteed good performance for a pedestrian, and the intention is
unknown. A common approach uses multi-modal movement predictions

6



1.3. Contribution

(several predictions by different parameters). We present approaches to us-
ing adaptive set-based methods. In contrast to reachability analysis, do not
lead to worst-case scenarios but also offers a risk for the motion planning.
The idea is to use data-based approaches to adapt the set-based methods
for each situation. This thesis also highlights topological spaces, where
funnels connect spatial areas. These approaches lead to new mathematical
descriptions for pedestrian movements.

1.3.3. Scientific publications

The thesis is a summary of some previous scientific publications. The thesis
focus on applying the prediction of aleatoric dynamic systems with a use
case to human locomotion and the interaction process to an autonomous
vehicle ( [Hartmann et al., 2017a], [Hartmann and Watzenig, 2019a], [Hart-
mann et al., 2018c], [Hartmann, 049A] [Hartmann, 897A] [Hartmann et al.,
2018b] [Schratter et al., 2019], [Hartmann and Watzenig, 2019b], [Hartmann
and Watzenig, 2019b] ). The appendix shows the complexity of human loco-
motion, a developed theoretical model, and the need for a test environment
for the basic research on human locomotion and the application to "Pedes-
trian in the Loop" environment for the automotive industry [Hartmann,
774A,Hartmann, 400A,Hartmann, 049A], [Hartmann et al., 2017b,Hartmann
et al., 2018d], [Hartmann et al., 2018a] [Aksjonov et al., 2019]. The first
publications originated during the European Marie Curie research fellow-
ship ITEAM. [Hartmann et al., 2017a] originated at the Institute for Risk
and Uncertainty at the University of Liverpool. [Hartmann et al., 2017a]
proposes a motion planning algorithm under uncertain environment con-
ditions modeled via Monte-Carlo simulations and models for uncertainty
quantification. The work [Hartmann et al., 2017b, Hartmann et al., 2018d]
was a collaboration project with scientists from the KU Leuven university
and proposes a Pedestrian in the Loop test environment under virtual,
augmented reality. The paper [Hartmann et al., 2018a] was the result of
the research stay at the University of Compiègne in France. This work
proposes a similar approach of a test environment, where autonomous
vehicles are tested with drones with real measurements. [Hartmann and
Watzenig, 2019b] proposes modeling pedestrian behavior in topological
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spaces and motion planning of autonomous vehicles with adaptive reach-
able sets. [Hartmann et al., 2018b] emerged at the University of Pavia in Italy
during a research stay and proposes adaptive motion planning under un-
certain environments with a data-based reachability approach. [Hartmann
et al., 2018c] provides extensive parameter variation of the motion planning
under uncertainty. [Hartmann and Watzenig, 2019a] proposes a Mixed In-
teger Learning approach for motion planning with a new jerk-constrained
model for adaptive reachability analysis. In [Schratter et al., 2019] we tested
the adaptive reachability analysis approach with the combination of a real
autonomous vehicle collision-avoidance system. In [Aksjonov et al., 2019]
a collaboration project of the European ITEAM project proposed a Driver–
Vehicle–Environment. The research stay at the University of Berkeley has
beneficially influenced this thesis. [Hartmann, 774A, Hartmann, 897A, Hart-
mann, 400A, Hartmann, 049A] are developed patent applications for the
intellectual protection of some innovations.

1.3.4. Structure of the thesis

This section should guide the reader through the document. Contributions
are marked with green color

Overview

Figure 1.3 gives an overview over the main-chapters of the Ph.D. thesis.
It starts with an introduction, gives an overview of the state of the art
and continuous with the developed concepts. Evaluation is done with
simulations and finishes with the conclusion.

Chapter 1 - Introduction

Figure 1.4 shows the sections of the first chapter. The thesis starts with the
motivation for the topic 1.1 of this work. We continue with the problem
of movement prediction of pedestrians and the existing gap of existing
methods in section 1.2. Section 1.3 summarizes the achievements and the
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Contribution

Chapter 1 - Introduction

Chapter 2 - State of the art

Chapter 3 - Developed concepts

Chapter 4 - Evaluation

Chapter 5 - Conclusion

Figure 1.3.: Overview of the Ph.D. thesis

1.1 - Motivation

1.2 - Focused problem

1.3 - Contribution

1.4 - Non-Goals

Figure 1.4.: Structure of chapter 1 - Introduction

contribution. The section 1.4 comment non-goals to show boundaries of the
thesis.

Chapter 2 - State of the art

Chapter 2 gives an overview of the state-of-the-art and the structure is
visualised in figure 1.5. It discusses methods like reachability analysis in
section 2.1 movement prediction in section 2.2.1, reinforcement learning
2.2.2 or causal inference in section 2.2.3. In approaches from cooperative
interacting vehicles in section 2.3 it focuses only on topics like motion
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Control engineering Machine Learning

Robotics

2.1 - Reachability Analysis 2.2.1 - Movement prediction

2.2.2 - Reinforcement Learning

2.2.3 - Causal Inference

2.3 - Cooperative interacting automobiles

2.3.1 - Motion Planning

2.3.2 - Consequences

Figure 1.5.: Structure of chapter 2 - State of the art

planning in section 2.3.1 and discusses limitations of technical approaches
in section 2.3.2.

Chapter 3 - Developed concepts

Chapter 3 focuses on the set-based movement prediction algorithms, with
causal inference, new human locomotion models and topological spaces.
The structure is visualized in figure 1.6. The chapter starts with section
3.1 to give an overview of the developed concepts. Section 3.2 discusses
a standard motion planning algorithm to see how the pedestrian models
could be tested. The idea of this chapter is to introduce new models for
adaptive set deformations in section 3.3 and intelligent funnel prediction
3.4. Two theoretical section discusses the mathematical approaches for
human locomotion to represent the urban environment of pedestrians with
manifolds in section 3.5 and the interaction between vehicle and pedestrian
with causal inference in section 3.6. Section 3.7 proposes a theoretical model
of human movements and discusses the need for a new Pedestrian-in-the

10
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Overview

Standard motion planning

Set based movement prediction

Environment as a manifold

Intention change with
causal inference

Modelling human locomotion

3.1 - Overview of chapter 3

3.2 - Motion planning

3.3 - Adaptive set deformation

3.4 - Funnel prediction

3.5 - Pedestrians walking on Manifolds

3.6 - Causal inference

3.7 - Cognitive Decision Models

Figure 1.6.: Structure of chapter 3 - Developed concepts

Loop environment for basic research on the biological cybernetic cycle of
human locomotion and to ensure pedestrians’ safety.

Chapter 4 - Evaluation

Chapter 4 present some a selection of further simulations for the evaluation
and figure 1.7 shows the visual structure. Section 4.1 gives mathematical
details of the simulator with some simulation runs presented in section 4.2
and different pedestrian models. Section 4.3 presents models with causal
inference to formulate the spatial target for the intention of a virtual agent.
Section 4.4 shows connected reachable sets in topological spaces. To see the
performance over different pedestrian models one can read section 4.5.

Chapter 5 - Conclusion

The thesis finishes with a conclusion and an outlook for future work in
chapter 5 (compare figure 1.8). Section 5.1 discusses the thesis and the
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- Environment as
a manifold
- Set based
movement prediction
- Intention change with
causal inference
- Modelling human locomotion

4.1 - Mathematical details

4.2 - Simulations

4.3 - Causal inference and goals for the agents

4.4 - Connected reachable sets topological spaces

4.5 - Evaluation over different pedestrian models

Figure 1.7.: Structure of chapter 4 - Evaluation
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5.1 - Discussion and contribution

5.2 - Limitations

5.3 - Outlook

Figure 1.8.: Structure of chapter 5 - Conclusion

contribution. Section 5.2 analyses the limitations of the proposed approaches
and finishes the thesis with an outlook in section 5.3.

Appendix A

For better understanding, the appendix compare figure 1.9 gives an intro-
duction to some mathematical concepts in chapter A (differential geometry
A.1 and computational geometry A.2). This section might be helpful for
the interested reader to understand the use of topological spaces and the
concept of hull computation and adaptive reachability analysis. Chapter B
discusses the cognitive systems and some basic statements to see the com-
plexity of the cybernetic cycle of human locomotion (human intelligence,
body, and environment). Section B.1 discusses basic information about the
cognition of human decision making and the resulting movements in section
B.2. Section B.3 discusses current technology of measurements and section
B.4 more on the environmental measurement technologies.
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A - Mathematical Background

A.1 - Differential Geometry

A.2 - Computational geometry

(a) Structure of chapter A - Mathematical Background

B - Cognitive systems

B.1 - Human behavior

B.2 - Human locomotion

B.3 - Technology

B.4 - Urban environment

(b) Structure of the chapter B - Cognitive systems

Figure 1.9.: Structure of the appendix

1.4. Non-Goals

The complexity of human locomotion and the technical technology of au-
tonomous vehicles is vast. Some non-goals should also guide the reader
through the thesis. These non-goals should show what is not expected from
the content of the thesis. It is not the intention of the thesis to follow the
following goals:

• The development of a perfect movement prediction of pedestrians,
which predicts each position of a random person and an unexpected
situation with absolute certainty and precision, is not the intention
of the thesis. There are some reasons why this is not realistic and
discussed during the thesis.

• There will be no development of perception algorithms and optimiza-
tion of motion planning algorithms. There will be motion planning
algorithms (MPC approach) presented. However, the focus is more
on developing pedestrian models with Reachability Analysis, Markov
Decision Processes, and Causal Inference on manifolds.

• Causal inference is a relatively new field in science. There exist not
many structure learning algorithms for the practice. That is why only
some simple applications are proposed for modeling the interaction.
The counterfactual analysis is also only described in some contexts.
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• The state of the art in this thesis is not complete. There exist different
methods and applications of vehicle control and perception technolo-
gies. Computer vision, sensor- and measurement technologies are not
in focus and some literature is summarized in B.3 with a focus on
pedestrian perception technologies. Systems of the vehicle drivetrain,
the stabilization of the vehicle, and other technologies to increase the
comfort and safety like in advanced driver assistance systems can be
found in [Bengler et al., 2014].

• It was not the goal of measuring and perceiving information from the
environment and pre-processing (e.g., computer vision, pedestrian
tracking, automatic semantic segmentation).

15





2. State of the art

This chapter starts with reachability analysis in section 2.1 and with deter-
ministic system models (compare figure 2.1a). Topics from machine learning
are described in section 2.2 (with probabilistic descriptions, compare figure
2.1b) are used. Statistical movement prediction in section 2.2.1, reinforce-
ment learning in section 2.2.2 and causal inference 2.2.3 are also used in the
thesis. Section 2.3 uses these methods for cooperative interacting automo-
biles, where motion planning algorithms in section 2.3.1 and some technical
limitations in section 2.3.2 are discussed with some non-technical aspects of
human locomotion.

2.1. Reachability Analysis for worst-case scenarios

Reachability analysis was originally used in testing large software projects,
where system errors might lead to fatal consequences. It is nowadays also
used in dynamic systems, like vehicles, where safety plays a key-role (e.g. for
collision-avoidance). Normally the control input u(t) or the whole constant
control-input set U are assumed to be known. We start with some basics from

u(t), x(t) f(x(t), u(t)) ẋ(t)

(a) Deterministic system models

A B C p(C|A, B)

(b) Probabilistic perspective

Figure 2.1.: Deterministic system and machine learning model

17



2. State of the art

control-engineering and definitions from [Lutz and Wendt, 2007, Föllinger,
1985]. Following system is defined by an ordinary differential equation

ẋ(t) = f(x(t), u(t)),
t, t0 ∈ R,

x(t0) = x0 ∈ Rn,
x(t) ∈ Rn, u(t) ∈ Rm ∀ t ∈ [t0, t]

(2.1)

In the autonomous case the control input u(t) = 0 disappears. The non-
linear function f is a mapping from the domain-space X × U to the image
space with f : X × U → X with the mapping (x(t), u(t)) 7→ ẋ(t). We
might define the whole domain-space as an entire set X ⊆ Rn or sets
{Xi}i∈I connected via a topology T (differential geometry and topologi-
cal spaces/manifolds compare section A.1) and a label set I . If the actual
function of f(·) is unknown or too complex, it might be necessary to formu-
late an approximation by f̂(·)in the whole domain-space or a sub-domain.
The future positions of the pedestrian are uncertain. The intention of the
pedestrian is normally unknown. Therefore, reachability analysis is used
to find all future positions the pedestrian could reach. So the idea of this
section is not to predict the exact position of the pedestrian but rather the
worst-case possibilities, where a person could be hypothetical. The function
R(tr, t0,X0,U (t)) describes the reachable tube of a dynamic system with
initial state set X0, the time-varying control input U (t), from initial continu-
ous timestep t0 and to step tr. A shortcut is R[tr,U (t)] is used if it is clear
from the context which initial time and initial state space were mentioned.
R[tr] is used, when the control input U is constant over time. The definition
of reachability analysis [Althoff, 2010] is:

Definition 2.1.1. Reachable Set at a point in time (adapted from [Althoff,
2010]): Given is a dynamical system ẋ = f (x(t), u(t), θ(t)), where t is the
time, u is the control input and θ are the parameters. The set of possible
initial states, the input, and the parameters are bounded by sets: x(t0) ∈
X0 ⊂ Rn, u ∈ U (t) ⊂ Rm and θ ∈ P ⊂ Rp. The reachable set at a certain
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point in time tr is defined as the union of possible system states at t = tr:

R[tr,U (t)] = R(tr, t0,X0,U (t)) = {x(tr) =
∫ tr

t0

f(x(t), u(t), θ(t)dt|

x(0) ∈ X0, u([t0, tr]) ∈ U (t), θ([t0, tr]) ∈ P}
(2.2)

u([t0, tr]) is a short form of ∪t∈[t0,tr]u(t).

In this thesis we will use machine learning to predict some parts of the
definition for the parameter set P̂ ≃ P , Û (t) ≃ U (t) or X̂0 ≃ X0 (what
we understand here as adaptive reachability analysis). The definition for a
longer time interval:

Definition 2.1.2. Reachable Set of a Time Interval (RSTI) [Althoff, 2010]: The
reachable set of a time interval is the union of reachable sets at points in
time within the interval t ∈ [0, r]

R([t0, tr]) = ∪
t∈[t0,tr]

R[t] (2.3)

For simplicity we could linearize the nonlinear system with a Taylor series

with a linearization working point z∗ =
[
x∗

u∗

]
[Alanwar et al., 2021]. We

also assume a Lipschitz nonlinear twice differentiable function:

f(z) = f(z∗) +
∂f(z)

∂z

∣∣∣∣
z=z∗

(z − z∗) +
1
2
(z − z∗)T ∂2f(z)

∂2z

∣∣∣∣
z=z∗

(z − z∗) + . . .
︸ ︷︷ ︸

L(z)

(2.4)

We formulate the function with an error-term L(x, u):

f(x, u) = f(x∗, u∗) +
∂f(z)

∂z
|x=x∗,u=u∗

︸ ︷︷ ︸
Ã

(x− x∗)+

∂f(x, u)

∂u
|x=x∗,u=u∗

︸ ︷︷ ︸
B̃

(u− u∗) + L(x, u)

(2.5)
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For better understanding we could find a linear subspace in the manifold of
the function domain with the Taylor approximation. For more details read
section A.1:

f(x(t), u(t)) =
[
f(x∗, u∗) Ã B̃

]



1
x− x∗

u− u∗


+ L(x, u) (2.6)

For simplicity we assume that we have a total linear system for the whole
function domain and for the whole time t:

ẋ(t) = A · x(t) + B · u(t), A ∈ Rn×n, B ∈ Rn×m (2.7)

The solution of the linear system is

x(t) = xh(t) + xp(t) = eA(t−t0) · x(t0) +
∫ t

t0

eA(t−τ) ·B · u(τ)dτ (2.8)

It is consisting of the homogenous xh(t) and particular solution xp(t). The
transition-matrix is ϕ(t) = eAt. Then we get:

x(t) = ϕ(t− t0) · x(t0) +
∫ t

t0

ϕ(t− τ) ·B · u(τ)dτ (2.9)

If we consider the initial state set X (t0) ⊂ Rn instead of a single initial state
vector x(t0) and a control input set U (t) ⊂ Rm, we could write the system
as:

ẋ(t) = Ax(t) + Bu(t), x(0) ∈ X (t0) ⊂ Rn, u(t) ∈ U (t) ⊂ Rm (2.10)

The reachable sets are then a set of all sums from the homogeneous and
particular solutions (adapted from [Althoff, 2010]:

R(t,U (t)) = {xh(t) + xp(t,U (t))|xh(t) ∈ H(t), xp(t) ∈ P(t,U (t))}
(2.11)

With the formulation of the Minkowski-sum:

R(t,U (t)) = H(t)⊕P(t,U (t)) (2.12)

20



2.1. Reachability Analysis

The reachable sets have the semigroup property (adapted from [Kurzhanski
and Varaiya, 2002]) for constant U :

R(t, t0,X0) = R(t, r,R(r, t0,X0)) (2.13)

This has the consequence:

R(t, t0,X0) =
⋃

s∈[t0,t]

R(s, t0,X0) (2.14)

The set of all homogenous solutions H(t):

H(t, t0,X0) = ϕ(t− t0)X (t0), X (t0) ⊂ Rn (2.15)

The set of all particular solutions:

P(t, t0,X0,U (t)) =
∫ t

t0

ϕ(t− τ) ·B · U (τ)dτ (2.16)

If we could find an constant upper bound Ũ with B · u(τ) ∈ Ũ ∀ u ∈
U (τ), τ ∈ [t0, t], we could have:

P̃(t) =
∫ t

t0

ϕ(t− τ) · Ũdτ =
∫ t

t0

ϕ(t− τ) · dτ · Ũ (2.17)

The same P̃ for t ∈ [0, r] (from [Althoff, 2010]):

P̃ = A−1(ϕ(r)− I)Ũ (2.18)

We switch now from continuous-time t ∈ R to a discretization with sample
time TS. We get the discrete time-set:

T := {ki := i · TS|i ∈N+
0 , TS > 0, TS ∈ R} (2.19)

We are looking for discrete reachable sets for worst-case analysis {Rki}N
i=1

1

RkN = R(kN, k0,X0,U ) =
⋃

s∈{k0,k1,...,kN}
R(s, k0,X0,U ) (2.20)

1The intersection of two sets V ,U is: V ∩ U = {s|s ∈ U , s ∈ V}. The union of two sets
V ,U is: V ∪ U = {a & b|a ∈ U , b ∈ V}. Two sets V , U are disjoint, if the intersection of
both sets is empty V ∩ U = ∅
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The algorithm 1 describes the algorithm for reachability analysis [Girard,
2005].

Algorithm 1: Algorithm for Reachability Analysis
Output: R(kN, k0,X0)

1: P ← X0
2: R ← P

for i = 0→ N − 1:
3: P ← R(ki+1, ki,P)
4: R ← R∪P

The abbreviation for the control input between the time range [k0, kN]:

u[k0, kN] := {ui|ui ∈ U , i ∈ {k0, k1, . . . , kN}} (2.21)

We define a shorthand for the autonomous reach setR¬Uk , which is necessary
for set-based algorithms:

R¬Uki
:= Rki \ U ∀ ki ∈ T (2.22)

and R(kN, k0,X0) = H(kN, k0,X0). For each state over time should always
xki ∈ Rki .

State set evolution

We have a dynamic system representing the vehicle the dynamic system

ẋ(t) = f(x(t), u(t)) (2.23)

and discrete system

xk+1 − xk
TS

= f(xk, uk) (2.24)

The elements of all

Ẋ (t) =
⋃

x(t)∈X (t),u(t)∈U
f(x(t), u(t)) (2.25)
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2.1. Reachability Analysis

The discrete case:

Xk+1 =
⋃

xk∈Xk,uk∈U
xk + TS · f(xk, uk)︸ ︷︷ ︸

∆Xk,k+1

(2.26)

The discrete case:

∆Xk,k+1 =
⋃

xk∈Xk,uk∈U
TS · f(xk, uk) (2.27)

set based discrete evolution of the system:

Xk+1 = Xk ⊕ ∆Xk,k+1

=
⋃

xk∈Xk

xk

︸ ︷︷ ︸
state-dependent

⊕
⋃

xk∈Xk,uk∈U
TS · f(xk, uk)

︸ ︷︷ ︸
state-action-dependent

(2.28)

A formulation in recursive manner:

X0

X1 = X0 ⊕ ∆X0,1

X2 = X1 ⊕ ∆X1,2 = X0 ⊕ ∆X0,1 ⊕ ∆X1,2

(2.29)

As described in [Girard et al., 2006] there exist also approaches with optimal
control the boundaries in the most of outward manner. It is also showing a
formulation

Rki+1
= ϕRki ⊕U (2.30)

with a bounded convex set U . The derivation of that formula can be found
in [Asarin et al., 2003]. There exist different approaches for ellipsoids, paral-
lelograms, zonotopes, interval-functions, and support-functions for reach-
ability analysis [Girard, 2005, Girard et al., 2006, Kurzhanski and Varaiya,
2002, Asarin et al., 2000, Althoff, 2010, Althoff and Frehse, 2016, Liu et al.,
2017, Schilling, 2018, Bogomolov et al., 2019]. These different sets have dif-
ferent properties. Some sets are closed under some mathematical operation
(e.g. multiplication), which means that the type of the set in the domain
is the same type in the image space (also in the amount of sets). The
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algorithms also differ in the computational complexity. Origin of these
approaches was software development applications to check models and
algorithms to detect failures in software programs. [Koschi and Althoff,
2017a] presents an open-source tool for a set-based reachability analysis.
The theory behind reachability analysis and the usage for autonomous vehi-
cles are presented in [Althoff, 2010, Pek, 2020]. A described in the previous
section Figure 2.7, 2.8 and 2.9 show the results with cooperative motion plan-
ning from [Hartmann and Watzenig, 2019a, Schratter et al., 2019, Hartmann
et al., 2018b, Hartmann and Watzenig, 2019b]. Figure 2.2a shows the funnel
capturing the green trajectory. Funnel set prediction is in this thesis a con-
secutive state set prediction Xkr

j
i . Figure 2.2b shows the result of reachability

Analysis with zonotypes programmed with the algorithm from [Girard
et al., 2006]. The belief sets in [Hartmann and Watzenig, 2019a, Schratter
et al., 2019, Hartmann et al., 2018b, Hartmann and Watzenig, 2019b] are
developed with point-wise approaches or parallelograms. In [Hartmann
and Watzenig, 2019a] the vmax, amax, emax (maximal velocity, acceleration and
jerk) was predicted by Gaussian Processes for a specific future time horizon.
The advantage of this approach is that the maximal parameters’ dynamics
are less dynamic than predicting the real movement. The publication used
this approach for developing collision avoidance models [Schratter et al.,
2019] for autonomous vehicles. There exist other libraries for reachability
analysis [Bogomolov et al., 2019] and the application in automotive scenar-
ios [Althoff et al., 2017]. In Figure 2.3 we show a grid-based approach for
reachability analysis. If we have a discrete grid and an agent can walk in
U = {”N”, ”W”, ”S”, ”U”} direction, we can compute the reachable sets, for
example, for MDPs and grid-based agents.
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X

x

t

y

(a) Funnel in xy-space over time t. (b) Reachability Analysis with zonotypes

Figure 2.2.: Funnel and Reachability Analysis [Hartmann, 2021]
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CL(X̂k2)

t

Figure 2.3.: Grid based reachability analysis: Pedestrian starting on Xk0 and having options
to walk in {N, E, S, W}
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2.2. Machine Learning

Subsection 2.2.1 discusses current approaches for statistical movement pre-
diction of road users (also with some approaches using reachability analysis),
reinforcement learning (section 2.2.2) and causal inference (section 2.2.3).

2.2.1. Movement prediction of road users

This section has a focus on statistical movement prediction algorithms.
However, also reachability analysis (section 2.1) from the previous section is
also applied for movement prediction of pedestrians. Many good textbooks
introduce the basics of machine learning [Friedman et al., 2001, Bishop,
2006, Murphy, 2012, Kochenderfer, 2015, Goodfellow et al., 2016, Peters et al.,
2017]. Machine Learning deals with inference techniques for data. Typically,
a dataset X is prior knowledge of a problem obtained from an experiment.
In Supervised Learning, a labeling vector y, where the elements of X are
labeled. The task is to find a function f̂ which should be similar to the
objective function f : X → y. With the introduction of a loss function, the
problem can be cast to a maximation problem [Friedman et al., 2001]. In
Unsupervised Learning, there is no labeling vector available, and only the
dataset is available. The data inference technique learns the data structure
and tries to recognize patterns in the data. There is a common assumption
that the data lies in a manifold [Dollár et al., 2007, Van Der Maaten et al.,
2009]. An example of unsupervised learning could be clustering techniques
and manifold learning techniques. In Semisupervised Learning, only a
subset of data X has labels. Reinforcement Learning is a particular case
where an agent interacts with the environment compare section 2.2.2. In
Deep Learning models [Goodfellow et al., 2016], neurons are interconnected
in graphs to perform complex computations. There currently exist many
different libraries and frameworks like TensorFlow, PyTorch, Caffe, Keras,
and others in Python, C++/C, Julia [Pedregosa et al., 2011, Müller and
Guido, 2016, Goodfellow et al., 2016]. Inference in Machine Learning gets
more difficult in higher than lower dimensions (curse of dimensionality).
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2.2. Machine Learning

Comparison of the vehicle and the pedestrian as dynamic systems.

In this thesis, we focus on two dynamic systems, a pedestrian (with state
xh(t) and label h for human) and a vehicle (state xv(t) and with superscript
v for autonomous vehicle). There are some differences between vehicles and
pedestrians:

• Physical mass: A single physical mass can represent a vehicle and
pedestrian. It might be possible to represent a single particle in a vector
space. The modeling might lead to substantial simplifications. Stiffness
at some parts of the vehicle might not be modeled when the vehicle
is modeled by particle. The pedestrian has multiple interconnected
masses in the form of limbs connected with a topological structure
(compare figure 2.4). The modeling might lead to loss of information
(what action does the pedestrian do, jumping, clapping with the
hands).

• System-dynamics: Several deterministic models exist for the vehicle as
a dynamic system. [Koschi and Althoff, 2017b]. A car-like vehicle is
normally a nonholonomic system (there exist holonomic vehicles). For
pedestrians exists some models, but there are are often very strong
simplifications (stochastic system [De Nicolao et al., 2007a], linear
system [Liu et al., 2017]).

• Measurements/Sensing and Perception: Measurements by sensors for
the vehicle and sense organs for the pedestrian (compare figure 2.5)

• Intelligence: Computational intelligence in the vehicle and intellectual
and emotional intelligence by the pedestrian

• Actuation: Actuators on in the drivetrain and steering for the vehicle
and muscles for the pedestrian (compare figure 2.5).

• Environment: The roads in urban environments usually have a topo-
logical structure where cars can drive. They often have a unique
structure and in each country exist special transportation rules. Physi-
cal obstacles might influence the behavior of vehicles and pedestrians,
which might lead to collisions in fatal situations, (opposing) forces,
or cognitive influences on the behavior from the perception of these
objects.
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Systematical classification of statistical movement prediction

This section focuses on pedestrians (some methods are also adaptable to
technical systems). In technical systems (like vehicles), the state over time is
often constrained by physical laws and energy. Humans also have cognitive
constraints, which are affecting consciousness and free will (compare section
B.1). The first step of movement prediction is often taking measurements
of a pedestrian. In a movement prediction problem as a machine learning
problem, the following information might be relevant:

• Discrete time-space T: Historical timesteps {kr, . . . , ki} and future
timesteps {ki+1, . . . , k j}. For the timesteps hold kr < ki < k j, kr, ki, k j ∈
T with the time label set I = {r, . . . , i, . . . , j}

• Measurements Yr→j = {ykq}
j
q=r: Information from the human body

and environment in form of measurements. The whole body might be
represented as a particle or as a topological system (figure 2.4).

• Additional label sets: There exist different possibilities to use addi-
tional label sets for machine learning. It might be necessary to label
the environment of the pedestrian (semantic labeling) or use variants
of (semi-)supervised learning techniques.

• States Kr→j = {xkq}
j
q=r: Normally the states xki are not directly known

and must estimated by measurements
• Principles of the system: A human has physical components con-

strained by the energy-flow (body movements) or information-theoretical
components as the cognitive system (brain, nervous system).

• Propagation of states (Prediction or Guessing): Historical states are
mathematically mapped by an operator (matrix, tensor, or something
else) to the future. For optimal prediction, it is advantageous to have
a valid system model. All physical, information-theoretical mecha-
nisms and causal structures are modeled under certain quality criteria,
which might ensure the quality of the prediction. A problem is a
complexity of modeling the human and the (urban) environment as a
mathematical system.

• Type of prediction algorithm: Is the machine learning problem de-
scribed as a supervised, semi-supervised, unsupervised learning, or
reinforcement learning problem. The supervised, semi-supervised and
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unsupervised learning tasks are different approaches depending on
the availability of input data and labels for a machine learning task.
Another question is whether the prediction is made in a classical ma-
chine learning or Deep Learning framework. Probabilistic formulations
and graphic descriptions in classical machine learning frameworks
are very common. Deep Learning is a method inspired by biology as
interconnected neurons perform learning tasks.

• Causality: Another problem is the underlying structure of physical
and cognitive mechanisms interconnected with each other. It might be
possible that a person changes his behavior/policy by interacting with
other persons or changing his intention.

• Modelling of the human as a system: When the human is represented
as a particle or a topological system, relevant information might not
be available for the machine learning algorithm. This simplification
might cause a lack of knowledge, which might cause an increase in
the aleatoric (non-reducible) uncertainty.

• State-space description: The mathematical description of the human as
a system and the environment might change prediction results. Is the
environment represented as a graph, manifold, or simply as a vector
space.

• Kind of analysis: It is also a difference if a single particle or a set
is propagated over time. In reachability analysis, the system is an-
alyzed under a worst-case scenario instead of predicting the future
movements.

A mathematical model for information propagation of spatial informa-
tion will predict the future trajectory, set of particles, or funnel. The au-
thors [Lefèvre et al., 2014,Hirakawa et al., 2018,Rudenko et al., 2020,Brunetti
et al., 2018] give a broad overview of movement prediction of vehicles or
pedestrians. The paper in [Lefèvre et al., 2014] classifies three different
classes: Physically inspired like the Bayesian filters, Maneuver-based, and
interaction-based approaches. There might be a knowledge database for
measurements Yr→j or states Kr→j to compute future belief states bkj . The
Bayesian filters use only the current measurement in a prediction and innova-
tion cycle to predict under certain conditions on the system model and noise
(compare figure 2.6a). Maneuver-based approaches would not take only one
measurement, but rather a set of measurements Yht

r→j := {ykq}i
q=r kr < ki
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F GH

I J

K L

Figure 2.4.: A human skeleton can be described as a topological space. The labeling of
the limb positions is chosen arbitrarily and can be extended. A: head, B: left
shoulder, C: right shoulder, D: left elbow, E: right elbow, F: left hand, G: right
hand, H: Hip, I: left knee, J: right knee, K: left foot, L: right foot, M: neck
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Physical object

Physical object

move handey

ex

actuating of muscles

sensing

Figure 2.5.: Human with the cognitive state cki
and body state ski

. The body state ski
consists of multiple positions in a topological structure and is defined in a
Euclidean vector space. A complex communication system exists between the
brain and the limbs in the human body, with control elements (actuating the
muscles) and measurements (sensing). Physical laws and objects constrain the
human body’s movements in the environment. However, cognitive and medical
conditions constrain the dynamics of decision-making.
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ki ki+1 ki+2

1. x̂ki+1

2. yki+1

(a) Prediction and update (innovation) step

ki−2 ki−1 ki

ki+1 ki+2 ki+3

Inference

(b) Many to one-mapping

ki−2 ki−1 ki

ki+1 ki+2 ki+3

Inference

(c) Many to many mapping

Representing particle

Uncertainty measure

Inference

(d) Past blue set to the future red set

Figure 2.6.: Types to predict the future entities

of a human (label h) with label ht and extrapolate the trajectory (compare
figure 2.6b and figure 2.6c). In the many to one mapping from figure 2.6b,
we consider information (states or measurements) from a collection of
historical time steps to predict one single state in the future. In the many-
to-many mapping, we predict multiple future states. In interaction-based
approaches, it would consider measurements for m different pedestrians
Y [1,m]

r→i := {Yht
r→i}m

t=1 and predict their movements. There are also differences
in the type of inference (classical machine learning, deep learning, causal
inference). The set-based prediction in figure 2.6d stands for not predicting
a single particle but rather a whole set (reachability analyses). The set might
be convex- or non-convex.

