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Abstract: Swift population growth and rising demand for energy in the 21st century have resulted
in considerable efforts to make the electrical grid more intelligent and responsive to accommodate
consumers’ needs better while enhancing the reliability and efficiency of modern power systems.
Internet of Things (IoT) has appeared as one of the enabling technologies for smart energy grids by
delivering abundant cutting-edge solutions in various domains, including critical infrastructures.
As IoT-enabled devices continue to flourish, one of the major challenges is security issues, since IoT
devices are connected through the Internet, thus making the smart grids vulnerable to a diverse range
of cyberattacks. Given the possible cascading consequences of shutting down a power system, a
cyberattack on a smart grid would have disastrous implications for the stability of all grid-connected
infrastructures. Most of the gadgets in our homes, workplaces, hospitals, and on trains require
electricity to run. Therefore, the entire grid is subject to cyberattacks when a single device is hacked.
Such attacks on power supplies may bring entire cities to a standstill, resulting in massive economic
losses. As a result, security is an important element to address before the large-scale deployment of
IoT-based devices in energy systems. In this report, first, we review the architecture and infrastructure
of IoT-enabled smart grids; then, we focus on major challenges and security issues regarding their
implementation. Lastly, as the main outcome of this study, we highlight the advanced solutions
and technologies that can help IoT-enabled smart grids be more resilient and secure in overcoming
existing cyber and physical attacks. In this regard, in the future, the broad implementation of cutting-
edge secure and data transmission systems based on blockchain techniques is necessary to safeguard
the entire electrical grid against cyber-physical adversaries.

Keywords: smart grid; Internet of Things (IoT); cybersecurity strategies; cyber-physical power system
(CPPS); 5G wireless telecommunication; smart meters; blockchain

1. Introduction
1.1. Emerging Smart Grids

With the expansion of cities and proliferation of the population, the need for a flex-
ible and intelligent type of electrical grid that could accommodate the diverse demand
of different customers has increased. In 2007, the National Institute of Standards and
Technology (NIST) proposed a framework for the future electrical grid to guarantee the
reliable, scalable, secure, interoperable, and manageable operation of electrical grids while
being cost-effective [1]. Figure 1 shows the evolution of electrical grids toward the future
grid, known as the smart grid system.

In a smart grid system, renewable energy resources such as wind, solar, and power
storage units are integrated into the grid system. These new power generation technologies,
which may be smaller, more widely distributed, and more ecologically friendly, could
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preserve grid resilience and disperse overload centers [2]. The smart grid employs a
widespread sensor network supported by a two-way communication system for constant
monitoring of the grid status. The bidirectional communication network allows the ex-
change of measurement data and control signals between grid entities, improving the
grid and user asset monitoring and management. Moreover, to process the collected data
within the required time frames, the smart grid should be supported by sufficient compu-
tational resources. The control and monitoring are conducted in a more distributed way,
as the volume of the collected data is enormous, and the sensors are dispersed across the
entire grid.
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As a result of such capabilities, the smart grid can manage the supply–demand balance
of energy more effectively, securely, and reliably. Moreover, the smart grid can be considered
an enabler for the realization of smart homes and electric transportation, providing a
platform for customers’ participation with utility companies and helping reduce carbon
emissions. The merits of smart grids in comparison to traditional electrical grids are
presented in Table 1 [3,4]. However, these advantages would be obtained at the cost of
increasing the grid’s complexity and infrastructure, which demands an ongoing effort to
overcome challenges using emerging technologies and solutions [5,6].

Table 1. Advantages of smart grids over traditional grids.

Features Traditional Grid Smart Grid

Communication One-way communication Two-way communication with interaction

Power generation Centralized Distributed generation, provides support during peak
hours when load demand increases

Topology Radial Different network topology

Operation and maintenance Manual monitoring, periodic
equipment maintenance

Real-time monitoring, prognostic, and event-driven
maintenance

Power restoration Manual equipment checks and
time-based maintenance

Self-healing; smart grid can anticipate, identify, and
respond to faults and outages

Reliability Prone to failure and cascading
outages Pro-active, real-time, and islanding

Metering Electro-mechanical Advanced metering arrangement that drives the facility to
track and regulate energy consumption

Customer participation Limited interaction or none Extensive interaction

Power quality control Less use of sensors and less power
quality

Contains numerous modules, for example, sensors, smart
meters, and technologies on the distribution grid that aid
in managing the parameters, such as voltage and power

factor, to improve the power quality

Renewable power source
integration

Optimized for non-renewable
resources

Offers essential insights and enables automation for
renewable power resources to supply electricity to grids

while their management is being optimized

Operational cost and wastage at
peak hour High at peak hours Low at peak hour due to distributed generation and

control over the power consumption
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1.2. Rise of Internet of Things (IoT) Devices in Smart Grids

One of the cutting-edge solutions in the field of telecommunication is the Internet-of-
Things (IoT) concept. The IoT is generally considered a network of devices embedded with
electronics, software, sensors, and actuators capable of exchanging information through
communication networks, such as the Internet. The IoT supports bidirectional commu-
nications and distributed computational capabilities, so it can be considered a potential
solution to address inescapable difficulties in transitioning traditional energy networks
into updated smart grid systems [7,8].

In a smart grid environment, services such as large-scale integration of distributed re-
newable energy resources, the establishment of live, real-time data communication between
consumers and service providers regarding tariff information and energy consumption,
and infrastructure to collect and transfer statistics of the grid’s parameters for analysis,
and mechanisms to implement necessary actions based on such analyses are required [9].
For intelligent decision-making, the smart energy grid creates a large amount of data and
information that have to be transported, processed, and stored [10]. In this regard, the
IoT, considering its multifaceted benefits in numerous industries, appears to be a suitable
solution with significant potential to be used in the smart energy grid system. In addition
to the increased accuracy and competency that can be added to the system through the
IoT’s intelligent and proactive features, the IoT can assist in a smooth transformation of the
legacy power grid into a smart energy system that would be more efficient [11].

The main concerns in a traditional power grid system are power quality and depend-
ability, both of which may be addressed with the help of the IoT as it offers better control of
these issues. By introducing intelligent information-processing features during the electric-
ity flow between the service provider and consumers, advanced metering infrastructure
(AMI) assisted by smart metering (SM) technologies can facilitate the transformation of a
conventional power grid system into a smart grid system [12]. Through the combination of
sensing and actuation systems in the AMI, the IoT offers significant potential for optimizing
and regulating energy use. This integrated system collects a massive quantity of data and
information from many parts of the grid system, including energy usage, voltage readings,
current readings, and phase measurements. Cutting-edge IoT technology can collect large
amounts of data and transmit and analyze them intelligently, allowing for better energy
grid management [13]. Power generation infrastructure management, supervisory control,
and data acquisition (SCADA) connected systems for managing transmission and distribu-
tion operations, advanced metering infrastructure, and carbon footprint and environmental
monitoring are all examples of areas where IoT technologies can have a significant impact
on smart energy grid systems. Advanced cloud and edge computing technologies can
enable distributed monitoring and management of dispersed energy resources, and provide
answers to the old centralized SCADA system’s cyber vulnerabilities [14].

Moreover, the IoT-enabled smart grid can operate and manage the electrical grid more
efficiently as it can seamlessly be integrated with other smart entities, such as smart appli-
ances, smart homes, smart buildings, and smart cities, to access and control more devices
over the Internet. However, this requires using more advanced computational capabilities
and resource-allocation mechanisms. Despite gaining more efficiency in monitoring and
operation of the energy system, the IoT-enabled smart grid implementation comes with a
set of obstacles. For instance, IoT cyber adversaries can impose smart grids onto several
attacks that can be classified into three main categories: operational, economic, and system
security. Several examples of these damages are listed as follows [15,16]:

• Localized and large-scale power outages.
• Significant business loss to the utilities and electricity markets.
• Social security threats to customers by publicizing their information.
• Manipulation of energy consumption records.
• Interrupting the process of transactive energy systems.
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To counterattack the aforementioned challenges, several technologies, such as machine
learning methods, artificial intelligence (AI), blockchain, and multifactor authentication
systems, have been developed [17].

