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Abstract: Community search is a basic problem in graph analysis. In many applications, network
nodes have certain properties that are important for the community to make sense of the application;
hence, attributes are associated with nodes to capture their properties. Community influence is
an important community property that can be used to rank communities in a network based on
the relevance/importance of a particular attribute. Unfortunately, most of the community search
algorithms introduced previously in attributed networks research work ignored the community
influence. When searching for influential communities, two potential data sources can be used:
network attributes and nodes. Dealing with structure-related attributes is a challenge. Recently, the
graph neural network (GNN) has completely changed the field of graph representation learning by
effectively learning node embedding and has achieved the most advanced results in tasks such as node
classification and connection prediction. In this paper, we investigate the problem of searching for
the influential communities in attributed networks. We propose an efficient algorithm for retrieving
the influential communities in a large attributed network. The proposed approach contains two
main steps: (1) Community detection using a graph convolutional network in a semi-supervised
learning setting considering the correlation between attributes and the overall graph information,
and (2) constructing the influential communities resulting from step 1. The proposed approach is
evaluated on various real datasets. The experimental results show the efficiency and effectiveness of
the proposed implementations.

Keywords: community search; graph neural network; influential community

1. Introduction

Graphs have played a critical role in big data analysis in recent years [1]. Graphs are
a simple and efficient way to represent and manage information from different domains.
Due to the extraordinary rise in the volume of data, it is crucial to design a method to
efficiently detect hidden patterns among a group of users. A community can be defined
as a set of vertices (nodes) that probably share common features, where the nodes in the
same communities have more dense connections with each other than those that exist
in other communities [2,3]. For example, in protein interaction networks, communities
are functional modules of interacting proteins [4]; in co-authorship networks, communi-
ties correspond to scientific disciplines [5]. Two main problems have been investigated
in network analysis: (1) community detection, and (2) community search. Community
detection is widely used to derive a set of nodes closely interacting and having a strong
relationship with each other. Detecting the strongest community among a large network
(graph) has become a critical and important task in graph analysis. Different techniques
for detecting communities in large networks are outlined in [2,6–12]. A similar problem
is community search which is a query-dependent variant of the community detection
problem. Community search aims to find the densely connected components that satisfy
the query conditions [13]. Recently, much attention has been paid to attributed community
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search which aims to find query-dependent communities where the community members
are closely related and have homogeneous attribute values.

Despite the studies that have been conducted to solve community detection and
community search problems, previous attempts have ignored the community influence di-
mension. Community influence is a crucial community property that may be used to order
communities in a network depending on the relevance/importance of specific attributes.
Recently, detecting influential communities was studied in a few research works. It was
first addressed by Li et al. in [14]; later it was investigated in [15–18]. Different community
search models have been proposed based on k-core [19–21], k-truss [22–25], and clique or
quasi-clique [26,27].

In this paper, we consider large attributed graphs where vertices are associated with
attributes and propose a novel and efficient solution for finding influential communities
that address the following drawbacks in the traditional community search research works:

1. A query vertex is needed as an input and then we find a group of neighboring vertices
whose attributes are highly similar to those of the query vertex. The main limitation
of these CS techniques is that the user has to define the query vertices. This may not
be possible or appropriate for many application domains.

2. Another type of community search solution is to find related communities that share
many similarities with query attributes. However, the influence (impact) of the
community is not taken into account.

3. The other type of community search solution only works on non-attributed graphs
and considers the influence of the community as the minimum weight of its nodes,
where the weight denotes the influence (importance) of the node. However, this
assumption ignores the relationship between nodes. Moreover, it fails to express the
actual influence of the nodes in a community with respect to its associated attributes.

By recasting the problem of detecting communities in large graphs as a node classifica-
tion problem on graphs, it can be studied from a learning perspective. Graph representation
learning is the task of representing the graph or its nodes and edges by a vector space to
facilitate downstream graph mining tasks [28]. In recent years, there has been a surge of
interest in the development of graph neural networks (GNNs). GNNs are general deep
learning architectures that can work on graph-structured data, such as data from social
networks [29] or graph-based representations of molecules [30]. These properties allow
you to use the GNN model to solve some complex network tasks. The basic idea of GNN
is to represent the original graph as a computational graph and learn neural network
primitives that generate embeddings of each node of the graph by bypassing, transforming,
and aggregating node feature information throughout the graph [31]. After k aggregation
iterations, a node is represented by a feature vector that has been transformed to capture
the structural information of the node’s k-hop neighborhood. The representation of the
original graph can be obtained through pooling, for example, by summing the vectors
that represent all nodes in the graph. Different GNN solutions have been proposed with
different neighborhood aggregation and graph-level pooling schemes. Then, the generated
node embeddings can be used as input to any differentiable prediction layer for different
tasks such as node classification [32] or link prediction [33].

