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Abstract: Radio frequency (RF) stealth anti-sorting technology is a research hotspot in the radar 
field. In this study, the signal design principles of anti-cluster and anti-SDIF sorting were 
investigated for processes of clustering pre-sorting and sequence-difference-histogram main 
sorting. Then, in accordance with the signal design principle, a 2D interleaving feedback 
hyperchaotic system based on the cosine-exponential was designed. A method to modulate the 
pulse repetition interval (PRI) of the signal parameters and carrier frequency with wide intervals 
through the hyperchaotic system was developed. Finally, we verified the correctness of the signal 
design principle, the performance of the hyperchaotic system, and the anti-sorting performance of 
the designed signal using simulations. The results showed that the signal design principle could 
guide the signal design. The hyperchaotic system outperformed the classical 1D and 2D chaotic 
systems and the classical 3D Lorenz systems in terms of randomness and complexity. Anti-cluster 
sorting and anti-SDIF sorting could be realized by anti-sorting signals modulated by a hyperchaotic 
system, with the anti-SDIF sorting performance being better than that of the PRI random jitter 
signal. 

Keywords: radio frequency stealth; anti-sorting; signal design; multi-parameter compound  
modulation; hyperchaotic system 
 

1. Introduction 
In recent years, with the rapid development of the radio frequency (RF) hardware 

circuit and signal processing technology, the detection ability of wide-band real-time 
electronic reconnaissance equipment, as represented by radar warning receivers, has 
rapidly improved. The real-time lethality of the radar countermeasure system has been 
greatly enhanced, threatening the survival of radars on the battlefield [1,2]. Therefore, to 
improve the survival rate of radars on the battlefield, RF stealth radars have become a 
research hotspot in the radar field. In accordance with the three detection stages of signal 
interception, sorting, and recognition of broadband real-time electronic reconnaissance 
equipment, such as radar alarm receivers, the corresponding radar RF stealth strategies 
mainly include anti-interception [3–5], anti-sorting [6], and anti-identification. Anti-
interception is primarily achieved through RF stealth, including power control of the 
radiation source [7,8], directional antenna designs [9], and low-interception waveform 
designs [10,11]. However, anti-interception technology often enhances radar RF stealth 
capabilities at the cost of radar performance [12]. Therefore, to further improve the 

Citation: Jia, J.; Han, Z.; Liang, Y.; 

Liu, L.; Wang, X. Design of Multi- 

Parameter Compound Modulated 

RF Stealth Anti-Sorting Signals 

Based on Hyperchaotic Interleaving 

Feedback. Entropy 2022, 24, 1283. 

https://doi.org/10.3390/e24091283 

Academic Editor: Fernando  

Morgado-Dias 

Received: 3 August 2022 

Accepted: 5 September 2022 

Published: 12 September 2022 

Publisher’s Note: MDPI stays 

neutral with regard to jurisdictional 

claims in published maps and 

institutional affiliations. 

 

Copyright: © 2022 by the authors. 

Licensee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(https://creativecommons.org/license

s/by/4.0/). 



Entropy 2022, 24, 1283 2 of 33 
 

 

performance of radar detection and RF stealth, anti-sorting signal design technology has 
become an important method for RF stealth. 

Signal sorting is mainly divided into pre-sorting and main sorting processes. Pre-
sorting aims to classify the pulses according to the RF, pulse width (PW), and direction-
of-arrival (DOA) in the pulse descriptor word (PDW) of the electronic reconnaissance 
system to realize the dilution of high-density pulse streams. Main sorting is the core of 
signal sorting for radiation sources. It usually processes the time-of-arrival (TOA) of each 
pulse to obtain the pulse repetition interval (PRI) and its modulation mode for each 
radiation source in the electromagnetic environment [13]. Therefore, to weaken the signal 
sorting of the electronic reconnaissance system, radar mainly addresses the two sorting 
processes: pre-sorting and main sorting. In engineering practice, the pre-sorting algorithm 
mainly used is the k-means clustering algorithm based on data field theory, while the 
main sorting algorithm is generally based on the sequence-difference-histogram 
algorithm. 

Traditional signal design technology for RF stealth anti-sorting is mainly aimed 
against main sorting based on PRI sorting, including (1) interference pulse anti-sorting 
[14–17]—adding an interference pulse signal to the radar signal to disrupt the interception 
and identification of the PRI information of the pulse signal by the intercepting receiver 
of enemies; (2) jitter PRI anti-sorting [16,18,19]—adding jitter to the PRI of the pulse signal, 
where the different PRIs of each pulse signal make it difficult for enemies to intercept the 
receiver and sort the radar signal; (3) PRI optimization and anti-sorting [20,21]—
optimizing the PRI or signal system design, which only requires precise quantitative 
design of the PRI without additional interference pulse design. Although the above 
methods have achieved certain results, they lack a comprehensive principle of sorting 
failure as a theoretical support. Therefore, the stability of the anti-sorting performance of 
the designed signals needs further verification. 

Moreover, as chaos theory has developed, its application has gradually expanded 
from traditional cryptography and image encryption to other fields. Experts and scholars 
have attempted to use chaotic systems to modulate the parameters of radar or 
communication signals. Yang et al. [22] proposed a frequency hopping system based on a 
4D hyperchaotic design and modulated the frequency of communication signals using a 
chaotic system, achieving good RF stealth performance. This result inspired researchers 
in the belief that chaos and the complex dynamic behavior of hyperchaotic systems have 
promising applications in signal parameter modulation. Therefore, it is essential to 
construct a chaotic system that satisfies the real-time requirements of signal modulation 
and is highly complex. In general, chaotic systems can be divided into 1D and high-
dimensional chaotic systems according to the number of variables in the system. A 1D 
chaotic system has only one variable, while a high-dimensional one has many variables 
[23–25]. A 1D chaotic system has a simple chaotic structure and is easy to realize. 
However, it is vulnerable to attacks by the group-lifting algorithm due to the limited 
chaotic interval. Compared with 1D chaotic systems, higher-dimensional ones have 
stronger unpredictability, complexity, and initial value sensitivity. However, high-
dimensional chaotic systems have significant disadvantages, such as extensive 
computation, complex structures, and difficult implementation. In 1979, Rossler proposed 
the first hyperchaotic system. Since then, scholars have put forward several hyperchaotic 
systems successively. Peng [26], Liu [27], and Yang [22] proposed 4D hyperchaotic 
systems in 2014, 2015, and 2020, respectively. The three hyperchaotic systems were 
constructed by adding a new state feedback controller based on a 3D chaotic system. 
During the construction, the newly added controller had to feed back to the original 
controller, and the original controller in another set had to feed back to the new controller. 
The feedback allowed the four controllers of the system to interact with each other, 
making the relationship more complicated. However, chaotic systems are very 
complicated to implement due to their multiple controllers, and the increase in 
dimensions leads to heavy consumption of computing resources. Thus, the relationship 
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between the chaotic dimension and randomness needs should be considered 
comprehensively. 

With the development of chaotic systems, researchers discovered the recursive 
properties of chaotic systems. Recursion was first proposed by Henri Poincare in his 
seminal work published in 1890 [28]. Although recursion was discovered in nature early 
on, research on recursive aspects of nature was not well-developed because there was no 
suitable method to analyze the dynamic model in the high-dimensional phase space at 
that time. Following the rapid development and application of modern computer 
technology, Ekman proposed the recurrence plot (RP) in 1987, a powerful tool to study 
the recurrence characteristics of time series, using 2D graphics for the recurrence analysis 
of the characteristics of various signals [29]. Additionally, RPs are a new, important tool 
to deal with recently developed nonlinear and non-stationary problems. Since RPs can 
only analyze signals qualitatively, Zbilut and Webber et al. proposed recursive 
quantitative analysis (RQA) to quantitatively analyze various recursive phenomena 
reflected by signals in the RP and obtain the information needed to study the 
characteristics of signals [30]. The main purpose of RQA is to characterize the dynamic 
characteristics of signals through various RQA measures and quantitatively analyze 
signals. These quantitative analysis methods are mainly intended to count the distribution 
characteristics of the basic graph points and line segments in the RP, which is based on 
the density of recursive points, diagonal lines, and vertical lines (horizontal lines) in the 
RP. After more than 40 years since the emergence of the RP, the existing RQA measures 
mainly include the recurrence rate (RR), determinism (DET), laminarity (LAM), and the 
clustering coefficient (CC) of recurrence. These RQA measures play an important role in 
analyzing non-stationary random signals [31]. 