List of selected relevant work

[Ziebart, 2010] incorporates causal inference techniques in movement predic-
tion. Instead of describing the measurements in an euclidean space, the ap-
proach in [Govea, 2010] uses adaptive or static [Ikeda et al., 2013, Mohamed
et al., 2020] graphs. [Govea, 2010] uses incremental learning to predict the
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movements with Hidden Markov Models. From the driver’s perspective, im-
ages from onboard cameras on vehicles are processed in [Keller and Gavrila,
2013] to predict pedestrians’ future movements. [Ziebart, 2010, Kitani et al.,
2012, Fahad et al., 2018, Zhang et al., 2018] use an inverse reinforcement
learning approach by learning from observations and estimating a reward
function. [Karasev et al., 2016] models a pedestrian with rational behavior
and a Markov process with a stochastic policy to reach a hidden target.
The authors in [De Nicolao et al., 2007b] describe how to generate pedes-
trians’ synthetic trajectories with a stochastic process. The authors in [Ellis
et al., 2009] use Gaussian processes to compute vector fields and Monte-
Carlo simulation to predict the particle movements. [Mohamed et al., 2020]
uses convolutional neural networks (CNNs). [Alahi et al., 2016, Crivellari
and Beinat, 2020, Manh and Alaghband, 2018, Xue et al., 2018, Hug et al.,
2018] use Long short-term memory neural networks (LSTMs) to predict
movements from datasets. The methods in [Xue et al., 2018, Manh and
Alaghband, 2018, Xue et al., 2018] offer a complex hierarchical structure
(person, social, scene) of several LSTMs to predict the movements. [Alahi
et al., 2016] uses a set of interconnected LSTMs for different pedestrians,
whereas [Xue et al., 2018] uses another convolutional neural network (CNN)
for feature detection on the scene scale. In [Hug et al., 2018] uses a particle-
based approach. [Hug et al., 2018, Ziebart, 2010, Kitani et al., 2012] are using
beneficial multi-modal movement predictions (several predictions for one
subject). The approach [Crivellari and Beinat, 2020] uses the movement in
a large-scale environment (kilometers). Figure 2.1 shows a comparison of
different movement predictions. A common approach is to use multimodal
movement prediction algorithms because the movement prediction of the
pedestrian is not certain in advance. This motivates us to generalize mul-
timodal approaches to set-based approaches. It compares the movement
prediction algorithms in different categories. Is a static topological space or
euclidean space used instead? Does it use a deep learning approach? Causal
inference is trying to decode the causal structure in data. Another example
to represent movements is by a single euclidean system and a stochastic
process, compare figure 3.25a, which shows trajectories from a stochastic
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process [De Nicolao et al., 2007b]:

x(t + TS) = x(t) + TS · vx(t) (2.31)
vx(t + TS) = vx(t) + TS ·ωx(t) (2.32)

ωx(·) ∼WGN(0, σ2
x) (2.33)

y(t + TS) = y(t) + TS · vy(t) (2.34)
vy(t + TS) = vy(t) + TS ·ωy(t) (2.35)

ωy(·) ∼WGN(0, σ2
y (t)) (2.36)

with WGN for White Gaussian noise and initial state:
[

x(0)
vx(0)

]
∼ N

([
mx
mvx

]
,
[

0 0
0 σ2

vx

])
(2.37)

[
y(0)
vy(0)

]
∼ N

([
my
0

]
,
[

0 0
0 0

])
(2.38)
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Table 2.1.: Comparison of movement prediction

Paper

D
eep

Learning

C
ausalInference

(M
onte-C

arlo)
Sam

pling

M
ultim

odalstate
prediction

Propagation
of

sets

M
ethod

Keller. [Keller and
Gavrila, 2013]

✗ ✗ ✗ ✗ ✗ Gaussian pro-
cess/Kalman filter

Karasev. [Karasev et al.,
2016]

✗ ✗ ✗ ✓ ✗ Markov deci-
sion process/Rao-
Blackwellized filter

Nicolao. [De Nicolao
et al., 2007b]

✗ ✗ ✓ ✗ ✗ Stochastic dynamic
model

Moh. [Mohamed et al.,
2020]

✓ ✗ ✗ ✗ ✗ Convolutional neural
network

Alahi. [Alahi et al.,
2016]

✓ ✗ ✗ ✗ ✗ LSTM

Huynh. [Manh and
Alaghband, 2018]

✓ ✗ ✗ ✗ ✗ LSTM

Xue. [Xue et al., 2018] ✓ ✗ ✗ ✗ ✗ LSTM
Hug. [Hug et al., 2018] ✓ ✗ ✗ ✗ ✗ LSTM
Flohr. [Flohr et al., 2015] ✗ ✗ ✓ ✗ ✗ Probabilistic framework

head localization and
orientation

Bonnin. [Bonnin et al.,
2014]

✗ ✗ ✗ ✗ ✗ Heuristics

Schulz. [Schulz and
Stiefelhagen, 2015]

✗ ✗ ✗ ✗ ✗ Conditional random
fields

Neogi. [Neogi et al.,
2017]

✗ ✗ ✗ ✗ ✗ Conditional random
fields

Kooij. [Kooij et al., 2014] ✗ ✗ ✗ ✓ ✗ Switching dynamic sys-
tems
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Gold. [Goldhammer
et al., 2013]

✗ ✗ ✗ ✗ ✗ Piecewise linear model
and a sigmoid model

Voelz. [Völz et al., 2016] ✗ ✗ ✗ ✗ ✗ Linear Quantile Regres-
sion (LQR) and the
Quantile Regression
Forests

Rehder. [Rehder and
Kloeden, 2015]

✓ ✗ ✗ ✗ ✗ RNN

Rehder. [Rehder et al.,
2018]

✓ ✗ ✗ ✗ ✗ RNN

Vasquez. [Vasquez,
2016]

✗ ✗ ✓ ✓ ✓ Fast Marching Method

Vasishta. [Vasishta et al.,
2017]

✗ ✗ ✗ ✗ ✗ Multiple potential
fields

Wu. [Wu et al., 2018] ✗ ✗ ✗ ✓ ✗ Markov-Chain on Grids
Liu. [Liu et al., 2017] ✗ ✗ ✓ ✓ ✓ Reachability Analysis
Hartmann. [Hartmann
et al., 2018b]

✗ ✗ ✓ ✓ ✓ Data-based-
reachability analysis

Ellis. [Ellis et al., 2009] ✗ ✗ ✓ ✓ ✗ Gaussian Pro-
cess/Monte Carlo
S.

Vasquez. [Vasquez,
2010a]

✗ ✗ ✗ ✗ ✗ Incremental Topolog-
ical Hidden Markov
Models

Ziebarth. [Ziebart,
2010]

✗ ✓ ✗ ✓ ✗ Incremental Topolog-
ical Hidden Markov
Models

Kitani. [Kitani et al.,
2012]

✗ ✓ ✗ ✓ ✗ Incremental Topolog-
ical Hidden Markov
Models

The statistical movement prediction assumes that there exist statistical
patterns in the data. The prediction model has to learn it. An adequate
dataset is necessary to perform predictions based on historical data. There
exist different datasets for vehicles [Zhan et al., 2019a, Krajewski et al.,
2018, Huang et al., 2018] and for pedestrians [Robicquet et al., 2016b]. [Bock
et al., 2019, Zhan et al., 2019b] used drones to capture the traffic flow from
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the bird-view perspective. The papers in [Rasouli et al., 2017, Geiger et al.,
2013,Huang et al., 2019] present traffic datasets from the vehicle perspective.
This thesis uses the aerial drone dataset [Robicquet et al., 2016a] to observe
pedestrians. The authors in [Pellegrini et al., 2009] published another dataset
of pedestrian movements. Figure 2.7, 2.8 and 2.9 shows own contributions
for cooperative motion planning and adaptive reachability analysis from
[Hartmann and Watzenig, 2019a,Schratter et al., 2019]. Further contributions
in publications and visualizations are in [Hartmann et al., 2018b, Hartmann
and Watzenig, 2019b]. Past approaches used reachability analysis to only
make worst-case scenarios, predictions only on vehicles (which are easier
to predict than pedestrians), or based on traffic rules [Althoff, 2010, Liu
et al., 2017]. We proposed machine learning techniques to make adaptive
reachable sets based on the observations of a current situation. The deficit
of the approaches is that there is a risk dilemma that false predictions
could lead to fatal consequences. On the other side, very conservative
movement predictions would lead to inefficient motion planning because
the autonomous would have to halt every time. Figure 2.7 shows optimal

Figure 2.7.: Motion planning with Reachability Analysis [Hartmann and Watzenig, 2019a]

motion planning with mixed-integer linear programming for the vehicle
driving in the positive x-direction. The colorful rectangles (blue) represent
different timesteps. Model A is used to find reachable sets for the pedestrian
(colorful polygons), with acceleration- and velocity-constrained models
for the pedestrian’s reachable sets. These assumptions lead to reachable
sets, which intersect with the street (compare red-filled polygon on the
street). Figure 2.8 shows optimal motion planning with mixed-integer linear
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programming [Hartmann and Watzenig, 2019a] and adaptive reachable sets
for the pedestrian. Figure 2.9 shows other collision avoidance models also
with adaptive reachability analysis.

Figure 2.8.: Motion planning with Belief Sets [Hartmann and Watzenig, 2019a]

2.2.2. Reinforcement Learning

Reinforcement Learning is an approach where an agent interacts with the
environment and gets feedback by measurements. The agent learns to adapt
to experience and learn to make (near-) optimal or adequate decisions (op-
timizing a cumulative reward). An agent is also making decisions in an
uncertain environment. [Kochenderfer, 2015,Jurafsky and Martin, 2020] gives
a broad introduction to the concepts of decision making under uncertainty.
Figure 2.10 shows the composition of Partially Observable Markov Deci-
sion Process (POMDP) from a first-order Markov-chain, Hidden Markov
Model (HMM), and a Markov Decision Process (MDP). Figure 2.10a shows
a Markov-chain with hidden states. For the first order Markov-chain (figure
2.10a) the Markov property is fullfilled for all i ∈ N, kr < ki, kr, ki ∈ T:

P(xki | xki−1
, xki−2

, . . . , xkr︸ ︷︷ ︸
Kr→i−1

) = P(xki |xki−1
) (2.39)

With Markov-chains, it is possible to model cyclic processes dependent
on time ki. The First-order Markov-chain means that the Markov property
holds for all states. xki is causally affecting only xki+1

for all ki ∈ T. HMMs
(figure 2.10b) are models where the states xki are hidden (grey node) and
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Figure 2.9.: Collision avoidance with belief sets [Schratter et al., 2019]

only observations yki and belief states bki (which should be the estimated
state x̂ki) are available. The output independence lead to fact that only the
current state is affecting the current observation for kr < ki < k j:

P(yki | xkr , . . . , xki , . . . , xkj︸ ︷︷ ︸
Kr→j

, ykr , . . . , yki , . . . , ykj︸ ︷︷ ︸
Yr→j

) = P(yki |xki) (2.40)

The same for the belief states bki and kr < ki < k j:

P(bki |Kr→j,Yr→j, bkr , . . . , bki , . . . , bkj︸ ︷︷ ︸
Br→j

) = P(bki |yki) (2.41)

HMMs are good to capture and predict temporal sequences. We could
compute the measurement sequence:

P(Yr→j|Kr→j) =
j

∏
q=r

P(ykq |xkq) (2.42)

MDPs are models where the agent is trying to maximize the expected
reward over time rki by choosing an action at each timestep aki where all
the states are known (figure 2.10c). POMDP (figure 2.10d)is an extension to
MDPs for computing optimal actions in presence of hidden and unobserved
states. There are numerous variants of these models and combinations with
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Deep Learning Models. Deep Learning could be used in Reinforcement
Learning for the learning part, for example, in pattern recognition, e.g.,
recognizing objects on cameras or approximating some functions. In Inverse
Reinforcement Learning, an algorithm learns rewards by examples. These
variants are used for movement prediction in [Kitani et al., 2012, Ziebart
et al., 2009, Ziebart, 2010]. There exist different variants of reinforcement
models, but very common is that the expected reward function is maximized
by an agent in a sequential problem solved by dynamic programming. For
a finite horizon problem the expected rewards (or return) is:

n−1

∑
k=0

γkrk, 0 ≤ γ ≤ 1 (2.43)

There exist offline and online methods depending on when the optimization
problem is solved. The transition function T(sk+1|sk, ak) is describing the
state dynamics based on the actions. Figure 2.11a shows the initial reward
and the other pictures of figure 2.11 show a implementation of value itera-
tion. During the execution of the value iteration, the algorithm is learning
the value function V(s), which describes the expected utility for being in a
state. An optimal policy π∗ is a policy that maximizes the expected utility:

π∗(s) = arg max
π

Vπ(s) (2.44)

One could solve the problem with classical dynamic programming. In
reality, there exists often uncertainty to the dynamics and rewards. The
agent learns the unknown transition- and reward function with experience
(reinforcement learning).

a∗ = arg max
ak∈A

E

NT

∑
k=1

P(rk+1|sk, ak) (2.45)

Therefore the Q-function Q(s, a) is describing the expected value for the
agent with executing an action a. The formal definition of a Markov Decision
Process (MDP) is:

Definition 2.2.1. A MDP is a tuple of
M ≡ (S ,A, P(sk+1|sk, ak), P(rk+1|sk, ak), γ, π)
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• S is a set of possible states
• A is set of possible actions
• P(sk+1|sk, ak) : S ×A → S probabilistic transition function
• P(rk+1|sk, ak) : S ×A → R probabilistic reward function, shorthand

for R(sk, ak)
• γ ∈ [0, 1]: discount factor
• π: policy shorthand for P(ak|sk)

The utility function Uπ
k (sk) : S → R can be computed for the policy

evaluation [Braziunas, 2003]:

Uπ
k (sk) = R(sk, ak) + γ ∑

sk,sk+1∈S
P(sk+1|sk, π)Uπ(sk+1) (2.46)

With the new utility function the policy can be improved [Braziunas, 2003],
[Kochenderfer, 2015]:

Qk+1 = R(sk, ak) + γ ∑
sk+1∈S

P(sk+1|sk, ak)U
πk(sk+1) (2.47)

πk+1(sk) = arg max
ak∈A

Qk+1(sk, ak) ∀ sk ∈ S (2.48)

The policy improvement and utility function computation can be computed
sequentially. Another approach is to compute the next action with the
maximum expected utility principle ( [Kochenderfer, 2015]):

a∗k = arg max
ak∈A

E ∑
sk+1∈S

P(sk+1|ak, ok)U(sk+1) (2.49)

One can also compute the most probable policy on state sk with:

π∗(sk) = arg max
π∈Π

(R(sk, π(sk)) + γ · ∑
s′∈S

P(sk+1|sk, π(sk)) ·Uπ
k−1(s

′))

(2.50)

A classical POMDP with Markov-property is defined as:

Definition 2.2.2. A POMDP is a tuple of
P ≡ (S ,A,B, Ω, P(sk+1|ak, bk), P(rk+1|sk, ak), P(bk|ok), γ)
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• S = {s1, . . . , sNS} is set of states
• A = {a1, . . . , aNA} is set of actions
• B = {b1, . . . , bNB} is set of belief-states
• Ω = {o1, . . . , oNΩ} is a set of observations
• P(sk+1|ak, bk) : S ×A → S transition function
• P(rk+1|sk, ak) : S ×A → R reward function
• P(bk|ok) : S ×O → R conditional probabilities from observation to

belief state
• γ ∈ [0, 1] discount factor

2.2.3. Causal Inference

In experiments, humans can learn from data to model the experiment
and predict the outcome of future events. We could model the experiment
with concepts from probability theory. An experiment is formed by a tuple
(Ω,F , P) probability space could model the sample space Ω, the event space
F and the probability function P. In an experiment with a fair dice and
six numbers, someone could ask the probability of getting even numbers
(|2, 4, 6| = 3). A frequentist counts the total amount of events in comparison
to the total amount of samples (P("even number") = 3/6). There exist
experiments where it is not always possible to get more data from an
experiment in practice. It is impossible to generate more data, and one
could formulate a hypothesis of the experiment with a Bayesian viewpoint.
From the Bayesian viewpoint, we would formulate an initial/ prior belief of
the outcome of an experiment. With the Bayes rule, one could compute the
posterior belief:

P(B|A) =
P(A|B)P(A)

P(A, B)
(2.51)

We can visualize the relationship between A and B by a simple graph. The
Bayes rule could be used in many applications. In sequential experiments
with Markov property, a Bayesian filter (Kalman- and Particle filter) uses new
evidence in measurements/observations, leading to new state predictions.
In causal inference settings, the probabilities might be changed by external
interventions. This section gives an overview of some causal-inference
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Figure 2.10.: First order Markov-chain, Hidden Markov Model (HMM), Markov Decision
Process (MDP), Partially observable Markov decision process (POMDP)
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(a) Initial reward map (b) Selected iteration (c) Selected iteration (d) Result

Figure 2.11.: The pictures show the initial reward map and value iteration on a classical
regular grid in a simple MATLAB® simulation.

strategies to model the interaction between the vehicle and pedestrian. The
literature in [Pearl, 2003, Pearl et al., 2009, Pearl, 2009, Imbens and Rubin,
2015, Pearl et al., 2016, Peters et al., 2017, Pearl and Mackenzie, 2018] gives
an excellent introduction to the topic of causal inference. In causal inference,
scientists develop models which could find causal relationships between
some physical mechanisms (structural learning). The idea is to get the
causal relationship between data sources. The relationship between the
cause and an effect between some data entities offers more insight into
a problem than correlation. It could also help to answer why an event is
happening. Causal inference is handling settings with interventions and
counterfactuals and extending machine learning with classical probability
theory. Prerequisites to understanding causal inference models are Bayesian
networks and probability theory. Structural causal models are simple models
for describing causal relationships [Peters et al., 2017]:

Definition 2.2.3. A structural causal model C with the variables: X = {C, E}
with observational graph C → E consists of two assignments,

C := Nc (2.52)
E := f (C, Ne) (2.53)

where Ne is independent from Nc with the shorthand Ne ⊥⊥ Nc.

Structural causal models can change their structure due to an intervention
and the resulting do-Operator. It is also possible to compute counterfactuals
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c ePC
X

c 3P
C;do(e:=3)
X

(a) Observational and interventional
graph

PC|X=x;do(Y:=2)
z

1. initial SCM C
2. observed data X = x

3. intervention do(Y := 2)
4. variable z of interest

(b) Causal description

Figure 2.12.: Causal graphs and description of structual causal models [Peters et al., 2017]

after an intervention. We distinguish between observational, conditional,
interventional, and counterfactual distributions. The causal graph and coun-
terfactuals are essential features describing the causal model. Figure 2.12a
visualizes the causal relationship between a cause c and the effect e. The
edge disappears when an intervention influences the effect e with the do-
Operator. When the do-operator affects the cause c, the edge between c
and e is further existent, and the causal relationship between c and e. The
following example is adapted from [Peters et al., 2017] Figure 2.12b shows
the declaration of the probability from a causal model C conditioned on
the observed data x for X with an intervention on Y set to 2. Variable
of interest is z. Figure 2.13 shows an example from [Neal, 2020] from a
population described as a circle and mathematical as a set, where there
exist two subpopulation. The set is describing an experiment with treatment
T = a and T = b (e.g. taking the medicine T = a or not taking it T = b). It
also shows how the conditioning and the intervention differ from each other.
In conditioning, one looks at the dataset from the experiment. It depends on
how much of each population exists. In intervention, the whole population
is changed by external interventions. The dependence on time might also
differ from cyclic and non-cyclic models. In cyclic models, time dependence
is important. Figure 2.14 shows an example where two interventions before
ki+2 and k j−1 happen and changing the Bayesian network representing the
causal relationships.

44



2.3. Cooperative interacting automobiles

Population Subpopulation Conditioning Intervening

T = a T = b T = a

T = b do(T = b)

do(T = a)

Figure 2.13.: The difference between conditioning and intervening (Source: [Neal, 2020])

ki ki+1 ki+2 . . . kj−1 kj

� �

Figure 2.14.: Intervention (red lightning) on cyclic physical mechanisms

2.3. Cooperative interacting automobiles in urban
environments in the presence of pedestrians

The work of [Bengler et al., 2014] gives a broad overview of the development
of vehicles. The vehicle development began by trying to stabilize the vehicle
for exemplary performance in driving performance. Using external per-
ception sensors (Radar, Lidar, Cameras) made it possible to increase safety,
comfort, and efficiency. This section gives an overview of the interaction
and cooperation between an autonomous vehicle (AV) and a pedestrian.
This interaction’s physical- and cognitive nature is of interest in building
safe AVs. Current approaches often use open source platforms like the robot
operating system (ROS), and Autoware [Kato et al., 2018, Koubâa et al.,
2017]. Figure 2.15 shows the processing steps for cooperative interacting
vehicles. With prior knowledge provided by a cloud service or a database,
historical movement data and indirect environmental influences can result
in the human prediction algorithm. The blue steps in figure 2.15 are infor-
mation processing tasks to get information about the pedestrian and the
environment (exterior-perspective). The green steps represent information
processing tasks incorporating the vehicle’s dynamic system (interior per-
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Figure 2.15.: Flow chart of the processing steps of a cooperative interacting vehicle. Red:
Cloud services. Blue: Information processing. Green: Control & motion plan-
ning [Hartmann et al., 2018b]

spective). [Eilbrecht et al., 2017] presents an example of a cooperative control
approach with pedestrian information and movement prediction from a re-
search intersection. An accurate pedestrian perception significantly impacts
movement prediction, risk-taking, motion planning, and vehicle control.
Pedestrian recognition is an essential prerequisite for safe path planning
in urban environments. Also, the availability of data is of interest. Is data
only available from the onboard vehicle sensors (dynamic), or is (historical-)
data available from the infrastructure and transmitted via internet commu-
nication (e.g., LTE, 5G). Another safety aspect is that autonomous vehicles
can drive safely and independently without any environmental sensors
from the infrastructure. However, on the other hand, additional information
from environmental sensors might affect the risk policy. [Geronimo et al.,
2009] is a survey of pedestrian detection for advanced driver assistance
systems. [Janai et al., 2017] gives a general survey paper about computer
vision for autonomous vehicles. A state-of-the-art calibration procedure can
be found in [Zhang, 2000]. [Redmon and Farhadi, 2017] is a good reference
for object classification.
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2.3.1. Motion Planning

The books of [Papageorgiou et al., 2015, Boyd et al., 2004] give a good intro-
duction to optimization. We start with a simple definition of a mathematical
optimization:

Definition 2.3.1. Definition adapted from [Boyd et al., 2004]: A mathematical
optimization has the form:

min f0(x) (2.54)
subject to

fi(x) ≤ bi, i = 1, . . . , m (2.55)

The vector x = [x1, . . . , xn] is the optimization variable of the problem.
f0 : Rn → R is the objective function. fi : Rn → R, i = 1, . . . , m are
inequality functions representing the constraints. The constants b1, . . . , bm
representing the limits or bounds. A special class for optimization problems
linear programs:

min cTx (2.56)
subject to

aT
i x ≤ bi, i = 1, . . . , m (2.57)

The vectors c, a1 . . . , am ∈ Rn and scalars b1, . . . , bm ∈ R are the parameters
of the linear program. The problem with robots or autonomous vehicles
is that they are receiving information from outside (perception), and they
have to plan future movements (motion planning) before acting (control).
Suppose the perception unit has an object list of obstacles. In that case, the
vehicle can try to plan a trajectory to avoid collisions. The definition for
motion planning:

Definition 2.3.2. Motion planning is the approach to finding suitable fu-
ture reference trajectories for a dynamic system under different constraints
depending on the environment perception and internal processes and con-
straints. The motion planning algorithm must fulfill some requirements,
e.g., following the trajectory optimally. A typical technical realization is
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to optimize a cost function with constraints on the system dynamics, the
control input, and other internal (initial state) and environmental constraints
(collision avoidance):

Jmin = min
u(t)∈U

∫ T

t=0
J(x(t), u(t), θ) dt, (2.58)

ẋ(t) = f (x(t), u(t), θ), (2.59)
x(t = 0) ∈ X (t = 0), (2.60)

x(t) ∈ X s(t) ⊂ X ∀ t ∈ [0, T], (2.61)
x(t) /∈ X c(t) ⊂ X ∀ t ∈ [0, T], (2.62)

u(t) ∈ U ∀ t ∈ ]0, T] (2.63)

For the discrete case:

Jmin = min
uki+q

∈U

nT

∑
q=0

J(xki+q , uki+q θ) (2.64)

xki+1
= f (xkiuki , θ) (2.65)

xki ∈ Xki (2.66)

xkq ∈ X s
kq

(2.67)

xkq /∈ X c
kq

(2.68)

ukq ∈ U (2.69)

∀ k ∈ T (2.70)

Formula 2.58 shows an optimization problem with cost-function J for the
vehicle or robot for the time-horizon [0, T] with the domain dependent from
state x(t), control-input u(t) and parameter vector θ. The other formulas
Formula 2.59-2.63 are constraints for the optimization problem. Formula
2.59 is describing that the vehicle constrained under nonlinear dynamics
(valid also for linear dynamics ẋ(t) = Ax(t) + Bu(t)). Formula 2.60 con-
straints the initial state. Formula 2.61 describes that the state is only allowed
in X s for the whole time horizon and not in the unsafe time-dependent
collision states Formula 2.62. Both time dependent sets X s(t),X c(t) ⊂ X
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are subset of the fixed state space (only for the time horizon). Formula
2.63 is only allowing a fixed control input set. [LaValle, 2006, Bertsekas
et al., 2000, Thrun, 2002, Kirk, 2004, Athans and Falb, 2013, Kouvaritakis
and Cannon, 2016] gives an overview of topics about motion planning
techniques, optimal control, and model predictive control (optimal control
with prediction models). The robotics community introduced many algo-
rithms for motion planning. These algorithms are not always adequate for
vehicles because of the nonlinear dynamics of the vehicle [Rajamani, 2012]
(e.g., holonomic vs. non-holonomic systems). Sampling-based approaches
are well known for motion planning [Lavalle, 1998, Karaman and Frazzoli,
2011]. Rapidly-exploring random trees are representatives ((kinodynamic)
RRT, RRT*) for sampling-based motion planning and graph searching algo-
rithms [Starek et al., 2014, Dolgov et al., 2008] Optimal control [Bertsekas
et al., 1995, Lewis et al., 2012, Kirk, 2004] is a systematic approach to find fu-
ture reference trajectories (e.g. for quadrocopters [Allen and Pavone, 2016]).
Mixed Integer Linear Programming (MILP) [Schouwenaars, 2006] is well
known to formulate logical expressions, e.g., for collision avoidance and as
constraints for optimization. Motion planning is not the primer focus for fur-
ther development but rather the use of adaptive reachable sets mentioned in
the following sections. Finally, in [De Nicolao et al., 2007b], an approach to
assess the risk of collision with vehicles and pedestrians, based on the scenar-
ios and pedestrian behavior, is discussed. Approaches for motion planning
like Mixed Integer Linear Programming (MILP) approaches from [Schouwe-
naars, 2006] have been used in [Hartmann et al., 2018b, Hartmann et al.,
2018c, Hartmann and Watzenig, 2019b, Hartmann and Watzenig, 2019a].
Dynamic obstacles were described as reachable sets to compute adaptive
driving maneuvers. [Hartmann et al., 2018c] provides extensively parameter
variation to get optimal parameters. In [Hartmann et al., 2017a] optimal con-
trol methods were tested under parameter variation of pedestrian models.
The model-based formulation of state-prediction could defined as following:
We have an known dynamic system ẋ(t) = f(x(t), u(t)). We can observe
realizations of the dynamic system. We get measurements from the dynamic
system. We have an unknown dynamic system where we only see measure-
ment data. We could have some assumptions to solve the state-prediction
problem if there is macroscopic energy causing the state change. 2 We have a

2Described in Newton-mechanics, without any particular kind of dynamics (relativistic
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pedestrian with unknown dynamic system ẋ(t) = f(x(t), u(t)) (body). The
control signals are coming from the human brain with an unknown control
policy π(u(t), c(t)), where c(t) is the cognitive state. This control policy is
influenced by different factors (compare section B.1 and section B.2) and
time-dependent. The complexity of control mechanisms of the human body
is enormous and the control input set U (t). Also the reachable sets of the
dynamic system are changing over time R(t) and are not known. We can
observe realizations of the dynamic system. We get could measure the body
movements. It might be easier to model the physical dynamics like in figure
2.17 than modeling the cognitive dynamics. We could represent an external
force on a topological space in form of a kinematic or dynamic formulation
represented in figure 2.17. This thesis proposes to do basic research on B
and a test environment for measurements analysis is proposed in section 3.7.
Also, the questions how the cognitive dynamics are influenced by external
influences (interaction, causal-chain between environment, brain, and body).
It might be that we could have enough trajectories to estimate movements for
a dataset with good performance. However, there might be the problem of
only considering correlations rather than causality. If the situational aspects
might change also, the behavior could cause different behavior3. We assume
some simplifications (modeling pedestrian behavior by a constant control
input set). If we have a dynamic system ẋ(t) = f(x(t), u(t)) with constant
control-input set U . The reachability analysis R. We observe trajectories
from this system. Can we infer or over-approximate it by {Ykq} by only
considering the observed trajectories? If we have a pedestrian walking with
control input set U (t) changing over time t. The idea is to over-approximate
Û (t) ⊂ U (t) ∀ t ∈ [ti, tj] if we would know the initial state set Xti and the
function of the system f, which is not the case. Therefore we could also
use a data-based approach. We use the idea of figure 3.44a in the form of
a kinematic approach to computing the closure of the velocity set for the
translation of the particle. The multi-vector field computes the closure of the
velocity set for pedestrian movement. In each manifold cell Xq, we define
a random velocity set in the form of a random set. Instead of defining a
velocity vector-like in formula 3.53, we rather formulate a velocity vector

effects).
3Unusual events like the Covid19 pandemic caused lockdowns with effect on the

behavior
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set. We compute the estimation funnel {Ŷ(t)}t∈[ti,tj]
to capture all move-

ments. We define a random topological space on a clothoid compare figure
3.44b. Each cell Xq has its own maximal velocity v

Xq
max and acceleration a

Xq
max

(represented as blue and red bars).

