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Abstract: In this paper, we study two types of second-order nonlinear differential equations with
variable coefficients and mixed delays. Based on Krasnoselskii’s fixed point theorem, the existence
results of positive periodic solution are established. It should be pointed out that the equations we
studied are more general. Therefore, the results of this paper have better applicability.
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1. Introduction

The main purpose of this paper is to consider positive periodic solution for two classes
of second-order nonlinear differential equations with variable coefficients and mixed delays
as follows:

x′′(t) + b(t)x′(t) + a(t)x(t) = f (x(t− δ(t))) +
∫ ∞

0
k(s)h(x(t− s))ds (1)

and
(Ax(t))′′ + b(t)x′(t) + a(t)x(t) = f (x(t− δ(t))) +

∫ ∞

0
k(s)h(x(t− s))ds, (2)

where a, b, δ ∈ C(R, (0, ∞)) are T−periodic functions, f , h ∈ C(R,R),

(Ax)(t) = x(t)− c(t)x(t− τ), (3)

c(t) ∈ C1(R,R) is an T−periodic function with |c(t)| 6= 1, τ > 0 is a constant, and k(s) is a
continuous and integrable function on [0, ∞) with

∫ ∞
0 k(s)ds = 1.

Equation (1) is a non-neutral second-order nonlinear differential equation which has
received much attention. Wang, Lian, and Ge [1] studied the following second-order
differential equation with periodic boundary conditions:{

x′′(t) + p(t)x′(t) + q(t)x(t) = h(t)
x(0) = x(ω), x′(0) = x′(ω).

(4)

In Equation (4), the periodic solution x(t) =
∫ t+ω

t G(t, s)h(s)ds exists, where

G(t, s) =

∫ s
t exp[

∫ u
t b(v)dv +

∫ s
u a(v)dv]du +

∫ t+ω
s exp[

∫ u
t b(v)dv +

∫ s+ω
u a(v)dv]du

[exp(
∫ ω

0 a(u)du)− 1][exp(
∫ ω

0 b(u)du)− 1]
. (5)

They obtained G(t, s) > 0 for t, s ∈ [0, ω] if the following conditions are satisfied:
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(A1) There are continuous ω-periodic functions a(t) and b(t) such that
∫ ω

0 a(t)dt > 0,∫ ω
0 b(t)dt > 0 and

a(t) + b(t) = p(t), b′(t) + a(t)b(t) = q(t) for t ∈ R;

(A2) ( ∫ ω

0
p(u)du

)2

≥ 4ω2exp
(

1
ω

∫ ω

0
lnq(u)du

)
.

Obviously, G(t, s) in (5) is too complex, and the conditions for satisfying G(t, s) > 0 are too
strong and cannot be easily used. Bonheure and Torres [2] studied the existence of positive
solutions for the model scalar second-order boundary value problem{

−u′′ + c(x)u′ + a(x)u = b(x)
up(x) , x ∈ R,

lim|x|→∞ u(x) = 0,
(6)

where a, b, c > 0 are locally bounded coefficients and p > 0. For (6), the authors also
obtained the Green function, which can be used for studying the homoclinic solution and
bounded solution of a second-order singular differential equation. However, it is inconve-
nient to use this Green function to study the periodic solutions of (1). In order to overcome
the above difficulties, we use the order reduction method for studying periodic solutions of
(1) in the present paper. For more results about second-order singular differential equation
with variable coefficients and delays, see, e.g., [3–7] and cited references.

Equation (2) is a neutral second-order nonlinear differential equations. Periodic
solutions of higher-order differential equations have a wide range of applications, and
many researchers have conducted a lot of research on them. Liu and Huang [8] studied
the existence and uniqueness of periodic solutions for a kind of second-order neutral
functional differential equations. Lu and Ge [9] considered periodic solution problems for
a kind of second-order differential equation with multiple deviating arguments. Luo, Wei,
and Shen [10] investigated the existence of positive periodic solutions for two kinds of
neutral functional differential equations. Arbi, Guo, and Cao [11] studied a novel model
of high-order BAM neural networks with mixed delays in the Stepanov-like weighted
pseudo almost automorphic space. Xin and Cheng [12] studied a third-order neutral
differential equation. In [13], the authors considered the existence of periodic solutions
for a p-Laplacian neutral functional differential equation by using Mawhin’s continuation
theorem. For more recent results about positive periodic solutions of neutral nonlinear
differential equations, see, e.g., [14–18]. We found that the results of existing positive
periodic solutions mostly depend on Green functions and the properties of neutral operator.
However, it is very difficult to obtain proper Green functions. In this paper, we develop
some new mathematical methods for obtaining the existence of positive periodic solutions
without using Green functions. It should be pointed out that, in 2009, we obtained an
important result (see the below Lemma 1) for the properties of neutral operator which can
be easily used to study the periodic solution problems of functional differential equations.
This paper is devoted to studying the existence for positive periodic solutions of Equations
(1) and (2) by using the Krasnoselskiis fixed point theorem and some mathematical analysis
techniques. The main contributions of this paper are listed as follows:

(1) Equations (1) and (2) in the present paper are more general, including the existing
classical second-order differential equations, than the considered equations in [1,4–
7,15–18]. Therefore, the results of this paper are more general and better applicable.