1.3. Motivational Factors and Contributions

The latest improvements in IoT-enabled smart grids and energy systems inspired this
survey. The IoT offers the structure and protocols for the smart system’s sensing, actuation,
communication, and processing technologies. Moreover, the fast growth of technology in
several IoT industries has created new prospects for developing smart grids smoothly. This
paper will aid potential researchers, industrial experts, and stakeholders in comprehending
the architecture of an IoT-enabled smart grid system. It will also familiarize readers with
different applications of IoT technologies, security vulnerabilities, and mitigation strategies
to maintain the safe operation of smart energy systems. In this regard, the key contributions
of the study are as follows:

• The concept of an IoT-enabled smart grid and recent practical advances are investi-
gated, especially the application, challenges, and opportunities of communication
technologies in modern power systems.

• The study examines the use of 5G-based IoT technologies for smart grids, consid-
ering the technology’s fast data transfer speed for remote control, strong security for
preserving customer privacy, and high dependability for guaranteeing smart grid efficacy.

• This study investigated and classified energy grid IoT security vulnerabilities, and
it also included mitigating strategies. We concentrated on how a cyber adversary
might take advantage of vulnerabilities in IoT systems and conduct malicious attacks
that could jeopardize the security of the IoT energy system. Energy theft in smart
meter data, injection attacks in IoT home automation systems, denial-of-service attacks
on IoT data analytics, manipulation attacks on transactive energy systems and the
electricity market, etc., are only a few of the threats that have been researched. Potential
lightweight intrusion-detection technologies for IoT systems and prospective solutions
to mitigate threat and device-level vulnerabilities have also been studied. Although
they were not given much attention in the past, these issues will soon rank among
the most important. Moreover, it is significant to mention that, to our knowledge, no
study has ever conducted such a precise survey on the cybersecurity architecture of
IoT-enabled smart grids.

• The study covered the potential for end-users of distributed ledger systems based
on blockchain. The protection of data privacy during peer-to-peer energy trade and
information exchange was also underlined. To examine the potential prospects and
applications in an IoT context, emerging machine learning methods for IoT-enabled
energy systems were also explored.

• A detailed future work recommendation is made to achieve the application of 5G-
based IoT devices and their security protection equipment and software to smart grids.
Future research also recommends several approaches to improve the effectiveness and
dependability of IoT-enabled smart grids, including ubiquitous data acquisition, data
visualization, real-time state awareness, intelligent distribution networks, precise load
control, edge computing, network security, and new business models.

It is important to mention that, to further demonstrate this study’s novel contributions,
a comparison table is provided in the Appendix A as Table A1.

1.4. Paper Organization

The organization of this paper is as follows: Section 2 briefly explains the motivations
behind the implementation of IoT-enabled smart grids, followed by the IoT technologies,
architecture, and protocols, which are briefly described in Section 3. The applications and
security aspects (including challenges and solutions) of IoT-enabled smart grids through
several examples are presented in Sections 4 and 5, respectively. Ultimately, Section 6
provides conclusions on the findings of this survey.
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2. Motivation behind Implementation of IoT-Enabled Smart Grids

The key features of IoT technology are depicted in Figure 2, showing its potential to
provide an excellent solution to recent issues of transitioning a traditional electrical grid
into a modernized smart grid. The adoption of IoT technology is growing in popularity for
current smart grid applications in residential and commercial structures. The use of sensors
and smart metering in a smart power grid would allow for more efficient operation at all
levels of power generation, transmission, and distribution, resolving most of the industry’s
problems. It also has a smart option for real-time monitoring of power flow throughout
the electrical grid [18]. The IoT, backed up by big data analysis, may help with critical
power-source and end-user demand decisions [19]. On the same grounds, real-time insight
analysis may influence the creation of new rules by policymakers and power-generating
service providers to readily react to market fluctuations, which requires establishing a
mechanism to raise or reduce output to increase energy efficiency. Furthermore, these
technologies enable the effective analysis of the acquired data for future state estimation
purposes. Furthermore, customers would be able to monitor real-time energy pricing and
properly limit their power usage with the aid of mobile devices that are equipped with IoT
technology [20].
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Several functionalities that IoT-enabled smart grids can achieve are listed below [21,22]:

• Self-healing capability enables grid operators to intelligently detect the exact location
of faults while assessing their impacts on the entire grid and responding promptly.

• Large-scale integration of renewable energy resources.
• Further implementation of state estimation devices, phasor measurement units (PMUs),

and smart devices (AI-enabled devices) to enhance the power quality, coordination
monitoring, and resilience of smart grids.

• Providing an interactive platform for utility and consumers to exchange information
instantly. Moreover, consumers would have control over their energy use and tariff
selection based on the time-of-use (ToU).

• Providing operational and managerial services for real-time charging, such as vehicle-
to-grid, vehicle-to-home, and home-to-grid (prosumers) solutions and easing addi-
tional growth of electrification levels.
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• Avoiding/responding to most cyber and physical attacks by real-time monitoring of
the grid components’ behavior.

3. Description of IoT Technologies: Architecture and Protocols
3.1. Clearing the Confusion—IOE, IoT, and IoE

Before the commencement of this survey, it is necessary to clarify three terminologies
that are frequently used in the literature: (1) Internet-of-Everything (IOE), (2) Internet-of-
Things (IoT), and (3) Internet-of-Energy (IoE). The IOE, as shown in Figure 3, expresses
a broad range of meanings, including the IoT. Nevertheless, the IoT and IoE have been
used interchangeably on many occasions to convey similar conceptual ideas, yet hold
their differences in terms of field applications. The IoE has a five-layered architecture
with respect to its functionality: (1) infrastructure layer, (2) networking of energy internet,
(3) energy router, (4) smart energy management system, and (5) smart terminals [23–25].
This study focuses on the IoT, which aids the efficient management of energy systems.
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3.2. Architecture of IoT Technologies
3.2.1. IoT Layered Slicing

The design of IoT-based systems is completely reliant on the operation of the associated
components through the utilization of a variety of technologies in different locations. The
architecture is often recognized based on a layer-by-layer articulation where each layer is
assigned to a specific task that it must accomplish [26]. Figure 4 shows a four-layered design
applicable to the integration of the IoT with the smart power grid, which is more important
in terms of the IoT application and compliance with energy system regulations [27].

The four-layered IoT-enabled smart grid design includes [28]:

(1) Physical layer: The physical layer is the foundation of the architecture of the IoT-
enabled smart grid and includes the grid’s physical facilities and executors. All
distributed and decision-making instructions are carried out at this layer to provide
the system’s desired functionality. Additionally, the bidirectional energy flow between
power generation, transmission, distribution, and customers happens inside this layer.

(2) Communication network layer: The key layer of the IoT-enabled smart grid architec-
ture is the communication network layer, which serves as a link between the lower
physical and upper cyber layers. It covers the general activities of the information
network, such as the interaction between electrical facilities and heterogeneous com-
ponents and transferring the higher layer’s control instructions and the lower layer’s
collected data.
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(3) Cyber layer: The cyber layer, or more accurately, the decision-making layer, is the
core of the portrayed architecture, which comprises a cloud-based central processing
mechanism and distributed computing intelligence to optimize both computing and
control techniques. This decision-making layer serves as the system’s executive brain,
providing a human–computer interface to the top layer to enable it to coordinate all
lower levels by developing and issuing suitable orders.

