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1 .  Introduction 

In recent years, the advent of the internet and developments in information 

technology have led to tremendous growth in data generation from sources such as sensors, 

social media, the World Wide Web, and the Internet of Things (IoT). Managing, mining, and 

extracting useful insights from this data has become increasingly popular among researchers 

in various fields. Most real-world data are modeled as graphs because of the inherent strength 

of the graph model to represent complex relationships. Since many real-world applications 

such as social networks, biomedical networks, the World Wide Web, citation graphs, and 

patent networks are modeled as graphs, it is necessary to investigate techniques for mining 

and analyzing graphs. 

Graph mining entails analyzing and extracting knowledge from graphs using 

statistical and machine learning techniques. One of the most important problems in graph 

mining is link prediction, which refers to predicting the likelihood of new relationships 

forming by analyzing the current snapshot of the graph. Link prediction has various practical 

applications in social networks, biomedical research, recommendation systems, and 

information systems.  

1.1 Background to Link Prediction 

In the field of complex network analysis, link prediction plays an important role in 

evaluating the likelihood of future node associations, typically by using topological and 

statistical information. Link prediction has real-world applications in many domains such as 

biomedical research, social networks, recommendation systems, and communication 

networks. For example, users and communities in social networks are modeled as nodes, and 
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the interactions, collaborations, and preferences of users are represented as edges [1]. Link 

prediction is employed in social networks to recommend friends and communities based on 

predictions of future relationships between entities. In biomedical research, protein-protein 

interactions are represented as a protein networks, where each protein is a node and 

interactions between proteins are edges [2][3][4]. As the graphs grow in size and complexity, 

mining them to predict future links becomes extremely challenging. Therefore, link 

prediction has become an important activity in graph mining research. 

Probabilistic models [5][6] and similarity-based models [7][8][9] have been 

successfully applied for link prediction on static graphs. However, many real-world networks 

are both large and highly dynamic, due to high volumes and high velocity of relational data. 

Given that the topology of these dynamic graphs changes with the creation and removal of 

links, new methods must be investigated. Recent work on scalable, distributed approaches to 

graph mining offers a promising direction for link prediction on large and dynamic graphs 

[7][10][11]. More details about link prediction and related work are presented in Chapter 2. 

1.2 Motivation 

The concept of link prediction was first proposed by Liben-Nowell et al. to predict 

collaborations between authors in co-author networks using network topology features [1]. 

Although several advances have been made in link prediction, there are still many problems 

with the use of existing link prediction frameworks for real-time applications. Therefore, the 

primary motivation of this dissertation is to develop link prediction solutions for real-time 

applications.  

Aggarwal and Subbian categorize a network based on the rate at which edges are 

added or updated [12]. These categories include slowly evolving networks and fast-evolving 
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networks or steaming networks. In both of these categories, a link prediction method is 

required to update the model frequently as new data arrive. Most early link prediction 

methods, including the supervised method adapted for this research, use single snapshot data 

for training and testing generated models. Evaluation of these prediction models is performed 

using model validation techniques such as cross-validation. However, cross-validation has 

proved adequate for evaluating proposed methodologies but not for understanding a model’s 

performance in real-world applications.  

Developing computationally efficient link prediction methods for evolutionary graphs 

requires knowledge on how the performance of a link prediction model deteriorates over 

time? how frequently should the model be updated? and what strategies are suitable for 

achieving an optimal performance? Given the computational complexity involved in 

continuous feature extraction, and retraining the model to detect changing topological 

properties, it is essential to understand the optimal learning rate, and strategies to reduce 

graph size.  

Ideally, the prediction model should be updated whenever new data arrives. We can 

approach this in two ways using traditional machine learning techniques. We can either train 

the model using recent data whenever new data arrive, or we can train the model using 

historical data along with recent data. By using only recent data, we lose historical 

information, but training the model using all of the data is computationally very expensive. 

Bearing in mind these shortcomings, we propose an incremental learning algorithm to update 

the model using recent information, while also preserving historical information. 

The link prediction model predicts a large number of possible links in a network at 

any given time, and not all the predicted links are equally interesting. When this is the case, it 
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is vital to quantify the degree of interestingness of the predicted. Since in real-world 

applications only interesting predictions should be conveyed to decision-makers, predictions 

need to be ordered and ranked based on their interestingness.  

The problem of link prediction has been studied extensively in several domains where 

data is modeled as a network and a link prediction method is used to predict future links. In 

other words, link prediction is used for forecasting the future state of a network based on the 

present state. We investigate whether exploiting the predicted network enables us to 

iteratively predict more links in a future network than would be possible using the original 

network. This question forms the foundation of our iterative link classification approach to 

predicting future links. The intuition behind iterative link classification is that the formation 

of new relationships in a network increases the likelihood of more new relationships forming. 

This approach shows a significant improvement in overall accuracy compared to traditional 

link prediction approaches.  

1.3 Contributions 

Our contributions are as follows: 

• Development of iterative link classification, a novel approach that uses predicted 

knowledge of a network to predict more relevant links, thus improving the overall 

accuracy of predicting new links by 6% and increasing the number of relevant links 

discovered by 10% 

• Proposal of guidelines for maintaining the link prediction model in real time, based 

on our observations and our comprehensive study of supervised link prediction 

method  
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• Proposal of an interestingness-based link ranking algorithm, which would be the first 

domain-independent method to order and rank predicted links by interestingness, 

utilizing the concept of association interestingness from data mining 

• Demonstration of the feasibility of using incremental machine learning in link 

prediction for dynamically evolving data and using both historical and current data 

1.4 Dissertation Organization  

This dissertation is organized as a compilation of chapters, each of which discusses 

proposed solutions to a specific challenge in order to develop link prediction for real-time 

applications. 

Chapter 2: Analysis of Supervised Link Prediction for Temporal Graphs: Since most 

real-world applications change over time, it is crucial to evaluate predictive models on 

constantly changing data. In this chapter, we define the temporal aspects of time-varying 

networks and study their effect on the performance of link prediction models. To handle 

large volumes of network data in real-time applications, we propose two different semantic-

type-based pruning of network data. We study the effect of pruning on the prediction of new 

links. We also presented an evidence-based evaluation of link prediction model as automatic 

hypothesis generation by rediscovering the know relationships. 

Chapter 3: Supervised Interestingness-based Link Ranking: In this chapter, we 

propose a domain-independent, supervised method that predicts the rank of future links based 

on objective interestingness measures. An analysis of thirteen common interestingness 

measures indicates that predicting future interestingness values is difficult. However, we can 

predict the relative ordering of links with low error. 
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Chapter 4: Link Prediction using an Incremental Learning Approach: This chapter 

presents an incremental learning process to address the link prediction problem. A supervised 

learning strategy based on an incremental support vector machine (SVM) is adapted to 

generate an incremental model for the link prediction problem. The incremental SVM 

updates the model using recently gathered data.  

Chapter 5: Link Discovery Using Iterative Link Classification: In this chapter, we 

propose a novel link prediction approach, which uses iterative classification to predict the 

formation of new links in a network. In this approach, the links predicted in an iteration are 

fed back into the network data to predict the links in the subsequent iteration. We observed 

considerable improvement in the overall performance of the link prediction model.  

Chapter 6: Conclusions and Future Work: We discuss the findings of our research 

and make suggestions for future work.
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2 . Analysis of Supervised Link Prediction for Temporal Graphs  

2.1 Introduction 

The link prediction problem can be defined as the challenge of predicting the 

likelihood of a future association between two nodes that are not connected in the current 

state of the network [13]. Several real-world applications generate large volumes of highly 

dynamic graph data, which add new nodes and links that can change the original topological 

properties of graphs. Efficient algorithms and data management techniques are needed at 

every stage from pre-processing to feature extraction through to training and prediction. 

These algorithms and techniques must be able to accommodate the memory and 

computational requirements of evolutionary graphs generated from real-time data sources. 

Link prediction on static graphs has proved reasonably accurate [1][7][14]. However, link 

prediction on dynamic graphs remains in its infancy. The development of new methods for 

use on dynamic graphs requires deeper investigation into the dynamic aspects including 

temporal aspects, graph pruning, training the model, and prediction measures.  

In this chapter, we study some important aspects of how a dynamic link prediction 

model behaves when applied to temporal and massive graphs. To apply link prediction to 

dynamic graphs, two major aspects need to be considered. First, unlike those used for static 

network, prediction models for dynamic networks need to be updated as new data arrives. It 

is important to understand how the trained prediction model performs on new data. This will 

provide insights into how frequently the model needs to be updated. In addition, it is 

important to know the optimum size of the network snapshot in order for the model to 

achieve its best computational performance. Therefore, it is important to ask whether the 
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network size affects the performance of the model. Removing nodes and edges that do not 

contribute to the model’s performance also helps to improve the performance of the model. 