In this study, we focused on the theory of anti-sorting signal design, without 
involving specific hardware implementation. First, the whole process of signal sorting 
was analyzed, focusing on the principle of failure behind the pre-sorting algorithm, based 
on data field clustering, and the main sorting algorithm, based on sequential difference 
histogram (SDIF). Then, based on the failure principle, a multi-parameter composite 
modulated RF stealth anti-sorting signal was designed using the hyperchaotic system 
designed in this paper. The anti-sorting performance of the signal was verified through 
simulations and experiments. The paper is organized as follows. Section 2 analyzes the 
sorting failure principle for the clustering algorithm and SDIF algorithm in detail. In 
Section 3, a novel 2D interleaving feedback chaotic system based on cosine-exponential 
(CE) is proposed, as well as a wide-interval signal design method, and the design of a 
wide-interval anti-sorting signal based on the CE hyperchaotic system is described. In 
Section 4, the signal design principle, chaotic mapping performance, and anti-sorting 
performance of the designed signal are simulated and verified. Section 5 concludes the 
paper. 

2. Motivations and Contributions 
In the present complex radar electronic countermeasure environment, RF stealth 

radar has excellent development potential due to its excellent anti-interception and anti-
sorting performance. Anti-sorting signal design is an important development direction 
for RF stealth radar [6,32]. In addition, anti-PRI sorting signal design requires the relevant 
theoretical basis for the signal design. Therefore, the failure principle of the SDIF sorting 
algorithm was investigated in this study. Then, the PRIs and RFs of radar signals were 
designed with the chaotic system according to the failure principle. The signal eventually 
achieved anti-sorting. 

To design a signal with better anti-sorting performance, the failure principle of the 
clustering sorting algorithm and the SDIF sorting algorithm were studied, providing 
theoretical support for anti-sorting signal design. The threshold function of the SDIF 
algorithm will fail when the PRI value of the signals follows an interval distribution with 
a length of more than 20 times the minimum interval of the PRI, and this failure principle 
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proposed for the first time. Then, in accordance with the failure principle, the PRIs and 
RFs of radar signals were designed with the chaotic system. As a result, the signal can 
achieve anti-clustering sorting and anti-SDIF sorting. Simulation results show that the 
signal has better anti-sorting performance. 

3. Principle of Anti-Sorting Signal Design 
The design principle for the anti-sorting signal is mainly based on research into the 

signal sorting algorithm aimed at obtaining the sorting failure principle through analysis. 
The principle of sorting failure provided the theoretical support for the anti-sorting signal 
design and improved its efficiency and success rates. 

3.1. Clustering Algorithm and Its Failure Principle 
3.1.1. Clustering Sorting Algorithm 

For wide-band real-time electronic reconnaissance systems, such as radar warning 
receivers, the clustering algorithm is usually used in the pre-sorting stage, mainly 
employing the RF, PW, and DOA in the PDW to classify the pulse and dilute the high-
density pulse stream. At present, the k-means clustering algorithm and its improved 
algorithm are commonly used for clustering sorting. Therefore, this section analyzes the 
k-means clustering algorithm based on the data field. 

The k-means clustering algorithm is a widely used, typical clustering algorithm [33], 
and its basic principles are as follows. 

Assuming that the set 1 2 3{ , , , , }nD D D D D= ⋅⋅ ⋅  containing N data is the data to be 

clustered with 1 2 3{ , , , , }j m m m mqD D D D D= ⋅⋅ ⋅ , 1,2,3, ,m n= ⋅⋅ ⋅ . The k-means 

clustering is used to find a partition interval 1 2 3{ , , , , }k kP C C C C= ⋅⋅ ⋅  that minimizes the 

objective function ( ) ( )
1

,
l i

k

k l iD C
i

f P d D M
∈

=

= . The objective function expresses the 

similarity between data, usually taking the Euclidean distance as the objective function. 
The Euclidean distance equation of ( )1 2, , ,i i ikA x x x⋅ ⋅ ⋅  and ( )1 2, , ,j j jkB x x x⋅⋅⋅  is shown as 
follows. 

( )
1
22

1
,

n

ik jk
k

d i j x x
=

 = − 
 
  (1)

After clustering the data, the central location of category I is: 

1
l i

i lD C
i

M D
n ∈

=   (2)

where in  represents the data number in class iC . The above is a clustering process. 
Then, the process is repeated by calculating the new cluster center and adjusting the class. 
The classification ends when the sum of the squares of the distances from each data point 
to each center is minimized. 

Although the k-means algorithm is classic, it needs to select the number of clusters 
and the center value of the class in advance, which is not feasible for sorting unknown 
radar signals. Secondly, there are some abnormal and wrong data in radar signal sorting, 
and the k-means algorithm is very sensitive to abnormal data. Thus, the k-means 
clustering algorithm cannot be used directly in radar signal sorting. The data field 
clustering algorithm can complete the initial clustering without prior knowledge of data, 
providing the prior knowledge required by the k-means clustering algorithm. 

Therefore, in the practical application of clustering algorithms, data field theory and 
clustering theory are usually combined. Firstly, the number of data field clusterings is 
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used as the initial clustering number for the k-means algorithm, and then the potential 
center obtained by data field clustering is used as the initial clustering center of the k-
means clustering algorithm. Finally, the k-means clustering algorithm completes the final 
clustering. The workflow of the algorithm is shown in Figure 1. 

Input N pulse multidimensional 
parameter data

Using data field theory to determine 
the number of initial cluster centers and 

their specific locations

Calculate the Euclidean distance of the 
remaining pulses from the cluster 

centers and assign the pulses to the 
cluster that is most similar to it

Calculate new cluster centers

The location of new cluster
 center and the previous one 

 is the same

Output clustering results

Y

N

 
Figure 1. Flow chart of the k-means clustering algorithm based on data field theory. 

3.1.2. Failure Principle of Clustering Sorting 
The core step in clustering algorithms is determining the similarity of data points 

using the Euclidean distance and dividing the initial cluster center using data field theory. 
Therefore, this paper proposes a joint design method for 3D pseudo-center width agility 
based on the interval distribution for the Euclidean distance equation and the data field 
division of initial cluster centers. The method can be explained as follows: 
① The 3D parameters refer to the 3D data for the PW, RF, and DOA in the PDW to be 

sorted by the clustering; 
② The interval distribution indicates that the PW, RF, and DOA parameters obey the 

interval distribution and are no longer fixed or finite fixed values; 
③ Wide agility refers to a jump in the data center values of the same dimension in two 

adjacent intervals to achieve a large jump in interval values; 
④ The pseudo-center indicates that the PW, RF, and DOA from the same radiation 

source are sorted into multiple pseudo-cluster centers in the clustering algorithm 
after the interval distribution and wide agility design. The clustering algorithm will 
incorrectly classify the signals from the same radiation source into multiple radiation 
sources; 

⑤ In the joint design, the PW, RF, and DOA signals are simultaneously designed with 
interval distribution and wide flexibility. The differentiation of the pseudo-cluster 
centers is made more obvious to prevent the overlap of the pseudo-cluster centers 
from affecting the anti-sorting performance of the signal. 
According to the above analysis, the width agility of 3D parameters is the key to 

forming pseudo-cluster centers, so studying the jump range of parameters is necessary. 
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First, the analysis starts with 1D parameters. The center value x of the PW signal 
parameter interval 1 is 10x , and any value ( )11 12,x x x∈  within the interval is 1Δ ; the 

center value x of the PW signal parameter interval 2 is 20x , and any value ( )21 22,x x x∈  

within the interval is 2Δ . To study the relationship between the amplitude of parameter 

agility and the interval size, PW values ( )11 12,Ax x x∈  and 12Ax x→  are assumed in 
the signal PW set. 

The Euclidean distance between Ax  and the center value of interval 1 is: 

10 10Ax x Ad x x= −  (3)

The Euclidean distance between Ax  and the center value of interval 2 is: 

20 20Ax x Ad x x= −  (4)

Due to [ ]11 12,Ax x x∈ , 
10 20A Ax x x xd d< . Therefore, 

10 20A Ax x x x− < −  (5)

Due to 12Ax x→ , Equation (5) can be transformed into: 

1 2
10 202 2
x xΔ Δ+ < −  (6)

Therefore, 

1 2
20 10 2 2
x x Δ Δ− > +  (7)

According to Equation (7), in the case of 1D parameters, relatively independent 
multiple pseudo-cluster centers without overlap can be formed when the agility of the 
central values of two adjacent intervals is at least half of the sum of their intervals. 
Specifically, if the interval values of two adjacent intervals are equal—i.e., 1 2= =Δ Δ Δ —
then: 

20 10x x− > Δ  (8)

According to Equation (8), for 1D parameters, if the interval values of two adjacent 
intervals are equal, the deceleration magnitude of the central value of the adjacent 
intervals is at least one interval, and relatively independent multiple pseudo-cluster 
centers without overlap can be formed. The above analysis explores the relationship 
between the agility range of interval central values and the interval of n-dimensional 
parameters from the perspective of 1D parameters. 

The center value of the n-dimensional parameters of the signal in interval i is 
[ ]0{ |j 1, }

ji
x n∈ , and j is any dimension of the n-dimensional parameters in the interval. 

