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Abstract: The calculation of the Augmented Inverse Probability Weighting (AIPW) estimator of the
Average Treatment Effect (ATE) is carried out in two steps, where in the first step, the treatment and
outcome are modeled, and in the second step, the predictions are inserted into the AIPW estimator.
The model misspecification in the first step has led researchers to utilize Machine Learning algorithms
instead of parametric algorithms. However, the existence of strong confounders and/or Instrumental
Variables (IVs) can lead the complex ML algorithms to provide perfect predictions for the treatment
model which can violate the positivity assumption and elevate the variance of AIPW estimators. Thus
the complexity of ML algorithms must be controlled to avoid perfect predictions for the treatment
model while still learning the relationship between the confounders and the treatment and outcome.
We use two NN architectures with an L1-regularization on specific NN parameters and investigate
how their certain hyperparameters should be tuned in the presence of confounders and IVs to achieve
a low bias-variance tradeoff for ATE estimators such as AIPW estimator. Through simulation results,
we will provide recommendations as to how NNs can be employed for ATE estimation.

Keywords: causal Inference; instrumental variables; neural networks; doubly robust estimation;
regularization

1. Introduction

There are generally two approaches to address causal inference in observational
studies. The first one is to draw population-level causal inference which goes back at least
to the 1970s [1]. The second is to draw conditional causal inference which has received
attention more recently [2,3]. An example of a population-level causal parameter the
average treatment effect (ATE),

βATE = E[Y1 −Y0] = E
[
E[Y1 −Y0|W]

]
. (1)

The quantity E[Y1 −Y0|W] is referred to as the conditional average treatment effect
(CATE) [4–10]. CATE is NOT an individual-level causal parameter. The latter is impossible
to estimate accurately unless both potential outcomes are observed for each individual (un-
der parallel worlds!), or W contains all the varying factors that make the causal relationship
deterministic, which are unlikely to hold in practice. That said, under certain assumptions,
the counterfactual loss, the loss due to the absence of counterfactual outcome, can be upper
bounded [11]. The present article focuses on the estimation of ATE which does not require
those assumptions.

Through a number of attempts, researchers have utilized ML models for the causal
parameter estimation [12–17]. While the ultimate goal of a ML algorithm is to predict the
outcome of interest as accurately as possible, it does not optimally serve the main purpose
of the causal parameter estimation. In fact, ML algorithms minimize some prediction loss
containing the treatment or the observed outcome (and not counterfactual outcome) and
without targeting any relevant predictor(s) such as confounding variables [18].

Including confounders for the estimation of ATE in observational studies avoids
potential selection bias [19], however, in practice, we do not have a priori knowledge about
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the confounders and the ML algorithm minimizes the loss function without discriminating
between the input covariates. In fact, the ML algorithm can successfully learn the linear
and non-linear relationships between the confounders and the treatment and outcome,
but at the same time, might learn from potential Instrumental Variables (IVs) present in
the data as well (the variables that predict the treatment, but not the outcome). If there
are strong confounders or IVs among the covariates, the predictions of treatments (i.e.,
the propensity scores) can become extreme (near zero or one) which in turn can make the
estimates unstable. While possibly reducing the bias, the variance gets elevated at the
same time. Less complex models, on the other hand, may suffer from large bias (under-
fitting) but can obtain more stable causal parameter estimation. This conflict between the
necessary complexity in the model(s) and the bias-variance tradeoff motivates to develop
ML algorithms for step 1 that provide a compromise between learning from confounders
and IVs to entail a balance between the bias and variance of the causal parameter in step 2.
In addition to a low bias-variance tradeoff, the asymptotic normality of the causal effect
estimator is wanted for inferential statistics.

Chernozhukov et al. [16] investigated the asymptotic normality of orthogonal esti-
mators of ATE (including Augmented Inverse Probability Weighting (AIPW)) when two
separate ML algorithms model the treatment and outcome, referred to as the Double Ma-
chine Learning (DML). With the same objective, Farrell et al. [17] utilized two separate
neural networks (we refer to as the double NN or dNN), without the usage of any regu-
larization other than using the Stochastic Gradient Descent (SGD) for model optimization.
SGD does impose some regularization but is insufficient to control the complexity of NN
algorithms where strong predictors exist in the data [20]. Rostami and Saarela [20] experi-
mentally showed that when AIPW is utilized, dNN performs poorly. The normalization of
AIPW helps control both the bias and variance of the estimator. Further, they illustrated
that imposing the L1 regularization on all of the parameters (without targeting a specific
set of input features) helps reduce the bias, variance, and Mean Square Error (MSE) of
the ATE estimators up to some extent. Simulations indicated that when dNN is used,
with or without regularization, the normalized AIPW (nAIPW) outperforms AIPW. For a
comprehensive literature review on the doubly robust estimators (including AIPW) see
Moosavi et al. [21].

The strategy of targeting a specific type of features can be designed in NN architec-
tures along with the necessary optimization and regularization techniques. Flexible NN
structures, optimizations and regularization techniques are easily programmed in deep
learning platforms such as pytorch.