Motion planning with non-linear vehicle dynamics

We have a vehicle with nonlinear system dynamics ẋv(t) = f(xv(t), uv(t))
with vehicle state xv(t) and control input uv(t). The superscript v stands
for the vehicle. We could define a cost function J(x(t), u(t)) and a control
policy π which tries to minimize the cost function. A control policy πr is
better than another control policy πo if the cost Jr > Jo. As a constraint we
might consider a safety distance to any obstacle, forbidden areas (sidewalks)
or dynamic obstacles like pedestrians with state xp(t) and set X p(t). We
might have different strategies to incorporate the constraints (multi-cost
optimization and Pareto optimal strategies, hard, soft-constraints). We could
assume the vehicle with state xv(t) = [sv

x(t), sv
y(t), vv

x(t), vv
y(t)]T and position

pv(t) = [sv
x(t), sv

y(t)]T and velocity vv(t) = [vv
x(t), vv

y(t)]T with a linear
dynamic system (like the point mass model in [Althoff and Wuersching,
2020]):

ẋv(t) =




0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0




︸ ︷︷ ︸
A

xv(t) +




0 0
0 0
1 0
0 1




︸ ︷︷ ︸
B

uv(t) (2.71)

Instead of using a linear model, we can also use a kinematic single-track
model [Althoff and Wuersching, 2020, Althoff et al., 2017] with ẋv(t) =
f(xv(t), uv(t)). The following formulas defining the vehicle dynamics are
copied from [Althoff and Wuersching, 2020] and programmed with Python
in PyVista©. Figure 2.16 shows the state of the vehicle:

xv(t) = [sx(t), sy(t), δ(t), v(t), Ψ(t)] (2.72)

The vehicle state (blue variables) with the position of the vehicle pv(t) =
[sx(t), sy(t)]T, the steering angle δ(t), the vehicle velocity v(t) and the vehicle
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heading angle Ψ(t). The control input u = [vδ(t), along(t)]T in this model
consists of steering velocity vδ(t) and vehicle acceleration along(t)]T. The
parameters of the vehicle θ = [lwb, l, w], with the wheelbase lwb, the vehicle
width w and length l. In figure 2.16 we use a slightly different approach with
a rectangle Rv (yellow on the right bottom picture in figure 2.16), defined
with lb and lwb. Afterwards with the Minkowski sum we could define the
light yellow area with a circle C with radius rm R

v ⊕ C which could be
used later. The height of the vehicle is lh.

δ̇(t) = vδ(t) (2.73)

Ψ̇(t) =
v(t)
lwb

tan (δ(t)) (2.74)

v̇ = along(t) (2.75)

ṡx(t) = −v cos(Ψ(t)) (2.76)
ṡy(t) = v sin(Ψ(t)) (2.77)

The states

x1(t) = sx(t), x2(t) = sy(t), x3(t) = δ(t), x4(t) = v(t), x5(t) = Ψ(t)
(2.78)

u1(t) = vδ(t), u2(t) = along(t)
(2.79)

and the state space model

ẋ1(t) = x4(t) cos(x5(t)) (2.80)
ẋ2(t) = −x4(t) sin(x5(t)) (2.81)
ẋ3(t) = fsteer(x3(t), u1(t)) (2.82)

ẋ4(t) = facc(x4(t), u2(t)) (2.83)

ẋ5(t) =
x4(t)
lwb

tan(x3(t)) (2.84)

(2.85)
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2.3. Cooperative interacting automobiles

We incorporate the friction circle (Kamm’s circle) limiting absolute accelera-
tion:

√
a2

long + (vΨ̇)2 ≤ amax (alat = vΨ̇) (2.86)

We consider the friction circle by limiting the control input variable u2:

u2 ≤
√

a2
max + (x4 · ẋ5)2 (2.87)

The parameters for the vehicle are chose for the vehicle length l = 4.298 [m],
vehicle width w = 1.674 [m] and wheelbase lwb = 2.391 [m]. We have
steering and acceleration constraints:

vδ ∈ [vδ, vδ] (2.88)

δ ∈ [δ, δ] (2.89)
v ∈ [v, v] (2.90)

With the limited engine power and braking power:

along ∈ [a, a(v)], a(v) =

{
amax

vS
v for v > vS

amax otherwise
(2.91)

For the steering, velocity and acceleration constraints:

vδ = fsteer(δ, vδ,d) =



0 for (δ ≤ δ ∧ vδ,d ≤ 0) ∨ (δ ≥ δ ∧ vδ,d ≥ 0) (C1)
vδ for ¬C1∧ vδ,d ≤ vδ,
vδ for ¬C1∧ vδ,d ≥ vδ,
vδ,d otherwise

(2.92)

For the longitudinal acceleration along we get:

along = facc(v, along,d) =



0 for (v ≤ v ∧ along,d ≤ 0) ∨ (v ≥ v ∧ along,d ≥ 0) (C2)
a for ¬C2∧ along,d ≤ a,
a(v) for ¬C2∧ along,d ≥ a(v),
along,d otherwise

(2.93)
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xv(t) = [sx(t), sy(t), δ(t), v(t),Ψ(t)]

Figure 2.16.: Vehicle set computation with nonlinear dynamics
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2.3. Cooperative interacting automobiles

For the motion planning we could use the classical formulation with opti-
mization of a cost function

J∗ = min
u(t)∈U

∫

t∈[ti,tj],x(t)∈X
J(x(t), u(t)) (2.94)

There could also be some constraints considering collision avoidance. We
would like to avoid the prediction sets Ŷ(t) or over-approximations

⌈
Y
⌉
.

For the constraints, we could get the set for the vehicle X v(t) of the vehicle.
We define the yellow rectangle in left bottom picture of figure 2.16. For the
black line between the tires Lv(t), we can define it like this:

L v
(t) =

⋃

li∈[0,lwb]

(sx(t) + cos(Ψ) · li, sy(t) + sin(Ψ) · li) (2.95)

The visualization of figure 2.18 is implemented in Python© with the vehicle
dynamics and parameters from [Althoff and Wuersching, 2020]. Only the
vehicle parameters and some parts from the formulation of system dynamics
are taken from table C.2 (source: [Althoff and Wuersching, 2020, Rajamani,
2012]). For the inner yellow area of the vehicle we have R v

(t) (compare
figure 2.16) we can simply rotate Ψ by 90◦ degrees and compute the corner
points (compare figure 2.18). The area of the circle is C = {(px, py)|p2

x +

p2
y ≤ rm}. We can compute the area of the vehicle X v(t):

X v
(t) = R v

(t)⊕ C (2.96)

For the case that we choose rm as time-dependent, we could X v
(t) =

R v
(t)⊕ C (t). In figure 2.18 we compute the convex hull of to compute

X v
(t) = CH( C 1(t) . . . C 4(t)).

2.3.2. Consequences and technical limitations in the
presence to pedestrians

Guaranteed safety for all road users is one of the biggest challenges for
autonomous vehicles. The consequences of errors could be fatal. For exam-
ple, human drivers take a risk and make assumptions about the behavior

55



2. State of the art

(a) Pedestrian simulation: Translation of the pedestrian
state depending on a static vector-field (black trajec-
tory with one single decision and blue trajectory with
multiple decisions depending on the manifold cell)

(b) Pedestrian simulation: Acceleration in topological
spaces

Figure 2.17.: Pedestrian moving on a vectorfield

Figure 2.18.: Vehicle simulation with kinematic single-track model
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2.3. Cooperative interacting automobiles

of other road users instead of considering worst-case scenarios in each
situation. If an autonomous vehicle predicts a pedestrian’s movement, there
is tremendous uncertainty in predicting the exact future position. A vehi-
cle cannot measure and detect all relevant information. Predicting future
movements with absolute certainty is problematic because the cognitive
dynamics are often not observable (intention, emotion, and other dependen-
cies). However, it is unknown and most likely impossible how the prediction
model can be generalized to allow certainty in every movement prediction.
The complexity also comes from different situations and humans (from all
cultural and emotional backgrounds). Current risk indicators (threshold
based on probabilistic models) are not enough. This thesis discusses ideas
to use concepts from reachability analysis to combine them with machine
learning. The aim is to adapt set-based methods with current information
from each situation and compute adaptive funnels for motion planning.
The interaction between the vehicle and pedestrian might influence the
pedestrian’s current policy. Therefore the use of causal inference is further
discussed.
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3. Problem formulation and
developed solutions

Section 3.1 gives an overview of the whole chapter.

3.1. Overview of chapter 3

Section 3.2 and 3.3 presents some parts from the approach from [Hart-
mann and Watzenig, 2019a,Hartmann and Watzenig, 2019b,Hartmann et al.,
2018c, Schratter et al., 2019] with a standard motion planning algorithm
(section 3.2) adaptive set deformation (section 3.3). Section 3.4 presents the
computation of intelligent funnel prediction. Section 3.3 and section 3.4
discusses how to bring the concepts from multimodal movement prediction
and reachability analysis together to get adaptive set deformations like in
figure 3.4. Section 3.5 and 3.6 focus on theoretical aspects of human loco-
motion. Section 3.5 is presenting mathematical concepts from differential
geometry to model the urban environment as a manifold (compare figure
3.5). Section 3.6 presents methods from causal inference for cooperative in-
teracting automobiles. Causal inference might help to model the interaction
between the vehicle and the pedestrian (compare figure 3.6). Section 3.7
gives a theoretical description for this approach. Following comes a visual
overview of chapter 3 to explain the context of each section intuitively. Fig-
ure 3.1a shows the urban environment from the introduction example. The
colored dots represent a fictive historical dataset, which shows the positions
of pedestrians walking from the bottom sidewalk to the upper sidewalk.
The colors of the dots or areas in the following figures represent timestamps;
compare figure 3.2. The measured positions could not tell us the intention
of the pedestrian. Only under some circumstances might this dataset lead
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3. Developed concepts

to good predictions. The pedestrian’s intention is not observable (e.g., if
he or she wants to go to the supermarket, park, or house). It might also
be the case that the pedestrian has an intention to change the direction
at the crosswalk. Many movement prediction algorithms (e.g. statistical
movement prediction or reachability analysis) represent a funnel-like object
(set of sets like in figure 3.1b). Again the timeline of figure 3.2 is used.
Figure 3.3a shows an example of a multimodal movement prediction with
three scenarios (A, B, C). Suppose the autonomous vehicle has to choose
one of the predictions. In that case, it might be interesting for safety how
trustable is one of these three options. Worst-case reachability analysis con-
siders all possible movements under consideration of physical constraints
(compare figure 3.3b. The problem with this approach is that the vehicle
cannot enter the reachable sets (black lightning). This restriction might be
a problem when the vehicle drives on the street and the pedestrian-only
walks on the sidewalk. The autonomous vehicle might not pass the region
of the pedestrian. The approach in the next sections is to consider machine
learning with reachability analysis to compute adaptive sets. It would be
ideal to have something like in figure 3.4 where a trustable prediction might
help to find probable positions with very high certainty. Figure 3.5 shows
another urban environment which is structured as a topological space. The
semantic meaning for a pedestrian of each building or street might influence
the decisions of a person and the resulting behavior (compare also section
B.1 and B.2 for further details). Another problem is that the perception of
the autonomous vehicle might influence the movements of the pedestrian
(compare figure 3.6). The perception of an oncoming vehicle might trigger
an intention change so that he or she goes back to the sidewalk, especially
in situations without crosswalks. The prediction does not consider the in-
teraction. The funnel of the prediction does not capture the real movement.
Figure 3.7 illustrates an exemplary outcome of the situation, where the
trajectories have an intersection. However, there is no collision because the
intersection of the trajectories is on different timestamps.
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sidewalk

sidewalk

HouseParkSupermarket

(a) Historical dataset

sidewalk

sidewalk

(b) Prediction of the future movement (funnel)

Figure 3.1.: Movement prediction with pedestrian

kr kj
Time t

Figure 3.2.: Colorized timeline for trajectories and reachable sets
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Pedestrian

Autonomous vehicle

A B
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(a) Multimodal movement prediction

sidewalk

sidewalk

Pedestrian

Autonomous vehicle

�

(b) Worst-case reachability analysis

Figure 3.3.: Multimodal movement prediction and reachability analysis
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Figure 3.4.: Adaptive reachability analysis and intelligent funnel prediction
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Figure 3.5.: Urban environment as topological space
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Figure 3.6.: Interaction between vehicle and pedestrian

sidewalk

sidewalk

Figure 3.7.: Exemplary outcome of the situation without a collision

3.2. Motion planning for the autonomous vehicle

A particular emphasis plays vulnerable road users, but this short section
should dig into the autonomous vehicle and how the vehicle incorporates
the movement predictions. The idea of motion planning is to find refer-
ence trajectories. A significant requirement is that the reference trajectories
do not lead to collisions and are valid for the vehicle dynamics, and are
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3.2. Motion planning

optimal in a certain sense. This section presents ideas from [Hartmann
and Watzenig, 2019a] with Mixed Integer Linear Programming (MILP)
for computing optimal reference trajectories. The represented approach is
relatively simple compared to modern model predictive approaches, in-
corporating non-linearities. New is that it was combined with movement
prediction algorithms for pedestrians and in interconnected coordinate
systems (e.g., manifold), the content of later sections. The origin of the
approach is [Schouwenaars, 2006,Hartmann and Watzenig, 2019a,Hartmann
and Watzenig, 2019b, Hartmann et al., 2018c]. A linear continuous system
approximates the vehicle dynamics. Nonlinear vehicle models can be found
in [Althoff et al., 2017,Rajamani, 2012]. We start with a continuous system:

ẋ(t) = A · x(t) + B · u(t), A ∈ Rn×n, B ∈ Rn×m (3.1)

We choose a simple integrator model with the state vector x(t) and the
positions of a particle p(t) = [px(t), py(t)]T and the velocities v(t) =

[vx(t), vy(t)]T. The control input is simply a force changing the velocity
u(t) = [ux(t), uy(t)]T:

A =




0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0


B =




0 0
0 0
1 0
0 1


 (3.2)

x(t) =




px(t)
py(t)
vx(t)
vy(t)


u(t) =

[
ux(t)
uy(t)

]
(3.3)

For simplicity we assume that the state is directly measurable y(t) =
x(t) and without considering discretization problems we get the following
discrete system:

xki+1
= Φxki + Huki (3.4)

Again we use the timespace T from formula 2.19 and the current time-stamp
ki to the future time-stamp k j with ki, k j ∈ T. We misuse the arrow-symbol
→ in the subscript of the following variables to represent the time-horizon
like ki → k j. Figure 3.8 shows the description for the positions, velocities
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Figure 3.8.: Description of future positions, velocities and control inputs

and control inputs. An optimization problem is formulated to get future
positions in x-direction px,ki→kj and y-direction py,ki→kj :

px,ki→kj =
[

px,kj . . . px,ki

]T
(3.5)

py,ki→kj =
[

py,kj . . . py,ki

]T
(3.6)

For the velocities in x-direction vx,ki→kj and y-direction vy,ki→kj :

vx,ki→kj =
[
vx,kj . . . vx,ki

]T
(3.7)

vy,ki→kj =
[
vy,kj . . . vy,ki

]T
(3.8)

For the control inputs we get:

ux,ki→kj =
[
ux,kj . . . ux,ki

]T
(3.9)

uy,ki→kj =
[
uy,kj . . . uy,ki

]T
(3.10)

We stack the variables together to represent the optimization variable for
the motion planning:

vki→kj :=
[
pT

x,ki→kj
pT

y,ki→kj
vT

x,ki→kj
vT

y,ki→kj
uT

x,ki→kj
uT

y,ki→kj

]T
(3.11)

We could also find other arrangements for the optimization variable vki→kj .
Important is that the optimization variable has the information from all
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Figure 3.9.: Prediction of all vertices [Hartmann et al., 2018b]

state vectors in the future time horizon xki , xki+1
. . . , xkj . Instead of using the

arrow-symbol to represent one single timestamp vkq→kq , we use vkq ∀ q ∈ T.
The same holds for other variables with the arrow symbol. It is not possible
to stack them together in advanced motion planning algorithms. However,
in later sections, we will show how to use multiple connected coordinate
systems instead of one single euclidean system. Target is to minimize the
cost function J(vki→kj):

v∗ki→kj
= arg min

vki→kj

J(vki→kj) (3.12)

subject to
xki ∈ Xki (3.13)

xkj ∈ X
target
kj

(3.14)

(px,kq , py,kq) ̸∈ O, ∀ q ∈ {i, i + 1, . . . , j} (3.15)

(ux,kq , uy,kq) ∈ U , ∀ q ∈ {i + 1, i + 2, . . . , j} (3.16)

xki+1
= Φxki + Huki (3.17)

Figure 3.9 shows an example from [Hartmann et al., 2018b]. The green rect-
angle represents the vehicle position. Four illustrations show four different
timesteps, where the vehicle is moving with optimal control and not enter-
ing the blue set (representing possible positions of the pedestrian). The grey
area representing the street and the red rectangles representing houses with-
out any further importance for the mathematical approach. [Hartmann et al.,
2018b, Hartmann et al., 2018c, Hartmann and Watzenig, 2019a, Hartmann
and Watzenig, 2019b] provide further details on optimization strategies and
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Figure 3.10.: Optimization with and without static obstacle

results. Also how the constraints have been adapted for each scenario is
documented in the documents. Figure 3.10 shows an example with two
cases, with and without formula 3.15. In the case with constant obstacle
O = {x|x >= 2} the x-coordinate at 2 is border for red trajectory in figure
3.10. In both situations all parameters and target variables are the same but
only the obstacle formula 3.15. The optimization procedure is done with
GEKKO [Beal et al., 2018]. The time horizon is [0, 2s] for 101 discretization
points. The target area is

X target
kj

= {(x, y)|1.6 < x < 1.8 & 2.9 < y < 3.1} (3.18)

and the control input set:

U = {(ux, uy)| − 10 < ux < 10 & −10 < uy < 10} (3.19)

and with initial state xk0 =
[
0 0 5 −2

]T
(= xki). The cost function is

defined as J = ∑
j
q=i

1
2 u2

x,kq
+ 1

2 u2
y,kq

. A drawback is that the optimization
procedure does not find a solution, if the selection of the constraints is not
well balanced.
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Model predictive control takes predicted variables into account. In nonlinear
vehicles, we use the knot points for linearization with Jacobi-Approximation.
So we only consider a linear subspace of the nonlinear system. This method
is the approach to performing simulations in the next chapter.

3.3. Adaptive set deformation

In section 3.2 an optimization example was presented for static obsta-
cles. It is necessary to formulate a collision-avoidance approach for the
autonomous vehicle with state xv(t) to avoid also dynamic obstacle sets
xv(t) /∈ O(t) ∀ t ∈ R. It is not trivial to compute adequate obstacle sets. The
obstacle sets of a pedestrian with state xp(t) (discrete case x

p
ki

for time-stamp
ki) depends on the decisions and the future and behavior of the pedestrian.
In this section we discusses approaches to deform sets and in section 3.4
how to use this deformations of sets for movement prediction. After com-
puting the predictions it these funnels can be used for motion planning
Op(t) ⊂ O(t). Section 3.3.1 gives an intuitive motivation for adaptive set
deformations, section 3.3.2 introduces group actions acting on sets and
section 3.3.3 highlights reachability analysis as a special case for adaptive
set deformations.

3.3.1. Motivation for adaptive set deformation

Human body movements could be approximated by a nonlinear dynamic
system xki+1

= f(xki , uki). The problem is that much information is unknown
(the intention in form of a cognitive state and the resulting control inputs
are often hidden, compare section 3.4) so that the common approach is to
predict the movements in a probabilistic manner. If we have p(xkj |xki) a
fictive model1 between the current random variable xki (e.g. current position

1The model p(xkj
|xki

) is only for explanation. Section 2.2.1 discusses movement predic-
tion models. Many models use the historical positions of the person. It can be assumed
that the Markov property does not hold for human locomotion.
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of the pedestrian) and the future variable xkj (e.g. future position of the
pedestrian) we could compute the most probable value x̂kj :

x̂kj = Exkj
∼p(xkj

|xki
)[xkj ] (3.20)

With the variance Var(xkj) we could compute an area around the future
random variable with approaches from uncertainty quantification [Zio and
Pedroni, 2013] or simply by introducing a threshold θ. An example is the
Kalman-Filter, where the mean value and variance of the state are predicted
and updated iteratively: First, the state is predicted, and after getting a
measurement yki , the prediction is updated. The contours of the Gaussian
probability form an ellipse. Figure 3.11a shows an example with a red
trajectory from start s to end e2. Based on an estimated current state x̂ki
it might be possible to predict the future state x̂kj . With error estimation,
one can compute an uncertainty area (like the ellipse in Kalman-filter) to
compute an area X̂kj . Following success criteria could help to evaluate the
performance of the developed algorithms with customized prioritization:

• Prediction performance: X̂kj should capture the real position of the
trajectory (like the intersection of the trajectory and the ellipse). This
critical criterion ensures safety for all road users.

• Volume reduction: Reduction of the area (2D) or volume compared to
reachability analysis. The ratio between the area or volume is predicted
with machine learning (belief sets: the areas or volume where the
pedestrian will be). The areas computed with classical reachability
analysis (plausible sets: all possible physical areas) give us the area
reduction.

• Computational complexity: The computational requirements could
also be a bottleneck criterion for the realization and application in the
vehicles. The computational resources are limited in vehicles.

3.3.2. Group actions and set operations

Instead of using vectors (like x̂ki), we could use sets X̂ki . The idea is to
increase the complexity to incorporate multiple scenarios (e.g. like in reacha-

2For simplicity, the red trajectory does not show the time-labels
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(a) Prediction with machine learning and un-
certainty quantification (b) Reachability analysis with zonotopes

Figure 3.11.: Set prediction and reachability analysis with zonotopes

bility analysis). We deform or move the sets by group actions. A group action
(G, ∗) can transform a set X . First we start with a single operation, but there
are many options available (e.g. multiple operations, hybrid: analytical and
data-based, parallel: common operation for parts of the sets). A left group
action is α : G×X → X and the right group action is α : X ×G→ X . Two
familiar group actions and set-operations are the Minkowski-sum and or-
thogonal group (SO(n) actions for rotations in n-dimensions) and translation.
An example would be iterative application of a constant set operation:

X̂ki+1
= G ∗ X̂ki (3.21)

This is a shorthand for:

G ∗ X̂ki := {G(x̂)|G ∈ OP(. . . ), x̂ ∈ X̂ } (3.22)

This is a mathematically simplified view as G "operates" on each element
of X̂ with G ∈ OP(. . . ), where OP(. . . ) is a not further explained set of
mathematical operations. An example is the Minkowski sum (compare the
definition section A.2). Another example for a constant group action is
the matrix operation with translation (tx, ty > 0) without rotation (θ = 0).
The orange sets from figure 3.11b could be computed by this kind of
mathematical iterative procedure. We could use a set X̂k0 as an initial set.
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Also an iterative model with time dependent set-deformations (e.g. group
actions) is possible:

X̂ki+1
= Gki ∗ X̂ki (3.23)

Gki is a group action operating on the set X̂ki and deforming it at time ki.
We could use familiar group actions (e.g. Minkowski sum or SO(n)). An
example might be a reinforcement learning approach which moves a set
X̂ki with group actions from SO(n) so that it captures a trajectory and a
reward function is maximized to capture the unknown trajectory. Target is
that the real state is in x

p
kj
∈ X̂kj ∀ k j ∈ T (compare formula 2.19). We could

deform this set for the following time-steps ki, ki+1, . . . , k j. Each set or each
operation on deforming a set has some properties3, which might be useful
for consideration:

• Volume or area: We can compute the volume or area of each set
(compare A.2).

• (Non-) convexity: An interested reader can find the definition A.2.2 of
a convex set in the appendix.

• Closure property: A set is defined to be closed, if the group action
produces a member of the set. An example is the matrix multiplication
and a zonotope. The result is again a zonotope. The matrix operates
on the generators and the center of the zonotope.

• Topology of the set
• Action on the whole set or a subset. We want to hold some freedom

and flexibility in deforming sets. That is why we use methods to
deform parts of the sets.

• Set-type: The type of set offers different freedom degrees and also
support function, ellipsoid, polyhedron, zonotope (compare figure
A.4)

• Computational complexity: The amount of data to represent each sets
or the effort for the computation is important for the usage of the
algorithms.

• Mathematical concept: Different mathematical disciplines like (multi-)
linear algebra, differential geometry, probability theory offer a variety
of tools for the deformations.

3Some parts of that field are more related to control engineering (e.g. reachability
analysis) and other parts from machine learning are introduced in this thesis.
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3.3.3. Special case for using group actions: Reachability
Analysis

A special case for adaptive set deformation is reachability analysis from
section 2.1 where the Minkowski-sum is used to compute the reachable sets
of a dynamic system. We want to look if reachability analysis could help
to solve the optimization procedures with formula 2.12. An example with
reachability analysis and zonotopes is visualized in figure 3.11b, where the
approach from [Girard et al., 2006] has been implemented. It is showing the
green discrete reachable sets Rk1 , . . . ,Rk4 and the orange homogeneous sets
Hk1 , . . . ,Hk4 . It is easy to see that the green sets are getting bigger over time
and the orange areas have the same size. The initial zonotope is

ZXk0
=

{
cX =

[
0 0 10 3

]T , . . .

. . . GX =
{

g1 =
[
1 1 0 0

]T , g2 =
[−1 1 0 0

]T }} (3.24)

and for the control input zonotope

ZU =
{

cU =
[
0 0 0 0

]T , . . .

. . . GU =
{

g1 =
[
1 0 0 0

]T , g2 =
[
0 1 0 3

]T }} (3.25)

A variant of formula 2.30 was starting point of the algorithm of [Girard
et al., 2006]. The question is if we could use machine learning (ML) to adapt
the reachability analysis procedure (compare next section 3.4)

R(t,U (t)) = H(t)⊕P(t,U (t))︸ ︷︷ ︸
ML

(3.26)

for only the particular solution or the whole reachable sets

R(t,U (t)) = H(t)⊕P(t,U (t))︸ ︷︷ ︸
ML

(3.27)

The papers in [Hartmann and Watzenig, 2019a, Hartmann and Watzenig,
2019b, Schratter et al., 2019] are examples of reachability analysis enriched
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3. Developed concepts

Figure 3.12.: The both top pictures show the result of reachable sets. The two left pictures
show a stochastic process where the maximal parameters of velocity (green
points) and acceleration (red points) feed the reach set computation. On the
right side we have classical parameters for the maximal parameters.

with machine learning. In these approaches the meta-parameters (e.g. maxi-
mal velocity and acceleration) of reachability analysis are estimated in each
situation (compare section 3.4). The approach in figure 3.12 shows how a
stochastic approach is used to sample the maximal velocity and maximal
acceleration. The resulting cumulative reach set volume could be huge if
the maximal parameters are not well computed. The over-approximation of
the set could minimize the difference between both volumes.

3.3.4. Examples for set-based movement prediction

Section 3.4 gives a motivation for set-based deformation and prediction
algorithms. This subsection should give a short recap based on two real-
world examples. Imagine an elastic ball that is thrown in the air by a catapult
or person, and another person is trying to catch the deformed ball with a
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3.4. Funnel prediction

bag, compare figure 3.13. In physics, one could represent static objects as
particles, which is not valid. The ball has a changing volume (area in the
current 2D-example) due to the deformations so that it can be represented
as changing X (tq), tq ∈ [ti, tj] (for the discrete case {Xkq}

j
q=i). It is unknown

how the deformed ball is thrown (strength and direction), so the ball’s
trajectory, deformation, and shape are uncertain. A person or a robot is
trying to catch the ball. The person or the robot is using a deformable
bag also with time-varying sets {Ykq}

j
q=i, ∀ kq ∈ T. The observed position

sets [tr, ti[ of the ball could help to extrapolate the trajectory to predict the
future sets in [ti, tj]. The bag is catching the ball if X (t) ⊂ Y(t). 4 One

could program a robot to predict the future sets {X̂q}j
q=i and formulate a

model-predictive set-based optimal-control problem.
The second example is considering an autonomous vehicle on a street
network near a bus station in Graz compare figure 3.14. Three layers show
the real positions of the road users (Layer 1), the topology (Layer 2), and the
maximal velocities (Layer 3). If the autonomous vehicle considers the speed
limits of layer 3, this could help consider reachability analysis or set-based
prediction. The acceleration is fixed, ensuring the plausible positions on the
road-topology with a maximal control input set U for the vehicle.

3.4. Funnel prediction with belief sets

This section shows concepts for funnel prediction6, which could lead to risky
motion planning. Therefore we give a short motivation to use intelligent
funnels in section 3.4.1. Section 3.4.2 gives a detailed view on deforming
sets over time, which is an important step on building funnels. Section 3.4.3
shows the incorporation of data-based approaches. Section 3.4.4 gives a
short introduction to adaptive reachability analysis from [Hartmann and

4One could also define it as X ⊆ Y , which is mathematically possible but does not
match real experiments.

6Following sections might useful for a reader to understand the concept of funnel
prediction. Section 2.1 shows the concepts of computing worst-case reachability analysis
and section 3.3 gives the motivation to deform the areas by methods from machine learning.
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Bag
Xk0

Xk1

Xk2

Xk3

Xk4 Xk5

Xk6

Xk7

Xk8

Catapult
{Ykq

}8q=0

Figure 3.13.: Fictive example as an analogy for the set-based movement prediction5 A
catapult is giving an impulse to a very elastic ball. A person or robot is trying
to capture the elastic ball by a bag.

Watzenig, 2019a]. Section 3.4.5 gives an example for a data-based approach
and section 3.4.6 an example for a funnel prediction with real-world data.

3.4.1. Motivation for intelligent funnel prediction

This section aims to reduce the very conservative reachable sets to arrive at
a less conservative prediction result (at the expense of increasing the risk)
and thus give planning more freedom. Classical reachability analysis for
dynamic systems relies on the physics (energy) of the system. [Liu et al.,
2017] presents an application of reachability analysis for pedestrians to
find possible future positions under consideration of the maximal velocity
and acceleration. It also gives an extension to incorporate traffic rules7.
For a deterministic system (vehicle), reachability analysis works quite well
(with knowledge and modeling of the manipulated variables and limits).
Choosing the right parameters is not trivial for pedestrians (unknown intent
and high variability of the influencing factors). This section motivates to
incorporate known historical information about pedestrians to predict the
future unknown movements and find subsets of reachable sets. This section

7If a road user does not obey the rules, and there is an accident, then at least the fault
does not lie entirely with the autonomous system.
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Figure 3.14.: Example of an urban environment in Graz (Austria) for a bus station with an
autonomous vehicle. Layer 1 shows the position of the autonomous vehicle (v).
Exemplary, some pedestrians (p1-p3) and two busses (b1-b2) are visualized as
nodes. The road network is shown in layer 2. The autonomous vehicle drives
from a,b,c,d,e,f to g, and the actual position are between b and c. Around
the nodes d, e, and f are multiple white nodes that give alternative routes if
the busses block the first gateway. The maximum current velocity is 30 km/h
for the vehicle, and it switches to 20 km/h for c to d and 10 km/h for d to f
(compare layer 3).
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proposes the idea to incorporate additional information (compare section
3.3) from the pedestrian and compute funnels (deformed sets over time).
These funnels {X̂kq}

j
q=i should capture the movements of the pedestrian:

x
p
kq
∈ {X̂kq}

j
q=i ∀ kq ∈ T (3.28)

We could incorporate following information for the funnel prediction:

• Historical information. Information directly before the computation
of the funnel. An example [Hartmann and Watzenig, 2019a] gives
the idea to predict the maximal velocity and acceleration before a
specific situation. [Hartmann et al., 2018b] gives the idea to incorporate
historical information based on a cell of a manifold.

• Pedestrian related information: Relevant information influencing the
pedestrian (e.g. human body and personal factors, compare chapter B)
for a better movement- and set prediction.