Any value is ( ) [ ]1 2{ , |j 1, }
j j ji i ix x x n∈ ∈  in the interval i, and the interval length is 

i{ |j [1, ]}
j

nΔ ∈ . To study the relationship between parameter agility amplitude and 

interval length, it is assumed that there is a data point A ( ) [ ]1 1 1 1 2{ , | 1, }
j j j
x x x j n∈ ∈  

and [ ]1 1 2{ | 1, }
j j
x x j n→ ∈  in interval 1. 

Then, the Euclidean distance between 1j
x  and the center value of interval 1 is: 
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( ) [ ]
1 1 0

1
22

1 1 0
1

( 1, )
j jj j

n

x x
j

d x x j n
=

 
= − ∈ 
 
  (9)

The Euclidean distance between 1 j
x  and the center value of interval 2 is: 

( ) [ ]
1 2 0

1
22

1 2 0
1

( 1, )
j jj j

n

x x
j

d x x j n
=

 
= − ∈ 
 
  (10)

Due to ( ) [ ]1 1 1 1 2{ , | 1, }
j j j
x x x j n∈ ∈ , 

1 1 0 1 2 0j j j jx x x xd d< . Thus, 

( ) ( ) [ ]
1 1
2 22 2

1 1 0 1 2 0
1 1

( 1, )
j j j j

n n

j j
x x x x j n

= =

   
− < − ∈   

   
   (11)

To ensure that 
1 1 0 1 2 0j j j jx x x xd d<  is correct continuously, 

( ) ( ) [ ]
2 2

1 1 0 1 2 0 ( 1, )
j j j j
x x x x j n− < − ∈  (12)

According to the geometric meaning of Equation (12), it can be simplified as: 

[ ]1 1 0 1 2 0 ( 1, )
j j j j
x x x x j n− < − ∈  (13)

Due to [ ]1 1 2{ | 1, }
j j
x x j n→ ∈ , Equation (13) can be transformed into: 

[ ]1 2
1 0 2 0 ( 1, )

2 2
j j

j j
x x j n

Δ Δ
+ < − ∈  (14)

Therefore, 

[ ]1 2
2 0 1 0 ( 1, )

2 2
j j

j j
x x j n

Δ Δ
− > + ∈  (15)

According to Equation (15), in the case of n-dimensional parameters, when the agility 
magnitude of the parameter center value of any dimension of two adjacent intervals is at 
least half of the sum of their intervals under their respective dimensions, relatively 
independent multiple pseudo-cluster centers without overlap can be formed. 

If the interval values of two adjacent intervals are equal—i.e., 

1 2= =
j j

Δ Δ Δ  (16)

then, 

2 0 1 0j j
x x− > Δ  (17)

According to Equation (17), for n-dimensional parameters, if the parameter 
distribution interval values of any dimension of two adjacent intervals are equal, 
relatively independent multiple pseudo-cluster centers without overlap can be formed 
when the dexterity magnitude of the parameter center value of any dimension determined 
by adjacent intervals is at least one interval. 

3.2. SDIF Algorithm and Its Failure Principle 
3.2.1. SDIF Algorithm 
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Radar signal source sorting, also known as the deinterleaving of the radar radiation 
source signal, refers to the process of separating radar pulse trains from random and 
staggered pulse streams. In essence, it consists of the parameter matching of each signal 
pulse. In engineering, histogram sorting is the most commonly used method to estimate 
the PRI values of radiation source signals based on the statistical principle. After 
calculating the difference in the TOAs, the histogram of the difference is formed. Then, an 
appropriate sorting threshold and strategy are set. The cumulative difference (CDIF) 
histogram and SDIF are two improved algorithms commonly used in engineering. 

Both SDIF and CDIF are TOA difference histogram sorting methods. The two sorting 
algorithms count the TOA difference of pulses according to certain rules and analyze the 
PRI estimates. Then, an impulse sequence search is performed based on the PRI estimate. 
Finally, radiation source pulse trains are extracted [34,35]. Compared with traditional 
histogram sorting algorithms, SDIF and CDIF algorithms greatly reduce the 
computational effort, and they work in real-time. The SDIF and CDIF algorithms widely 
used in engineering can sort fixed PRI, staggered PRI, and jitter radiation source signals 
[36–38]. 

Compared with the CDIF algorithm, the SDIF algorithm has the following 
advantages. SDIF only analyzes the histogram of the current level without the histogram 
statistics of different levels and the 2× PRI test. It requires less computation and has a faster 
processing speed. In addition, the SDIF algorithm has an optimized threshold function. 
When combined with sub-harmonic detection, false detection of the SDIF algorithm can 
be avoided. Therefore, SDIF is more widely used than CDIF. The flows of the SDIF 
algorithm are as follows [39–41]. 

As shown in Table 1, the SDIF histogram mainly includes TOA difference histogram 
analysis and impulse sequence searching. The TOA difference histogram analysis is used 
to estimate PRI values. The histogram statistics method is used to calculate the number of 
TOA differences between one level and a higher level. If the number of TOA differences 
exceeds the detection threshold, the TOA difference corresponding to the peak divided 
by the statistical series of TOA differences is the possible PRI value. The threshold function 
of the SDIF algorithm can be expressed as: 

( ) ( ) kN
threT a E C e ττ −= −

 (18)

where E is the total number of pulses; C denotes the order of the histogram; k is a positive 
constant less than 1; and N is the total number of bins in the histogram. The optimum 
values of the constants a and k are experimentally determined. 

Table 1. The SDIF algorithm. 

Input: TOA 
Number of pulses n 
Threshold function η  
Initialization: Histogram series c 
Output: PRI, radar pulse sequence 
for j = 1:c 
if n < 5 
for i = 1:n 
T TOA TOAi i c i+= −  
output PRI Ti  
end for 
if n > 5 
for i = 1:n-c 
T TOA TOAi i c i+= −  
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end for 
count Ti  to get the sum of the pulse iS  and form a histogram 
if iS η>  
output PRI Ti  and signal pulse 
end if 
end for 

In the actual signal sorting process of the SDIF sorting algorithm, the influence of the 
intercept receiver on pulse TOA measurement should be avoided to improve the sorting 
performance of the algorithm for jitter signals. Therefore, the tolerance ε  of the PRI 
value τ  is set in the SDIF algorithm and its improved sorting algorithm. The interval of 
the signal PRI value τ  is determined by the tolerance; i.e., the PRI interval or PRI small 
box. The upper and lower limits of the small box can be expressed as: 

maxτ τ ε= +  (19)

minτ τ ε= −  (20)

Then, the box range of the PRI value is min maxτ τ τ≤ ≤ . The PRI value of the 
histogram is the weighted average of the values that fall in the PRI box. Hence, the 
weighted average function should be: 

( )
1

n

i i
i
x Sτ τ

=

= ⋅
 

(21)

where S is the sum of the pulse number corresponding to adjacent PRI values 1 2, , , iτ τ τ⋅⋅ ⋅  

within the tolerance, and ix  is the number of the PRI value iτ  corresponding to pulses 
within tolerance. 

3.2.2. Sorting Failure Principle 

Analysis of the Sorting Failure Principle of the First-Order Histogram 

When the signal is a fixed-period signal—i.e., 0=τ τ —the number of pulses E is 

assumed to be 0E ; kNe
τ−

 and a are positive constants that are less than 1 when 0τ >  in 
the threshold equation (Equation (18)). The number of pulses is 0 1E   in the actual 

situation. Therefore, the right part of the threshold equation is ( )0 0
kNa E C e E
τ−

− < , and 

the threshold equation is ( )0 0threT Eτ <  at 0=τ τ . The signal PRI value 0=τ τ  can be 
sorted out. 
① The number of PRI values increases from 1 to a finite number 

Assuming that the total number of pulses 0E E=  is constant, the signals are two 
staggered signals when the number of PRI values increases from 1 to 2. In addition, the 

PRI value is 0τ  or 1τ  ( 0 1τ τ< ). There are 0

2
E

 pulses in each PRI value. The 

relationship between the number of corresponding pulses and the threshold value 
( )0threT τ  when the PRI value and pulse number change is discussed next. 