(4) Application layer: The highest level of decision-making layer is the application layer,
also known as the management and control layer, which encompasses service providers,
markets, and operations. To conduct power generation and consumption in the
physical world, decision-makers analyze all concerns from the economic, social, and
environmental viewpoints by considering market regulation, pricing, and incentive
measures. The optimum operations are carried out based on two-way information
and value flows between markets and service providers, which is a distinguishing
feature of this layer.
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3.2.2. IoTs, from the Perspective of Information and Communications Technology

The four enablers of information and communications technologies (ICTs) in the
IoT-based smart grid architecture are cloud computing, communication network, edge
computing, and physical entities [27]. Each of these components is explicitly defined
below [29,30]:
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(1) Cloud computing: Cloud computing can handle big data’s networking, storage, and
computational needs and offers extensive application services. Cloud computing,
with the help of virtualization technology, can combine hardware and software re-
sources from several geographical areas to establish a virtual platform with powerful
storage and processing capabilities. It is important to emphasize that cloud comput-
ing is critical for enabling common, suitable, and on-demand network access to a
distributed group of configurable computing resources, which can be automatically
provisioned and released with minimal effort on the part of service providers. The
term “cloud” is often used to characterize data centers that are scattered across several
geographic areas and can be made available to many customers over the Internet.
Cloud computing allows large data storage and extremely dependable, scalable, and
autonomous processing. Cloud services are used to aggregate data and information from
various elements, such as sensors, appliances, and other devices. They also process and
analyze the collected data and provide the results to consumers and service providers
for more insights. Different features of cloud computing are shown in Figure 5 [31].

(2) Communication network: Communication networks consist of data transmission
links between the physical and cyber layers that connect user terminals, edge devices,
and cloud computing resources to build the smart grid’s omnipresent information
network. Since each electrical service has unique communication, computation,
and storage requirements, establishing specialized physical facilities for different
types of applications in the IoT-enabled smart grid architecture is costly and may
undermine grid connectivity and interoperability [32]. Therefore, the precise selection
of communication technologies is an essential aspect of IoT-enabled smart energy
grids. Tables 2 and 3 classify and compare the widely used wired and wireless
communication network technologies in smart grid systems [33–37].

(3) Edge computing: Edge computing refers to the deployment of distributed intelligent
agents at the edges of the network and closer to IoT-enabled devices to provide
computation, storage, and application services near data sources. Although cloud
computing can provide the required computational capabilities to the smart grid,
the central cloud is located at a large distance from the data source, resulting in
lengthy latency. However, many electricity applications and services could benefit
from offloading computational and storage tasks to the proximity of IoT-enabled
devices, which results in much lower service response latency and a reduction in
communication overhead and traffic load to the central network, and an improve-
ment in context-awareness. The offloading of computational tasks to the embedded
resources available on IoT devices is known as edge computing. However, for some
applications, the computational power in embedded devices is not sufficient, and the
latency of the cloud is intolerable, which brings in the necessity for a processing layer
between the network’s edges and the cloud, known as the fog server. Nevertheless,
the computational capacity of fog servers is far less than that of cloud servers. To
overcome this limitation, the architectural standard of multi-access edge computing
(MEC) has been proposed for IoT applications, aiming to move cloud resources to the
edge of a network. The edge computing classifications are depicted in Figure 6 [38,39].
Peak-load shifting and real-time load–demand balancing to provide optimal options
for power generation scheduling are examples of using edge computing proposed in
smart grid applications [40].

(4) Physical entities: The term “physical entities” refers to different electrical components
of the power grid, spread across the power grid as basic components of the power
system, conducting distributed sensing, and acting. In the IoT-enable smart grid,
physical entities could benefit from AI methods to gain the ability to learn from
their experiences and environments, react to new inputs and execute human-like
activities. Moreover, through device-to-device (D2D) communication, neighboring
entities can create direct communication among themselves, without using a third
party, to exchange information directly [41].
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Table 2. Commonly used wireline communication technologies in smart grid systems.

Technology Date Rate Coverage Application Advantages Disadvantages Network Type

Ethernet Up to 100 Gbps Up to 100 m

In-home
communication and

backbone
communication

Good for short
distances

Coverage
limitations

Premise Network,
NAN, FAN, and

WAN

Broadband
PLC Up to 300 Mbps Up to 1500 m

SCADA and backbone
communication in

power generation sector

Existing
infrastructure,

standardized and
high reliability

Noisy channel
environment and

disturbance

NAN, FAN, and
WAN

Narrowband
PLC 10–500 Kbps Up to 3 km

SCADA and backbone
communication in

power generation sector

Existing
infrastructure,

standardized and
high reliability

Noisy channel
environment and

disturbance

NAN, FAN and
WAN

HomePlug 4, 5, and 10 Mbps Up to 200 m
In-home

communication and
smart appliances

Low cost and
energy

Coverage
limitations and

disturbance
Premise Network

Fiber Optic Up to 100 Gbps Up to 100 km
SCADA and backbone

communication in
power generation sector

High bandwidth,
high data rate and
not susceptible to
electromagnetic

interference

Costly WAN

Table 3. Commonly used smart grid wireless communication technologies.

Technology Date Rate Coverage Application Advantages Disadvantages Network Type

WiMAX 75 Mbps Up to 50 km
In-home

communication and
smart meter reading

Low cost and low
energy

Not widespread,
coverage highly

reduced if loss in
line of sight

NAN, FAN,
and WAN

ZigBee 20–250 Kbps Up to 100 m

In-home
communication, energy

monitoring, smart
appliances, and home

automation

Mesh capability,
simplicity, mobility, low

cost and energy

Low data rate, short
range and poor

interference

Premise
Network, NAN,

and FAN

Z-Wave 9–40 Kbps Up to 30 m Wireless mesh network
Mesh capability,

simplicity, mobility, low
cost and energy

Low data rate, short
range and poor

interference

Premise
Network

Wi-Fi 2 Mbps–
1.7 Gbps Up to 100 m

In-home
communication, smart

appliances. Home
automation and

SCADA

Good for short distances Security
Premise

Network, NAN,
and FAN

3G Up to 42 Mbps 70 km SCADA and smart
meter reading

Already-existing
network, high security,

low cost, and large
coverage

Network shared
with customers may
result in congestion

NAN, FAN,
and WAN

4G/LTE Up to979 Mbps Up to 16 km SCADA and smart
meter reading

Already-existing
network, high security,

low cost, and large
coverage

Network shared
with customers may
result in congestion

NAN, FAN,
and WAN

LTE-M 7 Mbps Up to 10 km Smart meter reading Low cost and energy
and scalability Low data rate NAN and FAN

NB-IoT 159 Kbps Up to 10 km Smart meter reading Low cost and energy
and scalability Low date rate NAN and FAN

5G Up to 20 Gbps Up to 500 m
SCADA, remote control

and smart meter
reading

Low energy, low latency,
high data rate, and

scalability
— NAN, FAN,

and WAN

Satellite 50 Mbps — Backup, remote location
communication

Good when no other
alternative is feasible High cost WAN
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3.2.3. Operating Software for IoT Devices

The IoT consists of gateway nodes and end devices connected by various communi-
cation methods and controlled by microcontroller units (MCUs). The end devices in an
IoT architecture take different forms, such as sensors, actuators, and switches, which can
often execute a restricted range of actions. End-devices are usually compact, featuring a
resource-constrained MCU (RAM, ROM, and energy), and can communicate via short-
range low-power communication protocols [42]. The MCU firmware plays a vital part
in IoT operations. It is now possible to install firmware that can perform more on the
device itself and receive automatic security updates (OTA). This firmware can be a whole
operating system (OS) that enhances the device’s functionality and security. Because the
resources of these end devices are still restricted, data must be gathered and transferred in
real-time, with no buffering. These operating systems are referred to as real-time operating
systems (RTOS). The usage of an RTOS also allows a programmer or system integrator to
be more productive, as the OS provides access to the majority of low-level tasks [43].