(2) Since it is very difficult to obtain Green functions of second-order nonlinear differential
equations with variable coefficients, we develop new methods for overcoming the
above difficulties. Using appropriate variable transformation, we transform a second-
order equation into an equivalent one-dimensional system, so we do not need to solve
the Green function. The research method of this paper is different from the existing
research methods, see, e.g., [1,15–18].
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(3) In 2009, we obtained the important properties of the neutral operator in [19]. In
the past, we mostly used this important property to study the existence of periodic
solutions. In this paper, we used this important property to study the existence of
positive periodic solutions for the first time.

The following sections are organized as follows: Section 2 gives the main lemmas.
Section 3 gives the existence results of positive periodic solutions to Equation (1). Section 4
gives the existence results of positive periodic solutions to Equation (2). In Section 5, an
example is given to show the feasibility of our results. Finally, Section 6 concludes the
paper.

2. Main Lemmas

Denote f0 = maxt∈R | f (t)|, CT = {x : x ∈ C(R,R), x(t + T) ≡ x(t)}, C1
T = {x : x ∈

C1(R,R), x′ ∈ CT} ; T is a given positive constant.

Lemma 1 ([19]). Let

A : CT → CT , [Ax](t) = x(t)− c(t)x(t− τ), ∀t ∈ R.

If |c(t)| 6= 1, then operator A has continuous inverse A−1 on CT , satisfying

(1)

[A−1 f ](t) =


f (t) +

∞
∑

j=1

j
∏
i=1

c(t− (i− 1)τ) f (t− jτ), c0 < 1, ∀ f ∈ CT ,

− f (t+τ)
c(t+τ)

−
∞
∑

j=1

j+1
∏
i=1

1
c(t+iτ) f (t + jτ + τ), σ > 1, ∀ f ∈ CT ,

(2) ∫ T

0
|[A−1 f ](t)|dt ≤

{
1

1−c0

∫ T
0 | f (t)|dt, c0 < 1, ∀ f ∈ CT ,

1
σ−1

∫ T
0 | f (t)|dt, σ > 1, ∀ f ∈ CT ,

(3)

|A−1 f |0 ≤
{

1
1−c0
| f |0, c0 < 1, ∀ f ∈ CT ,

1
σ−1 | f |0, σ > 1, ∀ f ∈ CT ,

where c0 = maxt∈[0,T] |c(t)|, σ = mint∈[0,T] |c(t)|.

Definition 1 ([20]). Let X be a Banach space and K be a closed, nonempty subset of X. K is a
cone if

(i) αu + βv ∈ K for all u, v ∈ K and α, β ≥ 0,
(ii) u,−u ∈ K imply u = 0.

Lemma 2 ([21] (Krasnoselskii’s fixed point theorem)). Let B be a Banach space and K be a cone
in B. Assume that Ω1 and Ω2 are open bounded subsets of B with 0 ∈ Ω1 ⊂ Ω̄1 ⊂ Ω2, and let

T : K ∩ (Ω̄2 \Ω1)→ K

be a completely continuous operator such that either

||Tu|| ≤ ||u||, u ∈ K ∩ ∂Ω1 and ||Tu|| ≥ ||u||, u ∈ K ∩ ∂Ω2,

or
||Tu|| ≥ ||u||, u ∈ K ∩ ∂Ω1 and ||Tu|| ≤ ||u||, u ∈ K ∩ ∂Ω2,

Then, T has a fixed point in K ∩ (Ω̄2 \Ω1).
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3. Positive Periodic Solution of Equation (1)

Let
y(t) = x′(t) + ξx(t),

where ξ > 0 is a constant. Then, Equation (1) is changed into the following system:{
x′(t) = −ξx(t) + y(t),
y′(t) = −(b(t)− ξ)y(t)− [a(t)− (b(t)− ξ)ξ]x(t) + f (x(t− δ(t))) +

∫ ∞
0 k(s)h(x(t− s))ds.

(7)

Since system (7) is equivalent to (1), we just have to study the existence of positive periodic
solutions to system (7).