According to Equation (18), when the PRI value is 0=τ τ , the threshold of the 
algorithm should be: 
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( ) ( ) 0
0 0 1 kN

threT a E e ττ −= −
 (22)

When the PRI value is 1=τ τ , the threshold of the algorithm can be expressed as: 

( ) ( ) 1
1 0 1 kN

threT a E e ττ −= −
 (23)

When the threshold of the algorithm is 0

2
E

—i.e., ( ) 0

2thre
ET τ ′ = —the PRI critical 

value of the sorting failure can be calculated with Equation (24): 

( ) 0
0 1

2
kN Ea E e τ ′−− =

 
(24)

where 0E  represents the total number of pulses (usually in the tens of thousands); i.e., 

0 1E  . Therefore, Equation (24) can be simplified as: 

0
0 2

kN EaE e τ ′− =
 

(25)

Therefore, after taking the natural logarithm of the above equation, τ′  can be 
obtained: 

( )= ln 2kN aτ ′
 

(26)

It can be known from the monotonically decreasing property of the threshold 

function that the SDIF algorithm can sort out the pulses of PRI 0τ  when ( )0 ln 2kN aτ ≥

; i.e., 
( )0

02 thre
E T τ≥

. The SDIF algorithm can also sort out the pulses of PRI due to 

0 1τ τ< ; the SDIF algorithm cannot sort out the pulses of PRI 0τ  when 
( )0

02 thre
E T τ<

. 

However, if 
( )1 ln 2kN aτ ≥

, the SDIF algorithm can sort out the pulses of PRI 1τ , 

( )0
12 thre

E T τ≥
; if 

( )1 ln 2kN aτ <
, the SDIF algorithm cannot sort out them. 

Consequently, the SDIF algorithm cannot sort the signal pulse with a PRI less than the 

critical value 
( )kNln 2a

 when the number of PRI values increases from 1 to 2. 
According to the above analysis, the actual signal sorting situation can be extended. 

The derivation condition is assumed as follows: 

(1) The total number of pulses is still 0E ; 
(2) The number of PRI values increases finitely, meaning that the signals are multiple 

staggered signals; 

(3) The PRI values are 1τ , 2 nτ τ⋅⋅ ⋅ ( 1 2 nτ τ τ< < ⋅⋅⋅ < ); 

(4) The number of pulses corresponding to each PRI value is 0E
n

. 

The derivation process is the same as that of Equations (22)–(26) and will not be 
repeated here. The PRI critical value for the sorting failure can be solved as follows: 
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( )=kNln naτ′
 

(27)

Finally, the SDIF algorithm cannot select a signal pulse with a PRI less than the critical 
value ( )kNln na when the number of PRI signals increases to a finite number. 

② The signal PRI value follows an interval distribution 

The number of pulses E is assumed to be 0E . The signal PRI value follows an 

interval distribution [ ]0 1,τ τ τ∈ . The design of transmitting signals and the processing 
of echo signals need to be considered in the radar field. The PRI value of the radar signal 
does not follow a completely random, disordered distribution. Hence, this section 
discusses the PRI values of signals with a uniform distribution. For any given interval, the 
number of pulses E′  is: 

( )
0

1 0

EE
zτ τ

′ =
−  

(28)

where 0E  is the total number of pulses; 1τ  and 0τ  denote the maximum and minimum 
values of the distribution interval; and z is the minimum interval of PRI values within the 
interval distribution. The threshold calculation equation for the algorithm when PRI is τ′  
is shown in Equation (18). 

When ( )threT Eτ′ ′=
, 

( ) ( )
0

0
1 0

1 =kN Ea E e
z

τ

τ τ
′−−

−  
(29)

where 0E  is the total number of pulses, 0 1E  . Therefore, the above equation can be 
simplified as: 

( )
0

0
1 0

=kN EaE e
z

τ

τ τ
′−

−  
(30)

Then, the PRI critical value for sorting failure can be obtained as follows: 

( )1 0= ln
a

kN
z

τ τ
τ

⋅ − ′  
   

(31)

When 1τ τ ′< , the number of pulses corresponding to PRI values within the interval 
[ ]0 1,τ τ  is less than the threshold value. Hence, the SDIF sorting fails. When 0 1τ τ τ′< <

, the number of pulses corresponding to the PRI value within the interval [ )0,τ τ′
 is less 

than the threshold value. Therefore, the SDIF sorting also fails within the interval [ )0,τ τ′

. When the number of pulses corresponding to the PRI value within the interval [ )1,τ τ′  
is greater than the threshold value, the signal can be sorted successfully. When the PRI 
value of the signal follows the interval distribution, the SDIF algorithm cannot select the 

signal pulse with a PRI less than the critical value 

( )1 0ln
a

kN
z

τ τ− 
 
  . 

The conditions for the actual signal sorting process can be described as follows: 
(1) N is the number of cells counted in the histogram and is usually above 1000; 
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(2) z is the minimum interval of the PRI. In general, w, 1τ , and 0τ  have the same size 
scale at the microsecond level; 
(3) a, k ( )0,1∈  in Equation (18). 

Therefore, when the interval length is 20 times larger than z, we know that 

( )1 0ln 1
a

z
τ τ⋅ − 

> 
 

. The threshold value is much larger than any value in the interval 

[ ]0 1,τ τ , i.e., 1τ τ′ . 
In conclusion, when the signal PRI values follow the interval distribution and the 

interval length is 20 times larger than z, the number of pulses corresponding to any PRI 
value in the interval [ ]0 1,τ τ  is less than the sorting algorithm threshold in the analysis 
of the sorting failure principle of the first-order histogram. Hence, the SDIF algorithm fails 
in signal sorting. 

Analysis of the Sorting Failure Principle in a Multi-Order Histogram 
The SDIF sorting algorithm sometimes has multiple PRI values exceeding the 

threshold in the first-order histogram. Thus, it is necessary to count the second-order, 
third-order, and advanced histograms to produce PRI estimates. Moreover, the sorting 
failure principle for second-order to advanced histograms also needs to be analyzed. 

The threshold function is shown in Equation (18). From second-order to multi-order 
histograms, only the histogram series C changes. The total number of pulses E is much 

larger than C; i.e., E C . 
Thus, the threshold function is approximately unchanged. When the signal PRI value 

follows the interval distribution, the first-order histogram in Section 3.2.2 is still applicable 
for the analysis of the sorting failure principle of the SDIF algorithm. 

In summary, when the radar signal PRI values obey a interval distribution with a 
length greater than 20 times the minimum interval of the PRI, the accumulation of the 
signal pulse difference histograms at all levels is lower than the sorting algorithm 
threshold, leading to a sorting algorithm failure. 

3.3. Signal Design Principles 
The sorting failure principles for the pre-sorting clustering algorithm and the main 

SDIF sorting algorithm were analyzed in Sections 3.1 and 3.2, respectively. The failure 
principles for the two sorting algorithms were obtained. The failure principle for the 
clustering sorting indicates that, when the parameter center value of any dimension of 
two adjacent intervals is at least half of the sum of the intervals in each dimension, 
relatively independent multiple pseudo-cluster centers without overlap can be formed. 
The SDIF sorting failure means that, when the radar signal PRI value follows an interval 
distribution with a length more than 20 times the minimum interval of the PRI, the 
accumulation of signal pulse difference histograms at all levels is lower than the threshold 
of the sorting algorithm, and the SDIF sorting algorithm fails. The clustering sorting 
failure actually “fakes” the wrong correlation between signal pulses through wide-
interval agility and “cheats” the clustering sorting algorithm. In contrast, the SDIF sorting 
failure reduces the correlation between signals by submitting the PRI values of the radar 
signals to an interval distribution with a length more than 20 times greater than the 
minimum PRI interval. As a result, the cumulation of signal pulse difference histograms 
at all levels is lower than the threshold of the sorting algorithm. 

To sum up, the essence of signal sorting is “matching” the pulse sequences belonging 
to the same radiation source through the correlation between pulses in the pulse flow to 
achieve signal sorting. The essence of RF stealth signal design consists of reducing the 
correlation between pulse sequences and strengthening the randomness between pulses. 
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Since a signal sorting algorithm is designed for thousands of nearly disordered random 
pulse streams, not all low-correlation random pulse sequences have anti-sorting abilities, 
thus requiring a targeted design based on clustering and SDIF sorting failure principles. 
A chaotic sequence is characterized by strong and good randomness. Therefore, this paper 
proposes a design method for anti-sorting signals based on a 2D hyperchaotic system 
using chaotic sequences according to the principles of clustering and SDIF sorting failure. 

The method for anti-sorting signal design proposed in this paper mainly aims at the 
main SDIF sorting algorithm and the clustering pre-sorting method based on data fields. 
Despite that, from the analysis of the signal design principle, it can be deduced that the 
stronger the randomness of the anti-sorting signal, the better its anti-sorting performance. 
Therefore, the anti-sorting signal designed here can improve not only the anti-sorting 
performance of the SDIF and clustering algorithms based on data fields mentioned in this 
paper but also the resistance abilities of other sorting algorithms. 