• Environment: Information from the (urban) environment to incorpo-
rate obstacles and semantic information (compare 3.5 and chapter
B)

Historical information can easily be incorporated (this section) and also
the urban environment (section 3.5). Pedestrian related infromation can
indirectly be incorporated. This section proposes to use machine learning
to compute the funnels {X̂kq}

j
q=i. We could start with homogenous sets

{Hkq}
j
q=i or direct with the reachable sets {Rkq}

j
q=i. Afterwards we could

deform these sets to represent the funnel. Irrelevant state space (which is
outside of the reachable sets) is ignored by using reachable sets8:

X̂kq ⊆ Rkq ∀ kq ∈ T (3.29)

Methods from differential geometry (e.g. group action) and machine learn-
ing are proposed to build or deform the sets. Figure 3.15a shows two
illustrations with the green reachable sets and homogeneous sets (yellow

8One assumption that the reachability analysis is computed adequate and with correct
parameters. In practice a very high success rate should be possible if we assume high
maximal velocities and accelerations for the pedestrian. But on the other hand we will get
reachable sets will get big areas.
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3.4. Funnel prediction

color). Figure 3.15a shows a selection of velocity vectors for different time-
stamps (a selection of states inside the reachability sets leads to the velocity
vectors). Near to the homogeneous sets there are multiple arrows starting
from the same situation. The complexity of the dynamics would increase
if the dynamics are influenced by the decisions of the pedestrian and the
cognition. Figure 3.15b shows the yellow homogeneous sets {Hkq}

j
q=i, the

green reachable sets {Rkq}
j
q=i. The approach from [Girard et al., 2006] was

used to compute the reachable sets with zonotopes. The reachable sets
Rkq := ZRkq

= {cRkq
,GRkq
} and homogenous sets Hkq := ZHkq

= {cHkq
,GHkq
} are

represented by zonotopes. The homogeneous set (yellow) 3.15b are mapped
over time with a matrix multiplication (red transformed sets):

X̂kq = G · ZHkq
(3.30)

The matrix G ∈ Rn×n is multiplied on the zonotope center and the zonotope
generators. We could scale the generators by considering the eigenvalue
problem (G · gkq = λ · gkq). At the beginning of the five cycles in figure 3.15b
the red and yellow sets overlap together. The transparency of the sets lead
to the orange color.

3.4.2. Exemplary view on deforming sets and incorporation
of prediction models

This section should show that there exist different approaches for set-based
movement prediction.9 Figure 3.16 shows examples how sets could be de-
formed and actions operate on these sets. A very common example of a
group action is the SO(3) with translation and rotation and the Minkowski
sum (compare figure 3.16a and section A.2 for definitions). The sets could
also represent by topological structures (e.g., graph theory). Each vertices
could mapped to the next step (compare 3.16b) which lead to higher com-
putational complexity. Different sets (e.g., zonotopes, ellipsoids, support
vectors, polyhedrons) could lower computational complexity. Figure 3.16c

9A LSTM is chosen arbitrarily, and any other approach could be used for extrapolation.
This section focuses on set-based prediction models.
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(a) Multi-vector-field (velocity-vectors) inside the reachable sets

(b) Transformation of the homogeneous sets

Figure 3.15.: Multi-vector-field and deforming homogeneous sets
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(d) Prediction with ellipses

Figure 3.16.: Deforming sets with (group) actions
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Figure 3.17.: First-order (without dashed arrows) or second-order (with dashed arrows)
Markov-Chains with observable states. For this example we use r=i-3 and
j=i+2 as a shorthand. The timesteps from kr to ki define historical timesteps
for prediction to the k j.

and figure 3.16d shows two similar mappings. Very common in machine
learning are Markov-Chains like in figure 3.17, where the state is observable
(white circle). Historical knowledge from [kr, ki−1] can help to predict the
future states by statistical inference. Dependent on the dynamic system, we
have the First-order Markov property (solid lines), Second-order Markov
property (with dashed arrows), or other dynamic principles (e.g., higher-
order Markov properties). A stochastic process adds randomness to the state
evolution so that the states are hidden, and the perturbed measurements in
figure 3.18 are the only available information for the system. In technical
systems, it might be sufficient to use a form of a Bayes filter where a single
measurement in each iteration is sufficient for the next prediction (Kalman-
or particle-filter). We use sets instead of a single particle to capture the
future state of dynamic systems with aleatoric and epistemic uncertainty
(nonreducible and reducible uncertainty by measurements). Figure 3.19

shows observable state sets changing over time.
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Figure 3.18.: Inference with sequential Markov-Chains. Hidden states (grey) and observable
measurements (white)
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Figure 3.19.: Observable state sets
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3.4.3. Data-based approaches

This section compares worst-case reachability analysis, conventional move-
ment prediction and shows also the perspective to funnel prediction. Figure
3.20 shows a red trajectory with "captured" with reachability analysis and a
funnel computed with machine learning. It also highlights the difficulties
in computing adequate sets. We assume now a data-based approach with
historical measurements

Yr,i := {ykr , ykr+1 , . . . , yki−1
, yki} (3.31)

as our knowledge about the system states Kr,i := {xkr , xkr+1 , . . . , xki−1
, xki}

without any system-model. For the timesteps we assume: kr < ki <
k j, r, i, j ∈ N. The task is to predict next expected future measurement.
For the single value prediction we compute the belief state:

bj := x̂j = Exkj
∼P(xkj

|Kr,i)
[f(xkj)] (3.32)

Instead of predicting N future states over a time horizon {xki , xki+1
. . . , xkj}

this thesis give some models to predict future belief sets {Bki ,Bki+1
. . . ,Bkj}

of a person.

Definition 3.4.1. The belief set Bkj is computed by a machine learning model
at discrete time ki. It predicts all belief-states at:

Bkj := X̂kj = {bj|Exkj
∼P(xkj

|Kr,i)
[f(xkj)], kr < ki < k j} (3.33)

If someone tries to model the human locomotion as a dynamic system, at
least three different types of states are necessary to model the dynamic
system - the measurable body state ski and the unknown cognitive state cki
of the brain activity and perception oki (the perception oki is part of section
B.1. It represents the information that a person perceives by sense-organs.
10.

xh
ki

:=
[
cki
ski

]
hidden

observable11
(3.34)

10Section B.1 gives also details on the causal relationship between the body state ski
,

the cognitive state cki
, the perceived information oki

. The perceived information oki
might

be some measurements made by the human. We could describe a state as a measurable
quantity describing the evolution of the system
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(b) Movement prediction of the real trajectory (red) with
the predicted trajectory.

Figure 3.20.: Reachability analysis and machine learning

The body state ski is sometimes observable by sensors (if obstacles do
not hide the body). The cognitive state cki is often unknown12 (chapter B
discusses also measurement technologies which are capable to measure
brain activity. There exist also wearable brain sensors, compare section B.3).
Also, the perception of a person is not observable. Another problem is
the high dimensionality of the vector (curse of dimensionality). Suppose
all voxels of the brain images and body states are captured in a single
vector and substantial simplifications of pedestrian models. To model and
measure the cognitive state is not trivial, and chapter B in the appendix
gives more details on this topic. The hidden state of the intention and
brain state (under the assumption of free will) might lead to an uncertain
prediction, which might be fatal in the case of an autonomous vehicle. We
assume there is a nonreducible (aleatoric-) uncertainty. One assumption
(with good reasons for that) is that it is not possible to predict the future
states xkj with absolute certainty if the intention of the person is unknown.
The person has the ability and possibility to move freely. This thesis aims
to use state set prediction (funnel-prediction) algorithms to use them for

12That is the reason why many movement-prediction algorithms assume a fixed inten-
tion.
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human locomotion. Figure 3.21 shows the general approach with figure 3.22

as a fictive example. The concrete algorithms with an extended evaluation
are presented in the next chapter 4. The actual situation (actually observed
trajectories of the pedestrian) is used to predict the funnels with machine
learning and evaluated when the funnel is capturing the trajectory like in
figure 3.22. Methods to deform sets (e.g., SO(3), Minkowski-sum or vertices
prediction) with different set types (e.g., support function, ellipsoids, or
reachable sets with homogenous sets can be a reference). Figure 3.22 shows
the black dotted trajectory with multiple arrows. The funnels {X̂kq}

j
q=i is

capturing single points of the trajectory.

3.4.4. Adaptive reachability analysis

This section discusses approaches for adaptive reachability analysis (adapted
from [Hartmann and Watzenig, 2019a]) instead of only using set-prediction
approaches (which rely only on historical data). In adaptive reachability
analysis (compare figure 3.23) we use the approach from worst-case reacha-
bility analysis (compare section 2.1) and predict their meta-parameters (e.g.
maximal values for jerk, acceleration, velocity), which changes the form
of the control input set U (t). The vehicle set X v(t) cannot intersect with
the pedestrian set X h(t) or any other object or area which might lead to
collisions. One can use the physical limitations of the human body to com-
pute reachable sets. The papers of [Liu et al., 2017, Hartmann and Watzenig,
2019a] were starting points for the following approach (compare figure 3.24).
Instead of using only the maximal acceleration and velocity for conservative
motion planning, the algorithm predicts the jerk in each situation for riskier
motion planning. Gaussian processes based on current observations predict
the jerk. Pedestrians can have typical movement patterns constrained by a
static environment in a fixed environment. The movements on the street
are different compared to the sidewalk13. We use three models, where the
maximal parameters (e.g., jerk, acceleration, velocity) are set and predicted
for each situation. The jerk-constrained model leads to the reachable sets
Re,kq under consideration of all three input-variables v(t) (velocity), a(t)

13A database could provide information about physical limitations as prior knowledge
for the human movement prediction with reachability analysis
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(acceleration) and jerk e(t). Only the maximal value for the jerk constraints
the control-input Ue:

ṗx(t) = vx(t), ṗy(t) = vy(t),
v̇x(t) = ax(t), v̇y(t) = ay(t)
ȧx(t) = ex(t), ȧy(t) = ey(t)

Ue = {(ex(t), ey(t)) ∈ R×R|ex(t)2 + ey(t)2 ≤ e2
max}

(3.35)

The acceleration-constrained model leads to the reachable sets Ra,kq under
consideration of all two input-variables v(t) (velocity) and a(t) (accelera-
tion). Only the maximal value for the acceleration constrains the control-
input Ua:

ṗx(t) = vx(t), ṗy(t) = vy(t),
v̇x(t) = ax(t), v̇y(t) = ay(t)

Ua = {(ax(t), ay(t)) ∈ R×R|ax(t)2 + ay(t)2 ≤ a2
max}

(3.36)

The velocity-constrained model leads to the reachable sets Rv,kq under
consideration of the input-variable v(t) (velocity). Only the maximal value
for the velocity constrains the control-input Uv:

ṗx(t) = vx(t), ṗy(t) = vy(t),

Uv = {(vx(t), vy(t)) ∈ R×R|(vx(t))2 + (vy(t))2 ≤ (vmax)
2} (3.37)

Ue, Ua, Uv are three dimensional circles (balls in multiple dimensions)
Bumax = {u ∈ R2| ||u||2 ≤ umax}. The following formula can approximate
the control input space defined as a circle:

Bumax ≈ Pumax := {(ux(t), uy(t)) ∈ R×R| . . .

ux = umax · sin(
2 · π · n

nP
), . . .

uy = umax · cos(
2 · π · n

nP
), n = 0, . . . , nP − 1}

(3.38)

The approximation quality can be adjusted by the parameter nP. The result is
a polygon. Over the complete time horizon kq ∈ ki, ki+1 . . . , k j the reachable
sets of the jerk-, acceleration- and velocity-constrained model are computed
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Machine Learning Funnel prediction
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Predicted funnels

Prediction for set deformation

Figure 3.21.: Concept for funnel prediction

Re,kq ,Ra,kq ,Rv,kq . Like [Liu et al., 2017] we can combine the reachable sets
of the acceleration- and velocity-constrained model and compute the worst-
case reachable sets Rkq at time-step kq:

Rkq := Ra,kq ∩Rv,kq ∀ kq ∈ T (3.39)

The combination of all constrained models lead to prediction sets X̂kq :

X̂kq := Re,kq ∩Ra,kq ∩Rv,kq ∀ kq ∈ T (3.40)

The prediction sets are again a subset of the worst-case reachable sets
X̂kq ⊆ Rkq ∀ kq ∈ T. The advantage of this approach is that the maximal
parameters emax, amax, vmax have to be estimated by the current observed
trajectory T . In [Hartmann and Watzenig, 2019a]we showed how to predict
the change of only the maximal values e(t) with two Gaussian processes
with a similar approach like [Ellis et al., 2009].

p(∆ek+1|xk, yk, T ) ≈ N (f, V) (3.41)

f is the predicted mean value with the variance V. One can compute f and
V from the following posterior distribution obtained by the conditioning of
the observed data:

f∗|f ∼ N (K∗K−1f︸ ︷︷ ︸
f

, k∗∗ − K∗K−1KT
∗︸ ︷︷ ︸

V

) (3.42)
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Figure 3.22.: Example of set based movement prediction with {X̂kq}
j
q=i
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Figure 3.23.: Concept for adaptive reachability analysis
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Figure 3.24.: Worst-case-reachability analysis as a reference for adaptive reachability analy-
sis. A prediction method in [Hartmann and Watzenig, 2019a, Schratter et al.,
2019] predicts the maximal values for the jerk, acceleration and velocity (Pic-
ture source: [Schratter et al., 2019])
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3.4.5. Example with a data-based approach

This section shows an example of funnel prediction. It is a counter-example
to adaptive reachability analysis. This example shows the flexibility of
predicting all the vertices with (multiple) predictors. On the other hand,
is many vertices have to be propagated. This prediction complexity might
be problematic for the computational complexity. Adaptive reachability
analysis has only three parameters that have to be computed, which is
a strong advantage. This section should show that we can compute the
sets {X̂kq}

j
q=i only by considering historical trajectories and the vertices of

the set. It might be helpful to understand the approach [Hartmann et al.,
2018b], where each local environment (represented here as the nearest
vector in the vector field) can have an independent predictor, which is
also interesting in section 3.5. We introduce the concept by a simple but
very inefficient algorithm (there might be improvements in computational
efficiency when the particles are predicted). As a starting point we use the
stochastic process [De Nicolao et al., 2007b] (formula 2.31-2.38) to generate
synthetic trajectories of pedestrians (compare figure 3.25a). The approach
proposed in [Ellis et al., 2009] helps to compute the vector-field Vect(M)
(compare formula A.1.6). Figure 3.25b uses this vector-field with Monte
Carlo simulations to compute four different polygons (hull of the particles in
red, yellow, cyan, and blue color) for 4 seconds. If a set of N initial particles
Pk0 := {pq,k0 ∼ N (µ, Σ)}N

q=1 are placed around the origin µ ≈
[
0 0

]T. The
closure of the particles are defined as convex hull Pk0 := CH(Pk0). With
Monte-Carlo simulation, all the particles are propagated in the direction
of the nearest vector of the vector field. Afterwards we compute again
the convex hull Pk1 . The particles are propagated with the Monte-Carlo
simulation and with the nearest vector.

3.4.6. Example of a funnel prediction with real pedestrian
movements

This section shows an approach for funnel prediction with real-world data.
In figure 3.26 trajectories were predicted with the Long short-term memory
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(a) Stochastic process with Gaussian processes (computed vectorfield) [Ellis et al., 2009]

(b) Monte-Carlo Simulation and resulting sets

Figure 3.25.: Stochastic process and data-based belief sets
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(LSTM) neural networks. These LSTMs are used to predict the time-series
signals. Only the x, y-positions from the last historical time-stemp kr to
the actual time-stemp ki ({kr, kr+1 . . . , ki}) are considered by the LSTMs as
training dataset. The future timesteps are test set {ki, ki+1 . . . , k j}. In the
example we used the first 2.5s as a training dataset and the time interval
between 2.5− 3.5s as the test set. Like [Ellis et al., 2009] we predicted the
position change in x- and y-direction. Another LSTM was used to predict
the uncertainty measure (hull around the red and the cyan line in figure
3.26a and coloured rectangles in figure 3.26b). The example shows how
machine learning (in this case a arbitrarily chosen deep learning model
LSTM to extrapolate data over time) was used to predict a funnel {X̂kq}q∈IX̂
(compare section 3.4) with real-world data.

3.5. Pedestrians walking on Manifolds

This section 3.5 focuses on the environment and is a cut to the previ-
ous sections. It should provide the mathematical fundamentals to model
movements. 15 of pedestrians and also a theoretical outlook for the human
locomotion research community. Subsection 3.5.2 compares mathematical
concepts for human locomotion. Subsection 3.5.3 focuses on manifolds and
differential geometry to describe the urban environment. Subsection 3.5.4
focuses on an excursus to optimal control on manifolds. Subsection 3.5.5
discusses an use case for the university campus of the University of Technol-
ogy Graz in Austria. Subsection 3.5.6 gives another example with Stanford
Pedestrian dataset from [Robicquet et al., 2016b].

3.5.1. Motivation for topological spaces

The motivation for using topological spaces and differential geometry is not
that intuitive. Differential geometry is mathematically demanding. There are

15Synthetic movement data could produce critical and unusual test-data without consid-
ering real test-persons.
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3.5. Pedestrians walking on Manifolds

(a) Plots in x- and y-direction

(b) Movement prediction with rectangular funnel

Figure 3.26.: Movement prediction with the Stanford Drone dataset [Robicquet et al., 2016a]
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also many prerequisites to understanding human locomotion: In appendix-
chapter B it is mentioned that the brain has an enormous capacity and
complexity. Each region of the brain has different tasks and responsibilities
for cognitive processing. The motor and sensory cortex are responsible for
performing actions and sensing body movements16. It is a highly complex
processing network also with different semantic tasks [Huth et al., 2016a].
Nowadays, many machine learning models are used to learn and understand
the patterns of brain activity and the functionality of each region (e.g.,
[Naselaris et al., 2011a]) In chapter B we also present a cognitive MDP
(compare figure 3.57) model developed out from the literature survey where
we distinguish between the cognitive state of the brain c(t) ∈ C (activity
levels of human brain measuring devices) and the state of the human
body s(t) (body skeleton). We summarize these two different states in a
single vector representing the state of the human and compare formula
3.34. We can represent the cognitive state and the brain state in a Euclidean
coordinate system and abstract the brain activity to human-understandable
concept (compare figure 3.57 and 3.58) a kind of meta state m(t) ∈ M.
This meta state should translate the complex brain activity to what the
subject is thinking and doing (e.g., the person walks to the supermarket
and hears music). The current research community in Neuroinformatics are
trying to encode and decode brain activity ( [Naselaris et al., 2011a]) with
a machine learning model to represent a function f : C →M and also the
inverse function. The abstraction of the human can also think of a tree as an
obstacle, and creativity and intelligence could also relate it to other concepts
(e.g., treehouse). These concepts are semantically connected, and it can be
shown that there exist different brain activity patterns for different concepts
(e.g., [Huth et al., 2016a]). The realization that "a person is walking, the
other person is dancing" could differentiate in the current implementation (a
wide variety in gaits and dance moves is possible). If we would change the
problem to "a person is walking on the sidewalk," we could assume that the
pace of a person is something around the walking speed. The brain activity
patterns in walking on a sidewalk have repeated cycles ( [Brantley et al.,
2018]) which could be described in a certain policy πh(t). The policy of the

16We assume a healthy person for the example. There must be some assumption that
the spinal cord, the whole nervous system, and other functionality or human systems are
functioning well.
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3.5. Pedestrians walking on Manifolds

human brain is trying to fulfill a certain task with a certain goal. Each action
could of a human be described in the form of a certain controller policy.
This policy exists to fulfill tasks by getting feedback from the perception and
sensing the body movements (compare figure B.3 for a deep learning model
to learn to walk). The problem in analyzing these concepts has to be cast into
mathematical concepts. The following ideas assume that the brain activity
patterns in a certain semantic urban state environment X are the same. The
controller set X (e.g., sidewalk) is defined as a controller performing a force
on a particle. We propose a "Pedestrian in the Loop" test environment in
3.7 for further basic research. Figure 3.30 shows the task to model human
behavior. The sensing, cognition, and action cycle have to be modeled to
compute the trajectories on a topological space. We will use the concept of
manifolds as a theoretical concept to structure complex urban environments.
Someone unfamiliar with differential geometry might ask, why not use
clothoid (or other analytical functions) to model curved curves. Clothoids
are a special case of differential geometry ( [Schulz, 2014]), and a point mass
that is driven with force as a function of time is also a case that fits into the
concept. We could use a cell with a dynamic system (e.g. ẋ(t) = f(x(t), u(t)
or probabilistic descriptions) and implement it into a cell Xi of the manifold.
We could change the coordinate system or the dynamic system in the next
cell. What still fits well into the concept is a piece of work that describes
that work from the subgoal concept cites ikeda2013modeling, but they used
spatial graphs to describe the movements. Also, [Vasquez, 2010a,Kitani et al.,
2012] present the movements of pedestrians in semantic networks, which
strengthen the application of differential geometry in human locomotion.
Figure 3.27 shows the path on a manifold. Figure 3.28 shows a curved
trajectory which is represented from a manifold. In a fictive example, a
person must complete three sub-goals of a task. The subject has to walk to
the first pylon (orange circle with number 1) and then has to run (subgoal 3)
to the second pylon, which is the fictive target (circle with number 2). The
path is labeled with colored and alphabetic letters. Our brain can abstract
some targets and also imagine curved trajectories for locomotion. Figure
3.29 shows three pictures17 from a real scenario where pedestrians might

17Pictures are from https://www.flickr.com/photos/infomastern/28662408986/,
https://www.flickr.com/photos/infomastern/34486288613/, https://www.flickr.
com/photos/infomastern/28076991283/. Downloaded at 4. August). More pictures of the
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Figure 3.27.: Transformed path (A, B,...,H) in a manifold

walk this kind of curved path. Instead of the pylon, there are white masts,
and the bridge has a circular structure and layout, so that is named circle
bridge.

3.5.2. Mathematical concepts for human locomotion

This section compares different mathematical concepts for the urban en-
vironment and a motivation to use concepts for differential geometry for
modeling movements of humans. The modelling of the urban environment
as a manifold has the advantage to structure large and complex urban
environments and also with higher accuracy than spatial graphs. On the
other hand it is mathematically more complex. This section should give a
kind of visual introduction to these concepts. For data inference and mod-
elling pedestrian movements, it is essential to represent the environment

bridge and layout at https://miesarch.com/work/3393.
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Subgoal 1:
”walk to the pylon”

Subgoal 2:
”circle to the pylon”

Subgoal 3:
”run to the target”
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Figure 3.28.: Curved path (A to AT) with different subgoals sub-goal

(a) Walking pedestrians (b) Bird view perspective (c) Rounded barrier

Figure 3.29.: Circle bridge (Cirkelbroen) in Copenhagen (Images and ownership from
Susanne Nilsson, with licence: CC BY-SA 2.0)
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Figure 3.31.: Euclidean space, graph representation and vector-field (manifold)

and data adequately. Figure 3.31 shows three relevant representations for
this thesis18. All three representations (Euclidean space, spatial graph and
vector-field) have in common that the state space X have a structure in
form of a topology T . An urban environment can be described in form of a
topological space (X , T ) (compare section A.1). The whole state space X is
represented by a set of disjoint cells Xi (subsets of Xi ⊆ X ∀ i ∈ IX ):

X :=
⋃

i∈IX
Xi (3.43)

Xi ∩ Xj = ∅ ∀ i, j ∈ IX , i ̸= j (3.44)

The first representation (compare figure 3.31a) is an Euclidean coordinate
system. Orthogonal basis vectors span the spatial space (conventional vector
space) of the Euclidean coordinate system and with the special case. Another
representation is shown in figure 3.31b with a graph G = (V , E) and vertices-
set V = {v1, . . . , vNV} = {vq}q∈IV and the set with edges E = {e1, . . . , eNV}.
The label set of the nodes is IV = {1, . . . , NV}. In combination with a
coordinate system (each node gets a position) one could describe movements
in a spatial graph (e.g. approach in [Vasquez, 2010a]). We need therefore a
mapping function for the node label set IV to the cell label set IV :

f : IV → IX (3.45)

18There are also other representations possible.
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A single position pi ∈ Xi from one cell can represent the whole set as a
node vi (from graph theory) for all labels i ∈ I 19 Figure 3.31c shows the
third representation of spatial problems, a manifold with the corresponding
vector-field20. Figure 3.31c shows many coordinate systems (transparent
grey arrows), which are only representing a local environment. The black
arrows show the direction of the velocity vector on a transparent orange
patch. This illustration is unusual because it is not common to visualize
many coordinate systems. It might help an interested reader who is not
familiar with differential geometry to understand the concepts (compare
A.1). Graph and vector fields have in common that their mathematical
objects are structurally connected via a topology (nodes in graphs via edges
and vector fields often on a regular grid). A manifold is also a kind of
mesh.

Definition 3.5.1. Definition from [Asarin et al., 2003]. A meshM of the set
X is a finite set of full-dimensional convex polyhedra in Rn, called cells,
satisfying the following conditions:

• The union of all cells
⋃

q Xq = X
• If Xq and Xr are cells with non-empty intersection, then their inter-

section lies within the boundaries of both; we say that Xq and Xr are
adjacent and we denote their intersection by ∂(Xq,Xr)

This section compared different mathematical expressions to represent move-
ments of pedestrians: Euclidean space, graph, vector-field, Manifold (regular-
and transformed grid). In the next subsection, we focus on manifolds to
describe human locomotion.

19With this approach, it is possible to represent the spatial graph, compute the adjacency
matrix A, and use linear algebra and graph theory concepts. From that representation it is
common to predict spatial movements with Hidden Markov Models [Bishop, 2006,Vasquez,
2010a].

20A manifold can have a vector-field. For mathematical correct definitions of a vector-
field and manifold compare section A.1)
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3.5. Pedestrians walking on Manifolds

3.5.3. Manifolds from differential geometry describing the
underground for human locomotion

A general way to describe topological (spatial) problems is manifolds from
differential geometry. Each patch (spatial set Xi) of the regular and nonreg-
ular grid has its euclidean coordinate system. Figure 3.32a and figure 3.32b
show colored patches with letters (A to M) representing a path. The path is
on a smooth manifold (see Appendix for definition of a smooth manifold).
The manifold in Figure 3.32b is transformed with figure 3.32a as a reference.
The transformation of the spatial space offers the possibility to describe
straight lines as curved paths and vice versa. A simple example is that pedes-
trians could walk in a city center around a fountain, whose trajectory could
be described easily by polar coordinates. Polar coordinates are a particular
case for differential geometry. Pedestrians can walk in rather complex urban
environments which have a topological structure. A networked system can
describe the walkable areas for pedestrians.

3.5.4. Optimal control on manifolds (Interconnected
Euclidean Systems)

This section should give a short digression to an example with optimal
control. The main goal is to emphasize that human locomotion is often
referenced to an imaginary coordinate system in the subconscious, changing
over time and the (urban) environment. The cognitive processing of a
pedestrian plays an important role in performing movements. A human
can change his coordinate system by perceiving objects and spatial distance
measurements and adapting to new situations. The optimal control in
interconnected coordinate systems (Manifold) should introduce a technical
and concrete example for modeling pedestrian movements. This idea will
find a place in other technical algorithms. Figure 3.33 shows an example
with four interconnected sets {Xi}i∈IX (with four colours). The yellow set
is adjacent to all other sets and coordinate systems. We can use optimal
control (similarly to section 3.2) to compute a trajectory in interconnected
Euclidean systems. The target state xA

kj
in coordinate system A with basis
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Figure 3.32.: Transformation of a regular grid (manifold) to new manifold representation
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Figure 3.33.: Optimal control on a manifold

vectors (eA
1 , eA

2 ) is the initial state xB
kj+1

in the new coordinate system B

(eB
1 , eB

2 ). The concepts of coordinate system change can simply computed
with the concepts of tensor calculus (compare section A.1). From [0, 2s], the
optimal control system brings the agent from the green coordinate system
to the yellow coordinate system (blue trajectory). The bottom subfigure
shows the velocity (blue curve) and the cost function (red curve). The cyan
trajectory shows the optimal control from the yellow coordinate system
to the red coordinate system with the cost function and the velocity. This
example should show that the controller is having a change in the reference
coordinate system. This example is analogous to how a pedestrian changes
his reference system by changing his perspective and perception.

3.5.5. Use case for the University Campus

This section shows some previous works representing movements on spatial
graphs. Spatial graphs could be placed on a topological space (X , T ). Figure
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3.34a shows an intersection of the Technical University Graz in Austria
described as a topological space. The red patches represent the street, light
green the sidewalk, and grey parking slots. With reinforcement learning,
one could model an optimal policy of an agent trying to maximize the
expected reward. 21. The patch with label 27 gets the highest reward22

(green color) in Figure 3.34b. Value iteration from reinforcement learning
runs on a topological space with a reward on patch with label 27 (compare
figure 3.35a). Figure 3.35b shows the algorithm’s resulting optimal paths
from different initial positions. This example shows how a virtual agent
acts optimally with Markov Decision Process (MDP). This example also
shows the drawbacks of spatial graphs for representing the movements of
pedestrians. The brain activity of the person is not modeled. It assumes that
pedestrians follow optimal paths and have perfect rational behavior. We
show in the appendix a theoretical extension in the form of a cognitive MDP
from section B.1. However, there is further research necessary to model brain
activity adequately. Therefore the thesis proposes a test environment for
the research of the human decision making in the presence of autonomous
vehicles (compare section 3.7). Figure 3.36 shows further approaches from
[Hartmann and Watzenig, 2019b] in a larger scale. This example also shows
the importance of high-precision maps and the importance of getting a
relationship between the decision-making of pedestrians in different areas.

3.5.6. Use-case: Stanford dataset

An example of a real-world dataset also confirms the motivation to describe
the movements with topological spaces. Figure 3.37a shows all the initial-
and end-positions of each subject in the Stanford drone dataset [Robicquet
et al., 2016b]. The Stanford drone dataset [Robicquet et al., 2016b] is a dataset
where pedestrians’ movements are tracked by flying drones observing
spatial movements. In Figure 3.37b one has selected a certain individual

21There are many reasons why optimal movements of the pedestrian are often realistic.
The behavior of pedestrian is not rational and optimized (compare section B.1)

22The label 27 is randomly picked and shows only that the agent of the Markov Decision
Process is generating an optimal trajectory on the topological space.
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(a) Intersection of the University in Graz (b) Reward on patch 27

Figure 3.34.: Intersection in Graz. Value iteration in classical non-regular grid and resulting
paths

(a) Value Iteration after some iterations (b) Several trajectories

Figure 3.35.: Intersection in Graz. Value iteration in classical non-regular grid and resulting
paths
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(a) Campus of the University in Graz from Google
Maps ™ (b) Selected buildings with topological space

(c) Vectorfield (d) Sample trajectories generated from the vector-field

Figure 3.36.: Campus of the University in Graz [Hartmann and Watzenig, 2019b]
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who appears in the left top corner. Figure 3.37b shows all initial positions of
each individuals who appeared also in the top left corner as blue dots. The
end positions are shown with orange dots, three clusters (computed with
K-means-clustering), and red ellipses. The orange points in the middle are
outliers, so there are only two groups for these specific cases.

Figure 3.38b shows a selection of trajectories with two groups (blue and
red trajectories). As in the beginning of this section described we could
group the whole state space X in disjoint connected cells Xi (here with
voronoi-diagram compare figure 3.38a). The algorithm used in Figure 3.38b
computes the velocities. Principal component Analysis (PCA) computed
an orthogonal basis vectors for each cell Xi, which are visualized as black
orthogonal lines in Figure 3.38b. This example shows topological spaces
could help to model many real-world trajectories, which is considered in
the next sections.

The advantages of describing the urban environment a manifold:

• Generalization of Euclidean systems, spatial graphs, and vector fields.
• Representing complex movements: It is possible to deform the state

space X and describe complex movements. A particular case of differ-
ential geometry is polar coordinates which are often used for circular
movements. Manifolds could adequately describe lanelets which are
very common in the automotive industry.