Let
X = {z ∈ C(R,R2) : z(t + T) = z(t), z = (x, y)T}

with the norm ||z|| = max{|x|0, |y|0}, where | f |0 = maxt∈R | f (t)|. Then, X is a Banach
space. Throughout this paper, we need the following assumption:
(H1) b(t)− ξ > 0 for t ∈ R,
where ξ > 0 is defined by (7). Let

K = {z = (x, y)T ∈ X : x(t) ≥ θ|x|0 and y(t) ≥ θ|y|0, t ∈ [0, T]}

where θ = min{ ǧ
ĝ , ˇ̄h

ˆ̄h
}, ǧ, ĝ, ˇ̄h, ˆ̄h are defined by (10) and (11). Integrate (7) from t to t + T

and obtain that {
x(t) =

∫ t+T
t g(t, s)y(s)ds,

y(t) =
∫ t+T

t h̄(t, s)F(s)ds,
(8)

where

g(t, s) =
e(s−t)ξ

eξT − 1
,

h̄(t, s) =
exp

( ∫ s
t (b(u)− ξ)du

)
exp

( ∫ T
0 (b(u)− ξ)du

)
− 1

,

F(s) = −
[
a(s)− (b(s)− ξ)ξ

]
x(s) + f (x(s− δ(s))) +

∫ ∞

0
k(u)h(x(s− u))du.

It is easy to see that

g(t + T, s + T) = g(t, s), h̄(t + T, s + T) = h̄(t, s). (9)

By assumption (H1), we have

ǧ =:
e−Tξ

eξT − 1
≤ g(t, s) ≤ eTξ

eξT − 1
=: ĝ (10)

and

ˇ̄h =:
exp

(
− T|b(t)− ξ|0

)
exp

( ∫ T
0 (b(u)− ξ)du

)
− 1
≤ h̄(t, s) ≤

exp
(
T|b(t)− ξ|0

)
exp

( ∫ T
0 (b(u)− ξ)du

)
− 1

=: ˆ̄h. (11)

For each z = (x, y)T ∈ X, define an operator Φ : K → K as

(Φz)(t) =
( ∫ t+T

t
g(t, s)y(s)ds,

∫ t+T

t
h̄(t, s)F(s)ds

)T

,

where Φz = (Φ1z, Φ2z)T , g(t, s), h̄(t, s), and F(s) are defined by (8). Thus, the existence
of a positive periodic solution of system (7) is equivalent to finding the fixed point of
operator Φ.
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Lemma 3. The mapping Φ maps K into K.

Proof. For each z ∈ K, (Φ1z)(t) and (Φ2z)(t) are continuous in t ∈ [0, T]. By (9) we obtain

(Φ1z)(t + T) =
∫ t+2T

t+T
g(t + T, s)y(s)ds

=
∫ t+T

t
g(t + T, s + T)y(s)ds

=
∫ t+T

t
g(t, s)y(s)ds = (Φ1z)(t)

and

(Φ2z)(t + T) =
∫ t+2T

t+T
h̄(t + T, s)F(s)ds

=
∫ t+T

t
h̄(t + T, s + T)F(s)ds

=
∫ t+T

t
h̄(t, s)F(s)ds = (Φ2z)(t).

Hence, (Φz)(t + T) = (Φz)(t) and Φz ∈ X. By (3.4), for z ∈ K we have

|Φ1z|0 ≤ ĝ
∫ T

0
|y(s)|ds

and

(Φ1z)(t) ≥ ǧ
∫ T

0
|y(s)|ds ≥ ǧ

ĝ
|Φ1z|0. (12)

Similarly, by (11), for z ∈ K we have

(Φ2z)(t) ≥ ˇ̄h
∫ T

0
|F(s)|ds ≥

ˇ̄h
ˆ̄h
|Φ2z|0. (13)

In view of (12) and (13), we have (Φ1z)(t) ≥ θ|Φ1z|0 and (Φ2z)(t) ≥ θ|Φ2z|0. Hence,
Φz ∈ K.

Lemma 4. The mapping Φ : K → K is completely continuous.

Proof. We first show the operator Φ is continuous. Since f (x) is continuous, it is easy
to see that, for any L, ε > 0, there exists δ > 0 such that for each γ, ρ ∈ X, where γ =
(γx, γy)T , ρ = (ρx, ρy)T , ||γ|| ≤ L, ||ρ|| ≤ L, and ||γ− ρ|| < δ imply

sup
u∈R
|γy(u)− ρy(u)| ≤

ε

2Tĝ
(14)

and

sup
s∈R

(
|a(s)− (b(s)− ξ)ξ|0|γx − ρx|

+ | f (γx(s− δ(s)))− f (ρx(s− δ(s)))|+
∫ ∞

0
|h(γx(s− u))− f (ρx(s− u))|du

)
≤ ε

2T ˆ̄h
.