4. Anti-Sorting Signal Design Based on a 2D Hyperchaotic System 
4.1. Construction of 2D Hyperchaotic Systems 

Based on the classical Henon 2D chaotic system, the cosine function and exponential 
function were introduced into the mapping functions of the X and Y dimensions, 
respectively, to improve the design, as shown in Equation (32): 

( ]
2

1

1

1 ( (0,1.4))
( 0.2,0.314 )

n n n

n n

x y ax a
y bx b

+

+

= + − ∈
= ∈

 (32)

The main elements of chaotic mapping are the cosine and sine functions of the 
trigonometric function. The mapping design of the trigonometric function is divided into 
X and Y dimensions. In the X dimension, there are ( )1nx

nrx e xπ +  and ( )3nxe xπ +  in 

the cosine function. While ( )1nx
nrx e xπ +  is the main element that produces the chaotic 

sequence, ( )3nxe xπ +  further enhances the randomness and unpredictability of the 

chaotic sequence generated in ( )1nx
nrx e xπ +  through exponential and higher-order 

terms. In the Y dimension, the sine function consists of ( )1 tann nry yπ −  and nxeπ . 

While ( )1 tann nry yπ −  is the main element that produces the chaotic sequence, nxeπ  
enhances the randomness and unpredictability of chaotic sequences. In addition, to 
endow the chaotic system with more complex chaotic dynamics characteristics, the 
outputs of the X and Y dimensions are fed back to the other dimension in an interleaving 
feedback manner to make them participate in the iterative calculation of the X and Y 
dimensions at the next moment. The chaotic mapping is expressed in Equation (33): 

( ) ( )
( )

3
1

1

cos 1

sin 1 tan

n n

n

x y
n n n n

x
n n n

x ax e x e y

y ry y e

π π

π π

+

+

 = + + + 
 = − +   

(33)

Based on classical Henon mapping, sine and cosine functions can be introduced to 
control the output of the chaotic mapping within [ ]1,1− . As a result, the parameter 
center value of the signal can correspond to the output center value of the chaotic mapping 
0, and the mapping output values 1 and −1 can correspond to any range limit of the 
parameter variation. The exponential items nxeπ  and nyeπ  in the second part eliminate 
the restriction that the initial value cannot be 0, making the generation of chaotic 
sequences more flexible. Moreover, the entry of the system into a chaotic state is no longer 
limited by the control coefficient. Thus, a system can enter a chaotic state more quickly. In 
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the Y dimension, the cubic term 3
nyπ  is not used to further increase the randomness, as 

the high randomness of the X dimension can be transmitted to the Y dimension through 
the interleaving feedback of the two dimensions. Synchronous, high randomness in the X 
and Y dimensions can be achieved with fewer computing resources and less time. A block 
diagram of the chaotic mapping proposed in this paper is shown in Figure 2. 

x ( )1nx
n nax e xπ +

y

nxeπ

( )1 tannx
n nry e yπ − 1ny +

( )3ny
ne yπ +

( )sin 

( )cos  1nx +

 
Figure 2. Block diagram of the proposed chaotic mapping. 

The block diagram of the chaotic mapping intuitively reflects the interleaving 
feedback process of the X and Y dimension sequences of the chaotic mapping proposed 
in this paper. The interleaving feedback helps to enhance the randomness of the two 
dimensions. The chaotic mapping bifurcation diagrams proposed in this paper are shown 
in Figure 3. 

a

x

 r

y

 
Bifurcation diagram in the X dimension Bifurcation diagram in the Y dimension 

Figure 3. Bifurcation diagrams of the proposed chaotic mapping. 

4.2. Design Method for Wide-Interval Signals 
In anti-clustering signal design, it is necessary to use a joint design method for the 

3D pseudo-center width agility based on the interval distribution. The interval length of 
the PRI variation is 20 times the minimum interval length in the anti-PRI signal design in 
Section 3.3. Therefore, the PW, RF, DOA, and PRI all need to achieve agility with the two 
separation failure principles. In contrast, DOA agility is mainly achieved with antenna 
design technology, independently of the signal parameter design. If the stop time of the 
pulse signal is kept constant, the change in the PRI causes a change in the PW. Hence, 
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when the PRI and RF are changed, the RF, PW, PRI, and DOA of the designed signal are 
changed. 

The X dimension of the chaotic mapping is used to modulate the PRI value t, and the 
RF value f of the signal is modulated by the Y dimension. Since the modulation methods 
are the same, the modulation of the PRI value t by the X dimension of the chaotic mapping 
is taken as an example in the following. The modulation function is shown in Equation 
(34): 

[ ]( )0 1,n nt t x t n w= + ⋅ Δ ∈
 (34)

In Equation (34), 0t  is the central value of the signal PRI; tΔ  denotes the maximum 

variation of the signal PRI; nx  is generated by the chaotic mapping of Equation (33); w 
indicates the maximum modulation times of the PRI in an interval. After w modulations 
in any change interval, the PRI center value becomes agile and will be modulated in 
another interval to realize the pseudo-clustering center and “trick” the clustering 
algorithm. 

After modulation, PRI and RF value sequences retain the randomness of chaotic 
sequences. However, as shown by the red circle in Figure 4, within a change interval, the 
PRI and RF value sequences modulated by the chaotic mapping have narrow, multi-value 
interval effects; that is to say, there are several adjacent PRI and RF values in the sequence 
with small intervals, resulting in adjacent pulses falling into the same pulse-sorting 
tolerance. 
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Figure 4. The narrow, multi-value interval effect. (a) The narrow, multi-value interval effect of the 
PRI sequence. (b) The narrow, multi-value interval effect of the RF sequence. 

Therefore, before chaotic sequences modulate the PRI and RF values, the method of 
generation for chaotic sequences needs to be improved to eliminate the narrow, multi-
value interval effect. During the generation of a sequence from a chaotic mapping, each 
time a sequence value nx  is generated by the chaotic mapping, the interval between nx  

and the previous value n-1x  must be judged first. If the interval meets the requirements, 

the value nx  is retained, nx  is substituted into the chaotic mapping expression for the 

next iteration to generate 1nx +  and then the interval between 1nx +  and nx  is judged 

and so on. If the interval does not meet the requirements, nx  is discarded in order to 

judge whether the interval between n-1x  and 1nx +  generated by an iteration of nx  

meets the requirements. If the interval requirements are met, 1nx +  is retained; if not, 1nx +  
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is abandoned, and n-1x , and n+2x  are compared until the chaotic sequence values meet 
the requirements. In addition, to filter out some of the points concentrated at the boundary 
of the sequence values, the critical value judgment steps 1nx x+ Δ <  and 1nx x− Δ > −  
are added to the sequence point values that meet the interval requirements. When the 
chaotic mapping modulates w times in the PRI interval, the PRI interval becomes agile, 
and the chaotic mapping continues to modulate w times in the next PRI interval and so 
on. 

To sum up, the wide and rapid change of the PRI interval to another PRI interval 
after w modulation is intended to obtain the pseudo-clustering center and achieve anti-
clustering sorting. Within each defined PRI interval, the PRI follows the interval 
distribution and eliminates the narrow, multi-value interval effect of the PRI to increase 
the randomness between signal pulses and achieve anti-SDIF sorting. Taking signal PRI 
generation as an example, the specific generation process for signal parameters is shown 
in Figure 5. 

 
Figure 5. Multi-parameter, composite, wide-interval modulation diagram. 

Point diagrams of the PRI and RF numerical sequences generated according to the 
signal parameter generation process designed in this study are shown in Figure 6. As 
shown in the figure, wide agility is realized between the three intervals to achieve anti-
clustering sorting. As shown in the enlarged local part, the narrow, multi-value interval 
effect is eliminated in each interval, and the probability of signal sorting by the SDIF 
sorting algorithm is reduced. 
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Figure 6. Multi-parameter, composite, wide-interval modulation sequence point diagram. (a) RF 
sequence point plot. (b) PRI sequence point plot. 

5. Simulation and Analysis 
The simulation environment used in this study was a Windows 10 64-bit operating 

system. The computer parameters used as the simulation platform were as follows: the 
processor was a core I7-9750H, the main frequency was 2.60 GHz, and the memory was 8 
GB. 

5.1. Simulation of the Signal Design Principle 
The principle for the signal design provides theoretical support for the design of anti-

sorting signals. Therefore, the correctness of the signal design principle needs to be 
verified with simulations. 

5.1.1. Simulation of the Anti-Clustering Signal Design Principle 
According to the principle of the anti-clustering signal design, for n-dimensional 

parameters, when the magnitude of the parameter center dexterity of any dimension of 
two adjacent intervals is at least half of the sum of the intervals in their respective 
dimensions, relatively independent multiple pseudo-clustering centers without overlap 
can be formed. In particular, if the interval values of the parameter distributions of any 
dimension of two adjacent intervals are equal, relatively independent multiple pseudo-
cluster centers without overlap can be formed when the parameter center value of any 
defined dimension of the adjacent intervals is at least one interval. To verify the 
correctness and significance of the signal design principle for the signal design, a 
comparative simulation was conducted. The simulation parameters were set as shown in 
Table 2. 

