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With the exploding development of edge intelligence and smart industry, deep learning-based intelligent industrial solutions are
promptly applied in the manufacturing process. Many intelligent industrial solutions such as automatic manufacturing inspection
are computer vision based and require fast and e�cient video encoding techniques so that video streams can be processed as
quickly as possible either at the edge cluster or over the cloud. As one of the most popular video coding standards, the high
e�ciency video coding (HEVC) standard has been applied to various industrial scenes. However, HEVC brings not only a higher
compression rate but also a signi�cant increase in encoding complexity, which hinders its practical application in industrial
scenarios. Fortunately, a large amount of video coding data makes it possible to accelerate the encoding process in the industry. To
speed up the video coding process in some industrial scenes, this paper proposes a data-driven fast approach for coding tree unit
(CTU) partitioning in HEVC intracoding. First, we propose amethod to represent the partition result of a CTU as a column vector
of length 21. �en, we employ lots of encoding data produced in normal industry scenes to train transformer models used to
predict the partitioning vector of the CTU. Finally, the �nal partitioning structure of the CTU is generated from the partitioning
vector after a postprocessing operation and used by an industrial encoder. Compared with the original HEVC encoder used by
some industrial applications, experiment results show that our approach achieves 58.77% encoding time reduction with 3.9% bit
rate loss, which indicates that our data-driven approach for video coding has great capacity working in industrial applications.

1. Introduction

With the development of the smart industry, image and video
play a key role in many industrial scenarios [1–3]. As a result,
video coding standards have been used more widely than
ever [4]. Although advanced video coding (AVC) was in-
troduced in 2003, it is still used by many applications today
due to its fast coding speed [5]. However, with the increasing
demand for high resolution and ultra-high resolution video
and the improvement of hardware computing, HEVC is
gradually replacing AVC because of its superior coding

e�ciency. Although high e�ciency video coding (HEVC)
was developed about one decade ago, the computational
complexity is still not low at present due to the introduction
of many advanced coding tools [6]. Some certain industrial
scenarios have an urgent demand for real-time high de�-
nition display, and high encoding complexity hinds the
applications of HEVC in these scenarios. Fortunately, it is
becoming more mature for the use of big data and deep
learning techniques in the industry [7–12]. Besides, mobile
video applications have exploded in recent years and pro-
duced massive encoding data, which makes it possible for us
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to employ big data and deep learning techniques to reduce
the encoding time and speed up the encoding process in
industrial applications [13].

'e main computing burden of HEVC encoding comes
from a complicated partition rule for intracoding called
quadtree structure. To lower the computational complexity,
many scholars have developed lots of fast algorithms for
HEVC encoding by using various techniques, such as the
learning-based technique and 3-type fuzzy logic system
(FLS) [14]. Learning-based techniques are good at finding
patterns in data. Dong et al. [15] proposed a learning-based
fast algorithm for versatile video coding (VVC) from two
aspects of mode selection and prediction terminating to
reduce coding complexity, and 3-type fuzzy logic systems are
good at solving equations or finding a mathematical model
to represent the relationship between output and associated
input variables [16]. With the advances in modeling prob-
lems, 3-type FLS is suitable for mode decision or rate control
tasks in video coding and may bring potential improvement
for encoding performance [14]. 'ere are quite a number of
algorithms focusing on fast coding unit (CU) partitioning.
Furthermore, with the popularity of deep learning tech-
nology [17], researchers use neural networks (NNs) to boost
CU partitioning and achieve satisfactory results [18]. Works
using the deep learning method can be roughly classified
into two main categories which are the multistage partition
approach and the end-to-end structure decision approach.

In the category of multistage partition, approaches
regard the structure determination of CTU partitioning as a
combination of several binary classification problems. Xu
et al. [19] proposed a three-level CTU splitting algorithm
based on a convolution neural network (CNN).'ey trained
three deep CNN models, of which each predicted the split
flag for a CU in a certain depth. Kim and Ro [20] also
proposed a CTU partition algorithm by using three CNN-
based classifiers, they used different networks to predict the
splitting decisions of CUs in different sizes. Shi et al. [21]
proposed an AK-CNN for fast CTU partition prediction.
'eir AK-CNN classifiers are well-designed and can detect
texture complexity of the CU quickly. Shen et al. [22]
proposed early determination and a bypass strategy for CU
size decisions by using the texture property of the current
CU and coding information from neighboring CUs.
Moreover, Shen et al. [23] proposed a fast intermode de-
cision algorithm for HEVC by jointly using the interlevel
correlation of quadtree structure and the spatiotemporal
correlation. Based on visual perception and machine
learning, Chen et al. [24] proposed a fast algorithm by using
random forest models to quickly select the partition for VVC
intracoding. However, methods in this category usually need
as many as three NN models, which require much training
work and cause implementation difficulties. Besides, the
splitting of the CU is usually related to partition statuses of
neighboring CUs, and methods in this category obviously
ignore the splitting information from neighboring CUs by
considering the splitting problem hierarchically.