(15)
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From (14) and (15), if p, q ∈ K with p = (px, py)T , q = (qx, qy)T , ||p|| ≤ L, ||q|| ≤ L, and
||p− q|| < δ, then

|Φ1 p−Φ1q|0 ≤ ĝ
∫ T

0
|py(s)− qy(s)|ds <

ε

2

and

|Φ2 p−Φ2q|0 ≤ ˆ̄h
∫ T

0

(
|a(s)− (b(s)− ξ)ξ|0|px − qx|

+ | f (px(s− δ(s)))− f (qx(s− δ(s)))|+
∫ ∞

0
k(u)|h(px(s− u))− h(qx(s− u))|du

)
ds

<
ε

2
.

This yields
||Φp−Φq|| ≤ max{|Φ1 p−Φ1q|0 + |Φ2 p−Φ2q|0} < ε.

Hence, Φ is continuous.
Next, we show that Φ is uniformly bounded. Let ε = 1. Using the above proof, we

know that for any µ > 0, p, q ∈ K with ||p|| ≤ µ, ||q|| ≤ µ, there exists η > 0 such that
||p− q|| ≤ η imply

|py(s)− qy(s)| < 1 (16)

and
|a(s)− (b(s)− ξ)ξ|0|px − qx|+ | f (px(s− δ(s)))− f (qx(s− δ(s)))|

+
∫ ∞

0
k(u)|h(px(s− u))− h(qx(s− u))|du < 1.

(17)

Choose a positive number N such that µ
N < η. Let z = (z1, z2)

T ∈ K and zi(t) = z(t)i
N for

i = 0, 1, · · · , N. If ||z|| ≤ µ, then

||zi − zi−1|| = max
{

sup
t∈R
| z1(t)i

N
− z1(t)(i− 1)

N
|, sup

t∈R
| z2(t)i

N
− z2(t)(i− 1)

N
|
}

=
1
N
||z|| ≤ µ

N
< η.

(18)

From (16)–(18), we have
|zi

2(s)− zi−1
2 (s)| < 1 (19)

and

|a(s)− (b(s)− ξ)ξ|0|zi
1(s)− zi−1

1 (s)|+ | f (zi
1(s− δ(s)))− f (zi−1

1 (s− δ(s)))|

+
∫ ∞

0
k(u)|h(zi

1(s− u))− h(zi−1
1 (s− u))|du < 1.

(20)

It follows by (19) and (20) that

|z2(s)| ≤
N

∑
i=1
|zi

2(s)− zi−1
2 (s)| < N (21)
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and

|a(s)− (b(s)− ξ)ξ|0|z1(s)|+ | f (z1(s− δ(s)))|+
∫ ∞

0
k(u)|h(z1(s− u))|du

≤
N

∑
i=1

(
|a(s)− (b(s)− ξ)ξ|0|zi

1(s)− zi−1
1 (s)|+ | f (zi

1(s− δ(s)))− f (zi−1
1 (s− δ(s)))|

+
∫ ∞

0
k(u)|h(zi

1(s− u))− h(zi−1
1 (s− u))|du

)
+ | f (0)|+ h(0)

< N|a(s)− (b(s)− ξ)ξ|0 + 2N + | f (0)|+ |h(0)| :=M.

(22)

From (21) and (22), we have

||Φz|| ≤ |Φ1z|0 + |Φ2z|0

≤ ĝ
∫ T

0
|z2(s)|ds + ˆ̄h

∫ T

0

(
|a(s)− (b(s)− ξ)ξ|0|z1(s)|

+ | f (z1(s− δ(s)))|+
∫ ∞

0
k(u)|h(z1(s− u))|du

)
ds

≤ ĝTN + ˆ̄hMT.

(23)

Furthermore, for t ∈ R, we have

dΦz
dt

=

(
g(t, t + T)z2(t + T)− g(t, t)z2(t)− ξΦ1z(t),

h(t, t + T)F(t + T)− h(t, t)F(t)− (b(t)− ξ)Φ2z(t)
)T

=

(
− ξΦ1z(t) + z2(t),

− [a(t)− (b(t)− ξ)ξ]z1(t) + f (z1(t− δ(t))) +
∫ ∞

0
k(u)|h(z1(t− u))|du− (b(t)− ξ)Φ2z(t)

)T

.

(24)

By (23) and (24), we have∣∣∣∣∣∣∣∣dΦz
dt

∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣dΦ1z
dt

∣∣∣∣
0
+

∣∣∣∣dΦ2z
dt

∣∣∣∣
0

≤ ξ|Φ1z|0 + |z2|0 + |a(t)− (b(t)− ξ)ξ|0|z1|0
+ | f (z1(t− δ(t)))|0 + |h(z1(t− u))|0 + |b(t)− ξ|0|Φ2z|0
≤ ξ ĝTN + N +M+ |b(t)− ξ|0 ˆ̄hMT.

Hence {Φz : z ∈ K, ||z|| ≤ µ} is a uniformly bounded and equicontinuous function. Due
to the Ascoli–Arzela theorem [20], the function Φ is completely continuous.