Earlier approaches [7][15] reduce the size of the network using various pruning techniques 

based on the co-occurrence of a link in the graph. While these techniques are less 

cumbersome and are easy to implement, they fail to consider the prominence of a link or 

node when pruning the graph. Nor do they account for the problem of determining the 

optimal threshold for pruning the graph in a dynamic setting. In many applications, domain 

experts are used to identify non-prominent node types. We investigate the effects of using 

semantic information from the nodes to prune the graph. This semantic-based approach 

considers the prominence of a node before pruning the graph to reduce its size for efficient 

processing. Identifying the semantic type requires the involvement of a domain expert. This 

can be done less frequently for a dynamic graph as the semantic information does not change.  

We use the link prediction-based hypothesis discovery application for evaluating the 

behavior of the dynamic link prediction model behavior when applied to temporal and 

massive graphs. Hypothesis discovery, also known as literature-based discovery (LBD), 

extracts information from published literature to generate new hypotheses. LDB is modeled 

as a link prediction approach through the generation of a concept network using concepts 

extracted from published literature as nodes; co-occurrence of concepts suggests 

relationships between them. The prediction of a link between two concepts in a concept 

network is translated into a hypothesis of a link between the concepts. Several studies use the 

link prediction approach to discover hypotheses [2][7][16][17]. For this work, we adopt a 

supervised hypothesis generation approach proposed by Katukuri et al. [7].  
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In this work, our contributions can be summarized as follows: 

• A thorough investigation of a supervised link prediction method for different 

temporal aspects and their effects on the overall performance and stability of the 

prediction algorithms  

• A study of the impact of semantic-type-based pruning on the performance of the link 

prediction model 

• A study of the effectiveness of our supervised link prediction algorithm by testing it 

on well-known and established scientific facts  

2.2 Related Work 

Literature-based discovery. In 1986, Don R. Swanson developed a methodology for 

discovering concept-concept relationships by mining published literature [15]. The 

assumption behind his methodology was that when two concepts that are not directly related 

have significant indirect relations through common concepts, there is a possibility that the 

two concepts might be related. Using this methodology, Swanson hypothesized a relation 

between fish oil and Raynaud's syndrome and later published a hypothesis regarding a 

possible relationship between migraines and magnesium [20]. Initially, most of LBD work 

was carried out by manually searching literature databases. Gordon and Lindsay [21] 

replicated and automated Swanson's LBD process using computer-based algorithms and 

information retrieval (IR) techniques. They used the dataset from the MEDLINE [13] 

database and applied IR techniques to identify the relationship between Raynaud’s syndrome 

and fish oil. In 1997, Swanson and Smalheiser [22] developed a similar system named 

Arrowsmith. Most early work attempted to replicate Swanson's methodology using different 

IR algorithms. Along with co-occurrence information, some of the earlier work included 
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semantic information and lexical statistics of concepts to generate hypotheses [23][24][25]. 

Goodwin et al. proposed a method that uses the process of spreading activation as well as 

graph properties for LDB.  

Literature-based discovery using link prediction. In recent studies[18][2][7][3], 

link prediction is used to generate possible hypotheses by modeling publications as concept 

graphs. A biomedical concept network is generated using concepts extracted from 

publications, with biomedical concepts as nodes and their co-occurrences as relationships 

between nodes (i.e., edges). A biomedical concept network, generally referred to as a concept 

network, evolves over time with the formation of new relationships between nodes. Link 

prediction analysis is applied to the concept network to predict future relationships between 

node pairs that are not directly connected.  

Őzgür et al. [18] proposes a hypotheses generation method that applies a link 

prediction technique to predict relationships between genes and diseases. Initially, a seed list 

is generated from a list of genes that are related to a specific disease. Later, the seed list is 

used to construct a disease-specific gene interaction network by automatically mining 

literature using dependency parsing and support vector machines. Genes are ranked based on 

centrality measures calculated for each node in the network, and it is hypothesized that 

central gene(s) have a possible association with the specific disease. Jeong et al. [2] also 

proposed a similar method using degree centrality to predict lethal mutation in a yeast protein 

interaction network.  

Katukuri et al. [7] propose a supervised link prediction method by modeling a 

biomedical literature repository as a comprehensive network of biomedical concepts. They 

use topological and semantic features to hypothesize possible relationships between 
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biomedical concepts. They also propose an automatic labeling approach to generate labels for 

node pairs using two consecutive snapshots of the network. In the biomedical domain, 

Andrej et al. [26] propose an unsupervised learning method for predicting relationships in 

biomedical literature networks. The authors optimized the network by determining the non-

useful edges using Pearson’s Chi-Square test and removing them from the network. 

Most of these methods are evaluated using data extracted from a given static network. 

However, in practice, most real-world networks are temporal. To the best of our knowledge, 

few studies consider temporal evaluations of link prediction models. A study by Yang [27] 

discusses the effects of the temporal distance and temporal duration of a testing graph on link 

prediction performance. They divide the testing dataset into subsets of equal temporal 

duration. To evaluate the temporal distance, they consider a subset at a time as a testing 

dataset. To evaluate temporal duration, they agglomerate to create a test dataset of different 

temporal durations. This provides an excellent start for evaluating the temporal aspects of the 

link prediction model using social network data. We adopted a similar evaluation method to 

that used on the MEDLINE data to evaluate the performance of the prediction model in 

discovering unknown relationships. We also studied the temporal aspects of both the training 

dataset and the testing data. As discussed above, the link prediction dataset is generated using 

two snapshots of the graph. We investigated the effects of the temporal duration of these 

snapshots on the overall performance of the prediction model. As well as evaluating different 

temporal aspects of the link prediction model, we performed an evidence-based evaluation of 

link prediction, testing it on relationships that have been established in empirical studies. 

2.3 Methodology and Experimental Setup 

Terminology. 
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• G (V, E) denotes the network where V is a set of nodes and E is set of edges in the 

network 

• Gf is a snapshot of a network used to generate the feature set 

• Gs is a labeling snapshot used to label the node pairs 

• 𝜏𝜏(𝑠𝑠) represents the neighbors of node s 

• 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑠𝑠, 𝑡𝑡) denotes the similarity score between node s and node t 

• The training and testing datasets are generated by combining the features and labels 

Supervised link prediction methodology. For this work, we adopt a supervised link 

prediction method proposed by Katukuri et al. [7]. They also propose a feasible approach to 

generating the labeled dataset without involving a domain expert. They use Map-Reduce 

algorithms to generate and analyze the large-scale graph in a distributed environment. The 

promising results of their experiments motivated us to consider this link prediction method 

for our study. Below, we discuss the link prediction methodology in detail. 

This methodology uses a concept graph generated by parsing the publication 

metadata in the MEDLINE dataset [13]. We extracted publication information on authors, 

dates, document ID, keywords from fields such as MeSH Heading List, Chemical 

Compounds List and Gene Symbol List in the MEDLINE dataset. These keywords are part 

of MeSH (Medical Subject Headings), a medical vocabulary thesaurus curated by the 

National Library of Medicine [28]. We consider these keywords as concepts in concept 

network. For a given concept network, a node represents a medical concept that has appeared 

in one or more publications and an edge between two concepts indicates that the concepts co-

occur in one or more publications. The node count represents the number of documents in 
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which the concept appears, and the edge count (edge weight) indicates how many documents 

the two concepts appeared together in.  

We generated snapshots of the concept network at two consecutive, non-overlapping 

points in time. We refer to the first snapshot as the feature snapshot and to the second 

snapshot as the labeling snapshot. The topological features used in our supervised method 

are extracted from the feature snapshot. The labeling snapshot is compared to the feature 

snapshot to generate the class labels.  

The supervised method uses a heterogeneous feature set extracted from the training 

snapshot to discriminate between positive and negative links. The feature set is composed of 

neighborhood and proximity features:  

• Common Neighbors[29]: This is a fundamental and direct approach for measuring 

the similarity between two nodes. Let two nodes be s and t. The number of neighbors 

common to both of them represents the similarity. The similarity score is defined as 

follows:  

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶(𝑠𝑠, 𝑡𝑡) = |𝜏𝜏(𝑠𝑠) ∩ 𝜏𝜏(𝑡𝑡)| 

• Adamic/Adar [30]: The Adamic and Adar measure is like the common neighbors 

measure, but it also weighs the common neighbors: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴(𝑠𝑠, 𝑡𝑡) = �
1

log|𝜏𝜏(𝑧𝑧)|𝑧𝑧𝑧𝑧𝑧𝑧(𝑠𝑠)∩𝜏𝜏(𝑡𝑡)
 

• Jaccard Coefficient [31]: The Jaccard coefficient is commonly used in informational 

retrieval to measure the similarity between two sets. It measures the probability that a 

selected node from the union of two neighborhoods is in both the neighborhoods.  
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𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽(𝑠𝑠, 𝑡𝑡) =
|𝜏𝜏(𝑠𝑠) ∩ 𝜏𝜏(𝑠𝑠)|
|𝜏𝜏(𝑠𝑠) ∪ 𝜏𝜏(𝑠𝑠)| 

• Preferential Attachment [29]: Preferential Attachment models the growth of 

networks on the presumption that the node with a higher number of neighbors has a 

higher chances of being part of a newly formed edge. For our purposes, the score 

between two nodes is calculated as: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃𝑃𝑃(𝑠𝑠, 𝑡𝑡) =  |𝜏𝜏(𝑠𝑠)|. |𝜏𝜏(𝑡𝑡)| 