In this work, we propose a semi-supervised model, named Influential Attributed
Communities via Graph Convolutional Network (InfACom-GCN) which finds the top-r
k-influential communities in large attributed networks. InfACom-GCN detects a tightly
connected group of nodes (vertices) that dominate other nodes (vertices) in a graph for a
particular domain. First, GCN is employed to decompose the graph into different partitions
considering the correlation between the attributes and the overall graph information. Then,
the influential communities are constructed based on these partitions. To the best of our
knowledge, this is the first work that employs the GCN to find the top-r k-influential
communities in attributed networks.

The rest of this paper is organized as follows: Section 2 presents the needed prelimi-
naries and some related concepts. Section 3 presents related work. In Section 4, we discuss



Information 2022, 13, 462 3 of 17

the influential attributed community approach. Section 5 shows the experimental results.
Finally, Section 6 gives a brief summary, discusses the findings, and proposes directions for
future works.

2. Preliminaries

This section presents some related concepts that will be used in the rest of this paper.
Graph neural network is discussed in Section 2.1. Section 2.2 presents a different level of the
graph-based task. Finally, in Section 2.3, the graph-based learning methods are introduced.

2.1. Graph Neural Networks

Graph Neural Network (GNN) is a deep learning-based method that extends the exist-
ing neural network methods to process data represented in the graph domain [31,34–40].
The node features Xv and the graph structure are used by GNNs to learn a vector repre-
sentation of a node, hv, or the entire graph, hG. GNNs follow a neighborhood aggregation
strategy in which the representation of a node is iteratively updated by aggregating rep-
resentations of its neighbors. After k aggregation iterations, the node’s representation
captures structural information within its neighborhood of the k-hop network. Officially,
the layer k of a GNN is:

a(k)v = AGGREGATE(k)({h(k−1)
u : u ∈ N(v)}),

h(k)v = COMBINE(k)(h(k−1)
u , a(k)v )

where h(k)v is the vector that contains features of node v at layer k, h(0)v = Xv, and N(v)
is a set of nodes adjacent to v. There are different architectures that have been proposed
for AGGREGATE. In node classification, the node representation h(k)v of the last iteration
is employed for prediction. In graph classification, the READOUT function is responsi-
ble for aggregating all node features from the last iteration to obtain the entire graph’s
representation hG:

hG = READOUT({h(k)v | v ∈ G})
where READOUT can be a simple permutation invariant function, such as a summation or
a more complex graph-level pooling function.

2.2. Classification of Graph-Based Tasks

Graph-based data has knowledge embedded at various levels of the structure. At the
node level, different node-based tasks are defined. Moreover, edge-level tasks are defined.
In addition, graph-level tasks that cover the entire graph or subgraphs are also defined
according to different applications.

1. Node-level task. This focuses on tasks such as node classification, node clustering, and
node regression. Node classification classifies nodes into different groups, whereas
the node regression task predicts an accurate value for each node. Node clustering is
used to divide a node into different classes and group-related nodes. An example of a
node-level task is the problem of protein folding. In this problem, amino acids in a
protein sequence are treated as nodes and the proximity between amino acids as the
edges. Using convolutional GNNs can extract high-level node representations.

2. Edge-level task: Edge classification and link prediction are considered edge-level
tasks. Edge classification and link prediction are the tasks where the model needs to
predict if there is an edge between two nodes or classify edge types. One important
example of edge-level tasks is the recommendation system where items and users
represent the nodes and user–item interactions represent the edges. The biomedical
graph link prediction is another example where drugs and proteins represent the
nodes, and the interactions between them represent the edges. The task is to find out
what is the probability that Simvastatin and Ciprofloxacin will break down muscle
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tissue. It uses the hidden representation of the two nodes of the GNN as input and
uses the similarity function to determine the connection strength of the edges.