In the category of end-to-end decision, one partition
structure or several possible result candidates of the CTU
can be generated through a single prediction. Liu et al. [18]

proposed a VLSI friendly approach to partition a CTU by
designing a shallow CNN. Feng et al. [25] proposed a fast
block partitioning algorithm using CNN-based depth map
prediction for HEVC intracoding. 'ey used a depth map to
represent the partition structure of the CTU so that quadtree
structure can be predicted end to end. Tissier et al. [26]
proposed an edge possibility prediction approach by using
CNN. In their approach, most possible CTU partition results
were generated, and the final partition was determined
through postprocessing and rate-distortion optimization
(RDO). Although methods in this category consider the
influence of the entire CTU space information on the
splitting of the current CU, they do not take into account the
influence of the splitting of parent CUs. Furthermore, for
some end-to-end methods, which take a strategy of reducing
the CTU partition candidates for RDO, the RDO process is
not fully skipped so that the complexity reduction is limited.

To make full use of splitting information from both
neighboring and parent CUs, we first propose a new rep-
resentation for CTU partitioning structure. Specifically, we
use an array called split vector (SV) to represent a CTU
partitioning structure. 'en, we design and train a trans-
former model to predict the PV of the CTU. With the in-
troduction of the transformer, the CTU partition is regarded
as a sequence problem. Finally, the CTU partition structure
is decided from SV through postprocessing, and the RDO
process is no longer needed for CTU partition searching.'e
main contributions in this paper are described as follows:

(1) An array called SV is proposed to represent the
partition structure of the CTU. With the use of SV,
RDO progress searching for optimal CTU parti-
tioning structures can be fully skipped.

(2) We introduce transformer models into the fast de-
termination task for CTU partition structure and
imaginatively model the partition problem as a se-
quence problem affecting each other.

(3) We not only design effective transformer models to
predict the SV of the target CTU with high accuracy
but also build several datasets for transformer model
training.

'is paper is organized as follows: Section 1 introduces
the background of the proposed approach. Section 2 in-
troduces the fundamental knowledge used in this paper.
Section 3 describes the proposed fast algorithm for CTU
partitioning. Section 4 shows the experiment results, and
Section 5 concludes this paper.

2. Fundamental Knowledge

In this section, we introduce the quadtree structure of HEVC
intracoding, and a brief description of the transformer is also
given.

2.1. Quadtree Structure of HEVC Intrapartitioning. First,
each intraframe is divided into nonoverlapped square blocks
called coding tree units (CTUs) which are usually 64× 64
pixels. To cope with the texture characteristic of the CTU,
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the CTU can be further split into four equal-sized square
blocks, and each block can be iteratively further split into
four squared sub-blocks according to the quadtree partition
structure. In the quadtree of the final CTU partitioning, the
CTU serves as the root, and each leaf node represents a
coding unit (CU). 'e CU size of HEVC intracoding varies
from 64× 64 pixels to 8× 8 pixels since the max depth of a
quadtree is 3. Figure 1 shows the partitioning result of the
CTU and the corresponding quadtree structure. 'e deeper
the quadtree, the smaller the CU.

CTU can be adaptively partitioned into CUs of different
sizes to achieve optimal coding efficiency, and the final
partition structure is decided according to a brute-force
method called rate-distortion optimization (RDO) [27].
RDO evaluates the cost of every possible partition structure
in terms of bit rate and visual quality first. As a result, the
partition structure with minimal cost is selected as the final
partition result for the CTU. Obviously, the encoding time
spent on the RDO process increases exponentially with the
increase of quadtree depth. 'us, it is essential to reduce the
computational burden by replacing the RDO process
with an end-to-end approach for CTU partition structure
determination.