Shi et al. [22] proposes a neural network architecture, referred to as the DragonNet,
that jointly models the treatment and outcome, in which a multi-tasking optimization
technique is employed. In the DragonNet architecture, the interaction of the treatment and
non-linear transformations of the input variables are considered. Chernozhukov et al. [23]
uses the Riesz Representer [16] as the minimizer of a stochastic loss, which provides
an alternative for the propensity score estimation, and aims to prevent the empirical
consistency assumption violation issue [20]. Chernozhukov et al. [23] also use the joint
modeling of the Riesz Representer and the outcome through multi-tasking, and they
call their method auto Double Machine Learning (Auto-DML). Chernozhukov et al. [24]
optimized an L1 regularized loss function to estimate weights rather than estimating
propensity scores and plugging them into the AIPW estimator. Chernozhukov et al. [25]
proposed optimizing a minimax loss function for the same purpose. In this body of work, it
is still unclear how to hyperparameter tune the chosen NN architecture for causal inference,
especially for the ATE estimation.

Other techniques of feature selection before propensity score estimation have been
proposed in the literature [26]. However, hard thresholding might ignore important infor-
mation hidden in the features.

The objective of this research is to experimentally investigate how NN-type methods
can be utilized for ATE estimation, and how the hyperparameters can be tuned to achieve
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the best bias-variance tradeoff for the ATE estimators. This is done in the presence of strong
IVs and confounders. The papers cited above do not consider this general scenario.

In this research our goal is not any of the following: 1. We do not aim to compare NNs
with other ML algorithms to see which ones outperform the others. By the no-free-lunch
theorem, [27], there is no specific algorithm that can learn all relationships sufficiently
well. Thus, it is expected that some ML algorithms are better in some scenarios and
other algorithms in other scenarios. 2. We do not aim to study different types of causal
parameters. 3. We do not aim to study different estimators of the Average Treatment Effect.
4. We do not aim to study feature selection or other types of methods that can prevent IVs
to feed into the model of the treatment in the first step inference.

Throughout this research, we utilize nAIPW as it outperforms AIPW estimator in the
presence of strong confounders and IVs [20]. To target the relevant inputs, we propose
two methods. First, employing a type of L1 regularization on top of the common L1
regularization on all the network parameters. Second, we propose a joint model of the
treatment and outcome in a Neural Network (jNN) architecture where we place both the
treatment and outcome on the output layer of a multi-layer perceptron [28]. This NN
architecture is appealing as it models the treatment and outcome simultaneously which can
potentially target the relevant covariates that are predictive of both treatment and outcome
(or confounder) and can mitigate or ignore the IVs’ effects on the predictions. We will
investigate if both or either of these ideas improves the bias-variance tradeoff of the causal
effect estimator as compared to a dNN model.

In this research, the NN architecture that jointly models the treatment and outcome
here referred to as jNN. The parameters or weights are estimated by minimizing a regu-
larized multi-task loss which is the summation of the Cross-Entropy (for modeling the
binary treatment) and MSE loss (for modeling the continuous outcome) [29]. Multi-task
learning can help target the predictors of both treatment and outcome that are placed in
the output layer, and also it helps to resist against over-fitting in case of many irrelevant
inputs [30]. Other benefits of multi-task learning are listed in Section 2.2. Also, two types
of L1 regularization terms are used in order to dampen the instrumental variables and
strong confounders.

To show the effectiveness of jNN and dNN, a thorough simulation study is performed
and these methods are compared in terms of the number of confounders and IVs that
are captured in each scenario, the prediction measures, and the bias and variance of
causal estimators. To investigate whether our network targets confounders rather than
IVs and also dampens the impact of strong confounders on the propensity scores, we
calculate the bias-variance tradeoff of causal estimators (i.e., minimal MSE) utilizing the
NN predictions; Low bias means the model has mildly learned from confounders and other
types of covariates for the outcome, and low variance means the model has ignored IVs
and has dampened strong confounders in the treatment model. Further, a comparison
between the methods is made on the Canadian Community Health Survey (CCHS) dataset
where the intervention/treatment is food security versus food insecurity and the outcome
is individuals’ body mass index (BMI).

The organization of this paper is as follows. In Section 1.2 we define the problem
setting and the causal parameter to be estimated. In Section 2 we introduce the NN-type
methods, their loss functions, and hyperparameters. Section 3 provides a quick review of
the ATE estimators. In Section 4 our simulation scenarios are stated along with their results
in Section 4.2. The results of the application of our methods on a real dataset are presented
in Section 5. We conclude the paper in Section 6 with some discussion on the results and
future work.