3. Graph-level task: Graph-level representation is required for graph classification,
regression, and matching tasks to be modeled. Drug discovery is an example of a
graph-level task; atoms represent nodes and chemical bonds between them represent
edges. Physics simulation is another example of graph-based tasks where particles
can be represented as nodes and interaction between particles can be represented
as edges. Moreover, subgraph-level tasks are considered. Traffic prediction is an
example of subgraph-level tasks considering the road network as a graph; road
segments represent the nodes and connectivity between road segments as the edges.
GNNs are often combined with pooling and readout operations to obtain a compact
representation on the graph level.

2.3. Graph-Based Learning Methods

The graph-based learning methods are divided into different training settings from
the perspective of supervision: (1) supervised learning, (2) unsupervised learning, and (3)
semi-supervised learning [41]. Supervised learning is a machine learning task that learns a
function that maps an input to an output based on sample input–output pairs [42]. It uses
the labeled data to train the model to accurately predict data that has never been seen before
such as classification and regression. Unsupervised learning analyzes unlabeled datasets
without human intervention [42]. It is often used to extract common features, identify
meaningful trends and structures, and group them into results for exploratory purposes.
The most common unsupervised learning tasks are feature learning, clustering, density
estimation, dimensionality reduction, anomaly detection, and finding association rules.
Semi-supervised learning can be defined as a hybrid of both supervised and unsupervised
methods. It operates on both labeled and unlabeled data [42]. Therefore, it lies between
unsupervised learning and supervised learning. In the real world, labeled data are rare
in several contexts, and unlabeled data are common, where semi-supervised learning is
useful [41,43]. The goal of the semi-supervised learning model is to provide a better output
for prediction than those generated using only the model’s labeled data.

3. Related Work

This paper classifies the related work into the following two main categories: influen-
tial community search, and community detection with graph neural networks.

3.1. Influential Community Search

The problem of identifying the most influential communities was first formulated by
Li et al. [14]. A formal definition of the influence of an individual (node) and a community
was developed. An index called the ICP Index has also been proposed to speed up search
algorithms for influential communities. It supports efficient searching of top-r k-influential
communities in optimal time. The ICP Index is based on the inclusion relationship form of
the k-influential communities. Based on such an inclusion relationship, all the k-influential
communities can be organized using a tree-shape (or a forest-shape) structure. In [18],
a new community model was proposed that reveals the communities with the highest
outer influences. Moreover, a tree-based index structure and different algorithms were
developed to improve the search performance. In [15], an instance optimization algorithm
was proposed to retrieve the top-k influential communities without using an index. The
authors in [44], propose a new Skyline community model that recognizes the community
in a multivalued network where each node has d numeric attributes. Finally, the authors
in [45] discussed the major factors that affect the influence of the community. Moreover,
they proposed two techniques for retrieving the top-r k-influential communities one for
sequential implementation with three variations and one for parallel implementation.
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3.2. Community Detection via GNN

In recent years, various models of graph neural network (GNN) have been pro-
posed [46–50]. The authors in [47] introduced a special neural network approach suitable
for learning network communities and node semantics at the same time. This approach
is based on GCN for unsupervised community detection in attribute networks and is
called GUCD. GUCD consists of three main parts: (1) the encoder which contains three
convolutional layers, where the first two layers were to learn a deep representation of the
attribute network, and the third layer was to model and derive node community mem-
bership using both the deep representation and network information, (2) a dual decoder
which uses the derived communities to separately reconstruct network topology and node
attributes, and (3) a local enhancement part that utilizes local information to enhance
communities from a local view. Moreover, the authors in [48] proposed a new approach for
solving community detection problems in a supervised learning setting based on GNNs.
A change to the GNN architecture is proposed to expose edge adjacency information
by including a non-backtracking operator for graphs. This operator is defined through
the edges of the graph, allowing a directed flow of information even when the original
graph is undirected. In [49], the authors proposed a new community detection algorithm
called Self-Expressive Community detection in a graph (SEComm). SEComm combined
the principle of self-expressiveness with the framework of a self-supervised graph neural
network and generates node communities from the embeddings obtained. In [50], the
authors introduced a high-order graph convolution approach for obtaining smooth node
embeddings that represent the global cluster structure. Then, spectral clustering uses node
embeddings to detect communities. Finally, the authors in [46] proposed the Query-Driven
Graph Convolutional Networks (QD-GCN) framework. QD-GCN is used for finding
query-dependent communities with cohesive structure and homogeneous attributes w.r.t.
the query vertices and query attributes.