Gateway devices, which operate as a bridge between various IoT devices, support
communication protocols and have a greater capacity to capture and analyze data. When
cloud services are part of a design, gateway devices, which reside at the junction between
the external Internet and the internal local Intranet, are also known as edge gateways.
Gateway devices require an operating system that can handle a variety of communications.
They must also be secure and resistant to external cyberattacks. Unlike end devices, gateway
devices typically provide a user interface for controlling various aspects of the network or
visualizing data [43].

3.3. Standards and Protocols for IoT Technologies

The physical or data collection layer’s standard is determined by the devices utilized
in that layer. Since there are so many different types of sensors and device makers, in-
ternational organizations such as the ISO, IEC, and IEEE have developed a multitude of
standards. For instance, the following ISO standards are used for different RFID applica-
tions [4,44–46]:

• ISO 11784: regulation of data structure.
• ISO 15459: identification of transport product.
• ISO 18000: goods tracking systems.
• ISO 18047: equipment performance testing.
• ISO/IEC 18092: near-field communication (NFC).
• ISO/IEC 20248: fog and edge computing.
• ISO 29182: sensor network reference architecture (SNRA).
• ISO/IEC 30118: UPnP.

Additionally, the following IEEE standards are used in wireless communication tech-
nologies [46]:

• IEEE 802.15.4: communication standard.
• IEEE 802.15: short-range communication.
• IEEE 802.15.1: Bluetooth.
• IEEE 802.11., 802.11a, 802.11b, 802.11g, 802.11n, 802.11h, 802.11i, 802.11-2007, 802.11-

2012, 802.11ac, 802.11ad, 802.11af, 802.11-2016, 802.11ah, 802.11ai, 802.11aj, 802.11aq,
802.11ax, 802.11ay: Wi-fi, Wi-Fi 4, Wi-Fi 5 and Wi-Fi 6.

4. Applications of IoT Technologies in Smart Energy Grids

Efficient management of the power generation sector, SCADA-connected transmission
network, AMI in the distribution systems, emission gases monitoring, smart home, and
building systems, and many other areas of energy systems have prospective uses for IoT
technologies. As a cutting-edge IoT solution, fog computing opens a world of possibilities
for improving and managing the SCADA-connected transmission network. Most smart
home appliances have been completely automated in the past few years thanks to IoT
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technologies. In this section, several solutions for smart grid applications that have been
facilitated based on IoT technology are discussed.

4.1. Fog-Based Energy Grids through the Utilization of SCADA

SCADA systems are critical for regulating and monitoring electrical energy generation,
transmission, and distribution. The SCADA system collects data and information from
the energy systems, and oversees automation procedures to manage and regulate various
system parameters to ensure that the operation continues smoothly. In recent years, with
further accessibility of IoT solutions, such as fog computing, the operation of the SCADA
system has become more efficient [47]. The architecture of a fog-based SCADA system for
the energy grid is given in Table 4 [48].

Table 4. Fog-based SCADA system architecture.

Fog-Based
SCADA Parts Components Connection Type Tasks

Terminal devices Sensors, actuators,
and appliances

Wireless sensor network
(WSN), Wi-Fi, Bluetooth,

and ZigBee
Information collection

Fog computing
devices

Switches, access
points, firewalls,

cloudlets, and routers

Local area networks
(LANs) and wide area

networks (WANs)

Analyze and process
the collected data

from terminal devices

Cloud systems
Cloud data centers,
cloud storage, and
gateway devices

Local area networks
(LANs), wide area
networks (WANs),

virtual private networks
(VPNs), and/or APIs

Aggregate and
process the collected

statistical information

SCADA systems

Field instrumentation,
field controllers

(RTUs/PLCs), and
human–machine
interfaces (HMIs)

Combinations of wired
and wireless connections

Based on the collected
results from the cloud,
the system operator

takes control decision
and regulates

different parameters
of the energy grid

4.2. AMI-Connected Distribution Networks

AMI is an architecture for bidirectional, planned communication between customers’
IP-based smart meters and the service provider. The goal of an AMI is to keep utility service
providers informed about the real-time power consumption of power users. It is anticipated
that, within the next 5 years, users should be able to make energy-efficient decisions based
on real-time tariffs provided by the AMI system [49]. Through effective smart meter
connections, IoT-based AMI offers considerable potential for optimizing and regulating the
energy use of customers. AMI can be connected to a variety of appliances such as lights,
fans, dishwashers, switches, power outlets, and geysers to collect and transfer real-time
data to utility providers to support optimal energy management [50]. Figure 7 depicts
different integration layers of IoT devices and their protocols in distribution networks [26].

4.3. IoT for Smart Meters

IoT technologies aid smart meters in managing homes, cities, and grids intelligently
by collecting consumers’ energy consumption in real time and transferring them to utility
service providers for the optimal management of energy grids. Smart meters can be used
to monitor the state of different parameters such as voltage readings, current readings,
temperature, moisture status, and the capacity to alter those parameters, as well as energy
usage, remotely [51]. Table 5 presents the advantages and disadvantages of using IoT-
enabled smart meters [52–54].
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Table 5. Characteristics of IoT-enabled smart meters.

Categories Itemized Description Explanation

Advantages

Free Installation No payment is required for the meter installation

Savings opportunities Smart meters can help families cut their energy costs by providing insight into their energy usage
and assisting them in changing their consumption behavior to save money

Emission reduction Customers can alter their consumption not only to save money on bills but also to lessen their
carbon footprint

Energy consumption
monitoring

Smart meters can help energy users to understand how their energy habits convert into costs by
displaying their energy consumption not just in kilowatt hours but also in dollars

No meter readings
needed

Smart meters transmit information about the customers’ energy usage automatically, eliminating
the need for manual readings.

No bill estimation is
required Daily, weekly, and monthly bill projections can be accessed through the users’ accounts

Pre-payment meters
option

Households on pay-as-you-go rates can benefit from smart prepayment meters, which can help
them keep track of their credit balances and even send out notifications when the meters are
running low

Enabling time-of-use
(ToU) tariffs

Some service providers have the ability to inform the customers about the ToU tariffs ahead of time
with the help of IoT-enabled meters

Auto-switching ability In the near future, IoT-enabled smart meters could automatically and effortlessly switch energy
suppliers for customers

High custumer
satisfaction

According to a conducted survey in the UK, 80% of customers indicated that they are happy with
smart meters’ functionality [55]

Awareness of deals This option includes personalized tariffs tailored to a home’s specific energy needs and use

Disadvantages

Requires proactive use for
savings

Smart meters do not automatically save you money. Customers must actively engage with the
meter and adjust their behavior in response to its data, or their bills will not decrease

Smart meters may lose
functionality after

switching

The majority of smart meters now in use are first-generation devices that frequently “go dumb” or
lose functionality once customers switch energy providers

Not available to some
consumers on

prepayment and
time-of-use tariffs

Smart meters are technically available for houses on prepayment and time-of-use tariffs, and while
they can make these tariffs easier to monitor and save money with, their use is restricted

Privacy concerns for
some customers

Unfortunately, cyber-physical attacks through the breach of information and privacy are increasing
day by day
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4.4. Application of 5G in IoT-Based Demand Response Programs (DRPs)

Demand response programs (DRPs) are defined as a shift in customers’ electrical
consumption patterns from their usual patterns in response to a variety of factors, such
as price changes during a specific period of operation, receiving incentivized payments
from power market operators to reduce their electricity usage during high prices, or when
system reliability is threatened due to unpredicted contingency events [56]. In general,
5G-based IoT devices are expected to play a significant role in regulating demand response
in future energy networks. Since most of the recently integrated IoT devices are cloud-
based platform types of devices, software applications operating on the cloud platform
can make data integration and exchange easier [57,58]. Furthermore, the IoE framework
allows prosumers and utilities to independently coordinate supply and demand with the
help of sophisticated forecasting algorithms that utilize weather predictions, anticipated
traffic patterns, and other intelligent aspects of IoT-based energy systems [59]. To further
investigate the 5G networks’ applications for enhancing the demand response programs in
smart energy grids, they are summarized in Table 6 [60,61].