1.1. Notation

Let data O = (O1, O2, ..., On) be generated by a data generating process F, where Oi is
a finite dimensional vector Oi = (Yi, Ai, Wi), with Y as the outcome, A as the treatment and
W = (Xc, Xy, Xiv, Xirr), where we assumes A = f1(Xc, Xiv) + ε1, and Y = f2(A, Xc, Xy) +
ε2, for some functions f1, f2. Xc is the set of confounders, Xiv is the set of instrumental
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variables, Xy is the set of y-predictors (independent of the treatment), and Xirr is a set of
given noise or irrelevant inputs (Figure 1). P is the true observed data distribution, P̂n is
the distribution of O such that its marginal distribution with respect to W is its empirical
distribution, and the expectation of the conditional distribution Y|A = a, W, for a = 0, 1,
can be estimated. We denote the prediction function of observed outcome given covariates
in the treated group q1 := q(1, W) = E[Y|A = 1, W], and that in the untreated group
q0 := q(0, W) = E[Y|A = 0, W], and the propensity score as g(W) = E[A|W]. Throughout,
the expectations E are with respect to P. The symbol ˆ on the population-level quantities
indicates the corresponding finite sample estimator, and P is replaced by P̂n.

Figure 1. The causal relationship between A and y in the presence of other factors in an
observational setting.

1.2. Problem Setup and Assumptions

The fundamental problem of causal inference states that individual-level causality
cannot be exactly determined since each person can experience only one value of A. Thus, it
is customary to only estimate a population-level causal parameter, in this research Average
Treatment Effect (ATE) (1).

For identifiablity of the parameter, the following assumptions must hold true. The first
assumption is the Conditional Independence, Ignorability or Unconfoundedness stating
that, given the confoudners, the potential outcomes are independent of the treatment
assignments (Y0, Y1 ⊥ A|W). The second assumption is Positivity which entails that the
assignment of treatment groups is not deterministic (0 < Pr(A = 1|W) < 1) ([18], page
344). The third assumption is Consistency which states that the observed outcomes equal
their corresponding potential outcomes (YA = y). There are other modeling assumptions
made such as time order (i.e., the covariates W are measured before the treatment), IID
subjects, and a linear causal effect.

2. Prediction Models

Neural Networks (NNs) are complex nonparametric models that approximate the
underlying relationship between inputs and the outcome. The objective in causal inference,
however, is not necessarily to leverage the maximum prediction strength of NNs and in
fact, the NN architecture should be designed and tuned so that it pays more attention to
the confounders.

The most important requirement of ML models such as NNs in causal inference is
that although the outcome prediction model should minimize the corresponding loss (fit
to get the best outcome prediction possible), given all of the covariates, the loss function
associated with the propensity score model should not necessarily be minimized. Ideally,
the instrumental variables or strong confounders which can give extreme fitted probability
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values (near zero or one) should be controlled when minimizing the loss. This can help
prevent the elevation of the variance of the causal estimator (i.e., prevent the violation/near
violation of the positivity assumption [18,31]). In summary, the prediction models should be
strong enough to learn the linear and non-linear relationships between the confounders and
treatment, but should not provide perfect predictions. We hypothesize that the employed
NNs methods with the regularization techniques have the property of ignoring or damping
strong confouders and/or instrumental variables.

2.1. Joint Neural Network

The joint Neural Network (jNN) architecture is a combination of multiple ideas (see
Sections 2.2–2.4) for causal parameter estimation purposes mentioned above.

The jNN models are:[
E[Y|A, W]
E[A|W]

]
=

[
α0 + βA + Wα + HΓY

g(γ0 + Wγ + HΓA)

]
(2)

where H = f ( f (...( f (WΩ1)Ω2)...)ΩL) is the last hidden layer matrix which is a non-linear
representation of the inputs (L is the number of hidden layers), g is the logistic link function,
and ΓA and ΓY are the parameters that regress H to the log-odds of the treatment assignment
or to the outcome in the output layer. The large square brackets around the equations
above is meant to emphasize that both treatment and outcome models are trained jointly.
The non-linear relationships between the inputs and the treatment and outcome can have
arbitrary forms (which might not be the same for the treatment and outcome). The NNs
can approximate such non-linear relationships even though one activation function is used.
In fact, this property of NNs frees us from pre-specifying basis functions [26] as they can be
estimated automatically.

The jNN architecture minimizes a multi-task loss Section 2.2 to estimate the networks
parameters:

L(P , β, α) = a
n

∑
i=1

[
Yi − α′ − βAi −Wiα− HT

i ΓY

]2
+

b
n

∑
i=1

[
Ai log

(
g
(

HT
i ΓA

))
+ (1− Ai) log

(
1− g

(
HT

i ΓA
))]

+

CL1 ∑
ω∈P
|ω|+ CL1TG

(
∑

ω∈ΓA

|ω|+ ∑
ω∈Ω1

|ω|
)
, (3)

where a, b, CL1 , CL1TG are hyperparameters, that can be set before training or be determined
by Cross-Validation, that can convey the training to pay more attention to one part of the
output layer.

The jNN can have an arbitrary number of hidden layers, or the width of the network
(H) is another hyperparameter. For a 3-layer network, H = [l1, l2, ..., lh], where lj is the
number neurons in layer j, j = 1, 2, ..., h. P = {ω ∈ Ω1 ∪Ω2 ∪Ω3 ∪ ΓY ∪ ΓA}, are the
connection parameters in the nonlinear part of the network, with Ω’s being shared for
the two outcome and propensity models. Noted that the number of parameters with L1
regularization (third term on (3)) is |P| = (p + 1)× l1 + (l1 + 1)× l2 + ... + (lh−1 + 1)×
lh + (lh + 1)× 2, including the intercepts in each layer.