2.2. Transformer Network. Attention mechanism has been
widely used in neural network models such as recurrent
neural networks (RNNs) and convolutional neural networks
(CNNs) [28]. Since the attention mechanism was proposed,
sequence-to-sequence models with attention have shown
performance improvement in various tasks. In 2017, Ashish
et al. [29] first proposed an attention fully based model
named transformer. In order to integrate the advantages of
CNNs and RNNs, they creatively used the full attention
mechanism to build the network. 'ey applied the trans-
former to machine translation tasks and achieved state-of-
the-art effects at that time.

Like most sequence-to-sequence models, the trans-
former can be divided into two main parts, i.e., encoder and
decoder. 'e encoder is responsible for mapping the input
sequence into a hidden layer, which is the mathematical
expression of the input sequence.'e decoder then maps the
hidden layer back to the target sequence. Using a trans-
former, we can solve various problems, such as image

classification, summary generation, and machine transla-
tion. Figure 2 shows the model structure diagram of the
transformer. In Figure 2, the encoder consists of N sub-
encoders, and each subencoder includes two layers, which
are a multihead attention mechanism and a fully connected
feed-forward network, respectively. Besides, residual con-
nection and normalization are also added to each layer. As
we can see from Figure 2, transformer decoders are also
composed of N subdecoders, and each subdecoder has one
more masked multihead attention layer than the
subencoder.

'e transformer is a new network architecture designed
to replace RNN and CNN. It can be stacked to very deep
depth so that it can fully explore the characteristics of a deep
neural network and achieve high accuracy. Unlike CNN,
which is only able to obtain local information, it can directly
obtain global information and capture sequence

depth 0, 64×64

depth 1, 32×32

depth 2, 16×16

depth 3, 8×8

Figure 1: A partition sample of the CTU and the corresponding quadtree structure.

linear and
softmax

output

masked
multi-head
attention

input

output
probabilities

positional
encoding

N

N

multi-head
attention

multi-head
attention

add and norm

add and norm
feed forward

add and norm

add and norm

feed forward

add and norm

Figure 2: Network structure of the transformer employed by the
proposed approach.
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dependence. Compared with RNN, the transformer can
realize fast parallelism using the attention mechanism, and
the training time is greatly reduced.

3. Proposed Method

'is section is divided into parts. Firstly, we introduce how
the CTU partition structure is represented in the proposed
approach. 'en, we introduce the training process of
transformer models, and loss function designing and train
dataset preparation are both included. Finally, we present
the postprocessing procedure for the outputs of transformer
models.

3.1. Representation of the CTU Partition Structure. In this
paper, we propose a novel representation way for the CTU
partition structure. Specifically, each of the CTU partition
structures can be represented by a vector called split vector
(denoted as SV) which contains 21 Boolean split flags.
Figure 3 illustrates how the CTU partition structure is re-
flected in an SV.

According to the quadtree partition rule used in HEVC
intracoding, the CTU is split recursively until the max CU
depth is reached. 'us, a CTU partition structure can be
represented depth wisely. In depth 0, f1 is the split flag of a
CTU. In depth 1, four Boolean values (f2, f3, f4, and f5 in
Figure 3) are used to represent the split status of the four
sub-CUs of the current CTU. Furthermore, f6–f21 represent
the split flag of each 16×16 CU in depth 2, respectively.

Finally, these 21 CU split flags form the SV of the current
CTU.

It is convenient and effective to put these flags together
into SV.'e SV provides us with a new way of reviewing the
CTU partitioning jointly, and it avoids treating the CTU
partition problem as a level-wise binary classification task by
using several cascade prediction models. In other words, SV
makes it possible for our method to predict the split flags of
blocks in the same CTU jointly due to the high correlation
among them.

3.2. Overview of the Proposed Approach. Most existing
methods, either statistic-based or learning-based, partition a
CTU by deciding whether to split CUs in particular depths.
'ese methods usually employ as many as 3 modes to
complete the binary prediction for CUs in different depths.
However, with the proposed end-to-end method called
TBFA, the partition structure of CTUs is decided through a
single prediction by using SV.

Besides, the splitting of the CU is not only highly related
to the entire CTU it locates but is also affected by other CUs
locating the same CTU. However, many previous methods
only focus on the current block without considering in-
formation from neighboring or father CUs. BTFA is
designed to be able to consider them jointly by using SV,
which consists of 21 split flags of neighboring and father CUs
in the current CTU.