Theorem 1. Suppose that assumption (H1) holds. Furthermore, assume that there are positive
constants r and R with r < R such that

sup
||φ||=r,φ∈K

∫ T

0
|φ2(s)|ds ≤ r

2ĝ
, (25)

sup
||φ||=r,φ∈K

∫ T

0

(
|a(s)− (b(s)− ξ)ξ|0|φ1(s)|+ | f (φ1(s− δ(s)))|

+
∫ ∞

0
k(u)|h(φ1(s− u))|du

)
ds ≤ r

2ˆ̄h
,

(26)
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inf
||φ||=R,φ∈K

∫ T

0
|φ2(s)|ds ≥ R

2ǧ
(27)

and

inf
||φ||=R,φ∈K

∫ T

0

(
|a(s)− (b(s)− ξ)ξ|0|φ1(s)|+ | f (φ1(s− δ(s)))|

+
∫ ∞

0
k(u)|h(φ1(s− u))|du

)
ds ≥ R

2ˇ̄h
.

(28)

Then, system (7) has a T-periodic solution z with r ≤ ||z|| ≤ R, i.e., Equation (1) has a T-periodic
solution x > 0.

Proof. Let z = (z1, z2)
T ∈ K and ||z|| = r. From (25) and (26), we have

|Φ1z|0 ≤ ĝ
∫ T

0
|z2(s)|ds ≤ r

2

and

|Φ2z|0 ≤ ˆ̄h
∫ T

0

(
|a(s)− (b(s)− ξ)ξ|0|z1(s)|+ | f (z1(s− δ(s)))|+

∫ ∞

0
k(u)|h(z1(s− u))|du

)
ds ≤ r

2
.

Thus,
||Φz|| ≤ |Φ1z|0 + |Φ2z|0 ≤ r = ||z||.

where z ∈ K ∩ ∂Ω1, Ω1 = {z ∈ X : ||z|| < r}. Similar to the above proof, in view of (26)
and (27), we have

|Φ1z|0 ≥ ǧ
∫ ω

0
|z2(s)|ds ≥ R

2

and

|Φ2z|0 ≥ ˇ̄h
∫ T

0

(
|a(s)− (b(s)− ξ)ξ|0|z1(s)|+ | f (z1(s− δ(s)))|+

∫ ∞

0
k(u)|h(z1(s− u))|du

)
ds ≥ R

2
.

Thus,
||Φz|| ≥ |Φ1z|0 + |Φ2z|0 ≥ R = ||z||,

where z ∈ K ∩ ∂Ω2, Ω2 = {z ∈ X : ||z|| < R}. By Lemma 2, Φ has a fixed point z in
K ∩ (Ω̄2 \ Ω1). with r ≤ ||z|| ≤ R, hence, system (7) has a T-periodic solution z with
r ≤ z ≤ R, i.e., Equation (1) has an T-periodic solution z1 > 0.

4. Positive Periodic Solution of Equation (2)

According to the proof of the existence of the positive periodic solution of Equation
(1) and Lemma 1, we can easily obtain the existence of the positive periodic solution of
Equation (2). Let

y(t) = (Ax)′(t) + ξx(t),

where ξ > 0 is a constant. Then, Equation (2) is changed into the following system:
(Ax)′(t) = −ξAx(t)− ξc(t)x(t− τ) + y(t),
y′(t) = −(b(t)− ξ)y(t)− (b(t)− ξ)c′(t)x(t− τ)− (b(t)− ξ)c(t)x′(t− τ)
−[a(t)− (b(t)− ξ)ξ]x(t) + f (x(t− δ(t))) +

∫ ∞
0 k(s)h(x(t− s))ds.

(29)

Since system (29) is equivalent to (2), we just have to study the existence of positive periodic
solutions to system (29). Let

X = {z ∈ C(R,R2) : z(t + T) = z(t), z = (Ax, y)T}
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with the norm ||z|| = max{|Ax|0, |y|0}. Then, X is a Banach space. Let

K = {z ∈ X : (Ax)(t) ≥ θ|Ax|0 and y(t) ≥ θ|y|0, t ∈ [0, T]},

where θ = min{ ǧ
ĝ , ˇ̄h

ˆ̄h
}, ǧ, ĝ, ˇ̄h, ˆ̄h are defined by (10) and (11). Integrate (29) from t to t + T

and obtain that {
(Ax(t) =

∫ t+T
t g(t, s)[−ξc(s)x(s− τ) + y(s)]ds,

y(t) =
∫ t+T

t h̄(t, s)F(s)ds,
(30)

where

g(t, s) =
e(s−t)ξ

eξT − 1
,

h̄(t, s) =
exp

( ∫ t
s (b(u)− ξ)du

)
exp

( ∫ T
0 (b(u)− ξ)du

)
− 1

,

F(t) = −(b(t)− ξ)c′(t)x(t− τ)− (b(t)− ξ)c(t)x′(t− τ)

− [a(t)− (b(t)− ξ)ξ]x(t) + f (x(t− δ(t))) +
∫ ∞

0
k(s)h(x(t− s))ds.