• Semantics: Each cell Xi can have a semantic meaning (sidewalk, street)
where the pedestrian might change his behavior or on a transition23.

• Data-inference and computations: The generalization of Euclidean
systems, spatial graphs, and vector fields offers many possibilities for
predicting and modeling human movements.

• Combination with other concepts: The combination of set theory and
reachability analysis goes well.

The disadvantages are:

23In the example on the University campus (section 3.5.5 it does not change its behavior.
However, this is a problem in modeling the behavior in a computer model. The computer
model does not capture all possible behaviors and relies on simplifications and assumptions.
In section 3.6 we will present more details.
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(a) Initial- and end positions

(b) Selection of initial- and end-positions

Figure 3.37.: Starting- and end-positions of pedestrians from the Stanford drone dataset
[Robicquet et al., 2016b]
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(a) Voronoi mesh with local tangent vectors TpM (compare formula
A.6)

(b) Two selected groups (blue and red) with local basis vectors

Figure 3.38.: Tangency space with voronoi diagram
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• Mathematical complexity: The field of differential geometry is vast
and mathematical complex 24. With tensor calculus, it is possible to
represent changes in coordinate systems.

• Not all information on the human locomotion of pedestrians is cur-
rently explored. The decision-mapping of pedestrians could be mapped
to the manifold cells, and further research on the decision-making is
needed.

• Lack of algorithms: The mathematical complexity of manifolds does
not offer many algorithms that are successfully applied in movement
prediction.

Subsection 3.5.7 gives the motivation to generate synthetic movement data.

3.5.7. Motivation to generate synthetic movement data with
concepts from causal inference, differential geometry
and set-based methods

This section should give some perspectives to model pedestrian movements
for testing autonomous vehicles and combine the ideas of causal reasoning,
differential geometry and set-based methods from section 2.1, 3.5 and 3.6.
The reasons to use causal inference to model movements and incorporate
interventions and intention changes into the framework for generating syn-
thetic movement data. Differential geometry is to describe the movements
in a sub-goal framework [Ikeda et al., 2013] and using the structure of the
environment. Set-based methods could incorporate physical limitations. As
mentioned in section 2.2.1 there exist datasets from observational-studies for
real pedestrians like [Robicquet et al., 2016a]. In each situation in observing
human locomotion by an autonomous vehicle we have a lack of knowledge,
personal- and situational aspects which are specific for the certain situation.
The intention, personal aspects (e.g. current feelings and emotions, thoughts,
some environmental influences) are not captured in a dataset. A observa-
tional study has some bottlenecks, which make a randomized controlled
experiment necessary. In this thesis a randomized controlled experiment is
proposed in section 3.7. The advantages of synthetic movement data are:

24In many engineering disciplines, it is often not in the curriculum
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• Synthetic movement data might ease the generation of training and
test data and analyze the performance results to generalize prediction
algorithms to new situations. It is also necessary to consider that, on
the other hand, synthetic movement data is a simplification of the
body- and decision dynamics of the pedestrian. For a depth analysis
on each factors influencing the pedestrian and prediction a pedestrian-
in-the-loop environment might give more insight (see section 3.7).

• Untypical and dangerous behavior of agents in simulated environ-
ments in collision avoidance maneuvers with autonomous vehicles
could improve safety. The amount of improvements also depends on
the quality of the simulations, which is not trivial for realistic modeling
of human behavior.

• The generation of the huge amount of movement data is a benefit com-
pared to the expense for the measurements in observational studies. It
is also not always possible to observe pedestrians (e.g., day and night).

Some disadvantages are:

• Physical bias: In general, it is easier to measure the physical move-
ments of the human body than the cognitive processes inside the
human brain. Therefore it is more convenient to model the body move-
ments in system models. Detailed processes for the dynamics for the
intention-change of a person are not well researched yet. The modeling
of exclusively physical aspects of human locomotion (e.g., without
considering brain functionality) might lead to a substantial simplifi-
cation. The complexity of the human brain is very complex. There is
research ongoing for the simulation of human processes with super-
computers (e.g., Human brain project [Salles et al., 2019]). However,
for the application in the automotive industry, simple models (simple
physical rules) are often used to test collision avoidance algorithms
with pedestrians.

• Simplifications and realistic behavior: The consideration of all complex-
ities in the dynamics of the physical body and the cognitive aspects
of thinking is very complex. There exist numerical software projects
like [Delp et al., 2007] to approximately human body dynamics. How-
ever, we consider substantial simplifications for the human body and
its intentions.
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• There is the need for (high-quality) maps for movements in realistic
environments to produce synthetic movement data for natural envi-
ronments. The quality of the maps also depends on the modeling of
the synthetic movement data. Suppose the perception of a pedestrian
is modeled. There might be the requirement to model the environment
with the photorealistic or semantic structure depending on the cogni-
tive abilities of the virtual agent. Some substantial simplifications only
consider the perception of the environment and the decision-making
by an agent.

We want to incorporate causal models and figure 3.39 gives some reasons
to use causal models. As described in [Peters et al., 2017] we could use
observations from an experiment:

(x1, y1), . . . , (xn, yn) (3.46)

These observations (xq, yq) (q ∈ N) come from random variables (Xq, Yq),
with input-variable Xq and output-variable Yq:

(X1, Y1), . . . , (Xn, Yn) (3.47)

In dynamic settings ki, k j ∈ T, we might consider time t (and there discrete
values) with the variables:

(xki , yki
), . . . , (xkj , ykj

) (3.48)

With the time-dependent random variables:

(Xki , Yki), . . . , (Ykj , Ykj) (3.49)

A very essential assumption of doing experiments and classical statistical
learning is that the datasets are independent and identically distributed
(i.i.d.). Afterwards we could use classical techniques from statistical-learning,
machine learning and deep learning to compute the expectation of the
output given the input to form a regression:

f(x) = E[Y|X = x] (3.50)

The function f : X → Y maps X to Y , which are both metric spaces. We
assume that the density pX,Y of PX,Y are static and independent and iden-
tically distributed (i.i.d.). In statistical learning, we learn the density from
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Relationship between causal- and probabilistic models Comments

causal model

probabilistic model

observations &
outcomes incl.

changes &
interventions

observations &
outcomes

subsumes subsume

causal learning

causal reasoning

statistical learning

probabilistic reasoning

intention-change (new thoughts),
new situational aspects,

influences from the
dynamic environment

(e.g. oncoming vehicle),
interaction,

high degree of freespace

fixed intention,
habits,

typical behavior,
static environment

without much freespace

Figure 3.39.: This figure shows causal models and causal reasoning and relates to proba-
bilistic models and observations and outcomes. The structure comes from the
book [Peters et al., 2017] and is extended by some of the usages of automotive
scenarios (blue). Using causal models in situations with changing probabilities
(e.g., intention-change or external influences).

observations and outcomes from an experiment. In probabilistic reasoning,
we generate data from a density. There are different challenges in classical
machine learning to find suitable classes and functions f(x). The prediction
results from classical machine learning algorithms might vary quantitatively
on different real-observed human movement data. Especially if there are
new situational aspects (e.g., change of weather conditions), new intentions
(e.g., U-turn), irrational behavior, interaction, and other new factors causing
the pedestrian’s behavior. Causal reasoning allows us to analyze the effect of
interventions or distribution changes [Peters et al., 2017]. The inverse prob-
lem of causal learning (structure learning and causal discovery) to learning
from observations with interventions is a new field but not the focus of
the thesis. Therefore we want to propose set-based prediction methods to
include the effect of interventions in set-based methods. Set-based methods
and reachability analysis could also incorporate worst-case scenarios or
situations where the dynamics of a pedestrian are restricted to some phys-
ical conditions. The description as a manifold could incorporate the idea
presented in section 3.5. It describes the movements with subgoals [Ikeda
et al., 2013] and uses the structure of the urban environment (different
semantic environments, e.g., sidewalk, street, park) into a mathematical
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framework.

3.5.8. Quantification of computational complexity

Table 3.1 shows the mathematical complexity of some operations necessary
for the reachable sets, and this table will be considered in the next chapter
for the complexity of some algorithms. It shows the Minkowski sum of
two zonotopes. Also, the matrix multiplication to a zonotope and other
mathematical operations. In a single-vector space we have a coordinate
system with orthogonal basis-vectors. In this coordinate system we could
have a set of a subject Xki or a represented as a particle xki . We could ensure
a movement by using a mathematical operation. If we have a time horizon
{ki, ki+1, . . . , k j} and p steps. The system might be described by a nonlinear
system x(t) = f(x(t), u(t)), but the trajectory with the position of a person
pki = [px,ki , py,ki ]

T. A · x = b A ∈ Rn×n, x, b ∈ Rn has a computational cost
of O(n2). If we have a recursive application of the matrix-vector operation in
the time horizon {ki, ki+1, . . . , k j} we have O(p · n2) (iterated over p steps).




px,ki+1

py,ki+1

1


 =




cos(θ) − sin(θ) tx
sin(θ) cos(θ) ty

0 0 1




︸ ︷︷ ︸
Aθ,t




px,ki
py,ki

1


 (3.51)

If we have a set Xki with the closure CL(Xki). We can have a single-vector-
space or multiple vector spaces. In the case of multiple vector spaces, we
would have a set of coordinate systems. The set traverses over multiple
coordinate systems. Figure 3.40 shows a dynamic system with rotation
matrix, reachable setsR and corresponding single trajectory. If an additional
mathematical operation operates on the whole reachable set, it can be
translated and rotated. Also, the Minkowski sum or difference could be
operating on these sets. Figure 3.41a shows a simulation with the Julia Reach
package [Bogomolov et al., 2019] on a simple street. Instead of computing
from one state a trajectory, we could compute the reachable sets. With a
different solver, one could compute a single trajectory figure 3.41b.
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3.5. Pedestrians walking on Manifolds

Computational complexity of some
mathematical operations

Scalar-vector-multiplication
a · x = b,
a ∈ R, x, b ∈ Rn O(n)

Vector-vector multiplication
aT · b = c,
a, b ∈ Rn, c ∈ R O(mp)

Vector-Matrix multiplication
aT ·B = cT,
a ∈ Rm, B ∈ Rm×p, c ∈ Rp O(mp)

Matrix-Matrix multiplication
A ·B = C,
A ∈ Rn×m, B ∈ Rm×p O(nmp)

b +Z1 = {b + c, {v1, . . . , vk}} O(2mn(k + 1))

Z1 ⊕ Z2 = {M ·
c, {Mv1, . . . , Mvk}}

O(n)
( [Bogomolov et al., 2019])

M · Z1 =
{Mc, {Mv1, . . . , Mvk}}

O(2mn(k + 1))
( [Bogomolov et al., 2019])

Table 3.1.: Mathematical complexity for some operations for computing reachable sets
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Figure 3.40.: Spiral reach set (programmed with [Bogomolov et al., 2019])

3.5.9. Decision making of pedestrians

This section should motivate the use of set-based prediction algorithms
for pedestrian movement algorithms on manifolds. Figure 3.42a shows the
synthetic movement data of a pedestrian in a topological space X = {Xq}q∈I
and topology set T 25. The index set is I = {0, . . . , 39}.26 The pedestrian
movements in this simple example are programmed as a fixed deterministic
function from the current position p(t):

vx(t) = f(p(t)) (3.52)
vy(t) = f(p(t)) (3.53)

The algorithm 2 could be used to generate pedestrian movements (blue
trajectory with multiple decisions on each manifold cell 1, 2, 12, 13, 14, 15) or
a black trajectory with single decision in cell 0. Each manifold cell describes

25X11 is connected with X10,X21,X12,X1. Formally every set Xi, which is adjacent to another
set Xj for i ̸= j is element of the topology set T . Exact mathematical definitions can be found
in [Cavalieri, 2007].

26For visualization reason the boundaries of each cell is not visualized.
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3.5. Pedestrians walking on Manifolds

(a) Movement on a topological space (programmed with [Bogomolov et al., 2019])

(b) Reachability Analysis with package and single trajectory (programmed with [Bogomolov
et al., 2019])

Figure 3.41.: Reachability analysis
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a single decision (brain) where a pedestrian follows a certain action (going
in a fixed direction).27 Each cell could also have more complex nonlinear
behaviors in form ẋ = f(x, u) valid for each cell. 28. It might also be
probable that another person or the same person in a different situation,
mood, or personal situation behaves differently. There might be also another
vector-field plausible, compare the multi-vector field in figure 3.42b.

There exists the problem of knowledge vs. lack of knowledge (reducible
and nonreducible uncertainty, compare figure 3.43). There is the decision
dilemma for an external perception system where a person’s decision-
making is not observed. There is the problem of distinguishing (reducible
and nonreducible uncertainty). The classification of knowledge and uncer-
tainty is part of the uncertainty quantification for the mind-body problem
(how to predict the decision-making of the human mind and its result-
ing actions for the body). Besides that, we have to distinguish the set of
plausible decisions in an area that might not be the same as the set of
probable decisions. It is problematic to quantify certainty in a prediction
without knowledge. It is not known how a foreign person chooses deci-
sions. The hidden cognitive dynamics and the influences of the decisions
on the movements are unknown. It is necessary to distinguish between
the correlation and causation of mechanisms of action. Understanding the
cognitive dynamics (pedestrian in the loop) and their causal relationships is
necessary. Experienced drivers can have causal relationships when a child
crosses the street to catch the ball. A randomized controlled experiment
is needed to go deeper into the ability to decode the causal relationships.
From a mathematical point of view, we could tackle the problem in the
form of a set-based propagation system on a manifold. Instead of using
a single vector field in the tangency space, using a multi-vector field or
set-based approach on manifolds might be better. Figure 3.44a shows on
each cell three yellow vectors not representing the mean value but rather the
closure of the velocity set. The set-based movement prediction system might

27This simple example shows only that a particle is moved in the direction of the certain arrow
of the vector field. It is not observed how the brain performs decision-making in detail to get the
sub-goals.

28In this simple example, we also used other simplifications. We used regular grids, and the
trajectory is made with low variance. For the realization of the trajectory, we used dot(x) = v
the numerical integration of the x-y-components of the velocity
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3.5. Pedestrians walking on Manifolds

(a) Comparison of two trajectories with multiple subgoals and one decision. The yellow and
red points should highlight the direction of the pedestrian.

(b) Instead using a single vector-system the same person could behave differently (compare
figure 3.42a). This is also a consequence of the free will, the cognitive decision-making
and the possibility to choose differently than mass (depending only on energy).

Figure 3.42.: Modeling of pedestrian movements
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Lack of knowledge

Problem A:

Knowledge Reducible Uncertainty

Evidence (Measurements)

Problem B:

Knowledge Reducible Uncertainty Unreducible Uncertainty

Evidence (Measurements)

Figure 3.43.: Knowledge and the lack of knowledge in form of two sources of uncertainty (epistemic
equals reducible uncertainty and aleatory equals unreducible uncertainty)

over-approximate the velocity set to cover all possible movements. Instead
of describing the closure of the velocity set, one might try to estimate the
maximal velocity and acceleration in each cell-like in figure 3.44b. Figure
3.44b is visualizing a selection of the street (grey cells with red border) and
sidewalk (green cells) from figure C.5.

3.5.10. Computation of set-based movement prediction

This section presents computation methods for set-based-prediction. Figure
3.26 presented a simulation for funnel prediction for real-pedestrian move-
ments. It can be seen as a special case to over-approximate time-varying
rectangle with a set of support functions ρ̂Y over time t. Figure 3.45a shows
the three dimensional expansion (coordinates x, y for spatial expansion and
time t) in time-state-space. The red and green basis vectors (often also as x-
y-coordinates) describe the spatial movements over time (blue basis vector).
The closure (compare [Cavalieri, 2007] for an exact mathematical definition)
of a (convex) set is an important topological property. The boundaries of
a (convex) set Y could be approximated by support functions. A support
function ρY (l) of a compact set Y ⊂ X is defined as [Althoff and Frehse,
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3.5. Pedestrians walking on Manifolds

(a) Velocity closure

(b) Maximal-velocity (represented as blue bar) and acceleration (rep-
resented as red bar) on each cell Xq of a topological space

Figure 3.44.: Reachable sets instead of Multivectorsystem
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Figure 3.45.: Support function and over-approximation (adapted from [Althoff and Frehse, 2016])
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3.5. Pedestrians walking on Manifolds

(a) Three dimensional illustration of a funnel (b) Image detail of the funnel

Figure 3.46.: Three dimensional funnel

2016], compare figure 3.45b.

ρY (l) = max{lTx|x ∈ Y} (3.54)

The halfspace for a given direction l1:

Hl = {x ∈ Rn|lTx ≤ ρX (l)} (3.55)

The over-approximation by a set of support functions can be described
as [Althoff and Frehse, 2016]:

⌈
Y
⌉
=

⋂

l∈L
{x ∈ Rn|lTx ≤ ρY (l)} (3.56)

The normal-vectors of the halfspaces in figure 3.45b are collected in the set
L = {l1, . . . , l4}.
If the set Y(t) is time-dependent, one could use a time-dependent support
function for the time interval [tmin, tmax].

ρY(t)(l, t) = max{lTx(t)|x(t) ∈ Y(t), t ∈ [tmin, tmax]} (3.57)

Figure 3.45a shows the support function ρYki
(l, ki) and ρYkj

(l, k j) for the

discrete time-step ki, k j ∈ T:

ρYkq
(l, kq) = max{lTxkq |xkq ∈ Ykq , kq ∈ T} (3.58)
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Figure 3.47.: Extrapolation of the support function
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The three dimensional illustration in figure 3.46 shows a part of the over-
approximation with the rectangular funnel in simulations from figure 3.26.

We formulate the time-dependent halfspace for a given direction l1 as
following:

Hl(t) = {x(t) ∈ Rn|lTx(t) ≤ ρX (l, t)} (3.59)

one could overapproximate the funnel of the set Ykq(t):

⌈
Y(t)

⌉
=

⋂

l∈L
{x(t) ∈ Rn|lTx(t) ≤ ρY (l, t)} (3.60)

One could overapproximate the funnel of the set {Ykq}
j
q=i:

{
⌈
Ykq

⌉
}j

q=i =
⋂

l∈L
{x ∈ Rn|lTx ≤ ρY (l)} (3.61)

Instead of knowing the real funnel Y(t) ∀ t ∈ [ti, tj] we could estimate
the funnel Ŷ(t) ∀ t ∈ [ti, tj]. Suppose we observe a dynamic system with
aleatory uncertainty. We might not wish to predict the future position (which
might lead to fatal consequences). Based on our knowledge K, we would
rather over-approximate the reachability sets (for fixed or time-varying
control input sets).

R(tq) ⊆
⌈
Ŷ(tq)

⌉
∀ tq ∈ [ti, tj] (3.62)

or for the discrete case:

Rkq ⊆
⌈
Ŷkq

⌉
∀ kq ∈ {ki, . . . , k j} ⊂ T (3.63)

Usually, this is an ill-posed problem because only the realizations of the
trajectories are known.
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3.5.11. Algorithms for set-based movement prediction

We observe trajectories from a dynamic system with aleatory uncertainty. If
we do not have information about the system model f(x, u) or guessing the
system model f̂(x, u). we would have a model-based approach. We do not
know the function of the dynamic system f(x, u). We rely on a data-based
approach with machine learning. The control input set U (t) and the result-
ing reachable setsR(t) are not known either. As we know the initial state set
X0, we could compute a funnel to over-approximate the unknown reachable
sets R(t) at least the observing trajectories. However, there might be the
risk of not capturing the whole reachability sets and therefore accepting
the consequences (e.g., accident). An example was given in section 3.4 with
estimating the maximal velocity vmax and acceleration amax, which has the
advantage of estimating only two parameters. The maximal velocity vmax
and acceleration amax are only a special case for state-vectors considering
positions and velocities like x(t) = [x(t), y(t), vx(t), vy(t)]T and represent-

ing ̂̇X (t) by a two dimensional ball and the two parameters. A more general
approach would be to collect all possible state-changes in a set Ẋ (t):

Ẋ (t) =
⋃

u(t)∈U , x(t)∈X (t)

ẋ(t) =
⋃

u(t)∈U , x(t)∈X (t)

f(x(t), u(t)) (3.64)

Similar to xk+1 = xk + TS · f(xk, uk) we could approximate the change of
possible states from Xk to Xk+1 for all possible control-inputs uk in constant
control input set U . The increase of possible states could be described
with:

|Xk+1 \ Xk| = |
⋃

xk+1∈Xk+1

xk+1 \
⋃

xk∈Xk

xk| =

|
⋃

xk∈Xk,uk∈U
xk + TS · f(xk, uk) \

⋃

xk∈Xk

xk|
(3.65)

A fictive example is an agent on position xk0 = 0 with control input set
U = {−1, 0, 1} and system model f(xk, uk) = xk +uk. In next step k = 1 we
have the state sets X1 = {−1, 0, 1}, X2 = {−2,−1, 0, 1, 2}, Xn = {−n,−n +
1, . . . , n− 1, n}. In each iteration we get two more states. 29 After that one

29In higher dimensional problems we get additional complexity because of the curse of
dimensionality.
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could try to over-approximate Ẋ (t) with
⌈
Ẋ
⌉
(t). One important part of the

safety is that we assume problem B (compare figure 3.43). for the pedestrian,
we have to consider the lack of knowledge, which cannot be reduced. This
lack of knowledge is tricky, and one could add a set (e.g., by Minkowski
sum) to enlarge the funnel. It is an open issue to quantify that for pedestrians
because of the complexity of the problem (compare B).

3.6. Causal inference

Subsection 3.6.1 describes the motivation for causal inference. Section 3.6.2
offers a hypothetical example for the intervention in non-cyclic models and
section 3.6.3 proposes some ideas for cyclic models.

3.6.1. Motivation for Causal Inference

Many external and internal factors influence a human (compare section
B.2). A causal model (e.g., pedestrian with the oncoming vehicle) might
be interesting for human locomotion. In section 2.2.1 movement prediction
algorithms were used based on observational studies (historical experiment).
The experiment is only successful when the data has some quality and
quantity to make conclusions about the behavior. The inference of causal
relationships is of great interest to performing experiments in (ideal- and
realistic) environments, where the factors and parameters could be changed
to analyze the effect of some interventions. A random-controlled experiment
is an environment for experiments where the causal relationships could
be inferred by changing only a few parameters. In observational studies,
this is often not the case. Enormous effort is often necessary to get datasets
from observational studies for pedestrian movements. Machine learning
models only could find patterns in datasets, where correlations might lead
to suspect conclusions. A random-control experiment for the analysis of
collision avoidance scenarios is proposed in section 3.7. A test environ-
ment should help to analyze the behavior of pedestrians with oncoming
vehicles (e.g., use of virtual- and augmented reality, brain scanner devices,
and non-movable walking platforms). To perform experiments in reality
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in the form of a randomized controlled experiment to analyze collision
avoidance systems with real pedestrians is not ethical. It is not realistic to
perform dangerous and real experiments with high-speed collision avoid-
ance maneuvers with real pedestrians. It might be difficult to analyze the
behavior of pedestrians in dangerous situations (e.g., accidents). The causal
relationships might interest the movement prediction algorithms in critical
situations. The causal relationships between the behavior of a pedestrian
and the oncoming vehicle are complicated. However, some relationships
could be modeled by causal inference. The field of causal inference describes
settings for interventions and counterfactuals. It might provide an adequate
framework for modeling the change of intentions to new targets or decisions.
Interventions could happen in the current situation, where the exact time is
important (cyclic models), or in non-cyclic models where the intervention
affects a population of pedestrians. Non-cyclic models could be of interest to
city planners. A new building or construction site (intervention) could affect
the typical movements, habits, and decisions of a population of pedestrians.
An example of cyclic models would be the effect of the intervention on an
oncoming vehicle on a walking person, where the exact time for the influ-
ences is essential. Also, a phone call or a new intention could be interpreted
as an intervention. Section 3.6.2 gives a hypothetical example for non-cyclic
models which might affect a population of pedestrians. This example could
be applied to the example shown in figure 3.37, where the initial starting-
and end-positions are shown. The question "How would the typical starting
and end positions be changed after placing warning signs or advertising
pillars, making street lettering or a construction site" might be interesting.

3.6.2. Example for non-cyclic interventions

Figure 3.48 (observational distribution), 3.49 (intervention distribution) and
3.50 (counterfactual distribution) shows a fictive experiment with a popu-
lation of particles representing a group of persons. It should describe an
experiment which might show the effect of an intervention to a group of
people in a room. The dots transparent dots show initial positions and the
end positions with opaque color. The group is represented by the color (blue,
green, red). We use an example with non-cyclic interventions. There might
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(a) Observational distribution. The agents are all in the
middle of the room (transparent colors) and walking to
different directions dependent on their group (green,
red, blue). The opaque colors show their end position.

(b) Prediction of the observational distribution for an un-
observed agent.For one agent at a certain position
(outside, but near to the starting position of the green
group) it is possible to use the inference technique
described in [Wiest et al., 2012] to predict the direc-
tion of the unobserved agent. The algorithm predicts
that the agent is walking in the direction of the end-
positions of the green group (thick green arrow). The
ellipses show the contours of the posterior probability.

Figure 3.48.: Results of the hypothetical example (observational setting)

(a) Interventional distribution. An external intervention
(e.g. a fire alarm) might affect the behavior of all
groups to move in direction of the emergency exit.

(b) An unobserved agent might also be affected by the
intervention, so that the arrows (predicted means) are
directed to the right direction.

Figure 3.49.: Results of the hypothetical example (interventional setting)
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(a) Counterfactual distribution. The counterfactual distri-
bution is conditioning the interventional distribution
(compare figure 3.49a). What would have happen if
only a subgroup of the population would be in the
experiment (all the agents reaching an end position
with end y-position py,kj > 0). Many of the red agents
and some of the green and blue group would not be
considered in the experiment with the intervention. (b) Counterfactual cond. distribution

Figure 3.50.: Results of the hypothetical example (counterfactual setting)

be the observational probability distribution between the historical state xh
(transparent colors) and the future state x f (opaque colors) described with
the Gaussian mixture distribution [Wiest et al., 2012]:

p(x f , xh) =
I

∑
i=1

πiN (xh, x f |µi, Σi) (3.66)

To perform a prediction from xh to x f the conditional mixture density [Wiest
et al., 2012] is:

p(x f |xh) =
p(xh, x f )∫

p(xh, x f )dx f
=

I

∑
i=1
N (x f |xh, µ̃i, Σ̃i) (3.67)

with the parameters

π̃i =
πi p(xh|µi,xh , Σi,xh,xh)

∑K
j=1 πj p(xh|πj,xh , Σj,xhxh

(3.68)

µ̃i = µi,x f + Σk,x f ,xh
Σ−1

i,xh,xh
(xh − µi,xh) (3.69)

Σ̃i = Σk,x f x f
− Σi,x f xh Σ−1

i,xhxh
Σi,xhx f (3.70)
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µi =


µi,xh

µi,x f


 (3.71)

Σi =


Σi,xhxh Σi,xhx f

Σi,x f xh Σi,x f x f


 (3.72)

If the future state x f is independent from xh this would apply that p(x f |xh) =
p(x f ) and the causal relationship between these two variables would dis-
appear. Otherwise their is a causal relationship. We assume the initial
distribution xh:

p(xh) = N (µh, Σh) (3.73)
Depending on the sample position for x for N (x, µh, Σh) a KMeans algo-
rithm clusters the initial distribution [Murphy, 2012] in three groups. Each
person gets a label representing a color based on the initial position. Depend-
ing on the label i ∈ {red, green, blue} the person goes in another direction.
The end-position is dependent on the label of each person. Assuming there
is an intervention from the environment (alarm, signpost, oncoming cars, or
something else). Also, a consultation would influence the behavior of the
subjects to go a certain direction, compare Figure 3.49a. As in section 2.2.3
the do-operator introduced by J. Pearl [Pearl and Mackenzie, 2018] describes
an interventional setting. This intervention could be described with:

p(x f |xh) =
I

∑
i=1
N (x f |xh, do(µ̃i := µ̂i, Σ̃i := Σ̂i))∀ i ∈ {1, . . . , I} (3.74)

In this thought experiment only µ̃i has changed to µ̂i and Σ̃i has changed to
Σ̂i for all i ∈ {1, . . . , I}. Figure 3.50a shows the counterfactual distribution
when the effect is conditioned. The conditional distributions for a certain
point (from the green label) is shown in Figure 3.48b, 3.49b and 3.50b.
The figure also visualizes the contours of the ellipses. Intervening in the
effect could break the causal relationship between the cause and effect. This
situation would mean there would be no xh in formula 3.74. It does not
seem important where the subject is initially coming from in this case. The
intervention would lead to a certain end-position no matter from the initial
position.
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3.6.3. Interventions on cyclic models

The effect of an intervention in a situation with time-dependency is of
interest in cyclic models. The influence of the oncoming vehicle on the
pedestrian is of great interest. The pedestrian’s physical parameters (velocity,
acceleration, jerk) might be an exciting example that could be applied to
the motion prediction and new pedestrian models. In physical systems
(e.g., vehicle), there exist a causal relationship between the actuation of
forces and a resulting movement, compare figure 3.51. Suppose a vehicle
is accelerating by the drivetrain and assuming no steering and optimal
conditions (e.g., flat, clean, and dry streets without obstacles). In that case,
we could assume a causal relationship between the acceleration and the
locomotion. The causal relationship might be disconnected if the road is
slippery (e.g., black ice). The ability of a person to walk or run fast depends
on several factors (e.g., physical-, medical, and psychological conditions):
Fitness, injuries, age, situation, traffic situation, conventions of society, and
also cultural factors. Also, technical tools could help to reach fast velocities
(e.g., skateboards, electric scooters). As in the models of cognitive MDPs
of section B.2 described, there exist (causal-) relationships between human
cognition and the human body. The decisions of a healthy person would
lead to the choice of the walking speed v(t) 30. Figure 3.51 shows the simple
principle that the actuation of a mass with forces causes a movement on
a macroscopic level31. Figure 3.52 shows that this kind of physical force
(e.g., in movement prediction, the principle of social forces was introduced)
does not tell the whole story. This model shows that human locomotion is
more complex and has different subsystems interacting. A healthy person
with heart-pumping blood in the body (cardiovascular) and a functioning
nerve system are prerequisites of this model. The interested reader might
read appendix chapter B for more details. The model has three subgroups
(cognition from the brain, the actuation of forces by muscles, and the
interior sensing of the human body). This model is very simplified and
should only motivate the introduction of the cognitive-MDP and cognitive-
POMDP in figure 3.53. In current research on the brain regions, there

30The causal relationship between the brain control signals and the actuation to the muscles
is broken in a paralyzed person.

31Without considering friction effects and only considering Newton-laws.
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is much more complexity in abstract thinking in the human brain. The
brain regions interact with each other to solve complex cognitive tasks
(compare B). The cognitive MDP (figure 3.53a) and POMDP (figure 3.53b)
in section B complete the models. The cognitive MDP is introducing two
states c(t) (cognitive state) and x(t) (body state ), compare figure 3.53. The
cognitive POMDP is an extension by adding the observational state o(t)
and influences the cognitive state c(t). The observational state o(t) can be
represented by the pictures sensed by the eyes and audio signals by the ears.
The cognitive state can be measured with brain scanners. They allow us
to represent brain activities in three-dimensional pictures. This illustration
represents the brain with voxels (pixels in 2D images and voxels in 3D
images), and the image was produced synthetically.