 

• Cycle-Free Effective Conductance (CFEC) [32]: The cycle-free effective 

conductance (CFEC) proposed in measures the proximity between two nodes in a 

network [32] . The CFEC between the nodes s and t is formulated as 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑠𝑠, 𝑡𝑡) =  𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠 .𝑃𝑃𝑐𝑐𝑐𝑐.𝑒𝑒𝑒𝑒𝑒𝑒(𝑠𝑠 → 𝑡𝑡) 

 

where 𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠 denotes the degree of node s. The cycle-free escape probability 

𝑃𝑃𝑐𝑐𝑐𝑐.𝑒𝑒𝑒𝑒𝑒𝑒(𝑠𝑠 → 𝑡𝑡) is the probability that a random walk that beings at s will reach t without 

visiting any node more than once. It is represented as 

𝑃𝑃𝑐𝑐𝑐𝑐.𝑒𝑒𝑒𝑒𝑒𝑒(𝑠𝑠 → 𝑡𝑡) =  � 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑟𝑟)
𝑟𝑟𝑟𝑟𝑟𝑟

 

where R is the set of simple paths between the nodes s and t. In a random walk, the 

probability of a path P (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑃𝑃)), where the transition probability from node i to node j, is 

𝑝𝑝𝑖𝑖𝑖𝑖 =  𝑤𝑤𝑖𝑖𝑖𝑖

𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖
 , is defined as: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑅𝑅) = �
𝑤𝑤𝑣𝑣𝑖𝑖𝑣𝑣𝑖𝑖+1
𝑑𝑑𝑑𝑑𝑑𝑑𝑣𝑣𝑖𝑖

𝑁𝑁

𝑖𝑖=1
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To make this method portable across different datasets and domains, we excluded the 

domain-specific semantic features proposed in proposed by Katukuri et al. [7].  

The training dataset consists of node pairs that are not associated in the training 

snapshot (Gf) and are associated in the labeling snapshot (Gs). For each pair in the training 

dataset, features are extracted from Gf and corresponding class labels are generated using an 

automatic labeling approach. An automatic labeling approach compares the training snapshot 

with the labeling snapshot to generate the labels for the training set. A node pair is labeled 

positive if the pair is not connected in Gf but is strongly connected in Gs. The pair is labeled 

negative if it is weakly connected in Gs. An edge is determined as a strong or weak 

connection based on the user-defined parameters minimum support and margin [7]: 

• Connection is strong if 𝑆𝑆 ≥ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

• Connection is emerging if 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ×  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≤ 𝑆𝑆 <

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠o𝑟𝑟𝑟𝑟  

• Connection is weak if 𝑆𝑆 <  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ×  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  

• No connection exists if 𝑆𝑆 = 0 

For our experiments, we considered strong and weak connections.  

Dataset. We used biomedical literature data from MEDLINE[13] for the years 1969 

to 2005 to build a concept network. Table 2-1 shows some of the statistics relating to this 

concept network. 

In the concept network, the total number of edges not formed (classed as negative) is 

significantly higher than the edges formed (classed as positive). Therefore, the dataset that is 

generated is highly unbalanced, which can result in a biased classifier. To remedy this, we 
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randomly selected an equal number of instances from both classes to generate a balanced 

dataset. 

Evaluation of link prediction model. Link prediction can be evaluated as a 

classification problem since the supervised method is modeled as a binary classification. For 

this study, we use a C4.5 decision tree to train the link prediction classifier. A classification 

model can be evaluated using several different measures, of which we consider accuracy, 

precision, recall, and the F1 score. 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 

𝐹𝐹1 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
2 ∙ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∙ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

 

True positive (TP) and true negative (TN) are the respective numbers of positive and 

negative labels correctly classified, whereas false positive (FP) and false negative (FN) are 

the numbers of those incorrectly classified. We employed a 10-fold cross-validation 

evaluation approach to estimate the prediction performance of the link prediction model.  

Table 2-1 Statistics of the concept network 1969-2005 

Total number of publications  9584017 

Total number of concepts (Nodes) 195358 

Total number of concept pairs (Edges)  43908827 
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2.4 Experiments and Results 

In this section, we describe the experiments performed to evaluate the supervised link 

prediction approach for generating hypotheses from the literature data. The following 

experiments were designed to assess different aspects of the link prediction method. 

• As a baseline experiment, we replicated the implementation of the prediction model 

with the user settings explained by Katukuri et al. in order to assess the model’s 

performance [7]. 

• We also perform the experiments with pruned datasets to evaluate the model’s 

performance at different pruned levels. 

• An experiment was performed to investigate the influence of the temporal duration of 

a snapshot on the overall performance of the predictive model. 

• Another experiment assessed the impact of the temporal distance between the training 

and testing snapshots on the performance of the predictive model.  

• To investigate the effectiveness of the link prediction model as a hypothesis discovery 

application, we performed an evidence-based evaluation by testing the model on 

proven relationships. 

 

Baseline experiment. A baseline experiment is designed with default user-defined 

values and settings as proposed in methodology by Katukuri et al. [7]. The results of this 

analysis help to test the methodology and to interpret the results of rest of the experiments.  

From the dataset, two graph snapshots, Gf and Gs, are extracted from two time 

periods. Gf is a feature snapshot that is used to extract the features mentioned in the 

methodology section. Gs is the labeled snapshot that is used to label every node pair as 
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positive or negative based on the strength of the link. In the current experimental setup, the 

thresholds are set as 5.0 for minimum support and 0.4 for margin. 

Table 2-2 Datasets and time periods used in the baseline experiments 

 Training Dataset Testing Dataset 

 Feature Snapshot Labeling Snapshot Feature Snapshot Labeling Snapshot 

1 1975-1979 1980-1984 1980-1984 1985-1989 

2 1980-1984 1985-1989 1985-1989 1990-1994 

3 1985-1989 1990-1994 1990-1994 1995-1999 

 

A C4.5 decision tree is applied to the features extracted from the dataset to generate a 

classifier model. The classification accuracy, precision, recall and F1 score are evaluated 

using a10-fold cross-validation. The experiment is repeated with training data generated from 

different temporal snapshots of the network (shown in Table 2-2). The characteristics of the 

data used for the classification are presented in Figure 2-1.  

Figure 2-2 shows the accuracy, positive precision, positive recall, positive F-score, 

negative precision, negative recall, and negative F-score. The accuracy of the prediction 

model was found to vary from 73.12% to 76.80% for different training data generated at 

different time periods. The model predicted the link formation with a recall of 73% and a 

precision of 75%. It is important for a link prediction model to be able to classify negative 

(non-forming) links as well as positive links. Results show that our model can predict 

negative links with a precision of 75% and a recall of 76%. 
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Figure 2-1 Baseline experiment: classification accuracy, precision, recall and F1 score for 
three training datasets (1975-79, 1980-84, 1985-1989) with temporal durations of five years 

 

Semantic-type-based pruning. Typically for a graph analysis approach such as link 

prediction, the network is pruned in order to be able to process the massive graphs. Pruning 

(or filtering) reduces the size of the graph, which reduces the cost of extracting information 

from a large and dense graph. In this section, we investigate the use of semantic information 

for pruning the graph and evaluate the impact on the link prediction model of pruning based 

on semantic types. 

Co-occurrence-based pruning eliminates edges that are lower than a threshold, i.e., if 

two words appear less frequently than a user-defined threshold these edges are eliminated. In 

semantic-type-based pruning, the semantic type of the node is considered when pruning the 

network. Unlike co-occurrence-based pruning, whereby edges are pruned, semantic-type-

based pruning entails pruning the nodes in the network. Appropriate semantic types of nodes 
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are selected for pruning, which ensures that important and relevant nodes and relationships 

are preserved in the network.  

Three levels of pruning are considered:  

• Comprehensive: All the concepts extracted from the literature or publication data are 

considered irrespective of their semantic types. 

• Selective: Certain concepts whose semantic types are not informative are excluded at 

this level. 

• Precise: At this level, only specific concepts belonging to semantic types of interest 

are considered.  

In the case of MEDLINE data, each node in the network is a biomedical concept with 

a MeSH-defined semantic type. At the comprehensive level, the network consists of all the 

nodes irrespective of their semantic type.  

At the selective level of pruning, the network is pruned based on the semantic types 

that are not informative or relevant to the target prediction. In this experimental setup, link 

prediction is used to predict relationships between drugs and diseases. Therefore, concepts 

that belong to semantic types such as, "administrative" and "health care," are not used in the 

proposed link prediction scenario. Pruning unwanted semantic types reduces the noise in the 

network. At this level of pruning, the network includes concepts belonging to other relevant 

semantic types, such as “phenomena and processes,” and “psychiatry and psychology,” in 

addition to the target semantic types. At the precise level, the network only includes concepts 

belonging to the targeted semantic types.  
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To study the effect of semantic-type-based pruning of the network on the link 

prediction algorithm, we replicated the baseline experiment with the three proposed levels of 

pruning techniques. The experiments use the datasets shown in Table 2-2.  