In view of (30), for each z = (Ax, y)T ∈ X , define an operator Φ : K → K as

(Φz)(t) =
( ∫ t+T

t
g(t, s)[−ξc(s)x(s− τ) + y(s)]ds,

∫ t+T

t
h̄(t, s)F(s)ds

)T

,

where Φz = (Φ1z, Φ2z)T , g(t, s), h̄(t, s), and F(s) are defined by (30). Thus, the existence
of a positive periodic solution of system (29) is equivalent to finding the fixed point of
operator Φ. Since the proofs of Lemmas 5 and 6 are similar to the proofs of Lemmas 3 and
4, we omit them.

Lemma 5. The mapping Φ maps K into K.

Lemma 6. The mapping Φ : K → K is completely continuous.

Theorem 2. Suppose that assumption (H1) holds. Furthermore, assume that there are positive
constants r and R with r < R such that

sup
||φ||=r,φ∈K

∫ T

0

(
| − ξc(s)|0|A−1φ1(s− τ)|+ |φ2(s)|

)
ds ≤ r

2ĝ
,

sup
||φ||=r,φ∈K

∫ T

0

(
|a(s)− (b(s)− ξ)ξ|0|A−1φ1(s)|+ | f (A−1φ1(s− δ(s)))|

+ |(b(t)− ξ)c′(t)|0|A−1φ1(s− τ)|+ |(b(t)− ξ)c(t)|0|(A−1φ1(s− τ))′|

+
∫ ∞

0
k(u)|h(A−1φ1(s− u))|du

)
ds ≤ r

2ˆ̄h
,

inf
||φ||=R,φ∈K

∫ T

0

(
| − ξc(s)|0|A−1φ1(s− τ)|+ |φ2(s)|

)
ds ≥ R

2ǧ
,
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and

inf
||φ||=R,φ∈K

∫ T

0

(
|a(s)− (b(s)− ξ)ξ|0|A−1φ1(s)|+ | f (A−1φ1(s− δ(s)))|

+ |(b(t)− ξ)c′(t)|0|A−1φ1(s− τ)|+ |(b(t)− ξ)c(t)|0|(A−1φ1(s− τ))′|

+
∫ ∞

0
k(u)|h(A−1φ1(s− u))|du

)
ds ≥ R

2ˇ̄h
.

Then, system (29) has a T-periodic solution z with r ≤ ||z|| ≤ R, i.e., Equation (2) has a T-periodic
solution x > 0 provided that

c(t) ≥ 0 for c0 < 1 and t ∈ R (31)

or
c(t) < 0 for σ > 1 and t ∈ R. (32)

Proof. Similar to the proof of Theorem 1, system (29) has a T-periodic solution z = (z1, z2)
T

such that z1 = Ax > 0, i.e., x = A−1z1. By Lemma 1, we have

[A−1z1](t) =


z1(t) +

∞
∑

j=1

j
∏
i=1

c(t− (i− 1)τ)z1(t− jτ), c0 < 1, ∀z1 ∈ K,

− z1(t+τ)
c(t+τ)

−
∞
∑

j=1

j+1
∏
i=1

1
c(t+iτ) z1(t + jτ + τ), σ > 1, ∀z1 ∈ K.

(33)

From (31)–(32), we have x > 0 and Equation (2) has a positive T-periodic solution.

Remark 1. Green functions are crucial for studying the positive periodic solutions of second-order
nonlinear Equations (1) and (2). However, there are no Green functions for (1) and (1) with periodic
boundary condition and variable coefficients. This paper aims to propose a new method to study
the above equations to avoid the difficulty of finding Green functions. We use the order reduction
method to reduce the higher-order equation into a lower-order system, so we can avoid solving the
Green function, and we can directly use the fixed point theorem to study the lower-order system.

Remark 2. In recent years, a huge amount of literature has come into existence for studying the
positive periodic solution of neutral second-order nonlinear equations. Wu and Wang [14] studied
the following second-order neutral equation:

(x(t)− cx(t− τ))′′ + a(t)x(t) = φb(t) f (x(t− δ(t))), (34)

where c ∈ (−1, 0) is a constant and φ ∈ (0, 1) is a constant. By the use of the fixed point theorem in
cones, sufficient conditions for the existence of the positive periodic solution of (34) are established.
When c ∈ (−1, 1), Cheung et al. [15] discussed the existence of a positive periodic solution for the
following second-order neutral differential equation:

(x(t)− cx(t− τ(t)))′′ + a(t)x(t) = f (t, x(t− τ(t))). (35)