3.6.4. Pedestrian movements with causal do-operator

Figure 3.54 shows a simple modeling strategy of a system with state x =
[px, py, vx, vy, ax, ay]T and control input u = [ux, uy]T. We take the model
from [Liu et al., 2017] and [Hartmann and Watzenig, 2019a] for acceleration
and velocity constrained models for the simulation. For simplicity we only
showing this example for the acceleration constrained model. It also holds
for the jerk- and velocity constrained model.

ẋ(t) =




0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0




︸ ︷︷ ︸
A

x(t) +




0 0

0 0

0 0

0 0

1 0

0 1




︸ ︷︷ ︸
B

u(t) (3.75)

The control input is constrained u(t) ∈ B(amax) where B(amax) is a two-
dimensional ball parameterized with the maximal acceleration amax. For the
jerk- constrained and velocity constrained model it is the same procedure
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with different B(vmax) and B(emax). We could compute the reachable sets
from these different models Rv, Ra and Re and combine it by geometrical
intersection R(t) = Rv ∩Ra ∩Re. Now we could assume that we know the
maximal parameters for vmax, amax, emax. This assumption is often not the
case, and the reachable sets have to be estimated R(t). One way to estimate
the reachable sets is to estimate the parameters θ̂ of the corresponding R(t).
In [Hartmann and Watzenig, 2019a] the maximal parameters for the velocity
and acceleration were estimated by Gaussian processes and extrapolation
for a specific situation. We do not know the real system dynamics, control
inputs, and parameters for real-world situations with pedestrians. We could
assume a linear system (for simplicity) and the parameter and control input
set sampled from two different random processes to handle this difficulty.
These random processes change their probability distributions by many
different causes, where causal inference might take advantage. A maximal
velocity and acceleration constrain the system. The control input is getting a
signal from a probability distribution in this case from a normal distribution
ux ∼ N (µxk, Σx), uy ∼ N (µyk, Σy). µxk, µyk are the first ten seconds not
constant and also sampled by a normal distribution. After 10s the mean
values of the normal distributions gets constant µx, µy. This intervention
leads to a u-turn red dot on the trajectory (Figure 3.54 a shows the projection
on the two-dimensional spatial ground). Yellow areas visualize the reachable
sets on the same picture. The velocity acceleration, control inputs, and causal
intervention on µxk, µyk have two sections. The first 10 seconds have time-
variation on µxk, µyk (on the left side of the vertical red line) and the right
side with constant parameters. This simple example shows the movements
of a dynamic system with random control inputs and causal interventions.
We could ask where the dynamic system would move if the probability
distribution would not have changed (counterfactual). In this example, it
probable would move somewhere in the south direction.

3.7. Cognitive Decision Models

This thesis handles a topic with high interdisciplinarity. The analysis of
human behavior is of interest in fields like psychology, biomechanics, and
neuroscience. Environmental analysis is a geoscience topic, with geospatial
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Figure 3.51.: Causal relationship between the forces and movement of physical systems with
selected prerequisites
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Sensing (e.g. nerves, sense-organs)

Motor-Cortex Sensory-Cortex
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Figure 3.52.: Causal relationship between the control signals (actuating) from the brain, actuated
forces on the muscles, and the resulting movements. The interior sensing (body)
detects movements, and these signals come to the human brain via the peripheral
nervous system. The sensory cortex (after the Brodman-atlas) is processing these
signals. Via a movement control unit, the signals from the brain are translated into
actuation signals in the motor cortex. Furthermore, the inner cycle of the human
(sensing and actuating) is repeated. The human brain is more complex than this
simple model. It offers the possibility of perceiving information from the environment
(e.g., visual and auditory) and classifying it into concepts.
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c Brain

s Body

acas

(a) Cognitive MDP

o Observation

c Brain

s Body

acas
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(b) Cognitive POMDP

Figure 3.53.: Cognitive MDP and POMDP. The cognitive MDP and cognitive POMDP should
further simplify the concept from figure 3.52 and should represent an abstraction of
the complex process into a computer model with use of markov-models. It should
also highlight the simplifications of the model in section 3.5.5 where a simple MDP
was used for the generation of synthetic movement data. The introduction from the
cognitive MDP and cognitive POMDP can be find in the appendix chapter B. For
the further use and application in automotive settings it is necessary to do more
basic research on the human locomotion processes and measurements like in 3.7)
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(a) Synthetic movement

(b) Velocities, Acceleration, Control input and intervention

Figure 3.54.: Synthetic movement with causal intervention
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analysis and autonomous vehicles’ behavior related to machine learning,
computer vision, control engineering (vehicle dynamics), and information
technology. For the decision-making of safe motion planning of autonomous
vehicles, the thesis proposes a new test environment for basic research. It
might be necessary to validate human prediction models. The decision mod-
els via a new randomized controlled experiment, which offers some benefits
compared to the current state of the art with observational analysis [Hart-
mann et al., 2017b]. For example, in technical applications in macroscopic
mechanical systems (e.g., vehicles), it is often sufficient to model classical
Newton physics. Moreover, where the models describe the energy flow well
after successful modeling and parameterization steps. Taking some mea-
surements, building a dynamic system model, and testing the model with
reality is standard practice. For technical systems, it is a common approach.
Nevertheless, for modeling the behavior of humans, observational studies
are the typical approach. Only taking observational studies has some prob-
lems. Into account, means presupposes that the underlying data describes
the behavior of pedestrians well and generalize it to every situation. An
additional problem compared to technical systems with a state-flow on the
energy principle is that humans are constrained only by physical laws. The
cognitive processes of human decision-making require that a person follow
an intention. Observational studies can have an enormous amount of data
describing human behavior. However, it is hard to guarantee that the data
fulfills the requirements for building good models representing human lo-
comotion. It might work in a specific environment but might fail in another
context. The same problem exists with people from different cultures in
different urban environments. The next emotion, the change of the mood or
simply an observation of the person, could affect a new intention, leading
to drastic consequences when an autonomous vehicle reaches the person.
A randomized controlled experiment could help understand the insights
of human intention making and help explore the causal relationships of
human behavior. A randomized controlled trial wants to answer why a
person is doing something—observational studies answer how a person acts
based on past observations. The development of autonomous vehicles must
guarantee safety. both experiment environments have their validity. How-
ever, there is no complete experiment to understand the entire cybernetic
cycle (a mind-body problem in complex situations) [Hartmann et al., 2017b].
The current state of the art shows a broad spectrum of different technologies
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3.7. Cognitive Decision Models

Figure 3.55.: Steps for technical and human-centered elements. An informal comparison between
technical and human-centered processing steps.

available. In the introduction, we have shown that many different factors
influence the behavior of pedestrians. A randomized control experiment
could help analyze the interaction between human intelligence, the human
body, and the environment. The automotive industry’s current trend is to
build models on observational studies and use (deep) learning models to
model pedestrians’ behavior.

Figure 3.55 shows a comparison between technical and human-centered
systems and classifies technical and human-centered systems by perception,
intelligence, and action, and there exist similarities between the function of
biological and technical systems. Figure 3.56 shows a flow-chart with the
computational intelligence and the human brain as the cause for decision
making. Unobservable help systems are necessary to perform actions with
the body of the vehicle and human. An example is the peripheral nervous
system for the communication process and the bus systems in the vehicle.
Alternatively, the pump systems for hydraulic systems in vehicles as a
pendant to the heart pump blood and oxygen in the cardiovascular system.
Figure 3.57 shows a simple model for the human locomotion. Action signals
as

k coming from the peripheral nervous system change the body state
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Figure 3.56.: The computational intelligence and the human brain are relevant for the decisions
(first layer). There exist unobservable systems. For driving and locomotion dynamics
(second layer). The observable body parts and sensing units are present, and
information can occur via a local environment.

sk by an action signal as
k formed originally from brain activity (Motor

Cortex). There is also a feedback signal from the control transmitted via
the peripheral nervous system, which sends signals from the human body
to the brain (sensory cortex). The sequence of states ck describes the state
of the human brain. The action signals ac

k influence brain activity. Physical
quantities describe the states. Positions in a three-dimensional orthogonal
coordinate system represent body states, and the different technologies (EEG,
fMRI) measure brain activity, compare section B.3. A vehicle measures only
the observable body states (white nodes). The other nodes are not observable
(grey nodes). In [Hartmann et al., 2017b, Hartmann et al., 2018d, Hartmann
et al., 2018a] we proposed a Pedestrian in the Loop environment to place a
test person in a virtual/augmented environment with measuring the body
state. Suppose someone wants to decode the nature and principles of human
locomotion. In that case, it is necessary to extend the pedestrian in the Loop
environments by decoding how observations affect the brain state and how
cognitive intelligence controls the body.

Figure 3.58 extends Figure 3.57 by observation ok of the sense organs from
the environment. The observations influence the brain state by perception.
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Movement (Act)

Intelligence (Plan)

Figure 3.57.: Cognitive MDP

Figure 3.57 and 3.58 are models made from knowledge out from the liter-
ature. The models have to be validated by experiments. Especially brain
activity has enormous complexity. Like images, the granularity of pixels
affects the quality of the picture—the same for the voxel size in 3D images.
Another drawback validating the models is the different sampling times for
measuring the body state and brain activity. The sampling rate for measur-
ing the body states is higher (lower sample time) than the measurements of
the brain state. Figure 3.59a shows the legend of states, meta-states, actions,
and rewards. The state is a measurable physical quantity. Brain activity
and physical positions, and forces of the body state are measurable by elec-
troencephalography (EEG), magnetic resonance imaging (MRI), functional
magnetic resonance imaging (fMRI), and other techniques. The physical
positions of the body state Meta-State is a nonphysical concept that gives a
state an understandable meaning. When a proband is thinking of a chair,
the brain activity patterns are measurable, and the concept of a chair is
describable. The imagination is subjective, and therefore it is harder to
find mathematical representations. Stimuli of the sense organs are often
physically described by images or audio sequences. Action is a process
of acting, changing a state. A reward is a quantity that an agent tries to
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maximize (reinforcement learning). S = {s1, . . . , sNS} is set of body states
(agent). It is representable by the limbs’ positions (leg, feet, hands, and
more). A = {a1, . . . , aNA} is set of actions (agent). Represented by an action
(clapping the hands, opening the door). C = {c1, . . . , cNC} is set of cortex
states (agent). Brain activity patterns are measured by EEG, fMRI, or other
technologies. O = {o1, . . . , oNO} is set of observations (agent). Stimuli of the
sense organs (represented by pictures or audio signals). E = {e1, . . . , eNE }
is set of environmental states. There exists a huge diversity of representing
the environment. Very common is to represent the environment by regular
grids or graphs. It is complex to represent the environment because the envi-
ronment’s semantic meaning plays an essential role [Vasquez, 2010b,Ziebart,
2010, Kitani et al., 2012].M = {m1, . . . , mNM} is set of meta states. Meta-
State is a nonphysical concept that gives a state an understandable meaning.
It describes the concept behind a physical representation and its semantics.
Figure 3.59b illustrates an experimental platform for further research on
human locomotion. The pedestrian in the Loop environment stimulates the
sense organs with a virtual reality scene in an urban environment. The test
person is walking on a non-movable walking platform. Sensors take cycle
measurements of the brain (EEG, fMRI) and body state. This platform would
be a quantitive way to extract and validate models of human locomotion.
In this thesis, this experimental platform’s realization was not realizable
due to project reasons and not the main scientific focus. However, it shows
that the lack of testing makes it difficult to ensure vulnerable road users’
safety. The easiest way is to use observational studies and their datasets.
However, this leads to models that might be acceptable only for a particular
situation and might not be general enough for other situations in urban
environments. [Hartmann et al., 2017b, Hartmann et al., 2018d, Hartmann
et al., 2018a] gives additional details. This section presents models formed
by reading the literature in fields unrelated to engineering topics (Neuro-
science, Biomechanics) and computer science. The Markov property might
not be valid for the cognitive state. Not only the past state might influence
the new state. A randomized control experiment is necessary to do primary
research exploring a model.
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Figure 3.58.: Cognitive POMDP
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Figure 3.59.: 1. Measuring the the relative position in a virtual environment. A non-movable
walking platform might be used. 2. Measuring of the brain state. 3. Stimuli of the
sense organs by a virtual- or augmented- reality. 4. Measuring of all body movements.
(Silhouette from a person [Silhouette of a Person, 2017])
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The idea of this chapter is to give new models for pedestrian movements,
especially embedding a dynamic system x(t) = f(x(t), u(t)) on a manifold
M. The models are shown in simulations programmed in the programming
language Julia© [Bezanson et al., 2017] for adaptive hull computations of
pedestrians. Section 4.1 gives mathematical details for the implementation
of pedestrian movements. Section 4.2 visualization of exemplary results
with the simulator, model-predictive control (MPC) of the vehicle, and
pedestrian models modeled by causal inference and with Markov Decision
Processes (MDP)s. The focus is not on optimizing the MPC (convexity and
nonlinear programming) but rather on presenting new modeling strategies
for pedestrian movements. Section 4.3 discusses the causal inference for
the goal intention. Section 4.4 offers the possibility to run reachable sets
on topological spaces and connect the reach sets for complex urban en-
vironments. Section 4.5 compares different pedestrian models for twenty
simulation runs to evaluate the performance of each simulation with other
simulations. The information on used packages is in the appendix.

4.1. Mathematical details for the implementation
in Julia programming

This section aims to combine the mathematical concepts of the previous
chapter. The aim is to get a new framework for pedestrian movements
consisting of Causal Inference (CI), Reachability Analysis (RA), and Markov
Decision Processes (MDP) embedded on a manifoldM. Previous section 3.5
describes pedestrian movements in different mathematical expressions. A
very common way is to describe it as a dynamic system ẋ(t) = f(x(t), u(t))
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on a single euclidean system with orthogonal basis vectors e1, . . . , eD or
with a spatial graph G = (V , E) (V for node-set and E edges set and corre-
sponding mathematical graph theory). One could describe the movements
on the spatial graph with a finite Markov chain and stochastic matrices P
and the element Pi,j = P(si, sj) (see [Sargent, J. Thomas et. al., 2022] for
mathematical concept). Figure 4.1 shows four pictures with a yellow non-
regular grid. The environment could be described as regular- (transparent
lines with grey color) or non-regular grid (yellow grid) with disjoint patches
Xi ∩ Xj = ∀i ̸= j. A regular grid might be easier for mathematical applica-
tion (because of equally placed patches). For example for a set ||x||∞ < L/2
and with ∞-norm and radius L/2 (from traversing the borders length L)
and a regular grid with equally placed nodes inside set (n× n columns and
rows). We would get a small patch with length l = L

2∗n . If we assume a
square with L = 20m where a person could move, we will get a length for
2m (n× n = 5× 5 equally 25 placed nodes). This parameterization is inac-
curate, so we would place more nodes to get a more dense spatial network
and increase the n. Depending on n we might change the quality of the
representation by increasing n by getting more complex stochastic matrices
P . The resulting probability matrix increases with mathematical complexity
O(n2) (compare table 3.1 and considering Markov property). Each node
would represent a subset of the initial set (cell representation). However,
on the other side, it might not be adequate for real urban environments.
That is why we use a non-regular grid (top left picture). We connect the
patches via a topology T and project all patches on the plane so that the
atlas A completes the manifold descriptionM = (X , T ,A). The grid could
be dependent on the environmental structure. The two trajectories (blue
and red) show some pieces of evidence of how pedestrians could walk
in the environment. A problem with the spatial graph is that it does not
fit well to describe both trajectories adequately. Elements of the trajectory
τkr ∈ T (tuple of timestamp kr and position pkr = (px,kr , py,kr)) might be
classified to a node i if it is element of the patch τkr ∈ Xi. Two trajectories
T1 (blue) T2 (red) could be represented on the top right picture by a spatial
graph (bottom left picture). With a set of nodes V = {vA, vB, vC, . . . , vI}
and index set I = {′A′,′ B′,′ C′, . . . ,′ I′} on the bottom right picture, and the
corresponding patches X = {X0,X1, . . .X8} we can represent the spatial
graph on the bottom left picture. This example in figure 4.1 shows some
interesting issues in encoding spatial movements with spatial graphs. The
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underlying mesh is not very dense, so that both trajectories might have the
same indexes (figure 4.1). The blue one has a similar order with "A, D, E, B,
C, F, I" as the red one, "A, D, E, B, C, F, E, F, I." Some local information about
the coding approach with spatial gets lost. For example, the (U-turn of the
red trajectory) inside will not be decoded. The coded information suggests
that both trajectories are similar. The error could be immense for a spatial
graph by falsely placing the nodes. The computational complexity increase
with the node size. For a regular grid by n× n for a ball with patch as a
hyper ball Bn(r) = {x|||c− x||n < r, x ∈ RD}. Instead of using a spatial
graph, we want to embed a dynamic system inside a manifold. We adapt
the formulation of formula 3.22 for a local version reachability analysis
( [Althoff, 2010]) and embed it on a manifold M for a certain patch with
label q:

RXq ∗ Xki :=

{x(r) =
∫ r

0
f(x(t), u(t), θ)dt|

xki ∈ Xki ⊂ Xq, u([0, r]) ∈ Uq, θ([0, r]) ∈ Pq}

(4.1)

If we have knowledge K from measurements, we could use it to estimate and
predict the most probable values for x̂ki , û([0, r]), θ̂([0, r]) for the parameter
set and the form and structure of X̂q, Ûq, P̂q. We convert the approach to a
local and adaptive funnel (hull, or adaptive RA) prediction approach. We
could also embed the probabilistic version with the computation of the
Chapman-Kolmogorov equation, if we would assume for simplicity Markov
property on a local path:

PXq ∗ Xki :=

{p(xki |xki−2
) =

∫ ∞

−∞
p(xki , xki−1

)p(xki−1
, xki−2

)dxki−1
} (4.2)

Figure 4.2 shows the simplified and programmed Julia simulator with differ-
ent modules. The simulator was programmed with a signal-slot architecture
that offers discrete events for different modules to ensure high flexibility
and performance. The interested reader might take a look on the implemen-
tation in section C.1 for additional details. The theoretical focus is on the
adaptive hull computation, causal inference for intention change, and the
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Markov-Decision Process (MDP). The main focus is on handling pedestrian
trajectories. However, interaction with the motion planning of the vehicle
plays a role in this section. The model predictive control (MPC) algorithm
for the vehicle is not the main focus of the thesis (see section 1.4). The
cost-function is simply set the p-norm distance J = ||xv

k − xv
k ||p. It offers a

simple way to compute planned trajectories for the vehicle. Also, the control
input could be incorporated for the discrete time-steps {ki, k j}:

x∗kr
, u∗kr

= arg min
j

∑
r=i

J(xkr , ukr) subject to (4.3)

a) Vehicle dynamics (kinematic single-track), see section 2.3.1 (4.4)
b) Static obstacle avoidance (lane keeping) (4.5)

c) Dynamic obstacle avoidance (pedestrians) (4.6)

The single-track model has some nonlinearities (steering- and acceleration
constraints) with ẋkr = f(xkr , ukr). The complexity of the environment
for static and dynamic obstacle avoidance could lead to some difficulties.
From which side should the pedestrian be bypassed. With a Mixed Inte-
ger Linear programming approach, one could introduce other variables.
Simple environments like a straight street could be incorporated by some
inequalities and define some hyperplanes (x <= Ab). We could incorporate
obstacle avoidance constraints for a pedestrian like in figure 4.3. Seven sets
X p1 : 7kr represented by support functions (see arrows). The support func-
tion ρ(m,X p

kr
) for the first pedestrian is visualized by a blue hyperplane in

direction to the vehicle (by vector m). Further difficulties could be that the
solver cannot find a local/global optimal solution. There could be a lot of
different situations where the solver cannot find a solution. Especially when
there are many non-convex constraints. One could linearize vehicle dynam-
ics around a knot-point xv,∗

kr
(see 2.3.1) with the Jacobi-Approximation based

on the current state of the vehicle xv
k to get a linear system on the knot point

or reformulate the vehicle model compare [Pek, 2020]. With the linearization
we get a linear system xkr = Axkr + Bukr . Similar to the extended Kalman
filter we use this linearization we compute all possible future sets by com-
puting the reachability analysis Rv,∗

kr
(X v,∗

kr
,U v,∗

kr
), xv,∗

kr
∈ X v,∗

kr
for the current

knot point. For example, the structure of the urban environment could be
incorporated. In a basic example, on a straight street, the allowed configu-
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ration space of the vehicle is divided by two hyperplanes representing the
dimensions of the street. The reachability analysis could be incorporated
into the optimization. The mathematical constraints hold the vehicle on the
lane (static road leads to static constraint). The car does not collide with the
future pedestrian sets (walking pedestrian leads to dynamic constraints).
The computation of a model predictive control approach and underlying
optimization leads to future vehicle states and control inputs. The algorithm
does not reach the global optima because of the nonlinearities and the
approximation errors. It performs optimally in only some subregions of the
control state-space. We used the package [Dunning et al., 2017] which gives
the optimality status in each moment. It is not the goal of the simulator to
enhance the optimization strategy of the motion planning. It is not trivial to
incorporate dynamic obstacle avoidance with the pedestrian. One way is to
use the current distance between the vehicle and pedestrian dv,p

kr
and incor-

porate it into the optimization process. The focus of the thesis is to propose
new pedestrian models for dynamic obstacle avoidance (pedestrians). We
highlight only some selected details and skip further mathematical details
and refer to the actual implementation on Github™. To see the principle
idea compare figure 4.3. Between the current state of the vehicle xv

kr
one

could define a dashed blue line for the linear constraint to the observed
pedestrian with label p1 at kr. The seven pedestrian sets X p1:7

kr
are defined

by support vectors defining the border of the set. In order to get an op-
timization, an approach of convex optimization with realtime-capability
compares [Pek, 2020] with reachability analysis. Nevertheless the simulation
results offer realistic behavior in figure 4.5 and compare section C.1 for
more simulations and further details on the used packages. The first point
is to enhance classical reachability analysis with capabilities to adapt to the
current situation. Similar to extrapolation of the future trajectory. One could
predict the future state sets of a pedestrian X̂ p

ki
(for example by computing

the future support functions compare figure 3.47). Classical reachability
analysis could be used for worst-case scenarios of computing all plausible
physical future positions. In formula 2.29 and 2.30 we showed the recursive
formulation of reachability analysis for a linear system:

Rki+1
= state-dependent-operation(Rki)︸ ︷︷ ︸

fixed group action on homogeneous solutions

⊕ control-input-dependent set︸ ︷︷ ︸
fixed group action on particular solutions

(4.7)
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The package of [Bogomolov et al., 2019] offers different algorithms for
solvers for the basic reachability analysis computation. The reach state set
volume for conventional computation might get very large for a worst-
case scenario. Instead of using a maximal velocity and acceleration for
all situations, one could use machine learning (compare [Hartmann and
Watzenig, 2019a]) to make adaptive belief set computations. The motion
planning of a vehicle gets less conservative, and it might be the case that
the vehicle gets faster to the target. However, on the other hand, it is also
riskier. The implementation of MDPs is done with the package [Egorov
et al., 2017]. The locomotion of pedestrians could be modeled with Markov
Decision Models (MDPs) with 4.2. The package [Egorov et al., 2017] offers
different solvers, and for the performance of two algorithms, we computed
the training time. Table 4.2 shows a benchmark evaluation for the simu-
lation time for a simple Markov Decision Process (MDP) approach with
the package [Egorov et al., 2017]. The MDP tries to maximize the expected
reward with a continuous system ẋ(t) = Ax(t) + Bu(t). As described
one could model the pedestrian movement as a MDP or POMDP, compare
figure 3.57 and 3.58. The Julia-POMDPs package [Egorov et al., 2017] offers
a different set of solvers for MDP and POMDPs. The simple benchmark
example of a six-dimensional dynamic system compare formula 3.75 should
learn to get the highest rewards to reach a certain area. This benchmark
example shows that the Monte Carlo Tree Search (MCTS) solver (original
paper [Kocsis and Szepesvári, 2006]) with static arrays. This algorithm is
faster than the costly local approximation value iteration solver with grid
interpolation. Both solvers are adequate for continuous state spaces, but
the MCTS solver is adequate for online optimization problems. Only the
random and stochastic policies are faster than the MPC algorithms. A sim-
ple double integrator xki+1

= xki + TS(Axki + Buki) is used to sample the
control input uki ∼ U(l, u) ⊂ B(r). The U(l, u) uniform stochastic process
produces samples between the lower l and upper u level vector. The agent
travels in different random directions with random velocity in the random
policy. The acceleration vector is sampled from a fixed distribution in a
stochastic policy.
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Figure 4.1.: Trajectories on a manifold and graph

Figure 4.2.: Simulation program in Julia programming
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Figure 4.3.: Obstacle avoidance constraint for a current situation
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MCTS Solver with Static Arrays (SA) 371.313 ms

Local Approximation Value Iteration Solver (grid interpolation) 21.378 s

Random policy 47.931 ms

Stochastic policy 97.985 ms

Table 4.2.: Benchmark simulation with Julia Programming [Bezanson et al., 2017] for some MDP
solvers from the Julia-POMDPs package [Egorov et al., 2017]. The training time for
local approximation Value Iteration solver (grid interpolation) is bigger than MCTS
solver for a simple example. The reward function is set R = y to positive y coordinate
for a double-integrator in a constrained state space. Solvers are MDPs for continous
systems. This example should only show the difference in training time for a very
simple example.
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4.2. Simulations

4.2. Visualization of simulations

Figure 4.4, C.1 and figure C.2 shows some visualization from the simulator.
The pink vehicle set (compare figure 2.16 and figure 4.4) represent a vehicle
driving to a certain target state t minimizing the cost function J = ||x(t)−
t(t)||22. In [Schratter et al., 2019] we showed that for certain circumstances,
the motion planning could drive faster by adapting the reachable sets
(pedestrian on the sidewalk). A vehicle is driving to a fixed goal state
(behind the pedestrian) optimized with MPC. A pedestrian is waiting (short
random walk because small movements can also be measured (noise) when
a person is waiting) in a certain area or walking. The reachable sets for the
vehicle and the pedestrian are computed and visualized. The reachable sets
of the vehicle and the planned trajectories from the motion planning are
visualized together. The collision avoidance constraint is activated when
the reachable set of the vehicle intersects with the reachable set of the
pedestrian Rv

kr
∩Rp

kr
̸=. That is why the vehicle first drives in the direction

of the pedestrian. After recognizing the pedestrian, it bypasses it. The
green arrow simply shows the constraints for the MPC algorithm (compare
4.3). The constraint is not optimized to the reachable set, which could be
done in future research. There are some further issues in optimizing the
MPC approach, which was not the focus of this thesis. The performance
is not always optimal. There are many reasons for that. The unintended
movements of the pedestrian might influence the possible state of space.
For example, a fast oncoming vehicle might not find any optimization result
when the pedestrian jumps on the street, where a collision is not avoidable.
Fortunately, the results have an acceptable and reasonable performance like
in figure 4.5, but these problems have to be tackled in the future (finding
robustness and trustable of the MPC approach). The used packages for
this simulation and their references can be found in the yml-files for each
simulation run. The vehicle model from section 2.3.1 was programmed in
Julia. For each simulation cycle k, we approximate the nonlinear system to a
linear system by computing the Jacobian using the tool [Robot Exploration
Lab at Carnegie Mellon University, 2022]. Other important packages are
[Egorov et al., 2017] for MDP simulation, [Bogomolov et al., 2019] for
reachability analysis, [Tavares et al., 2021] for causal inference and [Dunning
et al., 2017] for the MPC computation of the vehicle. The states of the
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vehicle and the pedestrian are also visualized in figure 4.5 (and figure C.4
for the simulation in the appendix). The vehicle and pedestrian position,
velocity, and acceleration are also presented with the Euclidean distance
between the vehicle state and pedestrian state. A better approach would
be to present the minimal distance between these two sets over time or
intersection computation to ensure collision avoidance (compare figure C.6).
The status signal figure C.4 is set to 1.00 because an intervention influenced
the pedestrian behavior with the causal do-operator (compare section 4.3).