4. Influential Attributed Communities via Graph Convolutional Network
(InfACom-GCN)

In this section, we propose a new approach that finds top-r k-influential communities
for a specific attribute(s). Figure 1 shows the architecture of the In f ACom–GCN approach.
This approach contains two main steps: (1) Community detection using GCN [51] in a
semi-supervised learning setting, and (2) constructing the top-r k-influential communities
from the partitions that result from step 1.

Figure 1. InfACom-GCN architecture.
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4.1. Community Detection Using GCN

Consider an undirected attributed network G = (A, X), where A is an n× n adjacency
matrix of n nodes and X is an n×m attribute matrix of m attributes per node. The network
G is partially labeled. The communities of some nodes are known, and are indexed by a set
of k labels Y = {l1, l2, . . . , lk}. The problem of semi-supervised community detection is then
to label the remaining unlabeled nodes in G, and as a result form k communities of nodes.

This section aims to use GCN to decompose the given graph into different partitions
such that the final partitions should satisfy two properties: (1) Topology similarity: Nodes
that belong to the same community have more connections to each other than nodes outside
the community. (2) Attribute homogeneity: Nodes whose attribute vectors are close to each
other are most likely assigned to the same community.

In GCN, the graph convolution operator needs to propagate embeddings using the
interactions between nodes in the graph. The classification loss on a single node depends
on a huge number of other nodes. Due to this node dependence, backpropagation needs
to store all the embeddings, which makes the training of GCN very slow and require
lots of memory. The current algorithms have two problems: (1) high computational cost
where the cost increases exponentially with the number of GCN layers, and (2) large space
requirements to keep the whole graph and embeddings of each node of the graph in
memory. In order to overcome these problems and avoid heavy neighborhood searches,
there is a need to divide the original graph into different partitions and focus on the
neighbors within each partition.

4.1.1. Graph Partitioning

The idea is that neighboring nodes with similar feature representations tend to be in
the same partition. In this section, the goal is to divide the graph into subgraphs with the
lowest number of edges that cross partitions (edge-cut). The multilevel graph partitioning
paradigm in [52] is employed. In this paper, the multilevel k-way partitioning algorithm is
employed to partition the graph into different subgraphs to ensure the number of edges
between vertices in distinct partitions is kept to a minimum.

Given an undirected graph G = (V, E), n =| V |. G is decomposed into k partitions
{V1, ......., Vk} such that Vi ∩Vj = φ for i 6= j, | Vi |= n

k ,
⋃

i vi = V, and the number of edges
that link between nodes in different partitions (edge-cut) is minimized. The algorithm for
partitioning the graph contains three main phases:

1. Graph coarsening: In this phase, a sequence of smaller graphs Gi = (Vi, Ei) such that
| Vi+1 |< Vi is constructed. Each graph is constructed from the preceding graph by
collapsing together a maximal size set of adjacent pairs of vertices and a multinode
consisting of these vertices is created. This process continues until the size of the
graph has been decreased to just a few hundred vertices.
Let Vs

i be the set of vertices of Gi combined to form vertex s of Gi+1. The weight
of the vertex s is equal to the sum of the weights of all vertices in Vs

i . The edges of
s are the union of all edges of the vertices in Vs

i . The idea of edge collapse can be
formally defined in terms of matching. Graph matching is a set of edges where no two
edges share the same vertex. Discovering a matching of Gi and reducing the vertices
being matched into multinodes produces a coarser next-level graph Gi+1 from Gi. The
match must be maximal because the purpose of the vertex match is to reduce the size
of the graph Gi. Matching is called maximal if there are no more edges that can be
added. In this paper, the heavy-edge matching in [53] is used which finds a maximal
matching that contains edges with large weight.

2. Initial partitioning: In this phase, k-way partitioning Pm of the coarse graph
Gm = (Vm, Em) is computed such that each partition contains roughly | V0 | /k vertex
weight of the original graph. The weights of the vertices and edges of the coarser
graph can be used to apply the balanced partitioning and the minimum edge-cut.

3. Uncoarsening: the partitioning of the smallest graph is projected to larger graphs by
assigning the pairs of vertices that were collapsed together to the same partition. The
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vertices are frequently transferred between partitions after each projection step to
increase the partitioning solution’s quality.

Finally, the adjacent matrix of each subgraph is obtained.

4.1.2. The Graph Convolution Network

GCN uses the graph convolution operation to obtain the node embeddings layer
by layer. At each layer, node embedding is obtained by collecting the embeddings of its
neighbors, followed by one or a series of layers of linear transformations and nonlinear
activations. The last layer embedding is then used for some end tasks. In the node classifi-
cation problem, the last layer embedding is passed to a classifier to predict node labels, so
GCN parameters can be trained end to end.