Also, we specifically design a transformer to predict the
SV of the CTU. In BTFA, the transformer is used to explore
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Figure 3: Representation of the CTU partition structure.
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the relations among those 21 split flags. 'e transformer
takes the luminance values of the CTU as input and outputs
a prediction vector (denoted as PV) of the CTU. 'rough
training the transformer models, PV equals the target SV of
the current CTU with high accuracy. 'us, SV can be ob-
tained from PV after the postprocessing procedure. Once the
SV is obtained, the entire CTU partition is determined.
'en, the encoder can encode each CTU directly, completely
avoiding the RDO process for partitioning. Figure 4 shows
the whole flow of the proposed TBFA.

3.3. TransformerTraining. 'e transformer predictor plays a
key role in BTFA, and a classic transformer structure is
employed by our approach. In this part, the design of the loss
function is described, and the way in which data are pre-
pared for training is also given.

3.3.1. Loss Function Design. 'e loss function is used to
measure the distance or bias between the ground truth and
the predicted result outputted by a model for the current
sample. In the case of this paper, the loss function is
employed to measure the error between PV and SV.

Actually, PV output by the transformer contains the
partition probability of each part corresponding to the
current CTU. Conversion from PV output by the trans-
former to SV is required for encoding, and the conversion
process is quite simple that only a comparison between each
element and 0.5 is needed. Specifically, if one element in PV
is smaller than 0.5, the corresponding element located at the
same position in SV is set to 0. On the contrary, if one
element in PV is greater than 0.5, the colocated element in
SV is set to 1. Contradictory values may exist in SV
transformed from PV since the judging of each element of

PV is independent during the conversion process. When a
CTU is not split, related sub-CUs in depth 1 and 2 are not
split either. 'us, if f1 in Figure 3 equals 0, the values of rest
elements in SV are supposed to be 0. To address the in-
consistency among values of SV, we carefully designed a loss
function for training.

When optimizing the weight parameters of the model
iteratively, there isnopoint in considering thepredictionerror
of the corresponding four sub-CUs if the real label of the
current CU is nonsplit. Based on this, we designed the loss
function, and the final loss of a sample can be calculated as

L � g1 + l1 􏽘

5

i�2
gi + li 􏽘

4i+1

j�4i−2
gj

⎛⎝ ⎞⎠, (1)

gi � 1 − li( 􏼁log
1

1 − pi

+ lilog
1
pi

􏼠 􏼡, (2)

where li denotes the ith element of SV, pi denotes the ith
element of PV, i is an integer from 1 to 21, and gi is the cross
entropy function for each of 21 element pairs.

'e loss function used in our model training is designed
and improved from cross entropy. It removes the effect
brought by contradictory values during the training pro-
cedure, improves prediction accuracy, and reduces com-
putational burden as well.

3.3.2. Train Data Preparation. 'e dataset for training is so
important that it can influence model prediction perfor-
mance greatly. To make sure transformer models achieve
their best performance, we construct a reasonable dataset for
each model. In this paper, the transformer model is used to
make a one-shot prediction of the partition structure for the
CTU. 'us, only one transformer model is needed when a
video sequence is being encoded. However, the quantization
parameter (QP) is one of the key factors affecting CU
splitting result, and the partitioning structure of the CTU
differs from different QP values. To make our algorithm
more specific and achieve higher prediction accuracy and
better encoding performance, we train one dedicated
transformer model for each QP. To validate the proposed
method, we take 4 classic QP values in this paper, and there
are a total of 4 datasets constructed for QP 22, 27, 32, and 37,
respectively.

We select five videos from standard test sequences and
employ HEVC reference software HM16.7 to encode their
entire frames under all-intramode and four QP values (22, 27,
32, and 37). 'ese five sequences are Traffic (2560×

1600), ParkScene (1920×1080), BasketballDrill (832× 480),
BQSquare (416× 240), andFourPeople (1280× 720). Sequences
used for model training are with different scenes and resolu-
tions,whichmake trainedmodelsmore robust andgeneralized.