Table 6. Comparison of 5G-based IoT-enabled smart grids for the DRPs.

Items Advantages Challenges

Massive links among flows for more
accurate and fairer DRP control

(1) More precise and accurate DR control
thanks to the terminal and built-in
controllers

(2) Monitoring user’s consumption in
shorter time intervals

(1) Necessity to set accurate financial
compensations for users

(2) Users participating in DR programs
need to be controlled for their
electricity intake

Fast transfer speed and low latency

(1) Removing instability and oscillations
during the frequency regulation process

(2) Considering RES in the frequency
regulation services in the maintenance of
system balance

(1) Costs of adapting faster
communication methods

(2) Dealing with the issue of power
deviation, system frequency, and
area control

Robust security and data privacy

(1) Enabling data transfer security and
diversified services

(2) Generating network function sets for
tailor-made customer services (network
slices)

Implementing a 5G network slices
individual structures

High system stability and reliability
(1) Optimized power consumption by the

system
(2) Lower system failure rate

(1) Logistical problems due to linking a
large number of appliances

(2) Costs of installing the 5G terminal
controllers

Energy-saving and low power
consumption

(1) Higher energy transfer capability
(2) Compliance with the sustainable

development goals and priorities

(1) Low number of real-life practical
testing and applications

(2) Few implementations around the
world

5. Cyber-Physical Security Vulnerabilities and Challenges in IoT-Enabled Smart Grids
5.1. General Definitions, Framework, and Guidelines

The energy grid systems have become more intelligent and interactive with the
widespread use of IoT-based technologies, which improves the system’s consistency, effi-
ciency, and adaptability. Cybersecurity vulnerabilities, on the other hand, are becoming
increasingly common. Thus, this section will discuss the security issues in IoT-connected
smart energy systems and their corresponding mitigation strategies. Figure 8 portrays the
general paradigm of cyber-physical security in smart energy grids [62]. Five significant
causes make the smart grids vulnerable to cyberattacks [63]:
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(1) Ever-increasing development of intelligent electronic devices (IEDs): The number of
attack sites grows in lockstep with the number of devices in the network. Even if a
single point’s security is breached, the entire network system is affected.

(2) Unregulated installation of third-party components: Experts advise against using
third-party components because they make the network more vulnerable to hack-
ing. These devices might be infected with Trojans, which could then spread to other
network devices.

(3) Insufficient personal training: To use any technology, appropriate training is required.
When employees are not properly trained, they are more likely to fall prey to phish-
ing scams.

(4) Insecure Internet protocols: In terms of data transfer, not all protocols are secure.
Unencrypted data transport is used by several protocols. As a result, they are easy
targets for man-in-the-middle attacks that extract data.

(5) Maintenance: The primary objective of maintenance is to keep things running smoothly.
It can also be used as a vector for cyberattacks. Operators frequently deactivate a
security system during maintenance to undertake tests.
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The abovementioned five causes may compromise one of the five main goals of the
cybersecurity framework in smart grids [64–66]:

(1) Authentication: The ability to verify the identity of any smart grid communication
device. For example, to bill the relevant user, the energy provider must validate each
smart meter.

(2) Authorization: Ensures that an authenticated person or an object is authorized to
accomplish certain tasks or has been granted the necessary privileges to access a
certain category of resources. For example, an agent requires authorization to access
and conduct manual configuration on a smart meter.

(3) Availability: Ensures that when a user needs some resources and/or data, they are
always available for usage.
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(4) Confidentiality: Guarantees that only the intended recipients have access to data that
have been stored or transmitted. For example, only smart grid operators and energy
providers should be aware of the end users’ consumption patterns and data.

(5) Integrity: Certifies that received data have not been tampered with in any manner.
For example, smart meters must ensure the integrity of software updates as well as
the source origin.

A framework for improving smart grid cybersecurity was established by the NIST,
which suggests 14 requirements for smart grids to safeguard themselves against different
types of cyber-physical attacks:

(1) Staff awareness training.
(2) Access control and configuration management.
(3) Physical and environmental security.
(4) Continuous audit and accountability.
(5) Security assessment and authorization.
(6) Continuity of operations (individual and systematic).
(7) Development and maintenance planning.
(8) Well-implemented identification and authentication procedures.
(9) Document and information management processes.
(10) Incident response plan.
(11) Media management and protection.
(12) Security management program (personnel and premises).
(13) Risk assessment and management.
(14) Smart grid information system, services acquisition, communication protection, and

information integrity.

5.2. Historical Cybersecurity Attacks (in the Context of IoT-Enabled Smart Grids)

To better comprehend the risks posed by cyberattacks on the critical infrastructure
of electrical grids, in this section, we will discuss a number of significant instances of
cyberattacks around the globe [67].

5.2.1. Tram Hack Lodz, Poland (2008)

A tram system was hacked in Lodz city and escalated to the point where a dozen
passengers were severely injured. This was the first cyber-kinetic attack that resulted in
human injury.

5.2.2. Texas Power Company (2009)

An employee of Texas power company (TPC) who had recently been dismissed hacked
the company’s network to disable power forecasting systems. They took advantage of
logins that had not yet been deactivated.

5.2.3. Iran Nuclear Facility Attack (2010)

Stuxnet was created to disrupt and destroy Iran’s nuclear program, but it also demon-
strated that it has the capability to do considerable physical damage to vital infrastructures
by focusing on computer controllers and SCADA systems that oversee industrial equip-
ment [68].

5.2.4. Bowman Avenue Dam Cyberattack (2013)

Hackers were able to acquire control of the floodgates of the Bowman Avenue Dam
in New York. Investigations revealed that they could have simply modified water flow
parameters or even the quantity of chemicals used in water treatment to lead to devastating
consequences. It would have had disastrous implications if this had happened.
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5.2.5. Ukraine Power Grid Attack (2015)

Cyberattacks on the energy sector are rising, posing a growing danger to the reliability
and safety of smart grids. The successful strikes on Ukraine’s electrical grid in 2015
demonstrate this threat. Attackers obtained access to distribution grid operator consoles
and remotely closed breakers on several occasions, causing local blackouts. The attack shut
down 30 substations, affecting about 230,000 people. In similar incidents, attackers might
compromise communications channels and change data, or they could flood the highly
connected network with data traffic, limiting operators’ ability to monitor and operate the
grid [69].

5.2.6. Dyn Distributed Denial-of-Service (DDoS) Cyberattack (2016)

Dyn, an internet service provider, was hit by a cyberattack that brought down large
areas of the Internet in the United States of America (USA) and interrupted access to famous
websites. The hackers carried out widespread denial-of-service assaults. The DDoS attack
took control of the Mirai botnet, which scours the Internet for inadequately protected IoT
devices with factory default usernames and passwords. They then took control of a large
number of unsecured IoT devices and used them to make requests to Dyn servers for
services. The site was swamped by fake traffic, which caused it to crash.

5.2.7. Attack on the Smart Building Facilities in Lappeenranta, Finland (2016)

During the middle of the Finland winter in the city of Lappeenranta, a targeted DDoS
attack shut off the heat and hot water systems in two apartment complexes.

5.2.8. Cyberattack on the UK Electrical Grid (2017)

A power infrastructure that distributes electricity to the United Kingdom and Ireland
was targeted in July 2017. The cyberattack was aimed at penetrating power management
systems, allowing them to shut down a section of the energy grid. It was accomplished
with the help of several falsified emails sent to senior executives at the power business.

5.2.9. Cyberattack at the Petrochemical Plant in Saudi Arabia (2017)

A failed cyberattack on a Saudi Arabian petrochemical factory was meant to not only
impair the plant’s operations but also produce an explosion that could have killed people.
Fortunately, a glitch in the attackers’ computer programming stopped the explosion from
taking place.