Consider a graph G = (V, E, A, X), where V represents the set of n vertices, E repre-
sents the set of edges, and A is the n× n adjacency matrix with (i, j) entry equaling 1 if there
is an edge between vertices vi and vj and 0 otherwise. X ∈ Rn∗ f is the feature matrix of
all nodes where f is the number of features. A multi-layer Graph Convolutional Network
(GCN) [32] is considered with the following layer-wise propagation rule:

Z(0) = X
Zl+1 = σ(D̃−1/2 ÃD̃−1/2Z(l)W(l))

where Zl is the embedding at the l-th layer for all the n nodes, Ã is the adjacency matrix of
G with self-connections Ã = A + I where I is the identity matrix, D̃ is the degree matrix
where D̃ii = ∑ Ãij, W is the trainable weight matrix, and σ() is the activation function, such
as the ReLU.

The node classification assumes that each node v ∈ V is associated with a label yv,
and the goal of the graph representation learning for it is to learn a representation vector
hv such that v′s label can be predicted as yv = f (hv). Then, the fully connected neural
network takes the node representation from the final layer as its input and makes label
predictions. Semi-supervised node classification evaluates the training loss function of all
labeled nodes, assuming that only a small portion of the nodes in the graph have label
information. The goal is to learn the weight matrix by minimizing the loss function:

l = 1/ | yL | ∑i∈yL
loss(yi, zL

i )

where yL contains all the labels for the labeled nodes; zL
i is the i-th row of zL with the

ground-truth label yi denoting the predicted final layer of node i.
The partitioning technique is used, and we only pay attention to the neighbors inside

each partition in order to avoid conducting a thorough neighborhood search. By applying
the partition module on G, the original graph G is decomposed into p partitions [gi, ...., gP]
such that gi = {Vi, Ei}, where Vi is the set of nodes in the i-th partition, and Ei is the set of
edges between nodes in Vi. Moreover, the links between partitions are removed and the
adjacency matrix A is changed by4 where A = A′ +4. In addition, the feature matrix
X and labels Y should be partitioned into [X1, ...., Xp] and [Y1, ...., Yp] corresponding to
the new subgraph [g1, ...., gp] where Xi and Yi are features and labels of the nodes of gi,
respectively. As a result, the final embedding matrix’s i-th row is as follows [51],

Zl
i = [D̃ii

−1/2 Ã′iiD̃ii
−1/2

σ(D̃ii
−1/2 Ã′iiD̃ii

−1/2

σ(...σ(D̃ii
−1/2 Ã′iiD̃ii

−1/2XiW0)W1)...)W(k−1)]
(1)

Usually, each node and its neighbors exist in the same partition, so all nodes of the same
partition are put in the same batch. Consequently, there is a need to store only the node
embeddings within the current batch. To reduce the error, the links between partitions
should be minimal.
Training the model: As semi-supervised classification is used, the dataset is split into
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training, validation, and test. We use a random distribution of training, validation, and test
sets. The GCN model uses the non-linear activation function ReLU [54] for the propagation
rule. The ReLU function is applied row-wise on the last layer in the GCN. The cross-
entropy loss is performed on known node labels. The loss is backpropagated and the
weight matrices are updated in each layer. The model is trained with a specified number of
epochs where the loss is calculated at each training instance and the error is backpropagated.
The Adam optimizer [55] was used to fully train the model.

Algorithm 1: GCN based on graph partitioning.
Input : G,X,Y.
Output : Z

1 Partition G into g1, ...., gp.
2 for k=1 to g-depth do
3 for i=1 to p do
4 Compute_Zi() // (Eq.1)
5 Compute_loss()
6 Update_W(k)()
7 end
8 end
9 Compute_Z()

4.1.3. Influential Community Construction

This section aims to retrieve the influential communities from the communities de-
tected in the previous step and introduces how to construct communities from the space.
The influential community is defined as a closely connected group of vertices having some
dominance over other groups of vertices with the expertise (a set of keywords) matching
with the query terms.

The main idea is to group data points together that have high density [56] given the
radius of the area and the minimum number of data points required to form a dense region.
Low-density regions are called outliers.