Once encoding is completed on these training sequences,
we can obtain encoding results of each training sequence
under each certain QP. In particular, partitioning structures
of all CTUs in training sequences are generated and are
further converted to ground truth SVs served as target labels
in the training dataset for corresponding QP. As a result,

Start CTU
encoding

CTU
information

prediction
vector (PV)

split vector
(SV)

transformer

post-processing

encoder

end CTU
encoding

Figure 4: Flowchart of the proposed approach.
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four training datasets are assembled, and each sample of a
dataset consists of luminance pixels and an SV of each CTU.
It is worth noting that the only difference among these four
datasets is SVs. Samples of different datasets share the same
luminance pixel values since they are from the same training
sequences.

3.4. Postprocessing of the Split Vector. PV is first output by
our transformer model once the derivation is completed.
'en, the predicted SV of the current CTU is generated from
PV through a conversion process. SV consists of 21 binary
elements, and each corresponds to a potential sub-CU of the
current CTU. Although the contradiction among SV ele-
ments has been mitigated slightly by a well-designed loss
function, the influence of loss function designing is not great
enough to remove all contradictions in SV. So SV cannot be
used directly as the split flags of CUs in the CTU. It is
necessary to carry out a postprocessing procedure on SV
converted from PV, and the detailed postprocessing pro-
cedure is described in Figure 5.

As we can see from Figure 5, the postprocessing pro-
cedure is easy enough to be carried out quickly. To be
specific, we set SV2 all the way to SV21 to be 0 if SV1 is 0. If
SV2 is 0, we set SV6, SV7, SV8, and SV9 to be 0. Similarly, we
set SV10, SV11, SV12, and SV13 to be 0 if SV3 is 0. We set SV14,
SV15, SV16, and SV17 to be 0 if SV4 is 0. We set SV18, SV19,
SV20, and SV21 to be 0 if SV5 is 0. After the fine-tuning
described above, SV is able to be used in video encoding
finally.

4. Experiment Result

In this section, we first analyze the prediction accuracy of
transformer models employed by the proposed approach.
Deep learning framework PyTorch is used to complete
training and prediction. Simulations were executed on a
Windows 7 64 bit operating system workstation with
NVIDIA RTX 2080s GPU and Intel(R) Xeon(R) CPU E5-
2623 v3 @ 3.00GHz and 3.00GHz (2 processors), 64.0GB.

'en, to verify the effectiveness of the proposed one-shot
approach for CTU partitioning, we implemented it on
HEVC reference platform HM16.7. Coding parameters,
such as additional coding tools, were set as default. Besides,
all-intra main configuration was adopted to encode all the
frames of video sequences in the standard test set. 'e BD-
rate was employed to evaluate the coding performance of the
proposed method, and the time saving ratio denoted by TS
was used to measure the complexity reduction of encoding
algorithms. It is defined as

TS �
timeo − timep

timeo

, (3)

where timeo denotes time spent by the original HM16.7
encoder and timep is the time spent by the encoder on which
the proposed algorithm is implemented.

At last, partition results of original HM16.7 and the
proposed approach are compared on one frame randomly
selected. 'e comparison results visually demonstrate the
partitioning effect of the proposed one-shot algorithm for
CTU partitioning structure determination.
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Figure 5: Postprocessing procedure on SV converted from PV.
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4.1. Splitting Accuracy. Accuracy of splitting decisions
predicted by transformer models for CUs of each depth is
shown in Table 1. Depth levels in Table 1 represent different
sizes of the CU, accuracy of depth level 0 means the per-
centage of right splitting decisions predicted by transformer
model for CTUs, and accuracy of depth levels 1 and 2 means
the percentage of right splitting decisions for CUs of size
32× 32 and 16×16, respectively.

As we can see from Table 1, every transformer model
achieves its own highest accuracy on the splitting prediction
on depth level 0, and accuracies on levels 1 and 2 do not have
much difference and are lower than that on level 0 by around
10%. 'e reason is that splitting prediction of large CUs is
easier than that of small CUs since large CU provides more
information for prediction, and texture is more obvious.
Another phenomenon is that prediction accuracy of
transformer models at depth level 0 decreases as QP in-
creases, while the accuracy at depth level 1 and 2 increases as
QP increases. It means that the transformer employed by the
proposed approach is good at predicting the splitting results
of large CUs when QP is small, while it predicts the splitting

results of small CUs easily under large QP values. 'ese
properties provide guidance for the industry application of
our method.