 

Figure 2-2 Classification accuracy, precision, recall and F1 score for the three levels of 
pruning based on semantic types: comprehensive, selective and precise.  

The accuracy, positive precision, positive recall, positive F1 score, negative precision, 

negative recall, and negative F1 score for each level of pruning are presented in Figure 2-2. 

The Link prediction algorithm uses topological similarities between nodes to predict links. At 

the comprehensive level of pruning, concepts not relevant to the target prediction introduce 

noise into the network. The results show that: 

• Pruning the network improves prediction performance by filtering irrelevant nodes 

that do not contribute to link prediction.  

• Selective pruning produces more accurate predictions than precise pruning.  

The effect of temporal duration. Link prediction is performed on a current network 

snapshot to predict relationships in a future snapshot of the network. In a dynamic setting, the 
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topology of graphs changes over time. Thus, it is important to select the optimal size of the 

snapshot for achieving the best predictive performance. The time interval over which a 

snapshot is generated is referred to as the temporal duration of a snapshot. In this section, we 

study the effects of the temporal duration of a snapshot on the predictive performance of the 

link prediction model. For this experiment, we prune the network at the selective level. 

As previously discussed, training and testing datasets are generated using two 

consecutive time snapshots; the feature snapshot (Gf) and the labeling snapshot (Gs). The 

impact of temporal duration on the model’s predictive performance is evaluated by varying 

the temporal duration of Gf from 1 year to 11 years while maintaining the temporal duration 

of Gs at 5 years.  

 

Figure 2-3 Varying the temporal duration on feature snapshot (Gf) of training dataset. 

Varying the temporal duration of Gf of training data. In this experiment, we vary the 

temporal duration of snapshot Gf of training data from 1 to 11 years and maintain the 

temporal durations of all the other snapshots at 5 years (illustrated in Figure 3). The results of 

this experiment are plotted in Figure 2-4. It was found that as temporal duration increases, 

the accuracy of the model increases up to 5 years and then begins to decline. We also 

observed that positive recall is high at shorter temporal durations and decreases as temporal 

duration increases.  
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Figure 2-4 Accuracy, precision, recall and F1 score with a varying temporal duration of Gf of 
training dataset from 1 years to 11 years. Temporal duration of the Gs is constant at 5 years.  

Graph snapshots are generated by aggregating the concepts (nodes) and their co-

occurrences (edges) in the published literature for a given temporal duration. The shorter the 

duration, the less relationships are formed in the graph, resulting in a sparse graph. This is in 

contrast to the dense graph generated by aggregating over long durations (e.g., 10 years). The 

topological features of sparse graphs are different to those of dense graph. For example, the 

number of common neighbors for a pair of node in a sparse graph is less than that of the 

same nodes in a dense graph. We can observe similar variations in other topological features 

used in this study.  

The model built with features extracted from a snapshot of short temporal duration to 

predict the links on test data generated from a snapshot of 5 years duration tended to classify 

negative pairs as positive which resulted in more false positives. This led to low positive 

precision and low negative recall. When the temporal duration of the training data was close 

to the temporal duration of the test data, this resulted in optimum precision and recall and, in 



24 

turn, higher accuracy. When the model was trained using the topological features generated 

from snapshots of longer durations, it tended to classify positive pairs as negative. This 

resulted in lower positive recall and higher negative recall. 

Varying the temporal duration of Gf of testing data. In this experiment, the temporal 

duration of Gf of testing data is varied, while the temporal duration of the training snapshot is 

kept constant at 5 years (illustrated in Figure 2-5). The results of this experiment are plotted 

in Figure 2-6. Unlike the experiment with the training dataset, it was found that at shorter 

temporal durations, the precision of the model’s predictions was high and that it decreased as 

the temporal duration increased. However, recall was found to be lower at shorter durations 

and to increase as temporal duration increased.  

 

Figure 2-5 Varying the temporal duration on feature snapshot (Gf) of training dataset. 

For this experiment, the model was trained using the graph snapshot of 5 years 

temporal duration. The test dataset was generated using the snapshot with temporal durations 

varying from 1 to 11 years. As found in the previous experiment, the features extracted from 

the shorter duration are weaker than those extracted from the snapshot of longer durations. At 

shorter temporal durations, the testing data has indistinct temporal features compared to the 

stronger topological characteristics of the training data. Due to this difference in features, the 

model classified more positive pairs as negative, which led to low positive recall and high 

negative recall. When the temporal duration of the test data was 5 years, which was the 
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temporal duration of the training data, precision and recall reached optimum values, resulting 

in higher accuracy. When the temporal duration of the test data increased further and the 

training data was maintained at 5 years duration, the model tended to classify the positive 

pairs as negative, which resulted in higher positive recall and lower negative recall. 

 

Figure 2-6 Accuracy, precision, recall and F1 score with varying temporal duration of testing 
dataset from 1 years to 11 years. 

The effects of temporal distance.In a dynamic setting, the model must be updated as 

new data becomes available. To know how frequently the model requires updating, we first 

need to know how well the model performs predicting relationships in future data. The 

temporal distance between the data used to generate the model and the data used to test the 
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model is referred to as temporal distance (illustrated in Figure 2-7). 

 

 

Figure 2-7 Illustration of the concept temporal distance. 

 

In this section, we evaluate the impact of temporal distance on the predictive 

performance of the link prediction model. We generate several datasets varying the temporal 

distance between the training and testing data from 0 to 10 years in two-year steps. The 

temporal duration of each snapshot in this experiment is set at 5 years. 

Figure 2-8 shows the results of the experiment with a temporal distance varying from 

0 to 10 years between the training and testing datasets. From Figure 2-8, we can observe that 

accuracy decreases as temporal distance increases. Also, there is a notable decrease in 

positive recall and an increase in positive precision with an increase in temporal distance. 

This suggests that our link prediction model was able to predict most of the old patterns in 

the new data but failed to classify new patterns in the data. Even though accuracy decreased, 

the link prediction model performed considerably better predicting new links in future data at 

longer temporal distances, which eliminated the need to frequently retrain the model. 
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Figure 2-8 Accuracy, precision, recall and F1 score with temporal distance between training 
and testing dataset varying from 0 years to 10 years. 

 

Evidence-based evaluation. We evaluated the link prediction model based on 

evidence from real-world instances of hypothesis testing. The evidence-based evaluation was 

intended to validate the ability of the prediction algorithm to predict known relationships in 

the literature. 

Table 2-3 List of the known relationships that are hypothesized and proven in different 
studies 

MeSH Concept MeSH ID MeSH Concept MeSH ID Year 

Fish Oils M0008518 Raynaud’s Disease M0018534 1985 

Migraine Disorder M0013864 Magnesium M0012884 1988 

Indomethacin M0011240 Alzheimer’s Disease M0012884 1989 

Somatomedin M0007795 C Arginines M0001683 1994 

Calcium-Independent Phospholipase A2 M0275442 Schizophrenia M0019489 1997 

Estrogen M0007795 Alzheimer’s Disease M0000842 1995 
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Some of the de facto relationships that were discovered in the literature are listed in 

Table 2-3. The dataset was designed to include these relationships in the labeling graph of the 

test data. The training dataset was created by keeping test duration constant. Both the training 

and testing datasets were generated over 5-year durations. The threshold was set at 5 and 

margin was set to 0.4.  

Table 2-4 shows the ability of the link prediction algorithm to discover relationships 

that are already known. In the results, Y denotes the ability of the model to predict the link, 

whereas N denotes that the model was not able to predict the link. Using the data pruned at a 

comprehensive level, the model discovered one relationship, compared to four out of six 

relationships discovered at selective and precise levels of pruning. 

Table 2-4 Results of identifying known relationships using the link prediction approach for 
different semantic-type-based prune settings. In the table, Y represents the relationships 

discovered and N represents those not discovered.  

Concept1 Concept2 Comprehensive Selective Precise 

Fish Oils Raynaud’s Disease N Y Y 

Migraine Disorder Magnesium N Y Y 

Indomethacin Alzheimer’s Disease N Y Y 

Somatomedin C– Arginine N N N 

Calcium-Independent  

Phospholipase A2 
Schizophrenia Y Y Y 

Estrogen Alzheimer’s Disease N N N 

 

2.5 Conclusion 

This study considers the temporal aspects of the link prediction model: temporal 

duration and temporal distance. It addresses the necessity to consider these aspects when 

evaluating the model on a time-varying network. Our results indicate that the supervised link 
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prediction model is reasonably reliable in predicting links in future datasets. This eliminates 

the need to update the model every time new data becomes available. To achieve maximum 

accuracy, the duration of the feature snapshot of the testing data should be similar to the 

duration of the feature snapshot of the training dataset. The testing dataset is less effected 

than the training dataset by the temporal duration of the feature snapshot. 

The model, which was tested using semantic-type-based pruning, performs better at 

the selective pruning level than at the precise and comprehensive pruning levels. We also 

evaluate the link prediction approach by testing it on known links. The model was able to 

identify four out of six known links at the precise and selective pruning levels compared to 

one link at the comprehensive level.  