4.3. Causal inference and goals for the agents

In many prediction models of pedestrians, one assumes a pedestrian fixed
intention. The intention might change by an event. Therefore causal inference
seems adequate to model superficial causal relationships. This section shows
causal inference (adapted with chapter 1 from [Peters et al., 2017]) as
a technique to model intention change for pedestrians. We present two
options of dynamic systems with causal inference. The first approach is
when the causal inference sets the goal state in the initial step. The second
approach is when the goal state (or the control input when a dynamic
system is modeled) and the intention change over time. The state of the
art is discussed in section 2.2.3. We have four different distributions for
causal inference. The initial-, conditional-, interventional-, counterfactual
distribution. For example we might have the observed data of pedestrians of
the current position (xkr , ykr) ∀r ∈ {i, i + 1, . . . , j} and future position after
N steps:

(xki , yki︸ ︷︷ ︸
xi

, xki+N , yki+N︸ ︷︷ ︸
yi

), . . . , (xkj , ykj︸ ︷︷ ︸
xj

, xkj+N , ykj+N︸ ︷︷ ︸
yj

) (4.8)

xr, yr are realisations of the random variables X, Y ∀r ∈ {i, i + 1, . . . , j} If
we are looking for the expectation f(x) = E[Y|X = x] in form a regression
model. The future position might give a piece of measurable information that
could lead to inferring knowledge to encode the intention of a pedestrian.
This approach might have some drawbacks because the cognitive nature
of the decision-making process is hidden. Nevertheless, the idea might
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4.3. Causal inference and goals for the agents

(a) (b)

(c) (d)

(e) (f)

Figure 4.4.: A vehicle (represented by a pink rectangle) with planned trajectory (blue dots) and
orange reachable sets is driving to a fixed target state. A pedestrian is waiting on the
right, represented by a red hexagon. The pedestrian makes small movements modeled
with noise so that the resulting reachable sets are not symmetric. The goal state
of the vehicle is behind the pedestrian at the position, so that vehicle cannot drive
directly to the goal state. The reachable sets are over-approximated as rectangles.
Other forms like octagons or sets by support functions could further be tested. In
this example, only a classical reachable set computation was used by setting maximal
acceleration, and velocity [Liu et al., 2017].
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Figure 4.5.: Each simulation run has the state-change of the pedestrian and vehicle (constrained
position, velocity and acceleration and control inputs)

bring some simple tools for designing pedestrian models. We might take a
selection from the dataset to query a set of realizations for specific conditions.
For example, if we observe the movements of a specific area, where the
pedestrian may come. If we use a force to change the dataset by intervention
with the do−operator and the resulting interventional distribution P(do(·)).
We could formulate the counterfactual probability distribution with causal
inference by conditioning the interventional distribution. If we took the force
to change the reality, what kind of observations might have taken place. The
lack of knowledge and the diverse and complex nature of human decision
making might make the formulation f(x) = E[Y|X = x,H1] nontrivial.
There might be no single solution if not all information is measurable.
Rather the must be a set of possible directions where a pedestrian might go.
We might adapt the tools for causal inference for modeling the random target
for a group of virtual agents without any dependency on time. Alternatively,
suppose we select a single agent. In that case, we compute different targets,
control inputs, or other models to model the change in relationship with

1H might represent unknown/hidden and dynamic information which are not independent
and identically distributed and change the resulting distribution
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4.3. Causal inference and goals for the agents

time. Figure 4.6 shows an example of different target distributions. On the
side, the marginal distributions for x- and y-values are plotted for further
understanding. The initial distribution P(X|Ber) is set to define four different
targets with different probabilities. We use two Bernoulli distributions Ber(·)
to model the side-selection of the person Ber(ρside) (if it is true the agent
goes to the upper sidewalk otherwise bottom sidewalk and the ρside as the
parameter of the Bernoulli function) and the x-position (left or right). The
Bernoulli-distributions has two binary outputs. From the distribution we
sample the target position with uniform distributions Uniform(a, b). The
probability density function for a Bernoulli function is [Bishop, 2006]:

f (x|ρ) =
{

ρx(1− ρ)1−ρ for x = 0, 1, ρ ∈ [0, 1],
0 otherwise

(4.9)

For the continuous uniform distribution the probability density function
[Bishop, 2006] is:

f (x) =

{
1

b−a for a ≤ x ≤ b,
0 otherwise

(4.10)

We could have used other distributions to model the target selection of a
pedestrian like normal distributions or others. It is reasonable that such
simple distributions could model real human behavior (causal structural
learning). Nevertheless, one could use this approach to generate data to test
the functionality of autonomous vehicles. Moreover, the approach benefits
from interpreting the data for real urban environments. One could model
the distribution for the likelihood that a pedestrian has a preference for
the supermarket, the park, and other areas (compare section 3.5). We could
sample the target position ptarget with x, y coordinates from the target
distribution ptarget = (x, y) ∼ (Xpos, Xside). For the x coordinate we get:

x ∼ Xpos =

{
Uniform(8.0, 12.0) if b ∼ Ber(ρpos) is true (left-position)
Uniform(18.0,22.0) otherwise (right-position)

(4.11)
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And for the y coordinate we get:

y ∼ Xside =

{
Uniform(4.0, 6.0) if b ∼ Ber(ρside) is true (upper sidewalk)
Uniform(-6.0,-4.0) otherwise (bottom sidewalk)

(4.12)

The conditional distribution is inferred from the initial distribution. We
select a set of samples with certain conditions to answer the question based
on the observed data. For example in figure 4.6b we take all the sample to
ask how is the probability changed if we observe from the initial distribu-
tion only the agents, who have their goal on the upper sidewalk (green)
P(Xpos, Xside|Xside > 0.0). The interventional distribution manipulates the
initial distribution so that we can set new targets (and situations which
could not performed in reality, e.g. testing a collision avoidance algorithm
with real pedestrians). Figure 4.6c changes the x position

x ∼ Xpos(do(Uni f orm(8.0, 12.0) => 3.0)) ={
do(3.0) if b ∼ Ber(ρpos) is true (left-position)
Uniform(18.0,22.0) otherwise (right-position)

(4.13)

If the Bernoulli distribution is true, the agents are "forced" to go to the x = 3
position. Otherwise, the distribution is unchanged. Another intervention is
done with the y coordinate:

y ∼ Xside(do(Uni f orm(−6.0,−4.0) => 1.0)) ={
Uniform(4.0, 6.0) if b ∼ Ber(ρside) is true (upper sidewalk)
do1.0 otherwise (bottom sidewalk)

(4.14)

The counterfactual distribution takes the interventional distribution as a ref-
erence (conditioning). It is the conditional distribution of the interventional
distribution. Figure 4.6d shows the probability:

P(Xside(do(Uni f orm(−6.0,−4.0) => 1.0))|Xside < 5.) (4.15)

We observe the date from the interventional distribution and select all
samples for y to coordinate smaller than the value 5.0. The same for the
x-coordinate. The probability Xpos(do(Uni f orm(8.0, 12.0) => 3.0)|Xpos <=
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4.3. Causal inference and goals for the agents

(a) Initial distribution (b) Conditional distribution

(c) Interventional distribution (d) Counterfactual distribution

Figure 4.6.: Example for initial-, conditional, interventional- and counterfactual distribution to
sample the target of an agent

8.). We observe only the two left intervened data clusters. See how the
marginal distributions for the x-coordinate have changed, while the small
mode for they changed only a bit. These distributions will be used (under
different configuration, other parameters and distributions but the same
concept) in the simulator in section 4.5. The initial-, conditional, interven-
tional and counterfactual distribution will generate the target position. A
Markov Decision Process will find the policy and how to find the optimal
policy to come to the target.
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4.4. Connected reachable sets topological spaces

Figure 4.7 shows the reduction for different values set for the maximal
velocity vmax and acceleration amax. Figure 4.7 presents the cumulative
area Ac of reach sets projected on the two-dimensional ground by the
projection matrix P . Each timestamp ki the projected reachable sets on the
two-dimensional plane, maximal velocity vmax and acceleration amax are
computed (in form of a function with shorthand R(vmax, amax, kr)) for the
time interval {ki, . . . , k j}:

Ac :=
j

∑
r=i

area(P · R(vmax, amax, kr)) (4.16)

This chapter aims to show to connect reachable sets (successive computation
of reachable sets over time). A reachable set Ra,ki,kr for a time interval [ki, kr]
is connected Rb,kr,kj if there is subset Ra,kr ∩Rb,kr ̸= at time kr. In section
3.5 it was mentioned that we could use different techniques for movements
and incorporate the environment. Figure 4.9 shows connected reachable sets
starting in the center. The green reachable sets show the first time horizon
between [t1, t2], the second time horizon [t2, t3] in red, the third [t3, t4] in
yellow and the fourth reachable set in blue [t4, t5] . The last set of each flow
pipe (set of reachable sets over time) has 30 sample points. One sample was
selected randomly instead of connecting the whole flow pipe to another flow
pipe. At the next point, the next flow pipe starts. The first two reachable
sets in green and red in the right picture have nearly the same appearance
as the left picture. The third and the fourth reachable sets have half of the
allowed maximal velocity and acceleration. It shows that the cumulative
areas of yellow and blue flow pipes are much smaller than the first two flow
pipes. Compare green and red flow pipes in appearance with the yellow
and blue in the amount of area. This simple example should show that the
maximal velocity and acceleration parameters might enormously impact the
resulting area, which is forbidden for the autonomous vehicle. Be aware that
the sampling process on the left and right sides is not the same. The velocity
direction could also be different (the sampling process on the left picture
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4.4. Connected reachable sets topological spaces

Figure 4.7.: Cumulative area of reachable sets for a specific time horizon. A reduction of the
maximal parameters could lead to a significant reduction in the cumulative area.
Only for small velocities, a bigger acceleration was computed. This example is not
validated with experiments from real persons. Persons might have different physical
conditions. Also, the curve is computed randomly. It should highlight that persons
could accelerate in the same way under high velocities with the same conditions. It
makes no sense that a person has high acceleration and velocity without technical
tools (electro-scooter).
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Figure 4.8.: Connected reachable sets starting at the center point (0,0) with the green reachable
sets. The red reachable set is connected with the green one. From there it goes to
the yellow and blue reachable sets. The sampling process on the right side is different
on both pictures.

Figure 4.9.: Connected reachable sets
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is different from the right picture, so the form and direction are different).
This change is why all the flow pipes of the same color have different forms,
and the yellow and blue ones on the right side also have different directions.
In [Hartmann and Watzenig, 2019a] prediction models were used to predict
the meta-parameters. This example from figure 4.9 shows also possibility
to model reachable set in topological spaces Xi ∀ i ∈ I compare figure
3.44b. In the street, the pedestrian might walk faster to traverse the street
(higher maximal velocity and acceleration) than on the sidewalk. On the
other hand, a vehicle might have a causal influence that the pedestrian stops
or walks faster, depending on the individual’s reaction. This behavior might
be modeled by a stochastic process, Bayes Graph, or causal model on the
meta-parameters of the reachable sets.

4.5. Evaluation over different pedestrian models

The simulator has different pedestrian models. Model a) and b) are solvers
for optimizing MDPs, where a) is faster in learning a new policy than b).
c) and d) are stochastic policies where c) has a random white noise and d)
is a fixed stochastic policy. Model e) is an affine translation. Model f) is a
stochastic policy with a causal intervention on random time k. The random
time is modeled with a Bernoulli process. Model g) has random meta
parameters on reachable sets (maximal velocity and acceleration). Model
h-k combines causal inference and MDP with an MDP MCTS solver. We
used the implementation of following packages [Egorov et al., 2017, Tavares
et al., 2021] and the combination of the packages in table C.1 for the whole
simulator:

a) MDP Monte Carlo Tree Search (MCTS) Solver (fast)
[Kocsis and Szepesvári, 2006]

b) MDP Local Approximation Value Iteration (slow)
c) Random policy (random walk for the control input of a double inte-

grator)
d) Fixed stochastic policy (similar to [De Nicolao et al., 2007b], like in

formula 2.36)
e) Simple translation with fixed translation vector t and xki+1

= Atxki
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f) Stochastic policy with causal intervention
g) Random meta parameters reachability sets
h) Causal inference and MDP-MCTS Solver - initial distribution
i) Causal inference and MDP-MCTS Solver - conditional distribution
j) Causal inference and MDP-MCTS Solver - interventional distribution

k) Causal inference and MDP-MCTS Solver - counterfactual distribution

The models from a-e are from the literature. The models e-j are models
by considering new kinds of models for pedestrians. The models g-j are
using the Markov Decision model from a). The concepts of causal inference
(initial-, conditional, interventional- and counterfactual distribution) for
modeling of target distributions in section 4.3. For each simulation model,
we use 20 different simulations and different initial states for the pedestrian.
This way of the experiment should be a kind of stress test for the simulator
and different initial positions of the pedestrian. All figures from 4.10, 4.11a,
4.12 have boxplots (salmon-colored) and densities (blue) for each algorithm
(a-k). Figure 4.10 shows the evaluation of different pedestrian models (a-k)
and their maximal values for velocity and acceleration in a single simulation
run. It shows the densities for 20 simulations for each pedestrian model
(a-k). Figure 4.11a shows the minimal distance between the state of the
vehicle and the pedestrian state (for the sake of simplicity, the euclidean
distance was used). Figure 4.11b shows how far the vehicle has come for
different situations (x-value). Figure 4.12 shows the different simulation
times in total comparison to the maximal simulation time with the Local
Approximation Value Iteration (LAVI) solver for MDP. As in table 4.2 shows
also that the 4.12 MDP with Local Approximation Value Iteration is very
slow. All other algorithms are less than 10 percent faster than algorithm b).
The algorithms are solvers for classical MDPs and continuous dynamic sys-
tems, where a reward is placed randomly in the pedestrian area. The solvers
find an optimal policy for each cycle to compute the next acceleration. A
random policy is sampling the next acceleration vector by a random process,
whereas the fixed stochastic policy has a fixed probability distribution for
sampling (compare formula 2.36, illustration 3.25a from [De Nicolao et al.,
2007b] as a reference). The simple translation is only iterative computation
of formula 3.51 and angle θ = constant. In model f , the distribution for
generating the control input of the system is changed (changing the in-
tention of the intention by do-operator in causal inference) after a random
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Figure 4.10.: Maximal velocity and acceleration for different pedestrian models (a-k)

amount of time (modeled with a Bernoulli distribution, compare figure 3.54).
The meta-parameters are set randomly in model g by a stochastic process
(compare figure 4.9). The models, "h-k," model a) with the MDP-MCTS
solver were used to reach a certain goal with a Markov Decision Process.
The sampling of the target goal (offline, sampling before the use of MDP)
was done with the initial distribution in "h." Followed by the sampling
process of the conditional distribution in "i." After that, the interventional
distribution "j" sampled a target. This process was followed by the coun-
terfactual distribution "k." The Euclidean distance between the vehicle and
the pedestrian state is visualized in figure 4.11b. For each model, it varies
a lot dependent on the initial position of the vehicle and the pedestrian.
The amount of parameters influencing the simulation is not that small, so
further research is needed. In model g, the MPC has problems bypassing
pedestrian movements.
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(a) Minimum distance between the pedestrian and vehicle for different pedestrian models

(b) Vehicle is driving to x-direction. For the end value after a simulation run the x-value of
the vehicle is visualized for different pedestrian models.

Figure 4.11.: Simulation results for different pedestrian models
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Figure 4.12.: The simulation time for different pedestrian models. The simulation time for the
costly local approximation value iteration (LAVI) is referenced near to 100 percent
of the simulation time. All other pedestrian models have less than ten percent of
the simulation in comparison to the LAVI.
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5. Conclusion

This chapter gives a discussion and contribution in section 5.1. Section
5.2 gives limitations on the proposed approach and section 5.3 gives an
outlook.

5.1. Discussion and contribution

Typically encoding the principles of the energy flow in dynamic systems is
sufficient to predict future states in model-based approaches or computing
the reachable sets for all possible future state sets. On the other hand, in
knowledge systems, evidence in the form of data builds the knowledge
basis of the dynamic system in data-based systems. Sometimes the manifold
assumption could help a predictor predict the state flow based on the geo-
metrical structure of data. If there is not much data available, predicting the
future state might be challenging. Human locomotion has three measurable
sources influencing human behavior and dynamics: the human body, the
cognitive system, and the environment. Natural laws constrain the human
body as an energy system. The complex information system of the brain
communicating with the nervous system affects the actions of the human
body. The interaction between the human brain, body, and environment
is complex. Many details and more basic research are necessary to under-
stand the dynamics. It might be a question of future research if the human
behavior is predictable (Laplace demon) if all sources of information are
available. This thesis tries to capture the uncertainty by proposing adaptive
belief sets. Predicting and guaranteeing future positions might be unknown
for a trustable autonomous vehicle. The lack of knowledge of the intention
leads to conflict in the decision-making process. Computing conservative
reachable sets for pedestrians might lead to unnecessarily large areas by
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setting significant conservative parameters for the maximal velocity and
acceleration. Therefore, this thesis proposes estimating the reachable sets for
a specific situation to form an adaptive belief set. One way of handling this
difficulty is to estimate the maximal velocity and acceleration or predict the
future from geometrical sets. This thesis describes pedestrian models with
causal inference between the brain and the body. A contribution of this the-
sis is to use machine learning to adapt conservative reachable sets to current
situations. This thesis presents a simulation platform in Julia programming
for cooperative motion planning and adaptive hull computation for new
pedestrian models. These new pedestrian models combine data-based ap-
proaches with reachability analysis and causal inference. Meta-parameters
for reachability analysis are often unknown in real-world applications and
change over time. A pedestrian might have different maximal velocities
and accelerations in different situations. This thesis proposes to combine
machine learning for the adaption of reachable sets. Another contribution
is that the simulator also has some models from causal inference to model
intention changes for pedestrians. The target distribution consists of the
initial-, conditional, interventional- and counterfactual distributions.

5.2. Limitations

A crucial part of safe autonomous vehicles in urban environments with
pedestrians is understanding the nature of human beings and their decision-
making. It is nearly impossible to describe all aspects of human behavior
in an exact mathematical way and a simulation model. Some aspects lead
to a lack of knowledge of an autonomous vehicle. In advance, the vehicle
cannot know all relevant factors (future intention of a pedestrian) of decision
making. This problem will lead to non-reducible uncertainty in the move-
ment prediction of humans. The complexity of influencing factors that affect
human behavior is vast. Therefore there exists a risk for the human move-
ment prediction to fail and the risk of fatal decisions made by the motion
planning. It is impossible to predict a person’s movements with absolute
certainty and high precisions if their intention is unknown. The complexity
and diversity of human individuals alone make it difficult. It is impossible
to interpret the human being as a closed system alone. Environment, social
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norms, culture, and individual decisions influence a person. It is all ready
for human drivers sometimes a challenge to interpret and predict the deci-
sions of humans. How can you get a machine to correctly interpret human
concepts, social norms, or urban city interpretation? The development is
dependent on computational capabilities and concepts, and each individual
might also have individual preferences and irr-/rational decision-making
(free will). This thesis cannot give a mathematical model which ensures
safe predictions. Therefore human movements are too complex because
cognitive mechanisms are not observable, and the intention is unknown.
The proposed causal models represent only a tiny part of human behavior.
The causal models simplify the relationships between the human brain and
the body movements, where the application to real-world examples might
deliver drawbacks.

5.3. Outlook

Safe, robust movement prediction algorithms for the autonomous system
and driving efficiently in urban environments in the presence of pedestrians
will be a hot topic for the vehicle research community. Absolute safety with
the best efficiency might be the key challenge for building autonomous
vehicles. Safety for pedestrians and vehicles by finding efficient motion
plans in urban environments is crucial for accepting autonomous vehicles.
There are further improvements needed in the perception part. Not all
sensors recognize pedestrians and other vehicles in advance and only in
some specific conditions. Perception is the basis for prediction, where the
context and situational influences might affect a person’s behavior. The
causal relationships between the information perceived and encoding of the
causal information chains are an essential step towards concept learning as
humans do. Which factors could lead to an intentional change, and how is
the vehicle influencing the behavior of the pedestrian. What is other informa-
tion affecting the pedestrian? The causal models are fundamental. Structural
causal learning is an active research field in finding causal relationships
from data. This field only has a few practical solutions. It is necessary to
get more robust set predictions by finding causal relationships between the
environment, human cognition, and body movements. It is also possible
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to research predicting the meta-parameters robust and safe to make the
adaptive belief sets capture complex situations. New optimization strategies
or nonlinear reachability analysis models would be another exciting field.
Ensuring optimality in nonlinear vehicle dynamics could be another feature
for sophisticated scenarios. For databased-learning approaches, deep rein-
forcement learning is another active field where a learning model learns
from data. For safety issues, it would be necessary to ensure robustness
and learning result is, in some sense, dependent on the gathered dataset. It
would be interesting that deep reinforcement learning learns causal struc-
tural relationships for prediction. These ideas should be validated to ensure
pedestrian movement safety in some scenarios. One might also be interested
in robust and set-based prediction algorithms for more complex scenarios
where many different pedestrians are walking and interacting. A structural
causal pattern recognition might be hard to get in real-world scenarios, but
this would be a powerful tool for predicting all behaviors. Also, in scenar-
ios with oncoming vehicles, the pedestrian’s intention might be affected.
Getting large datasets in the form of observational studies might not be
enough. It might be necessary to find the effect in interventional settings.
External influences might change the behavior of pedestrians, and this is
part of causal structural learning approaches. A proposed Pedestrian in the
Loop test environment might offer the possibility for experimental basic
research to understand the whole cycle of human locomotion. For coopera-
tive autonomous vehicles, safety and efficiency for vulnerable road users
are contrary targets, and the development of decision-making algorithms
is not trivial. Existing testing and robot systems reduce a pedestrian’s in-
telligence due to the cognitive complexity of human intelligence. Therefore
new "Pedestrian in the Loop" [Hartmann et al., 2017b, Hartmann et al.,
2018d, Hartmann et al., 2018a] test environments place a test person in
a virtual- or augmented test environment or by replacement by a drone.
This new "Pedestrian in the Loop" offers the automotive industry new
testing possibilities with natural test persons without any safety risks. It
might be interesting to feed a computational intelligence with data to learn
how a pedestrian would behave, like in inverse- and deep reinforcement
learning.
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Numbers and Arrays

a A scalar (integer or real)

a A vector

A A matrix

A A tensor

In Identity matrix with n rows and n columns

I Identity matrix with dimensionality implied
by context

e(i) Standard basis vector [0, . . . , 0, 1, 0, . . . , 0]
with a 1 at position i

diag(a) A square, diagonal matrix with diagonal en-
tries given by a

a A scalar random variable

a A vector-valued random variable

A A matrix-valued random variable
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Sets and Graphs

A A set

R The set of real numbers

{0, 1} The set containing 0 and 1

{0, 1, . . . , n} The set of all integers between 0 and n

[a, b] The real interval including a and b

(a, b] The real interval excluding a but including b

A\B Set subtraction, i.e., the set containing the
elements of A that are not in B

G A graph

PaG(xi) The parents of xi in G

ai Element i of vector a, with indexing starting
at 1

a−i All elements of vector a except for element i

Ai,j Element i, j of matrix A

Ai,: Row i of matrix A

A:,i Column i of matrix A

Ai,j,k Element (i, j, k) of a 3-D tensor A

A:,:,i 2-D slice of a 3-D tensor

ai Element i of the random vector a
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Calculus
dy
dx

Derivative of y with respect to x

∂y
∂x

Partial derivative of y with respect to x

∇xy Gradient of y with respect to x

∇Xy Matrix derivatives of y with respect to X

∇Xy Tensor containing derivatives of y with re-
spect to X

∂ f
∂x

Jacobian matrix J ∈ Rm×n of f : Rn → Rm

∇2
x f (x) or H( f )(x) The Hessian matrix of f at input point x∫
f (x)dx Definite integral over the entire domain of x

∫

S
f (x)dx Definite integral with respect to x over the

set S
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Probability and Information Theory

P(a) A probability distribution over a discrete
variable

p(a) A probability distribution over a continuous
variable, or over a variable whose type has
not been specified

a ∼ P Random variable a has distribution P

Ex∼P[ f (x)] or E[ f (x)] Expectation of f (x) with respect to P(x)
Var( f (x)) Variance of f (x) under P(x)
Cov( f (x), g(x)) Covariance of f (x) and g(x) under P(x)
H(x) Shannon entropy of the random variable x
DKL(P∥Q) Kullback-Leibler divergence of P and Q

N (x; µ, Σ) Gaussian distribution over x with mean µ
and covariance Σ
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Functions

f : A → B The function f with domain A and range B
f ◦ g Composition of the functions f and g

f (x; θ) A function of x parametrized by θ. (Some-
times we write f (x) and omit the argument
θ to lighten notation)

log x Natural logarithm of x

||x||p Lp norm of x

||x|| L2 norm of x

x+ Positive part of x, i.e., max(0, x)

1condition is 1 if the condition is true, 0 otherwise
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Differential geometry

M Manifold

U Patch

T Topology

A Atlas

ϕ Coordinate chart

CH(·) Convex hull

CL(·) Closure
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Computational Geometry

ei Basis vector

+ or ⊕ Minkowski-Sum

conv Convex Hull
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Appendix A.

Mathematical Background

This chapter should give a mathematical background for the whole thesis. It
should give a brief recap of some common mathematical principles. Section
A.1 introduces mathematical concepts from differential geometry. Section
A.2 discusses concepts from computational geometry.

A.1. Differential Geometry

The papers of [Doolin and Martin, 2013, Robbin and Salamon, 2011] give
a good introduction to differential geometry which is an essential part of
understanding manifolds. The environment of a pedestrian can be described
as a manifold (compare [Hartmann and Watzenig, 2019b]), and this is an
essential part of the thesis. This is important for section 3.5. Figure A.1
shows a topological space. A set X = {X1, . . . ,Xn} of patches, which are
connected via a topology T . This topological space is a tuple (X , T ).

X1 X2

X3X4

Figure A.1.: Topological space
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φi

φ−1
i φ−1

j

φj

M

X i X j

φi(X i)

Rm

ψij

φj(X j)

Rm

Figure A.2.: Manifold

In figure A.2 we see some mathematical illustration. Interconnected patches
Xi and Xj could be mapped (chart) into two different euclidean spaces
(which do not have orthogonal basis vectors). The formal definition of the
chart is:

Definition A.1.1. Definition from [Robbin and Salamon, 2011]: A chart on a set
M is a pair (ϕ,U ) where U is a subset of M and ϕ : U → ϕ(U ) is a bijection
from U to an open set ϕ(U ) in Rm. An atlas on M is a collection:

A = {(ϕα,Uα)}α∈A (A.1)
of charts such that the domains Uα cover M, i.e.

M =
⋃

α∈A
Uα (A.2)

ϕ(p) = (x1(p), . . . , xm(p)) for p ∈ U form local coordinates defined on the
subset U . The definition of a topological manifold is:

Definition A.1.2. Definition from [Robbin and Salamon, 2011]: A topological
manifold is a topological space M. Each point p ∈ M has an open neighborhood
U , which is homeomorphic to an open subset of Euclidean space.
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The intersection between two connected sets Xi, Xj could be transformed
in the euclidean space. The two charts are topologically compatible as
follows.

Definition A.1.3. Definition from [Robbin and Salamon, 2011]: Let M be a set.
Two charts (ϕ1,U1) and (ϕ2,U2) on M are said to be topologically compatible if
ϕ1(U1 ∩ U2) and ϕ2(U1 ∩ U2) are open subsets of Rm and the transition map:

ϕ21 = ϕ2 ◦ ϕ−1
1 : ϕ1(U1 ∩ U2)→ ϕ2(U1 ∩ U2) (A.3)

is a homeomorphism. An atlas is said to be a topological atlas if any two charts
are topological compatible.

The definition of a smooth manifold could be defined with a smooth atlas,
where every chart is smoothly compatible with its members:

Definition A.1.4. Definition for Smooth Manifold from [Robbin and Salamon,
2011]: Let M be a set. A chart on M is a tuple (ϕ,U ) where U ⊂ M and ϕ is
a bijection from U to an open subset ϕ(U ) ⊂ Rm of some euclidean space. Two
charts (ϕ1,U1) and (ϕ2,U2) are said to be smoothly compatible if ϕ1(U1 ∩ U2)
and ϕ2(U1 ∩ U2) are both open Rm and the transition map

ϕ21 = ϕ2 ◦ ϕ−1
1 : ϕ1(U1 ∩ U2)→ ϕ2(U1 ∩ U2) (A.4)

is a diffeomorphism. A smooth atlas on M is a collection A of charts on M
any two of which are smoothly comaptible and such that the set U , as (ϕ,U )
ranges over the elements of A, cover M (i.e. for every p ∈ M there is a chart
(ϕ,U ) ∈ A with p ∈ U ). A maximal smooth atlas is an atlas which contains every
chart which is smoothly compatible with each of its members. A smooth manifold
is a pair consisting of a set M and a maximal smooth atlas A on M.

The tangent vector for a manifold is:

Definition A.1.5. Definition from [Robbin and Salamon, 2011]: Let M ⊂ Rk

be a smooth m-dimensional manifold and fix a point p ∈ M. A vector v ∈ Rk
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is called a tangent vector of M at p if there exists a smooth curve γ : R→M
such that

γ(0) = p, γ̇(0) = v (A.5)

The set

TpM := {γ̇(0)|γ : R→M is smooth , γ(0) = p} (A.6)

of tangent vectors of M at p is called the tangent space of M at p.

The tangent bundle of a manifoldM is:

Definition A.1.6. Definition from [Robbin and Salamon, 2011]: LetM⊂ Rk be a
smooth m-manifold. A (smooth) vector field onM is a smooth map X :M→ Rk

such that

X(p) ∈ TpM (A.7)

for every p ∈ M. The set of smooth vector fields on M will be denoted by

Vect(M) := {X :M→ Rk|X is smooth, X(p) ∈ TpM ∀ p ∈ M} (A.8)

The tangent bundle ofM is as following:

Definition A.1.7. Definition from [Robbin and Salamon, 2011]: Let M⊂ Rk be
a smooth m-manifold. The set

TM := {(p, v)|p ∈ M, v ∈ TpM} (A.9)

is called the tangent bundle of M.

Figure A.3 shows the earth as a sphere and a local area (with a red grid)
which could be described as a euclidean space. In [Hartmann and Watzenig,
2019b] walkable areas in urban environments were described as topological
spaces.
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N

S

Map

Figure A.3.: Earth as a manifold (Latex template adapted from [Miani, 2009])

A.2. Computational geometry

This section should describe some concepts from computational geome-
try. We first start with some properties for sets. The following definition
describes an affine set:

Definition A.2.1. Definition adapted from [Boyd et al., 2004]: A set C ⊆ Rn is
affine if the line through any two distinct points in C lies in C.

Another important definition is the convex set:

Definition A.2.2. Definition adapted from [Boyd et al., 2004]: A set C is convex
if the line segment between any two points in C lies in C, i.e., if for any x1, x2 ∈ C
and any θ with 0 ≤ θ ≤ 1.

Figure A.4 shows examples for different convex sets, represented by different
mathematical objects. The convex hull is defined as:

CH(V1,V2) = {α1 · s1 + α2 · s2|s1 ∈ V1, s2 ∈ V2, α1 ≥ 0, α2 ≥ 0, α1 + α2 = 1}
(A.10)
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The Minkowski-Sum between two sets V ,U (compare the illustration in
figure A.5):

V ⊕ U = {v + u|v ∈ V , u ∈ U} (A.11)

The definition of a zonotope is:

Definition A.2.3. A zonotope Z is a set such that (modified from: [Girard et al.,
2006]):

Z =

{
x ∈ Rn : x = c +

i=p

∑
i=1

xigi,−1 ≤ xi ≤ 1
}

(A.12)

where c, g1, . . . , gp are vectors of Rn. Notation: Z = (c,< g1, . . . , gp >)

The volume or area of two or three vectors xi i = 1, . . . , 3 can be computed
by the determinant. The minmin-function is [Grégoire and Bouillot, 1998]
could give us the minimal distance between two sets:

D(X ,Y) = min
x∈X

(min
y∈Y

(D(x, y))) (A.13)

with the euclidean distance (which could replaced by another norm).

D(x, y) = |x− y|2 (A.14)

We want to estimate the computational complexity for different variants of
sets. Two compare two sets A (for a reachable set R) and B (catcher set Ŷ).
The intersection is defined as:

C = A∩ B (A.15)

The union is defined as:

C = A∪ B (A.16)

The Jaccard-distance is defined as:

J(A,B) = |A ∩ B||A ∪ B| (A.17)
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e1

e2

(a) Interval function

e1

e2

(b) Ellipsoid

e1

e2

(c) Polyhedron

e1

e2

(d) Zonotope

Y

e1

e2

ρY(l) l

(e) Support function

Figure A.4.: Different set representations
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e1

e2

X ⊕ e1

e2

Y

=

e1

e2

Figure A.5.: Minkowski-Sum

It might be a possible risk to capture not parts of the reachable sets by a
catcher

C(t) = R(t) \ (R(t) ∩ Ŷ(t)) (A.18)

Another distance for comparing two sets is the Hausdorff distance. Table
A.6 shows different representations of different convex set representations.
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(Convex-)set representations

Ellipsoid 1.1 Center c ∈ Rn

1.2 Directional scaling
{sq}nq=1 ∈ Rn

1.3 Quadratic form
Q(x) = xTAx,

A =


a b

b d


 = AT (symmetric)

Polytope (three-dimensional: Polyhe-
dron, two-dimensional: Polygon)

2.1a Vertices (V-Representation)
V = conv({vq}nq=1)

a

2.1b Half-spaces (H-Representation)
∩{{xq|Axq ≤ b,xq ∈ X}}pq=1

aInstead of computing the convex hull, one
could give the topology of the vertices, which
might lead to non-convex polyhedrons.

Zonotope 3.1 Center c ∈ Rn

3.2 Generator-Set
G = {gq}nq=1 ∈ Rn

Over-approximation with support-
functions

3.1 Direction vectors L = {lq}pq=1

3.2 Support function
ρY(l) = max{lTx|x ∈ Y}

3.3 Hl = {x ∈ Rn|lTx ≤ ρX (l)}
3.4

⌈
Y
⌉

=
⋂

l∈L{x ∈ Rn|lTx ≤
ρY(l)}

Figure A.6.: Table for different (convex-)set representations
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Cognitive systems

This chapter describes some aspects of human locomotion that describe the
current state of the art. Partially, some aspects cannot be verified within
the scope of the thesis. Measurements, for example, with consideration of
human cognitions, were not possible within the scope of the thesis but
would be an interesting component to investigate more detailed results.
For the interested reader, a part of the current literature is offered in this
section. Section B.1 presents some challenges for modelling human behavior.
Section B.2 gives an overview of human locomotion’s complexity with
aspects from biomechanics and neuroscience. Section B.3 summarizes the
measurement and simulation technologies and section B.4 introduces the
spatial description of the environment.