4.2. Inferring Time Overhead. 'e proposed approach aims
at reducing the encoding time of HEVC by employing
transformer models. However, inferring time of trans-
formers must be considered due to their parameter scale.
During the encoding process, the inferring time is included
for a fair performance evaluation. Besides, we calculate the
percentage of inferring time to encoding time under dif-
ferent QPs, and the results are shown in Table 2. As we can
see from Table 2, the inferring time overhead of transformers
takes a quite low percentage of the encoding time while the
proposed method is used, which is because we use GPUs to
complete the inferring calculation of transformers.

4.3. Encoding Performance. 'e last two columns in Table 3
show the encoding performance of the proposed method.
Compared to original HM16.7, 58.77% encoding time on

Table 1: Splitting accuracy of four transformer models at each CU depth.

Depth level QP 22 (%) QP 27 (%) QP 32 (%) QP 37 (%)
Depth 0 95.58 91.08 91.04 89.38
Depth 1 78.12 81.81 82.44 82.33
Depth 2 74.54 80.60 82.55 84.87

Table 2: Percentage of inferring time to encoding time under different QPs.

QP 22 (%) QP 27 (%) QP 32 (%) QP 37 (%)
Percentage 0.015 0.021 0.025 0.031

Table 3: Bit rate loss and time saving comparison between the proposed algorithm and state of the art

Class Sequence
CNNFA FICUSA BTFA Proposed

BD-rate (%) TS (%) BD-rate (%) TS (%) BD-rate (%) TS (%) BD-rate (%) TS (%)

A PeopleOnStreet 3.97 55.59 2.63 45.00 1.16 38.06 4.03 59.04
Average 3.97 55.59 2.63 45.00 15.41 38.06 4.03 59.04

B

Kimono 2.38 72.72 0.42 16.27 3.32 59.23 6.50 75.35
Cactus 6.02 62.98 2.44 37.61 1.11 44.95 4.70 66.02

BasketballDrive 6.02 69.51 1.46 27.96 2.46 49.09 5.43 71.68
BQTerrace 4.82 57.89 2.41 41.10 1.09 46.88 2.66 58.07
Average 4.81 65.78 1.68 30.74 2.00 50.04 4.82 67.78

C

BQMall 8.08 52.14 4.33 44.72 0.97 41.52 4.44 56.98
PartyScene 9.45 58.75 4.66 46.06 1.36 37.68 1.49 44.07
RaceHorses 4.42 58.19 — — 0.60 47.49 2.70 58.22
Average 7.32 56.36 4.50 45.39 0.98 42.23 2.88 53.09

D

BasketballPass 8.40 64.02 3.34 41.48 0.67 36.34 2.32 48.14
BlowingBubbles 8.33 60.78 3.09 43.45 0.14 25.95 0.92 33.65
RaceHorses 4.95 57.29 — — 0.73 33.76 1.88 42.56
Average 7.23 60.70 3.22 42.47 0.51 32.02 1.71 41.45

E
Johnny 7.96 66.55 2.23 38.56 2.38 63.13 7.45 73.12

KristenAndSara 5.48 64.72 3.07 43.19 2.09 58.57 6.19 71.87
Average 6.72 65.64 2.65 40.88 2.24 60.85 6.82 72.49

Overall average 6.01 60.81 2.93 40.89 4.23 44.64 3.90 58.77
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average is saved while sacrificing about 3.90% bit-distortion
rate. Besides, we observe that our fast approach achieves
better results among sequences of resolution classC andD in
terms of BD-rate loss, and time saving is acceptable. 'ough
the proposed algorithm is able to save as much as 59.04%,
67.78%, and 72.49% encoding time on resolution class A, B,
and E, respectively, BD-rate loss is not quite low while
acceptable. It means that our transformer-based one-shot
approach works better on the sequence of low resolution.

Especially, we find encoding results to be good and balanced
on sequences RaceHorses (832× 480) and RaceHorses
(416× 240), and their rate-distortion (RD) curves are shown
in Figures 6 and 7, respectively. As we can see from Figures 6
and 7, though the proposed approach saves much encoding
time on these two sequences, their RD curves are both quite
close to that of original HM16.7, which means the visual
difference is negligible for the proposed approach. Ob-
serving contents of these two sequences, we find that they
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Figure 6: Rate-distortion curve comparison of the proposed approach and original HM16.7 on sequence RaceHorses (832× 480).
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Figure 7: Rate-distortion curve comparison of the proposed approach and original HM16.7 on sequence RaceHorses (416× 240).
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both contain objects moving fast, which indicates our fast
approach is ideal for industrial applications working in
scenes involving a lot of movement.