Fore more results about (35), see, e.g., [16,17] and related references. In a very recent paper [18]
using the Leray–Schauder fixed point theorem, Cheng, Lv, and Li studied the following equation:

(Ax(t))′′ + b(t)x′(t) + a(t)x(t) = f (x(t− δ(t))), (36)

where c(t) ∈ C1(R,R) is a T-periodic function. They obtained a range c(t) ∈ (− a0−b∞c′∞
a∞+δb∞+a0

,
a0−b∞c′∞

a∞+δb∞+a0
) for guaranteeing the existence of the positive periodic solution to (36). However, in

the above papers, they used the properties of Green functions and neutral operators. In the present
paper, we use the order reduction method to study second-order nonlinear differential equations with
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variable coefficients. We wish that the methods of the present paper can be used to study positive
periodic solutions of neutral second-order nonlinear equations with variable coefficients.

5. Examples

Consider the following equation of model (1):

x′′(t) + b(t)x′(t) + a(t)x(t) = f (x(t− δ(t))) +
∫ ∞

0
k(s)h(x(t− s))ds, (37)

where b(t) = 3.1× 10−2 + sin2 t, a(t) = 1 + sin t, δ(t) = 0.1, k(s) = e−s,

f (u) =
0.1u

1 + u2 , h(u) =
1

1 + u3 f or u ∈ R.

Let
y(t) = x′(t) + ξx(t),

where ξ = 2× 10−2 > 0 is a constant. Then, Equation (29) is changed into the following
system:{

x′(t) = −2x(t) + y(t),
y′(t) = −(b(t)− 2)y(t)− [a(t)− (b(t)− 2)2]x(t) + f (x(t− 0.1)) +

∫ ∞
0 e−sh(x(t− s))ds.

(38)

From b(t)− ξ = 1.1× 10−2 + sin2 t > 0, assumption (H1) holds. By simple calculation, we
have ∫ ∞

0
k(s)ds =

∫ ∞

0
e−sds = 1, T = 2π,

ǧ =
e−Tξ

eξT − 1
≈ 6.667, ĝ =

eTξ

eξT − 1
≈ 8.518,

ˇ̄h =
exp

(
− T|b(t)− ξ|0

)
exp

( ∫ T
0 (b(u)− ξ)du

)
− 1
≈ 5.9× 10−3, ˆ̄h =

exp
(
T|b(t)− ξ|0

)
exp

( ∫ T
0 (b(u)− ξ)du

)
− 1
≈ 168.45,

θ = min{ ǧ
ĝ

,
ˇ̄h
ˆ̄h
} ≈ 3.56× 10−5.

Choose r = 1 and R = 10. When φ = (sin t, 0.01 cos t)T , we have

sup
||φ||=r,φ∈K

∫ T

0
|φ2(s)|ds = 0.04 ≤ r

2ĝ
= 0.0587,

sup
||φ||=r,φ∈K

∫ T

0

(
|a(s)− (b(s)− ξ)ξ|0|φ1(s)|+ | f (φ1(s− δ(s)))|

+
∫ ∞

0
k(u)|h(φ1(s− u))|du

)
ds = 5.93× 10−4 ≤ r

2ˆ̄h
= 0.003.

When φ = (sin t, 10 cos t)T , we have

inf
||φ||=R,φ∈K

∫ T

0
|φ2(s)|ds = 40 ≥ R

2ǧ
= 0.75

and

inf
||φ||=R,φ∈K

∫ T

0

(
|a(s)− (b(s)− ξ)ξ|0|φ1(s)|+ | f (φ1(s− δ(s)))|

+
∫ ∞

0
k(u)|h(φ1(s− u))|du

)
ds = 1576 ≥ R

2ˇ̄h
= 847.
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Thus, all assumptions of Theorem 1 hold. Hence, system (38) has a T-periodic pos-
itive solution, i.e., Equation (37) has a T-periodic positive solution x; the corresponding
numerical simulation is presented in Figure 1.
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Figure 1. Periodic solution (x, y)T of system (38).

6. Conclusions and Discussions

In the last past decades, nonlinear second-order differential equations with variable
coefficients have found successful applications in scientific areas including quantum field
theory, fluid mechanics, gas dynamics, and chemistry. Hence, there exists ongoing research
interest in second-order differential equations with variable coefficients, including existence,
stability, and oscillation, which have been obtained, see, e.g., [22–25]. In this paper, we
develop a reducing order method for studying second-order differential equations with
variable coefficients, avoiding the difficulty of finding Green functions.

The methods of this paper can be extended to investigate other types of second-
order differential equations such as stochastic differential equations, impulsive differential
equations, fractional differential equations, and so on. We hope some authors can use the
methods provided in this article to conduct more in-depth research on various types of
second-order differential equations with variable coefficients.