5.3. Main Cyberattack Strategies in IoT-Enabled Smart Grids

Cyber adversaries utilize four key access and control methods to target devices: scan-
ning, surveillance, maintenance, and manipulation. During the first step, reconnaissance,
the attacker collects and acquires information about their target. They seek to discover the
system’s weaknesses in the second step. These moves are intended to help understand and
recognize the services available and running on the open ports and the hosting device char-
acteristics (e.g., operating system, manufacturer). During the target exploitation time, they
aim to gain concession control over the entire system. After gaining target administrator
access, the final step must be completed so that access may be maintained indefinitely. This
is accomplished by installing a covert and undetectable application that allows them to
quickly return to the target system. Security requirements are a concession in the smart grid,
as attackers take the same procedures. At each stage, they use a variety of tactics to breach a
specific system [17,70]. Figure 9 demonstrates a stepwise procedure of cyberattacks during
the exploitation of cyber adversaries [71], where Table 7 presents how each type of attack
can compromise system security [63,72]. Figure 10 vividly shows how cyber attackers can
breach systems’ security [73].
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Table 7. Goals of security that have been jeopardized because of an attack.

Attack Category Security Goals Description References

Flooding attack Availability Deterring users from utilizing resources [74,75]

Denial of service Availability Stop serving of user’s request [76]

Jamming channel Availability Jamming the network [77,78]

Buffer overflow Availability and
confidentiality Overwriting the memory of the buffer [79]

False data injection (FDI) Integrity Tampering the real data [80,81]

Social engineering Integrity and confidentiality Attacking humans instead of machines
or networks [82,83]

MITM Confidentiality Extracting packet information between
sender and receiver [63,84]

Packet sniffing Confidentiality Analyzing the packet [85]

Session hijacking Integrity and confidentiality Obstructing the user from resources for
a particular amount of time [86]

Data manipulation Integrity Data tampering [87]

Replay attack Integrity Send data continuously [88,89]
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5.3.1. Reconnaissance Definition and Strategies

The reconnaissance procedure includes attacks such as traffic analysis and social
engineering. In social engineering, instead of focusing on technology abilities, the focus is
on the human connection and social engineering that revolves around it. Persuasion and
communication gain are used by an attacker to earn the user’s trust in order to access private
and credential information, such as PINs or passwords to log in to the server [82]. Password
and phishing attempts, for example, have become commonplace in social engineering. The
traffic analysis monitors and analyzes network traffic to determine which machines and
hosts connect to the network, obtaining their IP addresses. Social engineering and traffic
analysis are the main threats to information security [85,90].

5.3.2. Scanning Strategies

The scanning is the next step in detecting all the available network machines and
hosts. IP addresses, ports, utilities, and security issues are all factors to consider while
scanning. An intruder would normally start identifying the network by scanning the
hosts connected to their newly acquired IP addresses. Then, they examine each port to
establish which ones are available. This scan is performed on any found host network.
The attacker then runs a service scan to see what service or device is running behind each
open port [91]. Vulnerability scanning is the final stage, which identifies defects, goals, and
vulnerabilities associated with each service system on the target devices to be attacked
at a later stage. Modbus and DNP3 are two industrial protocols that are vulnerable to
scan attacks. Instead of utilizing the scanning Modbus network approach, TCP/Modbus
was created to safeguard it. The attack involves delivering an innocuous message to all
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networked computers to capture their data. On the SCADA Modbus network, Mods scan is
a well-known scanner that can discover and open TCP/Modbus connections, and identify
system IP addresses and slave IDs [92].

5.3.3. Exploitation Strategies

The third step, exploitation, involves hostile operations attempting to acquire control
of the IoT-enabled smart energy system components and exploiting vulnerabilities [82].
Viruses, worms, and Trojan horses infecting the human–machine interface (HMI). Privacy
violations, channel jamming, integrity breaches, and other assaults, such as denial of
service (DOS), man-in-the-middle (MITM), and replay attacks, are all instances of these
activities [93,94]. Viruses are programs that infect computers, devices, and/or machines in
smart energy systems. A worm is a self-replicating program. It infects the system and other
devices by spreading across the network, copying itself, and infecting them. A Trojan horse
is computer software that impersonates a beneficial function on the target computer [95,96].

5.3.4. Maintaining Access

In the final step, the attacker utilizes a specific attack to gain permanent access to the
target, such as backdoors, infections, and Trojan horses. Undetectable software, such as
a backdoor, is installed on the target surreptitiously so that it may be accessed fast and
simply [97]. Assume that the attacker has successfully created a backdoor into the SCADA
server control: in such a situation, they will be able to launch a series of attacks against the
system, having a severe impact on the entire power system. On the IT network, the security
requirements are established in order of importance: (1) confidentiality, (2) integrity, and (3)
availability [98].

5.4. Adverse Impacts of Cyberattacks on Smart Grids

In the following, we will discuss several examples related to the negative impacts
of cyberattacks on the safe operation (from economic and stability points of view) of the
IoT-enabled smart grids.

5.4.1. Electricity Market Losses

Cyberattacks on smart energy systems have significant potential economic and physi-
cal consequences. Even though the current study has focused on cyber technical/physical
attacks on smart grids, it is also critical to pay greater attention to cyberattacks in terms of
associated economic risks. Smart grids have had severe economic difficulty with cyberat-
tacks, particularly renewable energy resources with a high penetration level. Electricity
markets are a mix of real-time and day-ahead trading [99,100]. The day-ahead market
is primarily concerned with finding the most cost-effective solution to optimization and
load forecasting problems. Since load forecasting is impacted by fake data injection (FDI)
cyberattacks in the day-ahead market, the optimization algorithms would be unable to
accurately determine the location marginal prices (LMPs) of the grid [101,102]. On the other
hand, the real-time market assesses the dispatched power from each generating unit to meet
the required load demand of each bus [103,104]. It is also necessary to calculate the power
that flows through transmission lines to achieve the congestion pattern and consequently
evaluate real-time LMPs. Thus, FDI attacks can impact precise state estimation of the power
grids in the real-time electricity markets [105,106].

5.4.2. Power System Stability

The FDI attacks have had major technological and physical consequences for IoT-
enabled smart grids. In the case of FDI attacks, smart grids must usually deal with
steady-state stability and transient effects [107]. The impact of FDI attacks on steady-state
stability on voltage control demand current/voltage/power management and energy
management of smart grids is very significant [108,109]. Furthermore, the cyberattacks
have a negative influence on electrical grid steady-state functioning, whereas the FDI
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attacks have harmed the dynamic and transient stability of smart grids. FDI can also impact
the smart grid frequency control system. However, the goal will be to maintain rotor angle
stability [110,111].

5.4.3. Energy Theft

The widespread use of IoT-aided AMI in the smart energy grid allows for the trans-
mission of massive energy data and information in a more reliable, efficient, and effective
manner for smart grid system management. It replaced the existing analog meter reading
and data gathering system with a digital system. Those massive volumes of acquired
data and information are wirelessly transferred for further processing with the help of
IoT technology, which significantly reduces labor-intensive operations [112]. In the energy
sector, energy theft has become a major cause of concern. Both energy service providers
and consumers have suffered significant financial losses because of energy theft. The most
basic kind of energy theft is tampering with an energy meter so that it can no longer record
real energy use and thereby alter the energy bill. Energy theft usually entails circumventing
the energy meter so that energy may be consumed without being recorded for billing
purposes [80].

5.4.4. Disruption of Service in Critical and Non-Critical Facilities

Cyberattacks against automation equipment in critical and non-critical facilities can
be conducted to achieve the goals listed below [4,113,114]:

(1) To gain initial access, for example, via hacking smart lights, to gain Wi-Fi authentica-
tion and eventually control of Wi-Fi network devices.