The following subsections list the potential benefits and the rationale behind the
proposed network (Equations (2) and (3)).

2.2. Bivariate Prediction, Parameters Sharing, and Multi-Task Learning

One of the main components of the jNN architecture is that both treatment and
outcome are placed and modeled in the output layer simultaneously. The hypothesis here
is that the network learns to get information from the inputs that predict both treatment
and outcome, i.e., the confounders. This bivariate structure is intertwined with a multi-task
learning or optimization. Ruder [30] reviews the multi-tasking in machine learning and
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lists its benefits such as implicit data augmentation, regularization, attention focusing,
Eavesdropping and Representation bias. Caruana [32] showed that overfitting declines by
adding more nodes to the output layer as compared to modeling each output separately
Baxter [33]. The multi-task is used when more than one output is used. Multi-task learning
is common in the field of Artificial Intelligence and Computer Vision, for example, for the
object detection task where the neural network predicts the coordinates of the box around
objects and also classifies the object(s) inside the box (see for example [34]). Multi-task
learning is used in jNN in order to investigate if the model pays more attention to the
confounders than other types of inputs.

2.3. Regularization

The jNN will be resistant to overfitting by adding regularization to the network. Pre-
liminary simulations revealed that L2, and the Dropout Goodfellow et al. [35] regularization
techniques do not result in satisfactory causal effect estimation, and the inherent regulariza-
tion in the Stochastic Gradient Descent Goodfellow et al. [35] is also insufficient, while L1
regularization is effective. We did not use the early-stopping as a regularization technique.

The L1 regularization, third summation in (3), shrinks the magnitude of the parameter
estimates of the non-linear part of the architecture which, in effect, limits the influence of
Xirr and Xiv, Xy, and Xc on both treatment and the outcome. The motivation behind the L1
regularization is to avoid overfitting for better generalization.

The ideal situation for causal parameter estimation is to damp the instrumental vari-
ables and learn from confounders and y-predictors only. Henceforth another version of the
L1 regularization is introduced here, referred to as the targeted L1 regularization, or L1TG,
to potentially reduce the impact of instrumental variables on the outcome and more im-
portantly on the propensity scores. The motivation is that by introducing shrinkage on the
connections between the last hidden layer and the treatment, the neural network is trained
to learn more about confounders than IVs in the last hidden layer as the outcome model is
free to learn as much as possible from confounders. The caveat here might be that if the last
hidden layer is large enough, some of the neurons can learn confounders while other learn
from IVs, thus motivating to consider limiting the number of neurons in the last hidden
layer. These hypotheses and ideas are considered in the simulation studies.

2.4. Linear Effects and Skip Connections

The terms βA + Wα and Wγ in (2) are responsible for potential linear effects. Theoret-
ically, the non-linear parts of the NNs can estimate linear effects, but it is preferable to use
linear terms if the relationship between the some of the inputs and the outcome/treatment
are linear for more accurate linear effect estimation. The benefit of including linear terms in
the equations has been verified in our preliminary simulation studies.

These linear terms are referred to the skip-connections in ML literature He et al. [36]
which connect some layers to two or more layers forward. In ML literature, they are
primarily used in very deep neural networks to facilitate optimizations. But they are used
in jNN to model the linear effects directly. More specifically, skip connections connect the
covariates to both treatment and outcome in the output layers and connect the treatment in
the input layer to the outcome in the output layer. The latter skip connection is shown in
Figure 2. It should be noted that this skip connection in particular is independent of the
treatment in the output layer to avoid perfect prediction of the propensity scores.
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Figure 2. A Joint Neural Network architecture that incorporates linear effect of the treatment on the
outcome, and the nonlinear relationship between the covariates and the treatment assignment and
the outcome, all three tasks at the same time.

2.5. Double Neural Networks

In order to study the significance of the proposed method through simulations, we
compare jNN with the double Neural Networks (dNN) Chernozhukov et al. [37] method.
dNN is generally referred to the strategy of modeling the treatment and outcome separately
utilizing two different models:

E[Y|A, W] = β0 + βA + Wα + HΓY

E[A|W] = α0 + Uα + KΓA,
(4)

where two separate neural nets model y and A (no parameter sharing). In this paper,
the dNN algorithm refers to two neural networks to model the treatment and outcome
separately. To make the two jNN and dNN models comparable, we let the NN architectures
to be as similar as possible in terms of skip connections and regularization techniques.
The loss functions in dNN to be optimized are:

Ly(Py, β, α) =
n

∑
i=1

[
Yi − α′ − βai −Wiα−HT

i ΓY

]2
+ C′L1 ∑

ω∈P
|ω|,

LA(PA) =
n

∑
i=1

[
ai log

(
g
(
KT

i ΓA
))

+ (1− ai) log
(

1− g
(
KT

i ΓA
))]

+ C′′L1 ∑
ω∈P
|ω|+

CL1TG

(
∑

ω∈ΓA

|ω|+ ∑
ω∈Ω1

|ω|
)
,

(5)