In the future, we want to explore an incremental approach to updating the model 

instead of retraining the entire model. We are also interested in predicting the strength of the 

link as well as the link itself. We hope to take an ensemble approach using multiple 

methodologies to create a model that makes better predictions instead of relying on a single 

method.
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3 . Supervised Interestingness-based Link Ranking 

3.1 Introduction 

In recent years, the number of scientific publications has increased at an 

unprecedented rate. For instance, the MEDLINE database [13], a U.S. National Library of 

Medicine bibliographic database for biomedical publications, has more than 24 million 

entries [14]. In 2016, more than 869,000 new citations were added, averaging approximately 

2,380 citations a day [14]. One effect of this high rate of publication is that it poses 

difficulties for researchers to stay up to date with current research. This problem highlights 

the need for an automated approach to extract and interpret hidden links within published 

literature. 

Literature-based discovery (LBD) is a field of research that seeks to derive hidden 

knowledge from the published literature. It is a branch of data mining that uses text mining 

and information retrieval (IR) techniques in order to discover and extract significant 

relationships in published literature. The concept was first introduced in 1986 by Swanson, 

[15] who hypothesized a relationship, unexplored at the time, between fish oil and Raynaud's 

disease. Swanson manually identified relationships between two sets of literature. The first 

set contained publications that mentioned an increase in blood viscosity due to Raynaud's 

disease, and the second set contained publications about the effect of fish oil on reducing the 

level of blood viscosity. The study linked Raynaud’s disease and fish oil via the common 

concept of blood viscosity and hypothesized that fish oil may be used to reduce the effects of 

Raynaud's disease. This was later proven accurate in clinical trials [16]. Several other works 
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sought to replicate Swanson’s approach and to automate the process using computer-based 

algorithms and techniques.  

One approach is to model knowledge from literature as a network (graph), where the 

nodes represent knowledge entities and edges represent relationships between entities. 

Networks are an intuitive way of representing the relationships between different entities and 

are an important data-modeling tool for many areas of research such as social networking, e-

commerce, biomedicine and recommendation systems. For instance, in a biomedical study of 

protein-protein interactions, interactions are represented as network, where proteins are the 

nodes, and the interactions between the proteins are edges [2].  

Mining these networks to discover interesting patterns is a growing area of research 

in network analysis. One important problem in network analysis is that of predicting the 

missing links within the networks, commonly known as the link prediction problem, where 

links represent relationships or associations between nodes. The goal of the link prediction 

problem is to predict future associations between nodes based on currently observed links 

and nodes and their features. Hence, one can treat the LDB problem as a link prediction 

problem. 

A study published by Őzgür et al. is an early example of LBD, in which the 

researchers generated hypotheses regarding potential relationships between vaccines and 

genes. To accomplish this, they used gene interaction networks generated from the literature 

[18]. Jeong et al. studied the protein-protein interaction network of yeast to predict lethal 

mutations [2]. Most of the earlier works concentrated on specific semantic types and 

relationships in biomedical literature. More recent studies have developed hypothesis 
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discovery methods using a comprehensive network of concepts, irrespective of semantic type 

[7][19]. 

One major issue with such hypothesis generation methods is the large number of links 

discovered using link prediction. Only a small number of the discovered relationships may be 

of interest to the user, while the rest of them may be irrelevant or unimportant. Given that 

most existing link prediction algorithms make a binary decision (“Yes” or “No”)[7][17][3] 

when predicting the formation of a future link, the user has the unappealing task of sorting 

through the predicted links to determine those that are of interest.  

To address this problem, we propose a supervised method for ranking predicted links. 

This proposed method uses the structural features of the graph to generate a regression 

model, which forecasts the “interestingness” of the links. This interestingness measure is 

defined using one of the thirteen probability-based objective measures typically used in data 

mining. The links are ordered based upon the predicted interestingness. We validated this 

approach using the MEDLINE database. Results showed that predicting an exact level of 

interestingness is difficult. However, we can accurately predict the future rank using several 

different interestingness measures. 

3.2 Related Work 

Literature-based discovery. The approach by Swanson is based upon the 

assumption that any two concepts that are not directly related but have significant indirect 

relationships through common concepts might be related [15]. In addition to his initial work, 

where he identified the relationship between Reynold’s disease and fish oil, Swanson also 

published a hypothesis regarding a possible relationship between migraines and 

magnesium[20] using the same principle. 
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Initially, most of the work in LBD was done manually by searching literature 

databases. Gordon and Lindsay [21] replicated and automated Swanson's LBD process using 

computer-based algorithms and IR techniques. They used the dataset from the 

MEDLINE[13] database and applied traditional IR techniques to identify the relationship 

between Raynaud’s disease and fish oil. A similar system named Arrowsmith was developed 

by Swanson and Smalheiser [22] in 1997. Most of the earlier work attempted to replicate 

Swanson's methodology using various IR algorithms. Some of this earlier work on LBD also 

used semantic information and lexical statistics of concepts along with co-occurrence 

information to generate hypothesis [23][24][25]. 

In recent studies [2][3][7][18], link prediction analysis has been applied to biomedical 

concept networks to generate possible hypotheses. Taking this approach, a biomedical 

concept network is generated using concepts extracted from publications, where biomedical 

concepts are represented as nodes and the co-occurrence of two concepts is represented as an 

edge. This biomedical concept network, typically referred to as a concept network, evolves 

over time with the formation of new relationships between nodes and the creation and 

deletion of nodes. Link prediction analysis is applied to the concept network to predict future 

relationships between nodes. In other words, link prediction attempts to forecast a future 

connection between two nodes that are currently not connected. 

Őzgür et al. [18] proposes a hypotheses generation method, which applies a link 

prediction technique to LBD for predicting relationships between genes and diseases. 

Initially, a seed list is generated from a list of genes that are related to a specific disease. 

Later the seed list is used to construct a disease-specific gene interaction network using 

automatic literature mining based on dependency parsing and support vector machines. 
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Genes in the network are ranked based on different centrality measures, which are calculated 

for each node in the network. The study hypothesizes that the central gene (or genes) has a 

possible association with the specific disease. Jeong et al. [2] proposes a similar method 

using degree of centrality as a measure to predict lethal mutation in a yeast protein 

interaction network.  

Link prediction. Liben-Nowell et al. [1] introduced the link prediction problem and 

proposed a methodology to predict a missing link in a social network using the network 

properties of two nodes. In a similarity-based algorithm, every node pair is assigned a score, 

which represents the similarity or proximity of node pairs. These node pairs are ordered 

based on their scores, and the pairs with the higher similarity are regarded as likely to be 

associated in the future. While ordering can be used to confer a ranking, the ranking only 

indicates the likelihood of the link occurring. The proposed method by Hasan et al. uses 

several local and global topological features and a number of different classifiers for 

predicting the presence or absence of new links in a social network [17]. In biomedical 

networks, Tao Zhou et al. [33] use local information to predict missing links in a number of 

datasets, including a protein-protein interaction set. They examine how accurately the 

probable occurrence of a missing link can be predicted using a single measure. Lei et al. [34] 

propose the reconstruction of a protein-protein interaction network using global topological 

similarity. They use random walk-based similarity algorithms to determine the possibility of 

different protein interactions. 

Predicting links using individual predictors has proven more effective than random 

predictors [1]. The performance of predictors varies depending on the type of the network. 

Most of the above approaches are designed for graphs in a specific domain and are not 
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applicable to graphs in other domains. Instead of using a single-feature, classifier-based 

algorithms, multiple features can be used to determine the possibility of future links. Hasan et 

al. [17] propose a supervised learning method to predict future links in a social network using 

topological features extracted from the network. These topological features are combined 

with aggregated and semantic features to build a binary classifier model for predict future co-

authorships. O’Madadhain et al. [35] propose a joint probabilistic model for link prediction 

using topological features and node attributes. They also develop an algorithm that can rank 

nodes and compare changes to node ranks over time. This approach does not predict future 

ranks; rather, it is aimed at facilitating comparisons of current nodes to past nodes based on 

importance. 

Link importance. The above approaches, along with many other link prediction 

solutions, focus on the accuracy of link prediction. However, as noted previously, identifying 

the importance of predicted links is also crucial, particularly when there are hundreds or 

thousands of possible links. To achieve this goal, two critical issues need to be resolved: (a) 

how to define importance and (b) how to accurately predict importance. 