Table 2. Signal simulation parameter settings. 

Serial 
Number 

Signal 
Parameter 

Interval Central Value with Wide Agility Interval Central Value without Wide Agility 
Central 
Value 

Interval Interval 
Length 

Central 
Value 

Interval Interval 
Length 

1 

PW 

15 sμ  [ ]13 s,17 sμ μ  4 sμ  15 sμ  [ ]13 s,17 sμ μ  4 sμ  

2 20 sμ  [ ]18 s,22 sμ μ  4 sμ  18 sμ  [ ]16 s,20 sμ μ  4 sμ  

3 25 sμ  [ ]23 s,27 sμ μ  4 sμ  20 sμ  [ ]18 s,22 sμ μ  4 sμ  

4 
DOA 

40 °  [ ]39.5 ,40.5° °  1°  40 °  [ ]39.5 ,40.5° °  1°  
5 42° [ ]41.5 ,42.5° °  1°  41° [ ]40.5 ,41.5° °  1°  
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6 44° [ ]43.5 ,44.5° °  1°  41.5°  [ ]41 ,42° °  1°  
7 

RF 
3.5 GHz [ ]3.25 , 3.75GHz GHz  0.5 GHz 3.5 GHz [ ]3.25 , 3.75GHz GHz  0.5 GHz 

8 4.1 GHz [ ]3.85 , 4.35GHz GHz  0.5 GHz 3.9 GHz [ ]3.65 , 4.15GHz GHz  0.5 GHz 
9 4.7 GHz [ ]4.45 , 4.95GHz GHz  0.5 GHz 4.3 GHz [ ]4.05 , 4.55GHz GHz  0.5 GHz 

The results for the data field clustering algorithm are shown in Figures 7 and 8. 
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Figure 7. Two-dimesional (2D) distribution diagram of data field isopotential lines for the proposed 
3D pseudo-center wide agility joint design. (a) The 2D plot for the PW-DOA data field isopotential 
lines. (b) The 2D plot for the RF-DOA data field isopotential lines. (c) The 2D plot for the RF-PW 
data field isopotential lines. 
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Figure 8. The 2D distribution of data field isopotential lines for the 3D pseudo-center wide agility 
joint design. (a) The 2D plot for the PW-DOA data field isopotential lines. (b) The 2D plot for the 
RF-DOA data field isopotential lines. (c) The 2D plot for the RF-PW data field isopotential lines. 

As shown in Figure 7, using the parameter generation method for the 3D pseudo-
center wide agility joint design proposed in this paper, the data field clustering algorithm 
sorts the signals sent by the radar into three clustering centers in the PW-DOA, RF-DOA, 
and RF-PW dimensions. The clustering algorithm is successfully “tricked”, and algorithm 
sorting fails. As shown in Figure 8, the anti-clustering algorithm proposed in this paper is 
not used to design signal parameters. The RF-DOA and RF-PW dimensions are sorted into 
two clustering centers, and the PW-DOA dimension is sorted into one clustering center. 
The clustering algorithm can perform correct sorting in the PW-DOA dimension but 
cannot achieve anti-clustering sorting. By comparing Figures 7 and 8, the correctness of 
the signal design principle can be verified, proving that the design principle provides 
strong theoretical support for anti-sorting signal design. 

5.1.2. Simulation of the Anti-SDIF Signal Design Principle 
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According to the design principle for the anti-SDIF signal, when the designed radar 
signal PRI value follows an interval distribution with a length of more than 20 times the 
minimum interval PRI, the signal sorting fails. Therefore, when designing signals, the PRI 
interval length should be at least 20 times greater than the minimum interval. To verify 
the correctness and significance of the signal design principle, a comparative simulation 
was conducted, which is described in this section. The simulation parameters were set as 
follows. 

The signal was 1000 pulses in total, and the TOA measurement error was 50 sμ . The 
PRI center value was 1250 sμ , and the minimum PRI interval was 2 sμ . The interval 
length of the PRI was 20 and 15 times the minimum interval; i.e., the PRI interval was 
[ ]1230 s 1270 sμ μ，  and [ ]1235 s 1265 sμ μ， . First-order histogram analysis ranged from 
0 to 2500 sμ , and the statistical interval of the histogram was 0.5 sμ . The SDIF statistical 
threshold is shown in Equation (18), where N = 5000, k = 0.1, and a = 0.8. The SDIF sorting 
results are shown in Figure 9. 
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Figure 9. Simulation verification diagrams for the signal design principle. (a) First-order TOA 
difference histogram with a PRI interval length 20 times the minimum interval. (b) First-order 
TOA difference histogram with a PRI interval length 15 times the minimum interval. 

As shown in Figure 9a, when the interval length of the signal PRI is greater than or 
equal to 20 times the minimum interval, the pulse statistics corresponding to any PRI 
value within the interval are smaller than the threshold of the SDIF algorithm, and the 
algorithm fails. Figure 9a also shows that the signal designed in this paper still has sorting 
resistance, with a small jitter amplitude of only 1.6%. Additionally, when the interval 
length of the signal PRI is less than 20 times the minimum interval, the numbers of 
individual signal pulses within the interval exceed the threshold and can be sorted 
successfully by the SDIF algorithm. The simulation verifies the correctness of the signal 
design principle and proves that the design principle provides strong theoretical support 
for anti-sorting signal design. 

5.2. Performance Simulation of Hyperchaotic Systems 
Utilizing the principle of the signal design, an anti-sorting signal was designed with 

a chaotic system in this study. Signal parameters are modulated by the chaotic system, the 
performance of which determines the anti-sorting performance of the signals. Therefore, 
it is necessary to compare the chaotic system proposed in the paper with other mappings. 

5.2.1. Chaotic Mapping Performance Analysis 
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To further illustrate the advantages of the hyperchaotic system designed in this 
paper, typical 1D logistic mapping, 2D Henon mapping, and 3D Lorenz mapping were 
selected for comparison with the proposed mapping. The bifurcation diagram, maximum 
Lyapunov index, and approximate entropy of the chaotic mapping were also compared. 

The bifurcation phenomenon in chaotic mapping is one of the signs that the mapping 
has entered a chaotic state. By depicting the bifurcation diagram of the mapping, the 
chaotic mapping region and the influence of the control parameters in the mapping on the 
chaos can be observed intuitively. For the Lorenz high-dimensional chaotic system, the 
phase space diagram can also intuitively display its chaotic state. The bifurcation diagram 
and phase space diagram were drawn according to the expressions for the four mappings 
(logistic mapping, Henon mapping, Lorenz mapping, and the mapping proposed in this 
paper), as shown in Figure 10. 
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Figure 10. Bifurcation diagrams for chaotic mappings. (a) Bifurcation diagram for the logistic 
mapping. (b) Bifurcation diagram for the Henon mapping. (c) Phase space diagram for the Lorenz 
mapping. (d) X-dimensional bifurcation diagram for the Lorenz mapping. (e) X-dimensional 
bifurcation diagram for the proposed mapping. (f) Y-dimensional bifurcation diagram for the 
proposed mapping. 

As shown in the figure, when the fractal coefficient of the logistic mapping is 
3.57r ≥ , the system enters a chaotic state. When 0 3.57r≤ < , the chaotic system is 

periodic. When the Henon mapping has the fractal coefficient 1.1a ≥ , the system enters 
a chaotic state. When 0 1.1r≤ < , the system is in a periodic state. When the X dimension 
of the Lorenz mapping is at 24c ≥ , the system enters a chaotic state. When 0 24c< <
, the system is in a periodic state. The chaotic map designed in this paper is not affected 
by the fractal coefficient, and the points in the bifurcation diagram are more evenly 
distributed. 

The maximum Lyapunov exponent (LE) was used to evaluate the randomness of 
chaotic sequences, and its definition is shown in Equation (35): 

( )
1

0

1lim ln
n

in i
LE f x

n

−

→∞
=

 ′=  
 


 
(35)

where ( )if x′  represents the first derivative of the chaotic mapping ( ) 1i nf x x += . 

When 0LE > , the system is in a chaotic state. The larger its value is, the stronger the 
randomness of the chaotic sequence generated by the system is. The LE curves of the 
above four chaotic maps with different fractal coefficients are plotted below. The variation 
range for the fractal coefficient of each chaotic mapping is different. Therefore, to fully 
demonstrate the variation trend for each chaotic mapping with the fractal coefficient, the 
LEs of the logistic and Henon chaotic mappings, as well as the LEs of the Lorenz mapping 
and the proposed mapping, were drawn in the same graph, as shown in Figure 11. 
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Figure 11. LE comparison diagrams of different chaotic mappings. (a) Maximum LEs of logistic 
and Henon mappings. (b) Maximum LEs of the Lorenz mapping and the proposed mapping. 