R and k represent the radius of the region and the minimum number of data points
to consider. First, the algorithm starts by randomly selecting a point (P) from the data
points and finding all adjacent points within its radius R. If the number of adjacent points
is k or more, P is considered as a core point and P forms the first community with its
neighbors. After creating the first community, all its members are checked to see if they
can find their neighbors in R. If a member has at least k neighbors, the first community
is expanded by adding those neighbors to the community. This process continues until
no more points could be added to that community. When this point is reached, a new
community is initiated for a unvisited point that has not been assigned to a community yet.
Then, for each point, find and assign all connected points recursively. Iterate through all
unvisited points from the data points and assign them to the closest community at distance
R. If any point does not match any available community, assign it as an outlier point.

Details are given in Algorithm 2, which is described below.
For each point P, the algorithm finds its community members by returning its neigh-

bors within region R (step 3). Then, it checks that the size of the community members
should be ≥ k (the density condition). If the condition is satisfied, each community mem-
ber receives a community ID and P is marked as visited and removed from the points
(steps 5–9). Otherwise, P is assigned as an outlier. Next, the algorithm tries to extend
the generated community by checking each member of the generated community and its
neighbors within a region R (steps 11–20). This process is repeated until all members are
examined. After all points acquire a community ID, each group of members with the same
ID is returned as an influential community (steps 29 to 33).
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Algorithm 2: Influential Communities Construction.
Input : Points,R,k
Output : Influential communities.

1 Set CommunityID=0;
2 forall P in Points do
3 if P.ComID is null then
4 ComMembers=GetNeighbors(P,R)
5 if len(ComMembers)>=k then
6 forall c in ComMembers do
7 c.ComID=CommunityID
8 end
9 ComMembers.Remove(P)

10 while len(ComMembers)>0 do
11 NewMembers=GetNeighbors(ComMembers[0],R)
12 if len(NewMembers)>=k then
13 forall Member in NewMembers do
14 if Member.ComID is null then
15 ComMembers.Add(Member)
16 Member.ComID=CommunityID
17 end
18 end
19 end
20 ComMembers.Remove(ComMembers[0])
21 end
22 else
23 P is considered as outlier
24 end
25 CommunityID+=1
26 end
27 end
28 Set Influential_Communities={}
29 for i in range(0,CommunityID) do
30 InfComm=GetInfComm(Points, i)
31 Influential_Communities.Add(InfComm)
32 end
33 return Influential_Communities

5. Experimental Evaluation

This section presents the experimental results that measure the efficiency of our
proposed implementations. The proposed algorithms are implemented in Python and all
experiments are conducted on Windows 10 with Intel(R) Core(TM) i7 CPU and 16GB RAM.

5.1. Datasets

Experimental studies are conducted on real datasets illustrated in Table 1. Datasets
were downloaded from (https://linqs.soe.ucsc.edu/data (accessed on 16 March 2022) ).
Three benchmark datasets for citation networks are used: Citeseer, Cora, and PubMed-
Diabetes. Citeseer is a citation network containing 4660 edges and 3312 nodes which are
classified into six classes. Each node is represented by 3703-dimensional node features.
Cora is a citation network which contains 5429 edges and 2708 nodes classified into seven
classes. Each node is represented by a 1433-dimensional word vector known as a node
feature. PubMedDiabetes is a dataset containing 44,338 edges and 19,717 nodes classified
into three classes. Each node is represented by a TF/IDF weighted word vector from a
dictionary which consists of 500 unique words.

https://linqs.soe.ucsc.edu/data
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Table 1. Dataset description.

Dataset #Nodes #Edges #Features

Cora 2708 5278 1433

Citeseer 3312 4715 3703

PubMedDiabetes 19,717 44,338 500

5.2. Result Analysis

In this section, we demonstrate and discuss the results of the experiments. Section 5.2.1
shows the impact of model hyperparameters on the performance of In f ACom–GCN. Sec-
tion 5.2.2 introduces a comparison between In f ACom–GCN and the state-of-the-art meth-
ods. Finally, Section 5.2.3 introduces the accuracy of In f ACom–GCN with more layers.

5.2.1. Analysis of the Impact of Model Hyperparameters on the Performance

(A) Learning rate: Figure 2 shows the change in accuracy with the learning rate for
different types of networks. The best accuracy is achieved with the smaller learning
rate of 0.01. The learning rate has been increased up to 0.1. However, we note that
with the increase in the learning rate, the accuracy drops a lot.

Figure 2. Accuracy for different networks varying the learning rate with a different number of layers.