Kahanda and Neville [36] propose a method for predicting the strength of a link using 

transactional information between two users in an online social network. Their study set out 

to predict if the link between two users indicated a strong friendship (positive) or not 

(negative), but this approach could potentially be used elsewhere. However, it requires that 

the links are labeled, which is can be time-consuming. Xiang et al. [37] propose an 

unsupervised method for representing a range of relationship strengths from “strong” to 

“weak” in a social network. The strength of a link is measured using profile similarity and 

interaction activity and represented as a continuous-valued relationship. The main premise of 
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this study is that users are likely to have stronger links (friendships/relationships) with people 

who are similar. Their approach relies on two assumptions: (a) that every node is described 

by the same set of features, and (b) that similar nodes tend to form strong relationships. The 

framework proposed by Kamath et al. uses Twitter features such as historical interactions, 

type of interactions, similarity with other users and social graph features to predict the 

strength of the link between two users [38]. This work quantifies the strength of the link as 

the probability of future interaction between two users. The framework was designed 

specifically using Twitter data. Zhang and Dantu [39] propose a method for predicting tie 

strengths between phone users based on the call details of their mobile phones. Several works 

leverage user interaction data to predict or estimate the strength of links between different 

entities in social networks [38][40]. However, most of the prior work in this area utilizes, and 

assumes the availability of, rich information from social networks to model and quantify the 

relationships among entities in a network. Not all networks have the kind of rich information 

that social networks can provide. Hence, it is useful to measure the importance of links using 

more widely applicable methods.  

Interestingness. Interestingness measures are used extensively in the field of data 

mining to select or filter discovered patterns. Liu et al. [41] proposes a method to rank 

interesting patterns using the users’ existing knowledge and general impression. Ohsaki et al. 

[42] evaluated the ranking of rules using various interestingness measures against the 

rankings ascribed by experts. A study by Tan et al. [43] proposes a different key property to 

select the right interestingness measure for a given dataset or domain. They consider twenty-

one different interestingness measures in their analysis of support-based pruning and 

contingency table standardization and conclude that no single measure can achieve 
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consistency across all domains and datasets. Lenca et al. [44], consider the properties of 

measures to identify the measures that fit users’ needs. 

In the field of link mining, Aljandal [45] proposes a supervised link prediction 

method representing interestingness measures as numerical features to improve the prediction 

of a link. To the best of our knowledge, this study is the first attempt to use interestingness 

measures to study the importance of a predicted link. 

3.3 Methodology 

The primary goal of this work is to score or rank predicted links. Therefore, it is 

useful if the number of features required to enable ranking is minimized; ideally, no features 

apart from the chosen interestingness measure need to be considered. To accomplish this 

goal, we use the same feature set used for an existing, accurate method for predict future 

links proposed by Katukuri et al. [7].  

In Katukuri et al.’s work, biomedical literature is modeled as a series of concept 

networks, where each network represents a set of literature from a given time period; 

subsequent networks represent literature published in later time periods. Within a network, a 

node represents a biomedical concept and links represents the relationships between two 

concepts within that time period. Each node, in addition to representing a concept, has a 

count, which indicates the number of publications in which the concept appears. Each link 

also has a count, which represents the number of publications in which the two linked 

concepts appear together. 

After the networks are generated, features are extracted and used to make predictions, 

and node pairs are labeled (link formed or did not form). This requires two temporally 
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consecutive and non-overlapping networks. The features are calculated using the earlier 

snapshot while the later snapshot is used to generate the class labels.  

The features, which are calculated for each pair of nodes that are not connected in the 

earlier network, are both neighborhood-based and random walk-based. Formally, 𝜏𝜏(𝑠𝑠) 

represents the neighbor set of node s; that is, the nodes that are linked to node s. The 

following comprise the set of features.  

 
• Common Neighbors [29]: 

This is simple approach for measuring the similarity between two nodes. For a given 

two nodes s and t, the higher the number of common neighbors, the higher the similarity 

between them. The similarity score is defined as:  

ScoreCN(s, t) = |τ(s) ∩ τ(t)| 

• Adamic/Adar [30]:  

The Adamic and Adar measure is similar to, but more robust than, the common 

neighbors measure. This measure weighs the common neighbors of the two nodes s and t: 

ScoreAA(s,t)=�
1

log|τ(z)|zϵτ(s)∩τ(t)
 

• Jaccard Coefficient [31]: 

The Jaccard coefficient is popular in IR for measuring the similarity between two 

sets. It is formulated as: 

ScoreJC(s,t)=
|τ(s)∩τ(s)|
|τ(s)∪τ(s)|

 

 

• Preferential Attachment [29]: 
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Preferential attachment measures the growth of networks on the presumption that the 

node with the highest number of neighbors has the highest chance of being part of a newly 

formed edge. For our purposes, the score between the two nodes is calculated as: 

ScorePA(s,t)= |τ(s)|.|τ(t)| 

• Cycle-Free Effective Conductance (CFEC): 

The cycle-free effective conductance (CFEC) proposed measures the proximity 

between two nodes in a network [32]. The CFEC between the nodes s and t is formulated as 

ScoreCFEC(s,t)= degs . Pcf.esc(s→t) 

where degs denotes the degree of node s. The cycle-free escape probability 

𝑃𝑃𝑐𝑐𝑐𝑐.𝑒𝑒𝑒𝑒𝑒𝑒(𝑠𝑠 → 𝑡𝑡) is the probability that a random walk that begins at s will reach t without 

visiting any node more than once. It is represented as  

Pcf.esc(s→t)= � Prob(r)
rϵR

 

where R is the set of simple paths between the nodes s and t. For a random walk, the 

probability of a path P, Prob(P), with a transition probability, pij, from node i to node j is 

defined using following equation: 

Prob(P) =  �
Wvivi+1
degvi

N

i=1
 

We make one modification to the feature set described by Katukuri et al. [7] to make 

this methodology applicable for different datasets and domains, which is to ignore the 

domain-specific semantic features. The experimental results presented by Katukuri et al. [7] 

show that the impact of removing them is minimal.  

After the features are generated, the next step is to assign class labels to node pairs. In 

the link prediction model, a node pair is labeled as “positive” or “negative” depending on the 
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strength of the connection of the nodes in the second (later) snapshot. These connections are 

categorized using the parameters minimum support and margin. The connection is labeled as:  

• strong if S ≥ minimum_support 

• emerging if margin ∗ minimum_support ≤ S < mimium_support  

• weak if S < margin ∗ minimum_support 

• no connection if S=0 

where S represents is the strength of the link (S is 0 if there is no link). 

A training instance is labeled “positive” if the connection is strong and “negative” if 

the connection is either weak or there is no connection. Once the labels are generated, a 

supervised classification algorithm is used to train the model to predict future links. 

In order to score and rank future links, an interestingness score is calculated. The 

interestingness score is based on the weights of the two nodes and that of the edge between 

them. A supervised regression-based algorithm is used to train the model to predict scores. 

All the predicted links are ranked based on their scores. 

The above steps enable us to automatically generate features, labels and build models 

from temporal network data. In order to rank predicted links, we introduce an interestingness 

score which is discussed in next section. 

3.4 Interestingness Measures 

There are two possible ways of generating an interestingness score. The first is to 

engage multiple experts to evaluate each link and score its importance. This can be 

problematic when dealing with large domains (such as MEDLINE data), since it is time-

consuming and cost prohibitive. Another problem is that different experts often have 

different opinions, and resolving disagreements regarding scoring increases costs and leads to 
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additional complexities. It limits the potential generalizability of the approach and means that 

the process for assigning a score cannot be automated. 

The second approach is to use an objective measure. The challenges associated with 

this approach are (a) how to define the objective measure, and (b) how to determine if the 

objective measure is appropriate. To address the first question, we selected interestingness 

measures used in association mining to rank and filter frequent itemsets. In our case, the 

itemsets were the linked nodes. To determine which measures to use, we reviewed several 

sources [43][44][45][46][47][48] and created a list of all the measures mentioned in them. 

From those measures, we selected thirteen that appeared most often and were straightforward 

enough to implement. These are listed in Table 3-1. 

With respect to the appropriateness of the measures, this can be interpreted in one of 

two ways. The first is to ask whether we can predict the future interestingness or the rank of 

the link when the interestingness is defined by measure X. The experiments presented later in 

this study address this issue. The second interpretation of appropriateness is to ask if the 

measure ranks a relationship in the same way that a domain expert would? This is a more 

difficult question, as different experts may have different internal criteria. We do not address 

this issue in the current paper, as we are trying to establish if it is even possible to predict the 

score or rank of future links accurately. 

In the following section, we introduce the modified Kendall’s Tau method employed 

to compare the predicted ranking list with the actual ranking list. 

3.5 Kendall’s Tau Method 

To compare the predicted ranking list with the actual ranking list, we adopt a modified 

form of Kendall’s tau method presented by Fagin et al. [49]. One of the assumptions made in 
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that study was that no two objects have the same rank. This is not true in our case, where it is 

possible that different instances might have the same interestingness score, which is later 

translated as the same rank.  