3. ATE Estimation

The Causal Parameter Estimation algorithm is a two stage process. The regression
functions E[A|W], E[Y|A = 1, W]), E[Y|A = 0, W] are estimated using the ML algorithms
such as jNN or dNN in step 1. And in step 2, the predictions are inserted into the causal
estimators such as (6), below.
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ATE Estimators

There is a wealth of literature on how to estimate the ATE and there are various
versions of estimators including the Augmented Inverse Probability Weighting (AIPW),
Normalized Augmented Inverse Probability Weighting (nAIPW):

β̂AIPW =
1
n

n

∑
i=1

(Ai(Yi − q̂1
i )

ĝi
−

(1− Ai)(Yi − q̂0
i )

1− ĝi

)
+

1
n

n

∑
i=1

q̂1
i − q̂0

i ,

β̂nAIPW =
n

∑
i=1

(Ai(Yi − q̂1
i )w

(1)
i

∑n
j=1 Ajw

(1)
j

−
(1− Ai)(Yi − q̂0

i )w
(0)
i

∑n
j=1(1− Aj)w

(0)
j

)
+

1
n

n

∑
i=1

q̂1
i − q̂0

i .
(6)

where q̂k
i = q̂(k, Wi) = Ê[Yi|Ai = k, Wi] and ĝi = Ê[Ai|Wi], and A1 is the treatment group

with size n1 and A0 is the treatment group with size n1.
In the second step of estimation procedure, the predictions of the treatment (i.e.,

propensity score, PS) and/or the outcome Ê[Yi|Ai = k, Wi], k = 0, 1, can be inserted in
these estimators (6). Generalized Linear Models (GLM), any relevant Machine Learn-
ing algorithm such as tree-based algorithms and their ensemble Friedman et al. [28],
SuperLearner Van der Laan et al. [38], or Neural Network-based models (such as ours) can
be applied as prediction models for the first step prediction task. We will use jNN and
dNN in this article.

4. Simulations

A simulation study (with 100 iterations) was performed to compare the prediction
methods jNN, and dNN by inserting their predictions in the nAIPW (causal) estimators (6).
There are a total of 8 scenarios according to the size of the data (i.e., the number of subjects
and number of covariates), and the confounding and instrumental variables strengths. We
fixed the sample sizes to be n = 750 and n = 7500 , with the number of covariates p = 32
and p = 300, respectively. The four sets of covariates had the same sizes #Xc = #Xiv =
#Xy = #Xirr = 8.75 and independent from each other were drawn from the Multivariate
Normal (MVN) Distribution as X ∼ N (0, Σ), with Σkj = ρj−k and ρ = 0.5. Let β = 1.
The models to generate the treatment assignment and outcome were specified as

A ∼ Ber
( 1

1 + e−η

)
, with η = fa(Xc)γc + ga(Xiv)γiv,

Y = 3 + A + fy(Xc)γ
′
c + gy(Xy)γy + ε,

(7)

The functions fa, ga, fy, gy select 30% of the columns and apply interactions and non-
linear functions listed below (8). The strength of instrumental variable and confounding
effects were chosen as γc, γ′c, γy ∼ Uni f (r1, r2) where (r1 = r2 = 0.1) or (r1 = 0.1, r2 = 1),
and γiv ∼ Uni f (r3, r4) where (r3 = r4 = 0.1) or (r3 = 0.1, r4 = 1).

The non-linearities for each pair of covariates are randomly selected among the fol-
lowing functions:

l(x1, x2) = e
x1x2

2

l(x1, x2) =
x1

1 + ex2

l(x1, x2) =
( x1x2

10
+ 2
)3

l(x1, x2) =
(
x1 + x2 + 3

)2

l(x1, x2) = g(x1)× h(x2)

(8)

where g(x) = −2I(x ≤ −1)− I(−1 ≤ x ≤ 0) + I(0 ≤ x ≤ 2) + 3I(x ≥ 2), and h(x) =
−5I(x ≤ 0)− 2I(0 ≤ x ≤ 1) + 3I(x ≥ 1), or g(x) = I(x ≥ 0), and h(x) = I(x ≥ 1).
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In order to find the best set of hyperparameter values for the NN architectures, we
ran an initial series of simulations to find the best set of hyperparameters for all scenarios,
presented here. The networks’ activation function is Rectified Linear Unit (ReLU), with 3
hidden layers as large as the input size (p), with L1 regularization and batch size equal to
3 ∗ p and 200 epochs. The Adaptive Moment Estimation (Adam) optimizer Kingma and
Ba [39] with learning rate 0.01 and momentum 0.95 were used to estimate the network’s
parameters, including the causal parameter (ATE).