(2) To cause an indirect service disruption, for example, by using a thermostat to manage
the building’s air conditioning system from afar.

(3) To obtain and disseminate information. Use an application that hacks smart gadgets,
such as smart televisions, to make them act as though they are turned off and then
use the microphone to record and leak conversations surrounding them.

(4) For system abuse, such as producing light flashing at a certain frequency that might
trigger epileptic seizures in individuals.

(5) To initiate an intensified attack against critical facilities such as hospitals through a
number of targeted smart devices. To deactivate smart home automation systems by
targeting a large number of IoT-enabled smart home automation devices in a short
amount of time.

5.4.5. Disruption of Transactive Energy Systems

The transactive energy system employs this integrated notion of economic and opera-
tional mechanisms to dynamically maintain demand and supply balance across the grid
system, hence improving the energy grid’s efficiency and reliability. For decision-making
and demand response programs, the transactive energy control mechanism is heavily
reliant on the cyber system of distributed edge computing and IoT-enabled technologies.
This system necessitates a large amount of data to be transmitted across various market
processes. Cyberattacks can be performed through the following procedure in order to
disrupt the safe operation of transactive energy systems [115,116]:

(1) Malware injection in the system can result in a large-scale power outage or data theft.
(2) Cybercriminals can tamper with or damage smart meters for several purposes.
(3) To interrupt the transactive system by manipulating the control signals of the relay

and circuit breaker.

5.4.6. Environmental Security

Environmental security is critical in the implementation of smart energy grids because
it aids in the control and avoidance of potentially catastrophic effects on infrastructures
caused by natural or artificially induced environmental hazards such as floods, tremors,
earthquakes, landslides, falling trees, and bushfires. In such circumstances, smart action
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based on environmental concerns is performed primarily by delivering appropriate threat
alerts based on collected data and providing alternate feeders for vital infrastructure.
Although this feature of smart grids’ security is classified as non-technical in this study, it
has both technical and non-technical ramifications in some areas.

The capacity of a system’s response to failure, in terms of its ability to restore service
(by utilizing an improvised alternate feeder if appropriate) or provide adequate data to
enable system operators to restore service, is of the highest importance in smart grids. This
is accomplished mostly by automatic switching in the event of outages or failures. Natural
catastrophes, harsh temperatures, peak, and fossil oil depletion, global energy market
instability, terrorism, sabotage, vandalism, and other similar variables all have adverse
impacts on the system’s resiliency [117,118]. A geographic information system (GIS) is
based on the real-time data that are captured by deployed IoT devices such as smart meters
to aid data analytics methods that predict natural disasters and thus have a crucial role in
providing timely and accurate environmental threats alerts.

5.5. Detection and Mitigation of IoT-Enabled Cyberattacks

Customers (consumers and prosumers), electric utilities, power system operators, and
third-party service providers can be assumed to be stakeholders of smart grids. The data
administration of smart grids, particularly in terms of smart meters, becomes a demanding
task due to the participation of various stakeholders. There are several frameworks that
provides guidelines for integrating security and privacy across several domains to enhance
the security and privacy protection of all involved entities. Security is divided into three
categories by the framework: communication security, secure computing, and system
control security. Cryptography, route security, and network privacy are all aspects of
communication security [119].

A key goal in the management of communication security is to successfully achieve
end-to-end encryption and multiple hop routing that can assure the security of transferred
data. In [120], the authors described the major functionalities of smart meters, which
includes tracking the quantity of utilized energy as well as voltage and frequency. The
implemented smart meters are also in charge of providing data to the grid via a secure
communication channel, as well as managing load switches by operators to prevent black-
outs in emergency situations. Additionally, this research showed that high-assurance smart
meters could be implemented (HASM).

Various techniques have been proposed in the literature to address cybersecurity
backgrounds, elements, challenges, and potential solutions for smart energy grids. How-
ever, as the complexity of the grid increases with the significant deployment of smart IoT
devices, most recent studies have found that the integration of AI techniques is one of
the most effective solutions [121–126]. According to several research findings, the smart
grid is similarly vulnerable to human errors, which can be caused by social engineering
attacks [127,128]. Therefore, in this study to investigate the most promising recent methods
for safeguarding IoT-enabled smart grids, we have divided these methods into two main
categories: non-human-centric and human-centric methods.

5.5.1. Non-Human-Centric Methods

The non-human-centric methods can be categorized into three classes: (1) machine-
learning-based methods, (2) cloud-computing-based methods, and (3) blockchain-based
methods. In the following, we will briefly discuss each of the mentioned methods.

Machine-Learning-Based Methods

In the smart grid infrastructure, thousands of sensors are deployed. These sensors
continually monitor the states of the devices to which they are connected, generating a
massive quantity of data in the form of log files or time-series data. The data that are
produced by sensors are saved on a cloud server, which must be preprocessed before being
sent. Local servers are another option for servers. However, the maximum level of data
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security is achieved by storing data on a local server. Nevertheless, they constrain the ability
of pattern recognition features or forecasts by advanced optimization algorithms [129,130].

In the past few years, machine-learning methods have proved to be effective in detect-
ing cyberattacks. Machine learning identifies intrusions based on past data, as opposed to
rule-based techniques. To anticipate power system disruptions, a combination of JRipper
and Adaboost was formulated in [131]. The model generated three groups based on the
attack data, natural disturbances, and the state of no event. False data injection attack
(FDIA) is another popular type of attack that can seriously damage smart energy systems.
By tampering with data that are collected from smart meters, FDIA can financially impact
utilities and consumers. In [132], a model was analyzed on an IEEE 14-bus test system. The
efficiency and performance of the ensemble-based learning (EBL) model were compared
with several algorithms such as linear regression (LR), naïve-Bayes (NB), decision tree
(DT), and support vector machine (SVM), where the obtained results demonstrated that
the unsupervised EBL model outperformed all the other algorithms with accuracy of 73%.
In [133], the authors proposed a robust deviation-based detection method to efficiently
defend the system against an FDIA. Additionally, an exponential weighting function in
combination with a Kalman filter was implemented to retain the original weighted least
squares estimator. The experimental results confirmed the efficacy of the proposed detec-
tion method against FDIA attacks. In this study, the influence of various attack strengths
and noise on detection performance was also investigated. In [134], a deep learning tech-
nique based on a conditional deep belief network model was proposed to identify the
behavioral characteristics of FDI attacks on a real-time basis. In the presented method, the
detection mechanism relaxes the beliefs for the potential attack scenarios and attains high
accuracy. Moreover, the formulated optimization model was able to distinguish similar
behavior that takes place in the process of energy theft. The performance of the presented
method was illustrated through two simulation cases on IEEE 118-bus and IEEE 300-bus
test systems, where the scalability of the proposed model was also examined.

Occasionally, a smart grid may be subjected to distributed denial-of-service (DDoS)
attacks. DDoS attacks jeopardize the availability of communication servers. The funda-
mental goal of a DDoS attack is to flood the communication server with false requests,
causing it to become unusable for communication. In [135], the authors proposed a DDoS
attack detection method based on a multilevel auto-encoder formulation. Multiple levels
of shallow and deep auto-encoders were trained in an unsupervised approach which was
employed to encode training and test data for feature extraction and generation purposes.
In the final stage of the algorithm, a unified detection model was constructed by combining
the multilevel features using a kernel learning algorithm. The obtained results of their algo-
rithm showed its functionality by achieving high prediction accuracy where it outperforms
all the other compared methods.