Table 3-1  List of interestingness measures 

Interestingness Measure Formula 

Coherence (CO) 
P(AB)

P(A)+P(B)-P(AB)
 

Conviction (CV) 
P(A)P(¬B)

P(A¬B)  

Cosine (COS) 
P(AB)

�P(A)P(B)
 

Information Gain (IG) log(
P(AB)

P(A)P(B)
) 

Kulczynski (KUL) 
P(AB)

2
�

1
P(A)

+
1

P(B)
� 

Klosgen (KLO) P(AB)*max(P(BA)-P(B), P(AB)-P(A)) 

Least Contradiction (LC) 
P(AB)-P(A¬B)

P(B)
 

Linear-Correlation (LCOR) 
P(AB)-P(A)(B)

�P(A)P(B)P(¬A)P(¬B)
 

Loevinger (LOE) 1-
P(A)P(¬B)

P(A¬B)
 

Odd Multiplier (OM) 
P(AB)P(¬B)
P(B)P(A¬B)

 

Piatetsky-Shapiro (PS) P(AB)-P(A)P(B) 

Sebag-Schoenauer (SS) 
P(AB)

P(A¬B)
 

Zhang (ZH) 
P(AB)-P(A)P(B)

max(P(AB)P(¬B),P(B)P(A¬B))
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The method developed by Fagin et al. [49] measures the distance between the top k 

objects in two lists by adding appropriate penalties based on the order of objects appears in 

both lists [49]. Let us consider two top k lists, τ1 and τ2. In our case, these lists are the actual 

ranking list and the predicted rank list. A set P(τ1, τ2) is defined as the set of unordered 

possible pairs of all distinct elements from both of the lists. Kendall’s tau distance K(τ1, τ2) is 

calculated as the pair-wise disagreement penalties for all the pairs of element in P(τ1,τ2). The 

penalty for a pair of objects (i, j) ∈P(τ1, τ2) is determined as follows:  

1. If i and j appear in both lists and in the same order, there is zero penalty and if in 

reverse order there is a penalty of 1.  

2. If i and j both appear in one list (say τ1) and exactly one object either i or j appears in 

another list(say τ2); if the element that appears in τ2 is ahead in τ1 penalty is 0. 

Otherwise it is 1.  

3. If one object (say i) appears in one list (say τ1) and another object (say j) appears in 

another list (say τ2), penalty is 1. 

4. If both i and j appear in one list but neither appear in another list, we penalize with 

0.5.  

 
In our data, there is a possibility that i and j have the same rank when they both 

appear in a list (in case 1 and case 2 above). In case 1, if the objects i and j are the same in 

both lists, we do not add a penalty. If they have the same values in only one list, we add a 

compensation of 0.5. In case 2, if i and j appear the same in a list, we add a compensation of 

0.5. We normalize the Kendall’s tau score using the number of elements in P (τ1, τ2). 

k� = 
k
∑ pi
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3.6 Experimental Setup 

Datasets. We generate the concept graph using the MEDLINE dataset[13] obtained in 

2014. The MEDLINE data is stored in XML files that contains metadata about the 

publications. We parse these files to extract information about publications including authors, 

dates, document ID, and keywords from fields such as MeSH Heading List, Chemical 

Compounds List and Gene Symbol List in the MEDLINE dataset. These keywords are part 

of MeSH (Medical Subject Headings) [28], a medical vocabulary thesaurus curated by the 

National Library of Medicine. We generate concept graphs using these keywords (medical 

concepts) as nodes and co-occurrences of the concepts as relationships (edges) between the 

concepts. The total number of publications pertaining to a concept is represented as the node 

weight. The edge weight indicates the number of documents in which the two concepts 

appear together. 

Table 3-2 Basic statistics of concept network 1991-1995 

Number of Nodes (Concepts) 71681 

Number of Edges 12550625 

Number of Documents 1447582 

 
For our experiments, we used the literature published between the years 1991 and 

2000. We generated two consecutive and non-overlapping networks for the years 1991-1995 

and 1996-2000, respectively. Some of the network statistics are shown in Table 3-2. In 

addition to the statistics on the network, we studied the frequency distribution of the 

interestingness values, which are shown in the Figure 3-1. We observed that the distribution 

of scores were skewed for most of the interestingness measures. To handle the skewed data, 

we divided the data into bin, some of which had a large number of instances. To balance the 
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score distribution, we randomly sampled the instances in the bins which had higher 

frequencies than the predefined threshold. In other bins, all the instances were considered. 

It should be noted that, while in practice we would first predict the links and then 

predict the ranking of the links, such action is not necessary for this study. Since we are 

interested in determining if we can correctly predict the interestingness of future links, we 

assume that we have a method that always correctly predicts whether a link will form in the 

future. 

Evaluation. The performance of the regression-based classifier is evaluated by the 

measures “relative absolute error” (RAE) and “root relative squared error” (RRSE).  

The predicted value is represented as 𝜃𝜃�  and the actual value as 𝜃𝜃. 𝜃̅𝜃 is the mean of the 

actual values. We considered relative error metrics instead of absolute error metrics since 

different interestingness measures fall within different value ranges. 

𝑅𝑅𝑅𝑅𝑅𝑅 =
∑ �𝜃𝜃𝚤𝚤� − 𝜃𝜃𝑖𝑖�𝑁𝑁
𝑖𝑖=1

∑ �𝜃̅𝜃 − 𝜃𝜃𝑖𝑖�𝑁𝑁
𝑖𝑖=1

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ �𝜃𝜃𝚤𝚤� − 𝜃𝜃𝑖𝑖�
2𝑁𝑁

𝑖𝑖=1
∑ (𝜃̅𝜃 − 𝜃𝜃𝑖𝑖)2𝑁𝑁
𝑖𝑖=1
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Figure 3-1 Distribution of interestingness values for different interestingness measures 
applied to biomedical datasets 1991-2000 

3.7 Experiments 

In this section, we evaluate the supervised ranking approach using different 

interestingness measures to select the interesting predictions from among all the predicted 

links. As a preliminary step, we studied the similarity between all the interestingness 

measures used in this paper. Later, we conducted the experiment using the supervised 

method to filter the interesting links. We evaluated two approaches: 

• Predicting the interestingness scores of the predicted links. 

• Predicting the ranking of interesting links from all predicted links. 

Interestingness methods and their correlation. For any given dataset, we calculated 

interestingness using all the measures listed in  Table 3-1and transformed these scores into 

ranks of predicted links. Some of the predicted links may have the same scores and hence the 
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same ranking. To measure the similarity between two ranked lists generated using different 

measures, we adopted the Kendall’s tau correlation, as discussed above. 

 

Figure 3-2  Kendall’s tau correlation score for different interestingness measures 

This correlation study helps us to understand the agreement and disagreement 

between the different measures. The Kendall’s tau correlation score ranges from 0 (which 

implies that the measures agree in every case) to 1 (where the measures disagree completely). 

These correlation scores are illustrated in Figure 3-2, where the circles represent the 

correlation between different measures and the colors of the circles represent the discrete 

values of the scores. For instance, we can see from Figure 3-2 that “Information Gain” has 

the most similar rankings in contrast to “Least Contradiction”, “Coherence” and “Odd 

Multiplier” and that the “Loevinger” measure mostly disagrees with other measures. 

Predicting interestingness scores. To predict the interestingness scores for the 

predicted links, our proposed method uses topological features. For this experiment, we 

generated a labeled dataset for each measure as described above.  



48 

We applied the M5P regression algorithm [50] to train a model for each dataset. We 

evaluated the model using 10-fold cross-validation and computed the relative absolute error 

and root relative error. Figure 3-3 shows the results of the score predictions using the 

regression model. The results show that the relative absolute error varies from 30% to 85% 

and the root relative squared error varies from 40% to 140%. Even though the “Information 

Gain” measure shows relatively less error in predicting the interesting scores, it is still not 

encouraging. Hence, we conclude that trying to predict the scores directly is not feasible.  

 

Figure 3-3  Ranking using predicted interestingness 

Predicting interestingness ranks. For this experiment, we predicted the rank of the 

link instead of the actual score. We translated the predicted scores into rankings by ordering 

the links based on score. We evaluated the similarity of the top 100 instances of actual and 

predicted rankings using the Kendall’s tau measure presented in the previous section. 

Figure 3-4 illustrates the Kendall’s tau score of the different interestingness measures, 

which vary from 0 to 0.45. The results show that the “Zhang” measure was able to predict the 

interestingness rankings of the links. Along with the “Zhang” measure, the “Information 

Gain”, “Piatetsky-Shapiro” and “Klongen” measures showed promising results. 
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Figure 3-4 Ranking using predicted interestingness 

We also evaluated the different values of the top k instances. Figure 3-5 illustrates the 

Kendall’s tau scores when the number of top instances is increased from 100 to 1000 

instances. We observed that the score is constant for different numbers of instances. 

 

Figure 3-5 Normalized Kendall’s tau score for the top k instances varying from top 100 to 
top 1000. 

3.8 Conclusions 

This paper proposes a supervised method for ranking predicted links using an 

interestingness measure. We evaluated the proposed method on MEDLINE data, by ranking 

future links between two medical concepts. We also studied the correlations between several 

interestingness measures and found some indication that some of the measures rank links 

similarly. We show that predicting the ranking of future links using interestingness measures 

is more precise than predicting the actual score.  
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A number of avenues are identified for future work. First, this work must be applied 

to additional domains, such as social networks and citation graphs, in order to test the domain 

independence of the approach. Second, only thirteen interestingness measures were used. 