Author Contributions: All authors contributed equally to the writing of this paper. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the editors and the referees for their valuable
comments and suggestions that improved the quality of our paper.



Entropy 2022, 24, 1286 13 of 13

Conflicts of Interest: The authors declare that they have no competing interest.

References
1. Wang, Y.; Lian, H.; Ge, W. Periodic solutions for a second order nonlinear functional differential equation. Appl. Math. Lett. 2007,

20, 110–115.
2. Bonheure, D.; Torres, P.J. Bounded and homoclinic-like solutions of a second-order singular differential equation. Bull. Lond.

Math. Soc. 2012, 44, 47–54.
3. Agarwal, R.P.; O’Regan, D. An Introduction to Ordinary Differential Equations; Springer: New York, NY, USA, 2008.
4. Lomtatidze, A.; Remr, J. On positive periodic solutions to second-order differential equations with a sub-linear non-linearity.

Nonlinear Anal. Real World Appl. 2021, 57, 103200.
5. Lomtatidze, A. On periodic bounded and unbounded solutions of second-order nonlionear ordinary differential equations.

Georgian Math. J. 2017, 24, 241–263.
6. Lomtatidze, A.; Sremr, J. On periodic solutions to second-order Duffing type equations. Nonlinear Anal. RWA 2018, 40, 215–242.
7. Torres, P.J. Guided waves in a multi-layered optical structure. Nonlinearity 2006, 19, 2103–2113.
8. Liu, B.; Huang, L. Existence and uniqueness of periodic solutions for a kind of second order neutral functional differential

equations. Nonlinear Anal. Real World Appl. 2007, 8, 222–229.
9. Lu, S.; Ge, W. Periodic solutions for a kind of second order differential equation with multiple deviating arguments . Appl. Math.

Comput. 2003, 146, 195-209.
10. Luo, Y.; Wei, W.; Shen, J. Existence of positive periodic solutions for two kinds of neutral functional differential equations. Appl.

Math. Lett. 2008, 21, 581-587.
11. Arbi, A.; Guo, Y.; Cao, J. Convergence analysis on time scales for HOBAM neural networks in the Stepanov-like weighted pseudo

almost automorphic space. Neural Comput. Appl. 2021, 33, 3567–3581.
12. Xin, Y.; Cheng, Z. Neutral operator with variable parameter and third-order neutral differential equation. Adv. Diff. Equ. 2014,

273, 1–18.
13. Liang, F.; Guo, L.; Lu, S. Existence of periodic solutions for a p−Laplacian neutral functional differential equation. Nonlinear Anal.

Tma 2009, 71, 427–436.
14. Wu, J.; Wang, Z. Two periodic solutions of second-order neutral functional differential equations. J. Math. Anal. Appl. 2007, 329,

677–89.
15. Cheung, W.; Ren, J.; Han, W. Positive periodic solution of second-order neutral functional differential equations. Nonlinear Anal.

2009, 71, 3948–3955.
16. Cheng, Z.; Li, F.; Yao, S. Positive periodic solutions for second-order neutral differential equations with time-dependent deviating

arguments. Filomat 2019, 33, 3627–3638.
17. Zhu, Q. Stabilization of stochastic nonlinear delay systems with exogenous disturbances and the event-triggered feedback control.

Ieee Transactions Autom. Control. 2019, 64, 3764–3771.
18. Cheng, Z.; Lv, L.; Li, F. Periodic solution for second-order damped neutral differential equation via a fixed point theorem of

Leray-Schauder type. J. Appl. Anal. Comput. 2021, 11, 1731–1748.
19. Du, B.; Guo, L.; Ge, W.; Lu, S. Periodic solutions for generalized Liénard neutral equation with variable parameter. Nonlinear

Anal. 2009, 70, 2387-2394.
20. Royden, H.L. Real Analysis; Macmillan: New York, NY, USA, 1988.
21. Krasnoselskii, M.A. Positive Solutions of Operator Equations; Noordhoff: Gorninggen, The Netherlands, 1964.
22. De Coster, C.; Willem, M. Density, spectral theory and homoclinics for singular Sturm- Liouville systems. J. Comp. App. Math.

1994, 52, 45–70.
23. Schrader, K.W. Boundary value problems for second order ordinary differential equations. J. Differ. Equ. 1967, 3, 403–413.
24. Han, W.; Ren, J. Some results on second-order neutral functional differential equations with infinite distributed delay. Nonlinear

Anal. 2009, 70, 1393–1406.
25. Candan, T. Existence of positive periodic solutions of first order neutral differ- ential equations with variable coefficients. Appl.

Math. Lett. 2016, 52, 142–148.


	Introduction
	Main Lemmas
	Positive Periodic Solution of Equation (1)
	Positive Periodic Solution of Equation (2)
	Examples
	Conclusions and Discussions 
	References