As in practice the RMSE and covariate types are unknown, prediction measures of the
outcome and treatment should be used to choose the best model in a K-fold cross-validation.
R2 and AUC each provide insight about the outcome and treatment models, respectively,
but in our framework, both models should be satisfactory. To measure the goodness of the
prediction models (jNN and dNN) for causal inference purposes, we define and utilize a
statistic which is a compromise (geometric average) between R2 and AUC, here referred to
as geo,

geo(R, D) = 3
√

R2 × D× (1− D), (9)

where D = 2(AUC − 0.5), the Somers’ D index. This measure was not utilized in the
optimization process (i.e., training the neural networks), and is rather introduced here to
observe if the compromise between R2 and AUC agrees with the models that capture more
confounders than IVs. We will refer to geo(R, D) simply as geo.

4.1. Selected Covariate Types

In order to identify which types of covariates (confounders, IVs, y-predictors, and ir-
relevant covariates) the prediction methods have learned from, we calculate the association
between the inputs and the predicted values (Ê[Y|A, W] and Ê[A|W]), and after sorting the
inputs (from large to small values) based on the association values, we count the number
of different types of covariates within top 15 inputs. The association between two vari-
ables here is estimated using the distance correlation statistic [40] whose zero values entail
independence and non-zero values entail statistical dependence between the two variables.

4.2. Results

Figures 3–8 present the overall comparison of different hyperparameter settings of
jNN and dNN architectures in terms of five different measures, respectively: (1) The
average number of captured confounders/IVs/y-predictors, (2) Average Root Mean Square
Error (RMSE) of causal estimators, (3) Average R2, AUC and their mixture measure geo (9),
(4) Bias, (5) MC standard deviation of nAIPW. The bootstrap confidence intervals for the
bias, standard deviation and RMSE are calculated to capture significant differences between
the simulation scenarios. The x-axis includes 16 hyperparameter settings, and as a general
rule here, models in the left are most complex (less regularization and wider neural nets)
and in the right are least complex. Noted that L1TG regularization is only targeted at the
treatment model.

The Figures 3 and 4 show how the complexity of both dNN and jNN (x-axis) impact the
number of captured covariate types (i.e., confounders/IVs/y-predictors) (top graph), RMSE
(middle graph) and prediction measures (bottom graph). In almost all the hyperparameter
settings, especially when CL1TG is non zero, the number of captured confounders is larger
and the number of captured IVs is smaller in jNN as compared to dNN. This shows the
joint modeling has a benefit of focusing on the confounders, rather than IVs, especially in
the large data scenario.
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Figure 3. The ATE estimates and their asymptotically calculated 95% confidence intervals with nIPW,
AIPW, and nAIPW methods.

−0.5

0

0.5

H_
39
6_
39
6_
39
6_
L1
_0
.2_
L1
TG
_0
.1

H_
39
6_
39
6_
39
6_
L1
_0
.2_
L1
TG
_0
.3

H_
39
6_
39
6_
39
6_
L1
_0
.5_
L1
TG
_0
.1

H_
39
6_
39
6_
39
6_
L1
_0
.5_
L1
TG
_0
.3

H_
49
_3
96
_4
9_
L1
_0
.2_
L1
TG
_0
.1

H_
49
_3
96
_4
9_
L1
_0
.2_
L1
TG
_0
.3

H_
49
_3
96
_4
9_
L1
_0
.5_
L1
TG
_0
.1

H_
49
_3
96
_4
9_
L1
_0
.5_
L1
TG
_0
.3

−0.5

0

0.5

1

AIPW nAIPW nIPW

Figure 4. The ATE estimates and their asymptotically calculated 95% confidence intervals with nIPW,
AIPW, and nAIPW methods.