As shown in Figure 11, the LEs of the logistic, Henon, and Lorenz mappings are not 
always greater than 0, indicating that the three systems are not always in a chaotic state. 
Taking the logistic mapping as an example, only when 3.57r ≥  is the system in chaos. 
In the fractal coefficient variation interval [ ]0,100 , the LE of the chaotic mapping 
proposed in this paper is greater than 0, except for one point less than 0, thus avoiding the 
limitation of the fractal coefficient. In addition, the LE of the chaotic mapping designed in 
this paper is greater than that of the other three chaotic mappings, indicating that the 
chaotic sequence generated by the proposed chaotic mapping has stronger randomness 
than those generated by the other three classical chaotic mappings. 

The approximate entropy measures the complexity of the chaotic sequence generated 
by the chaotic mapping. The higher the approximate entropy, the more complex the 
sequence is. The approximate entropy values for the above four mappings were calculated 
under the same simulation conditions, where the values of the fractal coefficient varied 
from 0.5 to 4 with a step size of 0.5 and the sequence length was set as 10,000. 

It can be seen from the calculation results in Table 3 that when the system does not 
enter the chaotic state, the approximate entropy value is minimal or even 0. For example, 
when 0.5r =  or 1r = , the approximate entropy of the logistic mapping is of the order 
of 510−  or 710− . However, the chaotic mapping proposed in this paper maintains an 
approximate entropy value greater than 1 in the interval of the fractal coefficient variation, 
indicating that the sequence generated by the mapping has higher complexity. 

Table 3. The approximate entropy values for the four different chaotic mappings varying with the 
fractal coefficient. 

r Logistic Henon Lorenz Proposed 
0.5 7.2584 × 10−7  −5.0011 × 10−9 0.3364 2.0056 
1 2.0764 × 10−5 −1.5005 × 10−8 0.3409 2.0241 

1.4 7.1890 × 10−7 0.9317 0.3233 2.0042 
2 1.8422 × 10−7 None 0.2899 1.9907 

2.5 8.2893 × 10−7 None 0.2760 1.9875 
3 0.0111 None 0.2831 1.9708 

3.5 0.0016 None 0.2815 1.9668 
4 0.70 None 0.2847 1.9497 
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The RP is a non-stationary signal processing and analysis method widely used for 
analysis of chaotic sequences and modulation signals based on chaotic sequences. The RP 
is drawn from a recursive matrix, as shown in Equation (36): 

( ) ( ),    i,j=1,2, ,Ni j i jR ε ε η η= Θ − − ⋅⋅⋅ 
 (36)

where ,i jR  is the square matrix of N N× , N is the number of the state vector iη , the 
threshold ε  represents the pre-set critical distance,   denotes the norm, and ( )Θ   is 
the unit step function, ( )0 0xΘ < =  and ( )0 1xΘ > = . The RP is a recursive matrix drawn 
in different colors in binary. The chaotic signal is analyzed by the RP, and the rule for the 
chaotic signal is obtained. Periodic or quasi-periodic recurrent structures, such as 
checkerboard structures, appearing the diagonal direction of the RP characterize the 
period of the signal state evolution. The randomness of the signal is good if all the 
recurrence points in the RP are isolated and follow a uniform distribution with no more 
diagonal, vertical, or horizontal lines. The RP of the sinusoidal ( )sin 2 tπ  sequence; the 
sequences generated by the logistic, Henon, and Lorenz mappings; and the sequence 
generated by the chaotic mapping designed in this paper are drawn in Figure 12. There 
are 3100 point values in each sequence. 
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Figure 12. The RPs of different sequences. (a) RP of sinusoidal sequence. (b) RP of Logistic sequence. 
(c) RP of Henon sequence. (d) RP of Lozenz sequence (Y dimension). (e) RP of the proposed chaotic 
mapping sequence (X dimension). (f) RP of the proposed chaotic mapping sequence (Y dimension). 

The RP of the sinusoidal sequence in Figure 12a presents an obvious grid-like 
recursion structure, indicating that the sinusoidal sequence has significant periodicity. 
The RPs of the (b) logistic, (c) Henon, and (d) Lozenz sequences have no significant 
recurrence structures overall. However, the recurrence points are unevenly distributed, 
with small, short lines, indicating a short period in the sequence. Figure 12e,f show the 
RPs of the X and Y mapping dimensions designed in this paper, respectively. There is only 
one main 45° diagonal, and the rest of the recursion points are scattered over the plot and 
are perfectly uniform. The density distribution of each local recurrence point is basically 
the same, which suggests that the chaotic sequence designed in this paper has strong 
randomness. 

RPs are mainly used for qualitative analysis of chaotic sequences. Thus, quantitative 
analysis and comparison of chaotic sequences using RQA are required. Following the 
literature [31], the recursive rate (RR), entropy (ENTR), system determinacy (DET), and 
maximum diagonal length ( maxL ) were used to analyze chaotic sequences. The larger the 
recurrence rate, the more points are clustered in the RP. The smaller the recurrence rate, 
the more uniform the distribution of points in the RP of the system is. Larger entropy 
indicates that the system is more complex, and vice versa. The larger the DET value, the 
stronger the determinacy of the chaotic sequence is. A smaller DET value indicates 
stronger randomness. The faster the attractor trajectory diverges in the phase space, the 
shorter the diagonal is; i.e., the shorter the maximum diagonal. 

According to Table 4, the chaotic mapping designed in this paper has the smallest 
recurrence rate. This result indicates that the points of the mapping designed in this paper 
are evenly distributed in the RP without aggregation phenomena, which is corroborated 
by the RP in Figure 12. In terms of system certainty, the DET value of the chaotic mapping 
designed in this paper is the smallest, close to that of Gaussian white noise. Therefore, the 
chaotic mapping designed in this paper has strong randomness. Regarding the maximum 
diagonal length, the diagonal length of the proposed chaotic mapping is very short. In 
particular, the diagonal length of the Y dimension is the same as that of white Gaussian 
noise. Therefore, the attractor of the designed chaotic mapping diverges rapidly in the 
phase space. Finally, the chaotic mapping designed has the largest entropy, much larger 
than the logistic, Henon, and Lorenz mappings, which again indicates that the proposed 
chaotic mapping is relatively complex. 
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Table 4. Recursive quantitative analysis of different sequences. 

Sequence Types RR DET maxL  ENTR 

( )sin 2 tπ  0.0918 0.9999 3141 0.2284 
White gaussian noise 0.0562 0.1083 5 2.6582 

Logistic 0.0850 0.6926 26 0.3611 
Henon 0.0743 0.4795 24 0.3990 
Lorenz 0.0685 0.2947 10 0.7926 

Proposed chaotic mapping (X 
dimension) 0.0644 0.1737 6 1.5483 

Proposed chaotic mapping (Y 
dimension) 0.0664 0.1900 5 1.4514 

Sixth, to test the pseudo-randomness of the X- and Y-dimensional chaotic sequences 
generated by the designed chaotic mapping, we adopted the NIST-800-22 test scheme. The 
test scheme contains 15 statistical test items, each of which calculates a p-value, which was 
compared with a given significance level to determine the randomness of the generated 
sequence. In this experiment, we set the significance level =0.01α  and the test sequence 
length to 1,000,000. When all test items meet -va lu e> αp , the randomness of the generated 
sequence is considered to meet the requirements. After several tests, all the test targets 
were achieved. Table 5 shows the test results for a certain time. It can be seen from the 
table that the test results for all the test items met the requirements. 

Table 5. The NIST-800-22 test results for the chaotic mapping designed in the paper. 

Type of Test p-Value 
(X Dimension) 

p-Value 
(Y Dimension) 

Result 

Frequency test 0.5962 0.5589 Success 
Frequency test within a block 0.6852 0.5203 Success 

Runs test 0.3586 0.4562 Success 
Test for the longest Rn in a block 0.9910 0.8564 Success 

Binary matrix rank test 0.1925 0.1267 Success 
Discrete Fourier-transform test 0.3526 0.4013 Success 

Non-overlapping template matching test 0.5199 0.4663 Success 
Overlapping template matching test 0.9620 0.9581 Success 
Maurer’s “universal statistical” test 0.8625 0.8762 Success 

Linear complexity test 0.4961 0.5019 Success 
Serial test 0.1529 0.1973 Success 

Approximate entropy test 0.5238 0.6801 Success 
Cumulative sums test 0.8647 0.7361 Success 
Random excursion test 0.4938 0.5019 Success 

Random excursion variant test 0.5397 0.4963 Success 

Finally, the computational complexity of the chaotic mapping was studied. The 
parameters of the signal were modulated with the chaotic mapping designed in this paper. 
The computational complexity of the chaotic mapping determines the speed of the 
modulation of the signal parameters by the chaotic mapping, thus affecting the 
modulation mode. If the chaotic mapping takes a short time to generate a chaotic 
sequence, the signal parameters can be modulated with online real-time modulation. If 
the chaotic mapping takes a long time to generate chaotic sequences, the signal parameters 
need to be modulated with offline non-real-time modulation. Therefore, it is necessary to 
investigate the computational complexity of the chaotic mapping. To directly reflect the 
computational complexity of the chaotic mapping, the time required to generate 1,000,000 
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sequence values by the logistic, Henon, and the designed chaotic mappings were 
compared in the same simulation verification platform, as shown in Table 6. 