To further analyze the coding performance of the pro-
posed algorithm, we compare it with three recent studies.
Respectively, they are convolution neural network-based fast
algorithm (CNNFA) proposed by Liu et al. [18], fast intra-
CU splitting algorithm (FICUSA) proposed by Zhong et al.
[30], and bagged tree-based fast algorithm (BTFA) proposed
by Li et al. [31]. CNNFA, FICUSA, and BTFA are all effective
schemes for intra-CU size decision of HEVC, and their
performance on standard test sequences is listed in Table 3.
As we can see, FICUSA provides 0.97% less BD loss com-
pared to ours, but the time saving of our method outper-
forms about 18%. Considering CNNFA, though its time
saving is slightly higher than ours by 2.04%, their BD loss is
also higher by 2.11%. Moreover, compared with BTFA, our
approach outperforms in terms of both BD-rate and time
saving.

Moreover, we also compared the proposed approach
with other two fast partition approaches, which are the
effective CU size decision approach (ESDA) [22], bagged
tree, and ResNet joint fast approach (BTRNFA) [32]. Table 4
shows the encoding performance of ESDA and BTRNFA on
different sequence resolution classes. As we can see from
Table 4, the proposed approach outperforms ESDA in terms

of time saving, while it causes more BD-rate loss. Compared
with BTRNFA, the proposed approach makes more BD-rate
loss by 2.85% and almost the same time saving. 'ough the
proposed approach does not defeat BTRNFA, it does not
require feature extraction and finishes partition prediction
using as few as one transformer model.

Tables 3 and 4 prove that the performance of the pro-
posed transformer-based fast approach for CTU partitioning
is satisfactory and competitive and has good capacity in
practical industrial applications according to the compre-
hensive performance of various coding scenarios.

4.4. Partition Comparison. To visualize the encoding per-
formance of the proposed fast approach for HEVC intra-
coding, we give the partition results predicted by our
algorithm on the 200th frame of sequence Basketball Pass
(416× 240) under QP 22. Black, red, and green lines in
Figure 8 represent borders of CUs for final encoding. To
verify the correctness of CU splitting, we compare the
partitioning results of our approach and original HM16.7,
and differences are shown with red and green lines in Fig-
ure 8. 'e black line represents that our algorithm and
original HM16.7 share the same partition results. 'e green
line represents the boundaries of CUs, which are split by
original HM16.7 but are not split by our approach.

Table 4: Encoding performance of the proposed approach on different resolution classes.

Class
ESDA BTRNFA Proposed

BD-rate (%) TS (%) BD-rate (%) TS (%) BD-rate (%) TS (%)
A 1.00 48.50 2.28 62.21 4.03 59.04
B 1.16 45.60 2.69 70.66 4.82 67.78
C 0.55 33.75 1.32 52.82 2.88 53.09
D 0.30 33.00 0.88 41.86 1.71 41.45
E 2.73 61.33 3.30 74.19 6.82 72.49
Average 1.15 44.44 2.09 60.35 3.90 58.77

Figure 8: Partition result comparison between the proposed approach and original HM16.7.
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Boundaries of CUs decided nonsplit by original HM16.7 but
are split by our approach are shownwith red lines in Figure 8.

As we can see from Figure 8, the partition results of the
proposed algorithm are consistent with those of original
HM16.7 in most CU cases. Splitting results of CUs located
on main subjects in a frame are almost the same, while
differences mainly exist in the background region of a frame.
Compared with original HM16.7, the proposed algorithm is
more likely to split the CU. Red lines outnumber green lines,
which indicates that the splitting errors are far more than
nonsplitting errors of the proposed approach.

5. Conclusion

In this paper, we focus on speeding up the video encoding
process of industry applications. As a result, we propose a
transformer-based fast CTU partitioning algorithm for
HEVC intracoding. We convert the CTU partitioning
structure to a split vector and employ transformer models to
predict that of the target CTU while encoding. Compared
with the original HM 16.7 encoder, our approach reduces
encoding time by 58.77% on average while sacrificing
negligible rate-distortion performance on selected video
sequences. Intensive analysis and experiments show that the
proposed solution has great capacity for working in industry
applications, especially for scenes involving a lot of
movement.
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