Entropy 2022, 24, 1290 11 of 17

23/05/2021 conf-rmse-pred-sim-results-May2021-750.html

file:///home/mr/Pictures/sims/conf-rmse-pred-sim-results-May2021-750.html 1/1

2

3

4

5

6

7
jNN: Confounders

dNN: Confounders

jNN: IVs

dNN: IVs

jNN: y-predictors

dNN: y-predictors

#
 o

f 
S

e
le

ct
e

d
 C

o
st

d
ia

te
 T

yp
e

0

0.2

0.4

0.6

0.8

jNN: nDR

dNN: nDR

R
o

o
t 

M
S

E

HL:32,32,32,C
_L1:0.01,C

_L1TG:0.0

HL:3,32,3,C
_L1:0.01,C

_L1TG:0.0

HL:32,32,32,C
_L1:0.1,C

_L1TG:0.0

HL:3,32,3,C
_L1:0.1,C

_L1TG:0.0

HL:32,32,32,C
_L1:0.01,C

_L1TG:0.1

HL:3,32,3,C
_L1:0.01,C

_L1TG:0.1

HL:32,32,32,C
_L1:0.1,C

_L1TG:0.1

HL:3,32,3,C
_L1:0.1,C

_L1TG:0.1

HL:32,32,32,C
_L1:0.01,C

_L1TG:0.3

HL:3,32,3,C
_L1:0.01,C

_L1TG:0.3

HL:32,32,32,C
_L1:0.1,C

_L1TG:0.3

HL:3,32,3,C
_L1:0.1,C

_L1TG:0.3

HL:32,32,32,C
_L1:0.01,C

_L1TG:0.7

HL:3,32,3,C
_L1:0.01,C

_L1TG:0.7

HL:32,32,32,C
_L1:0.1,C

_L1TG:0.7

HL:3,32,3,C
_L1:0.1,C

_L1TG:0.7

0.2

0.4

0.6

0.8

jNN: R2

dNN: R2

jNN: AUC

dNN: AUC

jNN: geo

dNN: geo

Hyperparameter Settings

P
re

d
ic

tio
n

 M
e

a
su

re
s

Figure 5. The comparison of captured number of confounders, IVs and y-predictors, RMSE of nAIPW
and its bootstrap 95% confidence interval, and prediction measures R2, AUC and geo (geometric
mean of R2, AUC) for different hyperparameter settings and where the predictions come from jNN
or dNN models. (n = 750, p = 32).
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Figure 6. The comparison of captured number of confounders, IVs and y-predictors, RMSE of nAIPW
and its bootstrap 95% confidence interval, and prediction measures R2, AUC and geo (geometric
mean of R2, AUC) for different hyperparameter settings and where the predictions come from jNN
or dNN models. (n = 7500, p = 300).
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Figure 7. The bias and standard deviation of nAIPW and their bootstrap 95% confidence intervals for
different hyperparameter settings where the predictions come from jNN or dNN models. (n = 750,
p = 32).
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Figure 8. The comparison of bias, Monte Carlo standard deviation and their bootstrap 95% confidence
intervals of nAIPW, for different hyperparameter settings and the predictions come from jNN or
dNN models. (n = 7500, p = 300).
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The RMSE of jNN is larger than that of dNN for models with zero targetted regular-
ization (the scenarios in the left). With decreasing the complexity of the treatment model,
the RMSE of both jNN and dNN decline. The jNN outperforms dNN in almost all of the
hyperparameter settings in case of n = 750, but does not show a clear pattern in case
of n = 7500. Further, the impact of the width of architectures (H) changes based on CL1

regularization: wider architectures (H = [p, p, p], p: number of covariates) with large CL1

outperform other combinations of these two hyperparameters. This observation is more
clear for smaller sized data, and for dNN model. In the small size scenarios, when the
width is small (H = [3, 32, 3]), the outcome model is affected and has a smaller R2. This
means there are not enough neurons (on the first or last layer) to provide more accurate
outcome predictions. In the best scenarios, the RMSE confidence intervals of jNN model
are below those of dNN, illustrating a small preference of jNN over dNN in terms of RMSE.
Comparing the three hyperparameters, CL1TG is most effective, and zero values of this
hyperparameter results in very large RMSEs for both dNN and jNN.

From Figures 3 and 4, it is observed that both jNN and dNN models have roughly the
same values for the R2 (outcome model performance) across hyperparameter settings and
for both data sizes (n = 7500, and n = 750). That is, the targeted regularization in jNN does
not impact the performance of the outcome model. The AUC, on the other hand, declines
with higher values of CL1TG , and is almost always smaller or equal in dNN as compared
to jNN. Further, larger values of geo in the small size data correspond to smaller RMSE,
but no such pattern can be seen in the large data scenario.

Overall, the trends favor the idea that more complex treatment models capture larger
number of IVs, have larger AUC (smaller geo.), and have larger RMSE. That is, more
complex models are less favorable.

Figures 7 and 8 illustrate the bias and standard deviation of the causal estimators.
As expected and mentioned in the Section 1, the models that do not dampen IVs suffer
from large bias and standard deviation. The bias and standard deviation have opposite
behavior in different settings, such that settings that produce larger standard deviation,
results in small bias, and vice versa, except for the one setting that produces both largest
bias and standard deviation. The fluctuations of the bias-variance across hyperparameter
settings are larger in n = 750 case than in n = 7500 case. For small sample n = 750,
the best scenario for jNN is H = [32, 32, 32], CL1 = 0.1, CL1TG = 0.7 where both bias and
standard deviation of jNN are small in the same direction. For the large sample n = 7500,
however, the best scenario for jNN is H = [30, 300, 30], CL1 = 0.01, CL1TG = 0.7 with a
similar behavior. The best scenarios for dNN are slightly different. For small sample
H = [32, 32, 32], CL1 = 0.1, CL1TG = 0.7 and for the large sample H = [30,300,30], CL1= 0.01,
CL1TG = 0.7 are most favorable.

5. Application: Food Insecurity and BMI

The Canadian Community Health Survey (CCHS) is a cross-sectional survey that
collects data related to health status, health care utilization and health determinants for the
Canadian population in multiple cycles. The 2021 CCHS covers the population 12 years of
age and over living in the ten provinces and the three territorial capitals. Excluded from
the survey’s coverage are: Persons living on reserves and other Aboriginal settlements in
the provinces and some other sub-populations that altogether represent less than 3% of
the Canadian population aged 12 and over. Examples of modules asked in most cycles are:
General health, chronic conditions, smoking and alcohol use. For the 2021 cycle, thematic
content on food security, home care, sedentary behavior and depression, among many
others, was included. In addition to the health component of the survey are questions about
respondent characteristics such as labor market activities, income and socio-demographics.