Table 6. The time taken by different chaotic mappings to generate sequences. 

Types of Chaotic 
Mapping Logistic Henon Proposed Chaotic Mapping 

Time 0.09832 0.06719 0.1092 

As shown in Table 5, although the time take by the chaotic mapping designed in this 
paper was the longest, the difference from the times taken in chaotic sequence generation 
by the classical logistic and Henon mappings was not very significant (only 0.01088 s and 
0.04201 s). However, the designed chaotic mapping far exceeds the classical logistic and 
Henon mappings in complexity, randomness, and other aspects. Therefore, the chaotic 
mapping designed in this paper is still meaningful. 

5.2.2. Performance Analysis of PRI and RF Sequences 
As shown in Figures 13a,b and 14a,b, direct modulation of the signal PRI and RF by 

the proposed chaotic mapping results in a narrow, multi-value interval effect, which is 
not conducive to the jump in the PRI and RF values and easily causes the adjacent PRI 
values to fall into the same PRI tolerance range. Since the modulation processes of the PRI 
and RF are the same, a chaotic mapping wide-interval modulation method for the PRI and 
RF can be proposed. The simulation parameters were set as shown in Table 7. 

Table 7. Signal simulation parameter settings. 

Serial 
Number 

Signal 
Parameter 

Center Value Interval Tolerance The Minimum Interval 
between Adjacent Pulses 

1 PRI 1 ms [ ]500 s,1500 sμ μ  200 sμ  100 sμ  

2 RF 2 GHz [ ]1.75 ,2.25GHz GHz  100 MHz 50 MHz 
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Figure 13. The sequence of the PRI and the interval between adjacent PRIs before optimization. (a) 
PRI sequence before optimization. (b) The interval between adjacent PRIs before optimization. 



Entropy 2022, 24, 1283 28 of 33 
 

 

0 5 10 15 20 25 30 35 40 45 50
1.75

1.8

1.85

1.9

1.95

2

2.05

2.1

2.15

2.2

2.25

RF
/G

H
z

sequence length  
0 5 10 15 20 25 30 35 40 45 50

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

sequence length

RF
 In

ter
va

l /
GH

z

 

(a) (b) 

Figure 14. RF sequence and the interval between adjacent RFs before optimization. (a) RF 
sequence before optimization. (b) The interval between adjacent RFs before optimization. 

To eliminate the influence of the initial value of the chaotic system, the chaotic 
sequence was iterated 1000 times and modulated from the 1001th time. To facilitate 
simulation analysis, the length of the chaotic sequence was set to 50. The simulation 
results are shown in Figures 15 and 16. 
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Figure 15. PRI sequence and interval between adjacent PRIs after optimization. (a) Optimized PRI 
sequence. (b) Interval between adjacent PRIs after optimization. 
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Figure 16. RF sequence and interval between adjacent RFs after optimization. (a) Optimized RF 
sequence. (b) The interval between adjacent RFs after optimization. 

According to Figures 14 and 16, our proposed method optimizes the generation 
method for PRI and RF sequences, eliminates the narrow, multi-value interval effect, and 
satisfies the requirements for PRI and RF difference intervals to enhance the anti-sorting 
performance of signals. An analysis of the simulation results in Figures 13–16 shows the 
flexibility of the designed signal. First, modulating the PRI and RF of the signals with 
chaotic sequences can make full use of the initial value sensitivity and fractal coefficient 
sensitivity of the chaotic system to provide a wider range of PRI and RF values for the 
signals. Second, the design of the PRI and RF has great flexibility for different working 
conditions. The PRI and RF sequence can be generated once according to the total length 
of the designed signal or can be cut into several segments to generate them multiple times, 
which produces different PRI and RF sequences. 

5.3. Simulation of Anti-Sorting Performance 
This section presents the simulation of the anti-sorting performance for the designed 

signal, which is mainly divided into anti-clustering sorting and the main anti-SDIF 
sorting. Since the performance of anti-clustering sorting was simulated and described in 
Section 5.1.1, the anti-clustering sorting performance of the designed signal was not 
verified again in this part of the study. The anti-SDIF sorting performance of the signal 
was verified. 

5.3.1. Signal Sorting Simulation Based on the SDIF Algorithm 
The simulation parameters were set as follows. The signal amounted to 1000 pulses. 

The TOA measurement error was 50 nanoseconds. The PRI center value of the signal was 
2 ms, with a PRI in the range from 1500 μs to 2500 μs. First-order histogram analysis 
ranged from 0 to 2500 μs, and the statistical histogram interval was 0.5 μs. The SDIF 
threshold is expressed in Equation (18), where N = 5000, k = 0.1, and a = 0.8. The SDIF 
sorting results are shown in Figure 17. 
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Figure 17. First- to fourth-order TOA difference histograms. (a) First-order TOA difference 
histogram. (b) Second-order TOA difference histogram. (c) Third-order TOA difference histogram. 
(d) Fourth-order TOA difference histogram. 

As shown in Figure 17a, no signal exceeded the threshold in the first-order SDIF 
histogram sorting algorithm, which thus achieved an anti-sorting effect. Figure 17b–d 
show that, although signal pulses exceeded the threshold in the second-, third-, and 
fourth-order SDIF histogram sorting algorithms, the cumulative number did not exceed 
5. Therefore, the signal pulses did not enter the sorting process. Figure 17a–d show that 
the signal modulated by the proposed chaotic mapping could an achieve anti-sorting 
effect. 

5.3.2. Comparison with PRI Jitter Signal Sorting Simulation 
For anti-sorting signals, the PRI random jitter signal is also considered a signals with 

excellent sorting resistance [18]. In this part of the study, the PRI random jitter signal was 
taken as an example to compare its anti-sorting capability with the signal designed in this 
paper. The PRI center value of the jitter signal was 2 ms, and its PRI interval was 
[ ]1500 s 2500 sμ μ， . The PRI random jitter signal was the PRI subject to random distribution 

within [ ]1500 s 2500 sμ μ， . The designed signal was the PRI generated by the chaotic 

sequence modulation within [ ]1500 s 2500 sμ μ， . The signals to be sorted had 1000 pulses in 
total. The simulation results are shown in Figure 18. 
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Figure 18. Comparison of diagrams for anti-sorting performance simulation. (a) First-order TOA 
difference histogram for PRI random jitter signals. (b) First-order TOA difference histogram for the 
proposed signals. 

The histogram for the PRI random jitter signals in Figure 18a exceeded the detection 
threshold of the sorting algorithm in the area marked by the red circle, and signals were 
easily sorted by the SDIF algorithm. In Figure 18b, the histogram of the signal TOA 
difference also exceeded the threshold of the sorting algorithm. However, by comparing 
their sorting results, it can be seen that the signal modulated by the chaotic sequence 
under the guidance of the signal design principle analyzed in this paper demonstrated 
only a few signal values exceeding the threshold in the histogram. However, the 
histogram of the PRI random jitter signal appeared to exceed the threshold in many cases, 
indicating that the designed signal is better than the PRI random jitter signal in anti-
sorting performance. 

6. Conclusions 
In this study, to enhance the anti-sorting ability of radars, the failure principles of 

clustering sorting and SDIF sorting were analyzed, and a corresponding signal design 
method was proposed. Then, the PRI and RF were modulated by the designed 
hyperchaotic system. Since the pause time of the pulse signals was fixed, the modulation 
of the PRI, PW, and RF parameters was realized indirectly. The PRI, PW, RF, and DOA 
parameters were realized by controlling the DOA with phased-array technology, which 
further enhanced the anti-sorting ability for the signals. After analyzing the simulation 
results, we obtained the following conclusions. Firstly, the proposed anti-clustering 
method with a 3D pseudo-center wide-agility joint design and the anti-SDIF sorting 
method with an interval length greater than 20 times the minimum interval could guide 
the design of the anti-sorting signal. Secondly, compared to the classical 1D logistic, 2D 
Henon, and 3D Lorenz chaotic mappings, the 2D interleaving feedback hyperchaotic 
system designed in this paper had better complexity and stronger randomness. The 2D 
hyperchaotic system designed enters the chaotic state quickly and is not controlled by 
fractal coefficients. Finally, the designed signal could realize anti-clustering sorting and 
anti-SDIF sorting. Compared with the PRI random jitter signal, the PRI signal modulated 
by the designed hyperchaotic system showed better anti-SDIF sorting performance. 
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