(B) Dropout : Figure 3 shows the accuracy (F1 score) for different datasets. In this
experiment, we vary the dropout rate to determine the optimized parameter with
maximum accuracy where all datasets are decomposed into 10 partitions and each
batch contains 2 partitions. We noticed that the accuracy decreases with the increase
of the dropout for all datasets. This result is aligned with the results mentioned
in [57].

(C) Number of Epochs : Figure 4 shows the accuracy (F1 score) for different datasets
with 2, 3, and 4 layers of graph convolutional network. The rate of dropout for the
input of each GCN layer is 50%. Each dataset is decomposed into 10 partitions,
where each batch contains 2 partitions.



Information 2022, 13, 462 11 of 17

Figure 3. Accuracy for different networks varying the dropout hyperparameter with a different
number of layers.

5.2.2. Comparison with State-of-the-Art Methods

To ensure the efficiency of In f ACom–GCN for retrieving the influential communi-
ties, we compared the proposed algorithm with GCN–FullBatch in [32], GAT in [58], and
GraphSAGE in [59]. GCN–FullBatch presents the semi-supervised train paradigm and
generalizes the convolutional operation on graph data which needs to store all node em-
beddings. GraphSAGE extends the convolutional operation of GCN to mean, max pooling,
and LSTM aggregator and introduces a sampling strategy before employing convolutional
operations on neighbor nodes. It is designed to take advantage of node attribute informa-
tion to efficiently generate representations of evolving graphs using previously unseen
data. GraphSAGE uses a fixed-size set of neighbors during backpropagation through
layers. GAT is a full batch model that uses a self-attention mechanism to learn the weights
between each pair of connected nodes, allowing self-attention to discover the most repre-
sentative parts of the input. The proposed algorithm is compared with the state-of-the-art
approaches in terms of memory usage, time costs, and accuracy (F1 score):

(A) Memory Usage: Tables 2–4 show the memory usage of each algorithm in megabytes
for different datasets with 2, 3, and 4 layers (the number of hidden units is 128). The
results show that all previous algorithms need much more memory for training than
InfACom-GCN. This is because the InfACom-GCN does not keep the full graph
and embeddings of each node of the graph in memory, it just needs to store only the
node embeddings within the current batch. On the other hand, GAT and GCN are
full batch models that require storing all the intermediate embeddings to compute
the full gradient which leads to consuming more memory.
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Table 2. Memory usage in megabytes for Cora dataset using different numbers of layers (the number
of hidden units is 128).

2 Layers 3 Layers 4 Layers

GAT 92.67 146.27 209.12
GCN-FullBatch 43.46 46.5 51.12
InfACom-GCN 33.54 37.22 38.6

Table 3. Memory usage in megabytes for Citeseer dataset using different numbers of layers (the
number of hidden units is 128).

2 Layers 3 Layers 4 Layers

GAT 108.64 161.76 210.41
GCN-FullBatch 45.8555 46.5 52.7148
InfACom-GCN 34.7109 38.6758 39.0703

Table 4. Memory usage in megabytes for PubMedDiabetes dataset using different numbers of layers
(the number of hidden units is 128).

2 Layers 3 Layers 4 Layers

GAT 81.6094 218.66 270.18
GCN-FullBatch 40.9453 47.9258 47.1211
InfACom-GCN 35.4125 39.7109 40.4063

(B) Time cost: Tables 5–7 show the average of the training time of GAT, GCN–FullBatch,
In f ACom–GCN, and GraphSAGE for Cora, Citeseer, and PubMedDiabetes, respec-
tively, using different numbers of layers (the number of hidden units is 128). All
results show that In f ACom–GCN outperforms all other algorithms. This is because
In f ACom–GCN avoids the high computational cost where the loss on a single node
depends only on the node embeddings within the current batch. On the other hand,
the full batch is particularly slow since it performs calculations on the entire training
set at each step. As a result, doing so becomes extremely computationally costly.

Table 5. Average time of 50 epochs for Cora dataset using 2, 3, and 4 layers (the number of hidden
units is 128).

2 Layers 3 Layers 4 Layers

GAT 377 ms 666 ms 976 ms
GCN-FullBatch 356 ms 470 ms 441 ms
GraphSAGE 5940 ms 208 s 334 s
InfACom-GCN 86 ms 107ms 116 ms

Table 6. Average time of 50 epochs for Citeseer dataset using 2, 3, and 4 layers (the number of hidden
units is 128).