B.1. Challenges for modelling human behavior

The script of [Knill, 2005] presents different types of mathematical de-
scriptions of dynamic systems (with advanced definitions of semi-groups
and different mathematical properties). [Earman et al., 1986] presents a
philosophical perspective to determinism. An introduction to uncertainty
quantification [Sullivan, 2015, Zio and Pedroni, 2013]. System theory de-
scribes a system with a boundary where external influences change its state
over time. In physical dynamic systems, the state evolves based on prin-
ciples and depending on the energy flow (contrary to pure mathematical
systems, which describe physical systems). Many technical systems can be
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described with ordinary differential equations, fluids by partial differential
equations, and weather phenomena by chaotic systems, depending on the
system’s nature. In physics, many phenomena could not be described in
mathematical models adequately. The predictions could not have a good
performance. For example, the prediction of weather phenomena had a low
performance as long the models did not consider the chaos theory and the
computational resources. Scientists in the 19 century thought about a world
formula, where all states in the cosmos are predictable, and there would
be determinism, which could lead to prediction models (Laplace demon).
Due to theories from relativity theory, chaos theory, and uncertainty rela-
tion in quantum theory, it is known that there exists some non-reducible
uncertainty. This problem might also be the case in human movements. One
big problem in this thesis is that the time-evolution of a human brain’s
cognitive intelligence state is complex. It is a philosophical question of
whether the brain’s state is predictable and how this would affect a person’s
free will. There is also a demand for further improvements in the measure-
ments of brain functionality. The measurement devices are often costly, not
adequate for testing in automotive tests and the time-space resolution is
improvable. This complexity of human locomotion has consequences for
the prediction models. We assume a non-reducible uncertainty of human
behavior prediction exists, and there are determinism and uncertainty in
human decision-making. Algorithms can learn patterns in a dataset, but
the problem is that the algorithms cannot decode the nature of causal re-
lationships in human decision-making. Some essential variables might not
be available. Other factors like the environment also play a crucial part
and affect pedestrians. There exist different representations of the spatial
environment of the walkable areas of the pedestrian. If historical data is
available, machine learning can guess the most probable position in spatial
space. However, how trustable could the prediction model make decisions
when an unknown human appears. However, when there is uncertainty due
to randomness (aleatoric uncertainty, e.g., due to the lack of knowledge), the
task is more guessing than a prediction. For better predictions, it is necessary
to decode the state flow’s underlying principles. The nature of the biological
cybernetic system in human locomotion is not sufficiently developed. There
exists a need for basic research (for advanced models in human locomo-
tion and the causal relationships between perception, decision-making, and
movement).
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B.2. Complexity of human locomotion

Figure B.1 shows the taxonomy of information necessary for the movement
prediction of pedestrians. The interior perspective captures all information
inside the pedestrian, the human body, and psychological aspects caused by
the human brain. The mind with its cognitive activities, including different
concepts of consciousness, imagination, perception, thinking, judgment,
language, and memory. Historical aspects might influence the information
structure of the human brain and personality. The human brain can learn
from sensorial inputs. The complex structure of the human brain can change
in time and its connectivity of neurons. The exterior perspective concerns the
environment, the current situation, and social constraints affecting human
behavior. There is also other information caused by the interaction process
between the environment and the consciousness of the human mind.

Figure B.1.: The taxonomy shows the classification of information that might affect the quality
of movement prediction.

This section highlights the state of the art of the apparatus of human
locomotion. It consists of the cognitive cycle of observations to the reasoning

195



Appendix B. Cognitive systems

(section B.2.1 and B.2.2) to the performing of human actions with the
human body B.2.3, which is relevant for the interaction between vehicle
and pedestrian. This section gives insights and a basic tutorial into topics
(neuroscience, biomechanics, and others) relevant for developing simulation
models from a technical engineer’s perspective.

B.2.1. Human perception

A person observes the environment with his sense organs, mainly his eyes,
and catches visual signals. Eye muscles can stretch or relax the eye lenses to
focus on an object. The visual information reaches the eyes and the retina.
Some photoreceptors on the retina convert the visual signal into electrical
impulses [Hubel and Wiesel, 1979]. Optic nerves transfer this information
to the primal visual cortex. Both brain halves share some visual information
due to the optic chiasm. Each half of the brain gets visual signals from the
visual fields. There exist two pathways after the visual cortex processes
the information. The dorsal path answers spatial questions like "where is
something" (object location, spatial perception, working memory is active).
The ventral path answers what the brain sees (object identification, fine vi-
sual details are detected, long-term memory is activated). The visual cortex
computes some scene features (objects, depth-information) [Yamins et al.,
2014a]. After transferring the electrical impulses to the visual cortex, the
person is reasoning about the incoming information, mainly in the associa-
tion cortex [Yamins et al., 2014b]. This fact offers the possibility to detect
objects, classify them, and associate them with historical experiences. The
process of identifying objects and recognizing them is part of a network of
hierarchically related brain areas [Botvinick, 2007, Yamins et al., 2014a]. The
isolated left hemisphere (left halve of the brain) is concerned with abstract
thinking, symbolic relationships, and logical analysis of details [Hubel and
Wiesel, 1979]. It is the leading hemisphere for the control of the nervous
system. The left hemisphere cannot exist without the right hemisphere. The
right hemisphere is responsible for concrete thinking, spatial conscious-
ness, compression of complex relationships, and auditory tasks. [Hubel and
Wiesel, 1979] gave a detailed interpretation of the visual system and the
signal processing of images in the visual cortex. Each layer in the visual
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cortex works on different abstraction levels. Encoding and decoding [Nase-
laris et al., 2011b,Naselaris et al., 2011a] is a current approach to reading the
patterns of brain activity. The method is done by signaling and measurement
devices of the human brain (EEG, fMRI, and others) and decoding visual
information or inferring brain activity from visual input (encoding). It is
a complex problem to make realistic simulations of mental functions and
cognitive tasks in an exact and complete mathematical model. [Chen, 2017]
gives an introduction to these measurement technologies. The motor cortex
is mainly responsible for transferring signals from the brain to the body
(first image) combined with the premotor cortex and supplementary motor
cortex: the somatosensory cortex, Brodman Nr. 3, 1 and 2 are mainly respon-
sible for the measurements of the body movements—the visual cortex for
the sensing of visual information and the auditory cortex for audio signals.
The Brodman area 7 processes information relevant to the relative position
of an object to the human body. The Brodman atlas is an older classification
of the human brain, and there exist newer models which give better spatial
representations of the human brain [Naselaris et al., 2011a], [Huth et al.,
2016a].

B.2.2. Reasoning for locomotion

The brain processes incoming information by a vast number of neurons
[Salles, 2019] in a very complex topological structure. Each region is respon-
sible for different mental tasks [Huth et al., 2016a]. A current challenge is
the low time-space resolution, the test’s complexity, and generalizability
of experiments. Different experiments exist to understand the function-
ality of the human brain [Essen and Glasser, 2016, Markram, 2006, Salles,
2019, Bargmann, 2014]. The Human-Connectome project offers new brain
visualizations [Essen and Glasser, 2016] that visualize the information high-
ways and their topological structure. In the Blue-Brain project [Markram,
2006], researchers built a detailed simulation of neuronal activity levels.
In the Human-Brain project, [Salles, 2019] extended their research. The
Brain-Initiative [Bargmann, 2014] tries to build realistic simulations of the
human brain with supercomputers. Researchers use machine learning ap-
proaches in [Yamins et al., 2014a] to encode and decode brain measurements
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to classify brain activity. [Huth et al., 2016b] showed that it is possible to
classify the brain regions by the semantic meaning and introduce a semantic
atlas for a specific task (hearing a radio show) for the subjects. Harvard
University developed a program called "Freesurfer" [Fischl, 2012] to analyze
brain images. Many research networks are trying to reproduce the hu-
man brain’s functionality in a simulation framework [Markram, 2006, Essen
and Glasser, 2016, Salles, 2019]. There are several difficulties because there
is a huge demand for computing power [Salles, 2019] and measurement
technologies [Chen, 2017].

B.2.3. Human movements

The Motor- and Sensory-Cortex is a kind of interface between the brain
and the rest of the body, which actuates and receives signals to perform
movements [Botvinick, 2007]. The peripheral nervous system’s communi-
cation system transfers the electric impulses to the muscles to perform the
movements. A human skeleton has a topological structure [Drake et al.,
2009]. The joints (vertexes/nodes) connect bones (edges) in a physical multi-
body system. Different types of joints exist, but the synovial joints are freely
movable. The body’s mass density (parameters for a physical model) — the
brain’s communication procedures and the communication in the peripheral
nervous system can influence action quickness [Delp et al., 2007]. Synovial
joints have different movement leeway freedoms. This freedom ensures
complex skeleton movements. [Li and Yang, 2012] discusses different dy-
namic models for human locomotion. [Nigg and Kuntze, 2012] gives an
introduction to several topics in biomechanics.

B.2.4. Consequences

If someone modeled the human locomotion of a person, it would be nec-
essary to model the state of the brain c(t) and the human body state s(t).
If the brain’s activity patterns represent the cognitive state c(t) and the
positions of the human skeleton are s(t). If only the skeleton of a person is
measurable one could model a nonlinear function ṡ = f(s(t), as(t)) with a
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control input as(t). The dimensions of the brain state and body skeleton
are immense. Only the three-dimensional pictures of the human brain bring
an immense of information. Also, the skeleton information would bring
several dimensions. For machine learning approaches, this would mean
using a prediction model which could handle the curse of dimensional-
ity [Bishop, 2006, Murphy, 2012]. The complexity of the brain and some
lack of measurement- and computer technology is a huge problem for this
thesis. It might be necessary to encode the brain’s activity patterns leads
to the problem that no exact computer model for human locomotion is
available. In automotive engineering, scientists model human behavior as
a black box or inspired by physical laws (like social force models). The
whole complexity of human locomotion often leads to oversimplification.
Another consequence is the non-reducible uncertainty of predicting the
actual movements of a person.
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B.3. Measurement- and simulation technologies of
body movements

If there is the approach to find an exact human locomotion model (white- or
grey box model) and find a formulation ṡ = f(s(t), as(t)) for the state-flow
of the body skeleton. Measurements for the influences from the brain and
their control inputs would be essential. This section presents some mea-
surement technologies for the body- s(t) and brain state c(t). There are
different technical challenges for tracking body movements, simulation, and
learning. Tracking the body is an essential discipline in the measurement
community, and there are different body-tracking sensors available. The
authors in [Pellegrini et al., 2009] present measurement and simulation
technologies for human movements. Also, the computer vision community
is very active in learning the movements from camera images. [Xia et al.,
2012] present laboratory measurements of the movement of the joints of a
test person. The test person’s joint positions were tracked with a Microsoft
Kinect camera. The test person performed actions in a laboratory (e.g., stand
up, wave hands, and more). The reduction to a single skeleton trajectory
leads to loss of information, where the person’s activities are not known
anymore (walking, waving hands). [Tompson et al., 2014], [Jain et al., 2013]
proposed one of the first results of human pose estimation with deep learn-
ing — a training procedure with convolutional networks and a graphical
model for human pose estimation. [Eigen and Fergus, 2015] also predicts
depth, surface normals, and semantic labels with a typical multi-scale con-
volutional architecture. [Wei et al., 2016] use a multi-stage CNN that can
localize body parts. [Pellegrini et al., 2009] use bird view measurements of
pedestrians. [Janai et al., 2017] present segmentation learning for specific
driving situations with pedestrian detection. [Charles et al., 2017] focuses
on human body parsing in images and videos. [Shotton et al., 2013] pro-
poses an approach for human body parsing from a single depth image and
performing 3D human pose estimation. [Urtasun et al., 2006] proposes an
approach for human skeleton tracking. [Toshev and Szegedy, 2014] present
an approach for a cascade of Convolution Neural Networks for human pose
estimation: at each stage of the cascade, the predicted pose is updated to
get closer to the ground truth pose. [Wei et al., 2016] also uses CNNs that
produce a heat map of a localized body part. [Bogo et al., 2017] presents
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dynamic movement datasets of persons with time-varying meshes. [Peng
et al., 2018] presents an approach with deep reinforcement learning to imi-
tate human movements and simulate an avatar. The algorithm can perform
new movements with the avatar based on a few experiences. The deep
learning algorithm of [Jaśkowski et al., 2018] learns to perform the tasks
(running and walking) by repetition. It imitates control of the motor and
sensory cortex. Often the body dynamics of a pedestrian are simplified and
approximated. Numerical software [Delp et al., 2007] could help compute
the human body forces. [Jaśkowski et al., 2018] used algorithms to show
that Deep Learning Algorithms can imitate some parts of the human brain
to perform different tasks (e.g., running). The winning solution [Jaśkowski
et al., 2018] of the Run Challenge [Kidziński et al., 2018] is used for the
illustrations’ simulations. Stanford University developed the simulation
tool "OpenSim," which computes a skeleton’s forces with a multi-body
simulation [Delp et al., 2007]. The skeleton consists of different bones and
joints. There is a high degree of freedom to control the whole multi-body
system, making the task difficult. There are only a few experiments where
scientists measured body movements and brain signals. [He et al., 2018] de-
veloped an experiment on a treadmill and EEG measurements and of body
movements. [Brantley et al., 2018] proposes wearable EEG measurements
for locomotion research in an indoor hall for movement research. [Perez
et al., 2019] proposes a test environment with a test person and driver on a
computer with virtual reality. For the body state sk, we model N positions
pi,k ∈ R3 (e.g., position of left hand, head or right knee) of the human
skeleton sk := [p1,k, . . . , pN,k]

T ∈ R3·N. This thesis use only the center of
gravity pk also because of the high-dimensionality and the projection to
the ground xk = P · pk ∈ R2. Figure B.2 shows the Brodman Atlas. It is a
classification of regions of the brain (a manifold) by different action patterns.
The Motor Cortex is responsible for the movements of the person, while the
sensory cortex is for sensing. The visual cortex for the vision and many other
regions. Now there exist further advanced approaches like the Pragmatic
Atlas in figure B.3a for semantic mapping of brain regions [Huth et al.,
2016a]. There exist approaches to classify the brain regions in voxel-level
B.3a mainly with machine- and deep learning. The relation between the
cognitive states of the brain c(t) and the body movements like in B.3b is an
open basic research problem. For that, a Pedestrian in the Loop is proposed
in the next section.
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Figure B.2.: Brodman atlas and selection of different activation regions

B.4. Simulation of urban environments

The environment influences and constrains the movements of the pedestrian
body state s(t) and affects the cognitive state c(t). There exist different math-
ematical descriptions of the environment: euclidean space, Spatial graph,
manifold, regular grid, lanelets, and nonregular grid. There also exist differ-
ent measurement technologies for the environment. The paper in [Hackel
et al., 2017] presents a semantic point cloud and the work of [Cignoni and
Callieri, 2008] could be used for Mesh data. Drones can collect data from
the ground as a 3D point cloud, compared to the bottom right picture. [Ar-
meni et al., 2016, Armeni et al., 2017] presented a point cloud dataset of
buildings with corresponding 3D Mesh, 2D and 3D semantics, Depth infor-
mation, and surface normals. [Savva et al., 2019] offers a rendered virtual
environment "Habitat project" with a photorealistic virtual environment as
meshes. [Armeni et al., 2019] give also an interesting hierarchical structure
of environments [Armeni et al., 2019]. Interactive Gibson environment [Xia
et al., 2018] is a new environment for developing reinforcement learning
algorithms for agents in different virtual buildings. A humanoid virtual
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B.4. Urban environment

(a) Voxel and pragmatic atlas with VisBrain [Combrisson et al., 2019]

(b) Open Sim Simulation [Kidziński et al., 2018]

Figure B.3.: Brain and Body simulation technologies
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agent can learn to move in a virtual environment. Simulated physical forces
are affecting the agent. [Straub et al., 2019] proposes the replica dataset
showing a virtual environment and the corresponding segmentation [Straub
et al., 2019]. The geometric structure of the environment constrains the
movements and the physical touch. The environment’s geometric structure
is not the only kind of information that is important for human locomotion.
Also, the semantic information [Kitani et al., 2012, Ziebart, 2010, Vasquez,
2010b] is an important factor in answering "why" a person intends to go to
a certain place (goes to the supermarket to buy something).
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Additional information

Section C.1 gives more information on the programmed simulator and
further simulation examples.

C.1. Simulator

The simulator was programmed with Julia Programming [Bezanson et al.,
2017]. It should have similarities to ROS [et al., 2018] by sending messages
and having a signal slot architecture for event-based programming. Table
C.1 shows a selection of installed packages for the use of the simulator with
some parameters like in table C.2. Figure C.1, C.2, C.3 show further visual
representations of the simulations and figure C.4 shows the resulting states.
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Installed packages: |
[6e4b80f9] BenchmarkTools v0.7.0
[a81c6b42] Compose v0.9.3
[a93c6f00] DataFrames v1.3.2
[b4f34e82] Distances v0.9.2
[31c24e10] Distributions v0.23.11
[c87230d0] FFMPEG v0.4.1
[5789e2e9] FileIO v1.13.0
[587475ba] Flux v0.11.3
[f6369f11] ForwardDiff v0.10.25
[c91e804a] Gadfly v1.3.4
[4b11ee91] Gaston v1.0.5
[bb4c363b] GridInterpolations v1.1.2
[f67ccb44] HDF5 v0.16.5
[c601a237] Interact v0.10.4
[b6b21f68] Ipopt v0.7.0
[682c06a0] JSON v0.21.3
[4076af6c] JuMP v0.21.5
[b4f0291d] LazySets v1.56.1
[a40420fb] LocalApproximationValueIteration v0.4.2
[db97f5ab] LocalFunctionApproximation v1.1.0
[e12ccd36] MCTS v0.4.7
[b8f27783] MathOptInterface v0.9.22
[283c5d60] MeshCat v0.13.2
[b8a86587] NearestNeighbors v0.4.9
[510215fc] Observables v0.4.0
[1af16e33] Omega v0.1.1 https://github.com/zenna/Omega.jl.gitmaster
[bac558e1] OrderedCollections v1.4.1
[08074719] POMDPModelTools v0.3.12
[182e52fb] POMDPPolicies v0.4.2
[e0d0a172] POMDPSimulators v0.3.13
[a93abf59] POMDPs v0.9.4
[d96e819e] Parameters v0.12.3
[67491407] Polyhedra v0.6.17
[92933f4c] ProgressMeter v1.7.2
[8af83fb2] QuickPOMDPs v0.2.13
[1e97bd63] ReachabilityAnalysis v0.16.5
[38ceca67] RobotDynamics v0.3.4
[74be38bb] RobotZoo v0.2.3
[6038ab10] Rotations v1.3.0
[90137ffa] StaticArrays v1.4.2
[2913bbd2] StatsBase v0.33.16
[f3b207a7] StatsPlots v0.14.30
[0c5d862f] Symbolics v3.2.3
[7770976a] TrajOptPlots v0.2.0
[c79d492b] TrajectoryOptimization v0.5.0
[ddb6d928] YAML v0.4.7

Table C.1.: Installed packages for the simulator
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Table C.2.: Vehicle parameters (Small vehicle adapted from [Althoff and Wuersching, 2020])

Pa
ra

m
et

er
s

Sy
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bo
l

V
al

ue

U
ni

t

Parameters for the geometric dimensions

θgeom = [l, w, lwb, lh, lb]
T

Vehicle length l 4.298 [m]

Vehicle width w 1.674 [m]

Wheelbase lwb 2.391 [m]

Vehicle height lh 1.582 [m]

Wheel spacing lb 1 [m]

Driving parameters θdriv = [amax, vδ, vδ, δ, δ, v, v]T

Minimal steering angle δ −0.910 [rad]

Maximal steering angle δ 0.910 [rad]

Minimal steering velocity vδ −0.4 [rad/s]

Maximal steering velocity vδ 0.4 [rad/s]

Minimal velocity v −2.222 [m/s]

Maximal velocity v 13.889 [m/s]

Switching velocity vS 4.755 [m/s]

Maximal acceleration amax 11.5 [m/s2]

Artificial geometric parameters θart = [rm, lvp]

Radius for Minkowksi-Sum rm 0.3 [m]

Minimal distance between vehicle and pedestrian lvp 0.8 [m]
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(a) (b)

(c) (d)

(e) (f)

Figure C.1.: A vehicle (represented by a pink rectangle) with planned trajectory (blue dots) and
orange reachable sets is driving to a fixed target state. A pedestrian is walking in
the right direction without changing his/her intention.
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(a) (b)

(c) (d)

(e) (f)

Figure C.2.: A vehicle (represented by a pink rectangle) with planned trajectory (blue dots) and
orange reachable sets is driving to a fixed target state. A pedestrian walks to the
bottom sidewalk (represented as a green area). After some time, it has an intention
change.
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(a) (b)

(c) (d)

(e) (f)

Figure C.3.: A vehicle (represented by a pink rectangle) with planned trajectory (blue dots) and
orange reachable sets is driving to a fixed target state. A pedestrian is walking to the
bottom sidewalk (represented as a green area). After some time, it has an intention
change.
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(a)

(b)

Figure C.4.: Each simulation run has the state-change of the pedestrian and vehicle (constrained
position, velocity and acceleration and control inputs)
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C.2. Algorithms

This section should give some further ideas to sample get funnels on mani-
folds. Figure C.5 gives an example of a curved street. The green sidewalk
consists of green ellipses (cells) and the curved street with grey ellipses. The
topology T is describing which of the cells Xi,Xj are adjacent. For exam-
ple X5 is adjacent with X4 (overlapping). Each cell has its own coordinate

system (compare section A.1). If an agent with position pki =
[

px,ki py,ki

]T

and state xki =
[

px,ki py,ki vx,ki vy,ki

]T
is in one cell of the manifold Xq

with pki ∈ Xq we could use a matrix-multiplication with matrix Aθ,t for a

translation with vector t =
[
tx ty

]T
:




px,ki+1

py,ki+1

1


 =




1 0 tx

0 1 ty

0 0 1




︸ ︷︷ ︸
Aθ,t, θ=0

·




px,ki

py,ki

1


 (C.1)

If we have in each cell Xq a translation t by a constant matrix multiplication,
we could represent the manifold with a vector-field (arrows in each cell).
Instead of using a translation vector t we could use a probabilistic operator
on each cell Xq (e.g. depending on nearest mean value), with the conditional
probability p(xki+1

|xki) between the current state xki and the following state
xki+1

with Markov property:

p(xki+1
|xki) =

p(xki+1
, xki)

p(xki)
(C.2)

We could marginalize the probability p(xki+1
|xki) to get the probability of

the future state p(xki+1
):

p(xki+1
) =

∫
p(xki+1

|xki)p(xki)dxki (C.3)
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If we assume a model like in [Ellis et al., 2009]:

xki+1
= xki + f(xki)︸ ︷︷ ︸

state change ∆xki,i+1

+ noise (C.4)

The state change ∆xki,i+1
= xki+1

− xki is modelled by a nonlinear function
f(xki). We could assume that the ∆xki,i+1

= N (µq, Σq) is modelled by a
(multivariate) normal distribution with mean value µq and covariance-
matrix Σq. This operator ∆xki,i+1

= N (µq, Σq) is only valid for the cell Xq.
With Monte-Carlo-Sampling one could use the algorithm 2 for a cell to
compute the state trajectory inside a cell. Like in [Ellis et al., 2009] this
approach could be used with vector-fields and this approach was used
in figure 3.25 for computing the next particles. It stops when the future
state is outside the boundaries of the cell. The algorithm 2 was only for
a single vector xki representing the state-change in a manifold-cell. But
we could extend the ideas to more general algorithms. We could use sets
Xki and set-deformation-techniques from section 3.3 instead of vectors xki
in an urban environment represented as a manifold M (section 3.5) to
compute funnels (section 3.3 and 3.4). We could also use probabilistic or
group operations only valid for a particular cell. Algorithm 3 shows the
brute-force algorithm to compute all motion plans in the presence of the
movement prediction of pedestrians or {Ŷ p

kq
}kq∈{ki,ki+1...,kj} other road users

(vehicles or busses). We assume a constant countable control input set
U v = {uv

1, . . . , uv
n}. The trajectory could be sampled afterward to get a

trajectory from the funnel (set of sets). Algorithm 4 could define reachability
analysis in a manifold cell to ensure physical valid trajectories. We could
have in each cell Xq of the manifold different control input sets U (compare
section 2.1 for reachability analysis and modelling the environment section
3.5). For the reachability analysis with zonotopes we have the algorithm
5. We have the input and initial state set Xki := Zki = {cki ,Gki} and the
control-input set U := Zki = {cki ,Gki} which is constant and only defined in
a manifold cell. A general algorithm for set deformation in a manifold cell
is proposed in algorithm 6. The human behavior could be described locally
with some decisions, which are specific for a local environment and done by
sub-goals. The behavior could be described by a sum of local decisions lead
to a global realization of the observed trajectory. Algorithm 7 is proposing a
pseudo-algorithm for predicting the funnel. Algorithm 8 is applying it to

213



Appendix C. Additional information

X0

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

X12

X13

X14

X15

X16

X17

X18

X19

X20

X21

X22

X23

X24

X25

X26

X27

X28

X29

X30

X31

X32

X33

X34

X35

X36

X37

X38

X39

X40

X41

X42

X43

X44

X45

X46

X47

X48

X49

X50

X51

X52

X53

X54

X55

X56

X57

X58

X59

X60

X61

X62

X63

X64

X65

X66

X67

X68

X69

X70

X71

X72

X73

X74

X75

X76

X77

X78

X79

X80

X81

X82

X83

X84

X85

X86

X87

X88

X89

X90

X91

X92

X93

X94

X95

X96

X97

X98

X99

X100

X101

X102

X103

X104

X105

X106

X107

X108

X109

X110

X111

X112

X113

X114

X115

X116

X117

X118

X119

X120

Street

Figure C.5.: Curved street (grey) and sidewalk (light green) as a manifold

the set-based-movement prediction with static support functions, which are
getting used in next section. Before we get to an evaluation we also have to
define the performance metrics for the set-based prediction. We model the
urban environment as a topological space (X , T )1 (compare section 3.5).

1See definitions and short introduction to differential geometry (section A.1)

214



C.2. Algorithms

Algorithm 2: Algorithm for Monte-Carlo Sampling in a manifold cell
Input: pki ,Xq, µq, Σq, pki ∈ Xq

Output: L = {pkw}
j
w=i, ki < k j ∀ ki, k j ∈ T

1: L = {} ▷ empty list for collecting statesa

2: pkw ← pki ▷ pkw as a dummy variableb

while pkw ∈ Xq ▷ c

3: L ← pkw
4: pkw+1 = pkw +N (µw, Σw)
5: w← w + 1 ▷ w as a counting variable

end while
6: j← w ▷ j defining the future index

aL = {} is defining a list. L ← a would mean the list is getting the variable a like L = {a}.
L ← b would extend the list L = {a, b}

bpkw is a new defined dummy-variable and the name of the variable could be changed. The
variable pkw is not defined as a list like L beforehand, so that the dummy variable gets the
position value of pki

like the statement pkw = pkicIs the position of the agent pkw at time-step kw ∈ T still in the manifold cell Xq
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Algorithm 3: Brute force algorithm for computing all motion plans with
movement prediction of road-users
Input:

Pedestrian:
• Movement prediction sets of pedestrian {Ŷ p

kq
}kq∈{ki,ki+1...,kj}

Vehicle:
• Current vehicle state xv

ki
• Constant and countable control input set U v = {uv

1, . . . , uv
n}

• Target state x
v,target
ki

• Driving parameters θdriv = [amax, vδ, vδ, δ, δ, v, v]T

• Geometrical parameters θgeom = [lwb, rm, lb]T

Output:

Vehicle geometrical state sets: { X v
kq
}kq∈{ki,ki+1,...,kj}

for q = i→ j:
for uv

kq
∈ {uv

1, . . . , uv
n}:

1: xv
kq+1

= f(xv
kq

, uv
kq
) ▷ Use system model to compute next state

2: X v
kq+1

= g(xv
kq+1

, θ) ▷ Compute next vehicle set

3: j = J( X v
kq+1

) ▷ Evaluate cost function

Algorithm 4: Algorithm for reachability analysis in a manifold cell
Input: Xkq ,U
Output: L = {Xkq}

j
q=i, ki < k j, ki, k j ∈ T

1: L = {} ▷ empty list for collecting state sets
2: L ← R(k j, ki,X0) ▷ Compare algorithm 1
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Algorithm 5: Algorithm for set-deformation of a zonotope in a manifold cell
Input: Xki = Zki(cki ,Gki),Xq, cki ∈ Xq

Output: L = {xkw ,Zkw}
j
w=i, ki < k j, ki, k j ∈ T

1: L = {} ▷ a

2: xkw ← cki

3: Xkw ← Xki ▷ All sets Xkw ,Xki here are zonotopes b

4: L ← (xkw ,Xkw)
while xkw ∈ Xq ▷ c

5: Xkw ← G ∗ Xkw ▷ Closed set deformation (G, ∗) d

6: xkw ← xkw ∼ Xkw ▷ getting a sample point xkw ∈ Xkw
7: L ← (xkw ,Xkw)

end while

aempty list for collecting tuples of state vectors and zonotopes
bFor a certain number of mappings the zonotope is closed. An example is the matrix

multiplication Zki+1
= A · Zki

A ∈ Rn×n

cTo prevent an infinite loop, the sampling of xkw should be possible outside of Xq. This
depends from the set-deformation-operator G (operation on a zonotope) and the set Xq.

dHere it is defined as a local and constant deformation operator G and it is only operating in
the manifold cell. Set-deformations like the Minkowski-sum, rotations, translations of sets might
be possible options. Another option is to use a time-dependent set operation Gkw kw ∈ T. The
set operation could be updated afterwards in a separated step.
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Algorithm 6: General pseudo-algorithm for local set-deformations in a manifold-
cell
Input: xki ∈ Xki , xki ∈ Xq,G, Xki ⊆ Xq

a

Output: L = {(xkw ,Xkw)}
j
w=i, ki < k j ∀ ki, k j ∈ T

1: L = {} ▷ b

2: xkw ← xki
3: Xkw ← Xki
4: L ← (xkw ,Xkw)

while xkw ∈ Xq ▷ c

5: Xkw ← G ∗ Xkw ▷ Set deformation (G, ∗) d

6: xkw ← xkw ∼ Xkw ▷ getting a sample point xkw ∈ Xkw
7: L ← (xkw ,Xkw)

end while

aThere might different possibilities to define a membership-function, e.g. in sets like ellipsoids,
zonotopes the position of the center-point might define the membership-function c ∈ Xq. Another
approach would be to define the membership with the amount of area intersecting with another
manifold cell.

bempty list for collecting tuples of state vectors and state sets
cTo prevent an infinite loop, the sampling of xkw should be possibly outside of Xq. This

depends from the set-deformation-operator G and the set Xq.
dHere it is defined as a local and constant deformation operator G and it is only operating in

the manifold cell. Set-deformations like the Minkowski-sum, rotations, translations of sets might
be possible options. Another option is to use a time-dependent set operation Gkw kw ∈ T. The
set operation could be updated afterwards in a separated step.

Algorithm 7: General set-based-movement-prediction
Input: Structure flexibility of the set, Machine learning model
Output: Predicted future state sets

for q = i→ j:
1: Get data from measurements
2: Predict one representation point ŷkq ∈ Ŷkq

3: Predict the structure of the set Ŷkq

4: Enlargement of Ŷkq by considering an irreducible uncertainty
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Algorithm 8: Set-based-movement-prediction with static support function
Input: Measurements {xkm}

j
m=r, Vectors for the support function

L = {l1, . . . , lN}
Output: {Ŷkq}

j
q=i

for q = i→ j:
1: Get data from measurements with moving-time-window
2: Predict one representation point ŷkq ∈ Ŷkq .

Often the mean-value is predicted ŷ ≈ x̂ = E[x].
3: Predict the structure of the set Ŷkq

4: Enlargement of Ŷkq by considering an irreducible uncertainty
Enlargement by Minkowski-sum)
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Figure C.6.: The vehicle sets {Xkq}kq∈{k0,k−4} and the pedestrian prediction sets {Ykq}kq∈{k0,k−4}.
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