Cloud-Computing-Based Methods

In [136], risks and opportunities that cloud computing avails to utility companies and
energy suppliers of IoT-enabled smart grids were discussed while considering character-
istics of cloud computing that may be able to enhance the system defense capability in
dealing with DDoS attacks. An extensive literature review was also conducted to determine
which DDoS defense techniques can be employed by means of cloud-computing techniques
in the context of smart energy systems. In [137], to ease the inconvenience of working
on encrypted data, an attribute-based online/offline searchable encryption scheme was
proposed. In the first step, encryption and trapdoor algorithms were divided into two
phases. In the second step, both the encryption and attribute control policy were performed
in the offline mode. In the next step, the proposed scheme was secured against two attacks:
(1) chosen plaintext and (2) chosen keyword attacks. Ultimately, the applicability of the
presented method in a cloud-based smart grid was tested. In [138], the authors analyzed a
fundamental security problem in the scalable architecture of the smart grid cloud services.
They evaluated risks involved in IoT-enabled smart grid security in terms of five distinctive
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features: (1) policy and organizational risks, (2) general technical risks, (3) SaaS risks,
(4) PaaS risks, and (5) IaaS risks. The presented evaluation model was based on deep belief
networks, which comprised multiple RBMs and a BP neural network (BPNN). The RBMs
were trained by means of a greedy training algorithm, and then BPNN was employed for
fine-tuning purposes. Their obtained results found that the mean absolute error (MAE),
mean relative error (MRE), and mean square error (MSE) of the proposed model are the
lowest in comparison to all the other methods [139].

Blockchain-Based Methods

The integration of blockchain with IoT-enabled smart grids is becoming a complicated
key solution for accelerating a broad range of security functionalities in smart energy
systems [140]. The current centralized ledger system can be transferred by blockchain-
based techniques into a distributed ledger thanks to the existence of public key algorithms.
Blockchain methods offer end-to-end encryption technology based on their distributed pro-
cessing structure that guarantees the safety and reliability of communication [141]. In [142],
a blockchain-based security method that facilitates secure and authorized access to smart
city resources was presented. The proposed method comprised an authentication and
authorization process for constrained environments based on two models: (1) a blockchain
model and (2) object security architecture (OSCAR) for the IoT. The blockchain-based
method laid out an adaptable and untrustworthy authorization system, while OSCAR used
a public ledger to construct multicast classes for authorized customers. Furthermore, a
meteor-based application was created to provide a user-friendly interface for heterogeneous
smart city technology. Through this application, users were able to interact and operate
with smart city resources such as traffic lights, smart energy meters, and security cameras.
In [143], a new distributed authentication and authorization protocol for IoT-enabled smart
grids based on blockchain-based methods was proposed to address information leaks, ille-
gal access, and identity theft issues. The protocol introduced combined the decentralized
authentication and immutable ledger properties of blockchain architectures that are applica-
ble for power systems to achieve both identity authentication and resource authorization for
smart energy systems. In [144], a model-based architecture was proposed that considered
an interoperable blockchain-based local energy market for consumers and prosumers in a
residential microgrid (MG) framework. The research identified 21 organizational, informa-
tional, technological, and blockchain needs for a local energy market and its underlying
information system using the IoT-enabled smart grid architecture. According to the Landau
Microgrid case study, the biggest hurdle was a clear value proposition for key stakeholders,
standardization of data exchange, and appropriate physical implementation [145].

5.5.1.4. Human-Centric Methods

Multifactor Authentication

When two successive authentication procedures are combined, the password-breaking
algorithm becomes exponentially more complicated. Unauthorized users will have less
access to the data because of the multifactor authentication process. Multifactor authentica-
tion approaches include SMS token authentication, email token authentication, hardware
token authentication, software token authentication, and phone authentication [146].

Employee Training

Hackers are increasingly targeting humans because of technological advancements
that have made attacks on smart equipment more complicated. Attackers are using machine-
learning technologies to recognize human behaviors and create a variety of scenarios. Thus,
employee training plays a critical role in limiting the hackers’ success in their malicious intent.

Password Strength

The use of strong passwords minimizes the likelihood of an attack on the integrity or
confidentiality of data. Password-guessing attacks are more likely with weak passwords.
Password guessing is a method of gaining access to a system by guessing passwords and
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gaining access to a targeted device. In addition, the attacker consumes network resources
and bandwidth to carry out several attacks that consequently limit the access of legitimate
users to the resources [147].

Operating System (OS) Protection

Users are one of the weakest links in the context of cybersecurity, and one of the
biggest challenges with users is that they cannot be taught in the same way as staff.
Thus, smart devices such as smart meters and smart inverters must be protected against
cyberattacks. Tamper-proofing the devices’ internal operating systems is one of the most
effective approaches for protecting devices against cybercriminals [148].

Customers Protection against Third-Party Applications

Customers should always be wary of applications that request authorization. Cus-
tomers keep sensitive data on their devices, and some third-party apps request more
information than they require. Around 98.5 percent of consumers ignore or just some-
times accept the permissions requested by applications without thinking twice. It has
been reported that 93.6 percent of users accept the applications’ terms and conditions
instantaneously or within one minute [149].

Reporting of Malicious Behavior

Customers should be able to readily report any suspected attack on a platform created
by utilities. The destruction would grow exponentially as the time gap between the attack
and the time of report increases. A delay in reporting an attack jeopardizes not only the
privacy of one client but also the privacy of other connected customers in the grid [63].

6. Conclusions and Future Directions

The Internet of Things (IoT) is the next step toward a worldwide and widespread
connection to every communication and computation-enabled device, independent of its
access technology, available resources, or geographical location. The smart grid is the
largest IoT deployment, with smart devices distributed throughout the energy chain from
the generating power plants to the end-users. The IoT will improve existing smart energy
grids by facilitating real-time control and monitoring of the grid components. However, in
the past decade, as discussed in the literature, cybersecurity has been viewed as one of the
major roadblocks to IoT acceptance and further deployment in smart energy grid systems
around the world. It is a challenging task to ensure the safety of grid-connected devices,
and this is due to the massive number of devices that are connected to the communication
networks, which increases the chances of a cyberattack and the potential risks of severe
repercussions. It has been predicted that 30.9 billion IoT devices will be deployed around
the world by 2025, of which 19% will be installed in the energy sector, which increases
the focus of cyberattacks on this sector by 54% [67,150]. In this regard, the extent of
the susceptible attack surface will rise dramatically with the further implementation of
IoT-enabled devices in the smart grids. To address the abovementioned concerns and
challenges, the following recommendations for the improvement of IoT-based smart energy
systems are made:

• The framework and modeling of smart energy grids should be improved, and suit-
able reconfiguration technologies must be developed for the restoration aspect of
electrical grids.

• Secure AMI technologies must be widely deployed in combination with advanced
cloud and edge-computing facilities and 5G telecommunication technologies to en-
hance the functionality and security of the smart grids.

• Smart grids must be equipped with more secure communication protocols that con-
sider the heterogeneity of IoT devices while enabling the deployment of AI algorithms
onto the device itself instead of being controlled from afar to reduce the likelihood of
communication breaches.
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• Advanced secure and data communication systems based on blockchain methods
must be extensively implemented in IoT-based smart energy systems.

• Game-theoretic models (specifically for the energy markets), and cognitive and deep-
learning methods (for system behavioral modeling and forecasts) must be used effec-
tively for the smooth and reliable operation of electrical grids.
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Appendix A

Table A1 provides a thorough comparison of this study with the existing literature
to demonstrate further this work’s novel contributions to the state-of-the-art IoT-enabled
smart grid field.

Table A1. Novel characteristics of this study as compared with the existing literature.

Ref IoT 5G Blockchain Cyber
Attacks

Edge
Computing

Cloud
Computing

Demand
Response

Smart Energy
Management RESs Smart

Homes
Grid

Restoration

[30] X X X

[141] X X

[36] X

[142] X X

[143] X X

[3] X X

[144] X X X

[149] X X

[150] X X X

[57] X X

[151] X X

[29] X X

[152] X X X

[58,64,153] X X X

[33] X

[17] X X

[154] X X

[43] X X

This Study X X X X X X X X X
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