2 Layers 3 Layers 4 Layers

GAT 841 ms 1097 ms 1120 ms
GCN-FullBatch 999 ms 1079 ms 1020 ms
GraphSAGE 13 s 44 s 862 s
InfACom-GCN 244 ms 202 ms 258 ms
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Table 7. Average time of 50 epochs for PubMedDiabetes dataset using 2, 3, and 4 layers (the number
of hidden units is 128).

2 Layers 3 Layers 4 Layers

GAT 1240 ms 3 s 6 s
GCN-FullBatch 8040 ms 10 s 12 s
GraphSAGE 24 s 87 s 426 s
InfACom-GCN 981 ms 2 s 4 s

(C) Accuracy (F1 score): Tables 8–10 show the accuracy (F1 score) of GAT, GraphSAGE,
GCN–FullBatch, and In f ACom–GCN for Cora, Citeseer, and PubMedDiabetes, re-
spectively. The results show that the accuracy of all algorithms is similar, indicating
that the accuracy is not adversely affected by the original graph’s partitioning.

Table 8. Average accuracy of 50 epochs for Cora dataset using 2, 3, and 4 layers (the number of
hidden units is 128).

2 Layers 3 Layers 4 Layers

GAT 78.64% 74.55% 66.97%
GCN-FullBatch 76.39% 75.88% 74.19%
GraphSAGE 75.96% 73.37% 69.66%
InfACom-GCN 78.69% 75.39% 79%

Table 9. Average accuracy of 50 epochs for Citeseer dataset using 2, 3, and 4 layers (the number of
hidden units is 128).

2 Layers 3 Layers 4 Layers

GAT 60.6% 66.8% 55.39%
GCN-FullBatch 62.37% 56.93% 59.75%
GraphSAGE 60.18% 60% 60.35%
InfACom-GCN 59.58% 57.73% 53.98%

Table 10. Average accuracy of 50 epochs for PubMedDiabetes dataset using 2, 3, and 4 layers (the
number of hidden units is 128).

2 Layers 3 Layers 4 Layers

GAT 80.87% 76.68% 68.6%
GCN-FullBatch 76.58% 78.34% 75.53%
GraphSAGE 79.41% 75.19% 74.54%
InfACom-GCN 80.87% 78.61% 75.11%
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Figure 4. Accuracy for different networks varying the number of epochs with a different number
of layers.

5.2.3. Deep Neural Networks

Table 11 shows the test accuracy (F1 score) with different numbers of layers (the
number of hidden units is 128). For the PubMedDiabetes dataset, the empirical results
show that after using 10 layers, In f ACom–GCN has a dramatic loss of accuracy. For the
Cora dataset, the empirical results show that after using 8 layers, In f ACom–GCN has a
significant loss in accuracy. For the Citeseer dataset, the empirical results show that after
using 9 layers, In f ACom–GCN has a significant loss in accuracy. This is because nodes
will have access to information from nodes that are far and may not be similar to them,
which makes all node embeddings similar (over-smoothing ). The trial and error method is
used to determine the optimal value of the number of layers.
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Table 11. The test accuracy (F1 score) of In f ACom–GCN using different numbers of layers.

PubMedDiabetes Cora Citeseer

2 Layers 0.8174 0.7780 0.6203
3 Layers 0.8141 0.7766 0.5879
4 Layers 0.7928 0.7693 0.5164
5 Layers 0.8057 0.7785 0.5643
6 Layers 0.8174 0.7529 0.5876
7 Layers 0.7772 0.5822 0.5171
8 Layers 0.7788 0.5106 0.4895
9 Layers 0.7644 0.3337 0.4847
10 Layers 0.7349 0.4918 0.2823
11 Layers 0.3994 0.4657 0.3187
12 Layers 0.3925 0.4202 0.2911

6. Conclusion and Future Work

The problem of community search over very large graphs is a fundamental problem
in graph analysis. However, certain applications require finding the top-r influential
communities in the network. This paper introduced a semi-supervised model, named
Influential Attributed Communities via Graph Convolutional Network (InfACom-GCN)
which finds the top-r k-influential communities in large attributed networks. First, GCN
is employed to decompose the graph into different partitions considering the correlation
between attributes and the overall graph. Then, the top-r k-influential communities are
constructed from the resulting communities. The proposed algorithms are evaluated on
various real datasets. The experimental results show the efficiency and effectiveness of
the proposed implementations. For future work, we will study how to use an attention
neural network to find the influential communities in an attributed graph from only one
step. Finally, the logical operations (AND–OR) that are used for conjoining the query terms
should be considered.
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