In this article, we use the CCHS dataset to investigate the causal relationship of
food insecurity and body mass index (BMI). Other gathered information in the CCHS is
used which might contain potential confounders, y-predictors and instrumental variables.
The data are from a survey and need special methods such as the resampling or bootstrap
methods to estimate the standard errors. However, here, we use the data to illustrate the
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utilization of jNN and dNN with different hyperparameters choices in the presence of
possible empirical positivity violations. In order to reduce the amount of variability in the
data, we have focused on the sub-population 18–65 years of age.

Figures 5 and 6 present the ATE estimates and their 95% asymptotic confidence inter-
vals with nIPW, AIPW and nAIPW methods. Figure 5 contains hyperparameter settings
where there is no targeted regularization and it shows how important this regularization
technique is, especially for the AIPW estimator that has no normalization. We have re-
moved these scenarios in Figure 6 for a more clear comparison between the remaining
scenarios. The estimates and 95% CIs seem similar across the hyperparameter settings,
but there is a clear difference between those of AIPW and nAIPW. This means that for
this dataset, normalization might not be needed as the propensity scores do not behave
extremely and AIPW does not blow up.

6. Discussion

In this paper, we have studied how hyperparameters of the Neural Network predic-
tions in the first step can affect the Average Treatment Effect (ATE) estimator. We have
considered a general Data Generating Process (DGP) that four types of covariates that exist
in the dataset, confounders, IVs, y-predictors, and irrelevant covariates. Two general NN
architectures have been studied, jNN and dNN where in the former both the outcome
and treatment are modeled jointly (with an appropriate loss function) and in the latter,
they are modeled separately. We have observed that L1 regularization especially the ones
that targets the treatment model (L1TG) is an effective hyperparameter for achieving a
better bias-variance trade-off for the normalized Augmented Inverse Probability Weighting
(nAIPW) estimator. And, the number of neurons in the first and last layer of the network
becomes irrelevant as long as the value of L1TG is sufficient. Further, we have observed
that in the hyperparameter settings where the IV effects are controlled, the estimation is
less biased and more stable. Thus the targeted regularization is successful in dampening
the IVs and preventing perfect prediction in the treatment model. Figures 3–8 illustrate that
jNN is overall more stable and has a smaller RMSE in the small sample dataset scenario
as compared to dNN. We utilized nAIPW in our simulations as they outperform or at
least do not underperform AIPW and other estimators such as IPW, nIPW, AIPW, and SR.
The nAIPW estimator has a normalization factor in the denumerator which can dilute the
impact of extreme predictions of the propensity score model and protect the estimator
against the positivity assumption violation Van der Laan and Rose [18].

We utilized a geometric-type average of the R2 and AUC to choose among the first
step models. As the objective of optimization in the first step is increasing prediction
performance which is not necessarily the same as the causal inference objectives, the usage
of either R2, AUC or their geometric average is sub-optimal. In a future study alternative
approaches will be explored and compared with the said prediction measure.

A real strength of NNs would be to uncover hidden information (and thus confounder
effects) in unstructured data such as text or image data. However, in this article, we have
not studied the presence of unstructured data and it is left for future research.

There are limitations due to the assumptions and simulation scenarios and, thus, some
questions are left to future studies to be explored. For example, the outcome here was
assumed to be continuous, and the treatment to be binary. We also did not cover heavy
tail outcomes or rare treatment scenarios. Also, the ratio of dimension to the size of the
data was considered to be fairly small (p � n), and we have not studied the case where
n < p. Furthermore, we did not study the asymptotic behavior of nAIPW when jNN or
dNN predictions are used.

A limitation of jNN as compared to dNN is that if one needs to shrink the final hidden
layer to control the complexity of the treatment model, by structure, we are limiting the
complexity of the outcome model which might not be necessary. This might be resolved by
another architectural design, which is left to future studies on the subject.
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The usage of another regularization technique that controls the extremeness of propen-
sity score values is a plausible approach. For example, a data-dependent term can be
added to the loss function ∑n

i=1
1
gi
+ 1

1−gi
. Such a term discourages the network to obtain

values extremely close to zero or one, as opposed to the negative log-likelihood term that
encourages such tendencies. This approach might also focus less on the inputs that cause
extreme values such as strong confounders or IVs. Examination of this approach is left to
future studies.

In the design of the optimization, we did not consider a formal early stopping as a reg-
ularization technique. However, in the preliminary exploration, our simulations performed
better with fewer iterations (in fact epochs). In modern NNs, researchers usually run the
NN algorithms in many iterations, but that is partly due to the dropout regularization
technique. We did not use drop-out (and L2) regularization in the final simulations, as the
preliminary results did not confirm dropout as promising as L1 regularization.

Further, we utilized NNs to learn the underlying relationships between the covariates
and the outcome and treatment by targeting the relevant features through regularization
and joint modeling of the treatment and outcome. NNs with other structures that might tar-
get confounders have not been explored, nor have other Machine Learning algorithms such
as tree-based models. The Gradient Boosting Machines (GBM) algorithm Friedman [41]
can be alternatively used to learn these non-linear relationships while targeting the right
set of features. This is postponed to a future article.
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