Ideally, we should evaluate the possibility of ranking predicted links using all the 

interestingness measures found in the literature. Third, we should investigate how well the 

rankings generated from the interestingness measures correlate with the expectations of 

domain experts. 
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4 . Link Prediction using an Incremental Learning Approach 

4.1 Introduction 

In recent years, the link prediction problem, which concerns predicting the missing 

relationships in a network, has captured the attention of many researchers. The link 

prediction problem involves predicting the future association between nodes based on the 

observed features of links and nodes. Link prediction is studied extensively in relation to 

social networks, where it is used to predict missing information and to recommend 

communities, friends or topics of interest. It has also examined in other domains such as e-

commerce and biomedicine. In e-commerce [51], link prediction is used to recommend 

content to users by analyzing the user and item network. In the biomedical domain [2], link 

prediction helps to predict interactions between proteins and pathways in metabolic 

networks.  

Several link prediction methodologies have been proposed in the literature. Most of 

these use supervised learning approaches to predict future links [7][17][52]. Katukuri et al. 

[7] present a comprehensive study of a supervised link prediction model for large-scale 

concept networks extracted from biomedical literature. Several neighborhood and proximity 

features are extracted from the large-scale temporal concept network.  

An expensive step in link prediction methodologies is the generation and updating of 

the prediction model using supervised learning. Typically, the prediction model is trained 

every time new data arrives. These approaches have the following drawbacks:  

• The trained predicted model only uses recent data 
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• Retraining the model using the entire historical information is computationally 

expensive 

• Removing the historical data and training the model only on the new data results in an 

incoherent model, due to a lack of historical information 

Ade et al. describe two traditional incremental learning approaches: data 

accumulation and ensemble learning [53]. The data accumulation approach gathers both the 

new data and previous information to retrain a new model. The ensemble approach generates 

a new model using the new data and keeps the previous models active for final decision-

making based on a voting mechanism. In the accumulation approach, the dataset for training 

the model grows gradually. The ensemble method entails developing a set of sub-models for 

each dataset, while a final weighted voting policy predicts the links in the future concept 

network. The hybrid method uses accumulated data, selected based on the ensemble method. 

The main goal of our work is to predict links in a future concept network using an 

incremental support vector machine (SVM) trained by the feature sets extracted from the 

temporal concept networks. Unlike previous link prediction methods, incremental learning 

can update the link prediction model online according to a large stream of data. The link 

prediction model can be adjusted to the new temporal data remarkably fast. Additionally, the 

incremental learning approach performs as accurately as the computationally expensive, 

conventional learning approaches. Therefore, fact that the dataset is both vast and temporal is 

not problematic when the incremental learning approach is employed. This investigation 

explores three incremental learning strategies that address the link prediction problem: data 

accumulation, ensemble learning and the hybrid method. 



53 

4.2 Related Work 

Link prediction has been studied widely in relation to social networks. The problem 

of link prediction was first introduced by Liben-Nowell et al. [1], who proposed a 

methodology to predict the missing link in a social network using the network properties of a 

node pair. Similarly, Tao Zhou et al. [33] and Lei et al. [34] used the network structural 

features of protein-protein interaction networks to predict the missing links between the 

proteins. The above methods use individual network features as a predictor to determine the 

formation of new links. By contrast, supervised methods use different features to predict the 

future formation of a link. Hasan et al. [17] propose a supervised link prediction method 

using topological features extracted from the network to build a binary classifier for 

predicting the possibility of a new link. O’Madadhain et al. [35] propose a joint probabilistic 

model for link prediction using topological features and node attributes. Link prediction is 

also applied in LBD, where knowledge is modeled as a network and a hypothesis predicting a 

link between two knowledge entries is generated. Katukuri at el [7] propose a supervised link 

discovery method to generate hypotheses from a biomedical concept network. A biomedical 

concept network was built from MEDLINE dataset using the biomedical concepts that 

appeared in publications as nodes and the co-occurrence of concepts in the same publication 

as edges.  

Several investigations that address incremental learning from the perspectives of 

unsupervised approach [54], supervised neural networks [55], genetic algorithm [56], and 

SVM [57][58][59] report its success on large online data streams. Yang et al. [60] propose an 

incremental SVM methodology combining classifiers using the voting principle. 
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4.3 Background 

Definition: An SVM is a statistical pattern recognition approach which classifies 

instances into different classes using decision boundaries with maximum margin (minimum 

risk, Eq. 1) [61]. The problem of minimizing the risk is equivalent to the Lagrangian 

optimization (Eq. 2). Additionally, to increase the power of classification for non-linearly 

separable data, a convenient kernel function can be used to map the data to a larger feature 

space. 
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Thus, the hyperplane (which separates two classes) is obtained by using the following 

equations 
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where the non-zero λi specifies the support vectors (SV) forming the category 

boundary. This means that the hyperplane's location is specified via samples that are located 

close to the decision boundary (SV). 

Training time complexity: According to the literature on the popular SVM library 

LibSVM, the training time complexity of the SVM model is directly related to the number of 

samples used in the training process [62]. The LibSVM time complexity has been reported as 

(1) 

(3) 

(4) 
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O (n3), which means that the redundant data elimination results in a drastic reduction in the 

training time complexity.  

4.4 Incremental SVM  

Support Vector Machines are computationally expensive learning algorithm for 

modeling large-scale data. Therefore, an incremental SVM is required to handle datasets that 

are a large and dynamic. The rest of this section explains the three incremental SVM 

approaches used in link prediction. 

The accumulation method. Support Vector Machines have proved to perform well 

with high generalization ability on a vast variety of pattern recognition problems[63]. Due to 

the success of SVMs in categorizing and summarizing data in the form of support vectors, it 

is easy to sample large data streams [57][64]. An initial SVM model is trained using the 

initial dataset. As mentioned before, the location of the optimal hyperplane is only related to 

the linear combination of support vectors [65]. Thus, the support vectors are effective 

samples for future learning processes. Various incremental SVM algorithms are based on 

updating the model using concise and useful data as support vectors [57][66][59]. Syed et al. 

[57] develops an incremental SVM method whereby only the support vectors at each 

incremental step are preserved. Therefore, the support vectors of the initial model in 

combination with the next dataset form a new training dataset. The accumulation method is 

similar to the standard SVM batch learning process [57]. At each step, the obtained model 

represents the current data properties and the historical data characteristics through support 

vectors. Figure 4-1 shows the incremental SVM learning process using the accumulation 

methodology. 
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Figure 4-1 Incremental SVM based on accumulation method 

The ensemble method. Unlike the accumulation method, the ensemble method does 

not use support vectors to sample historical data. For each new dataset (p), data are used to 

train a new model without modifying or retraining the previously trained models. Thus, M 

sets of SVM models are obtained corresponding to the new dataset batches in a given time 

duration T. The set of models learning in a given time duration is referred to as a package 

(P). Figure 4-2 shows the procedure for incremental SVM learning using he ensemble 

method. 

 
Predicting a link between a pair of concept nodes in a concept graph is achieved using 

a voting policy that considers all the SVM models (P×M models). As the datasets are 

available at different time intervals, the P model sets may have different impacts on link 

prediction. To address this problem, a weighted voting method is defined in Equation 5 to 

predict the link with respect to the feature vector x 
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where wi is the weight given to the model’s prediction in package i. Si and Ci are the 

numbers of SVM models that have respectively predicted and not predicted the link in the 

package i. The positive prediction value, L>0, indicates that the link exists.  

The model’s weight (wi) influences prediction of the future link. To grant more 

importance to the most recent data, recent models are granted more weight than historical 

models. In this investigation, we examine three weight functions: uniform, linear, and 

exponential decay. The uniform function ascribes the same weight to the models. The linear 

and exponential decay functions ascribe less weight to older datasets. The ensemble voting 

weights for the data packages obtained from T1 through Tp are calculated as follows 

1 , Uniform
1 , Linear; 0 1

, Exponential
0 , o.w

i at

bt bt
w

e−


 − ≤ ≤= 

  

(6) 

 

where a and b are constant parameters and t denotes the time distance (a decimal 

number in the range 0 to P) between the current state (P) and the data package arrival time (i) 

which is obtained by t=P-i. 

 

Figure 4-2 Incremental SVM learning process using the ensemble method. The data sets of 
interval a for time period Tb is represented 
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The hybrid method. The hybrid method combines the benefits of both the 

accumulation and the ensemble methods to update the SVM model incrementally. Historical 

information is sampled using support vectors obtained from preceding individual SVM 

models. In the hybrid method, each data package contributes to an SVM model containing 

support vectors. Updating the model at TP (using data package P) requires an accumulated 

dataset consisting of the new data package and the support vectors sampled from the previous 

models.  

 

Figure 4-3 Incremental SVM learning using hybrid method. The data packages are available 
in order of T1 through Tp. 

There are two approaches that can be adopted for sampling support vectors: 1) all the 

support vectors can be taken into account, or 2) the support vectors of each SVM model can 

be sampled. The first approach is a specific version of the second one when the sampling rate 

is set to 1 (uniform function). The sampling rate is analogous to the weight function defined 

for the ensemble method. As a specific example, at T3, the accumulated training data includes 

data-package-3, w2 portion of the support vectors of the SVM2, and w1 portion of the support 

vectors of the SVM1. The sampling rates (w1 and w2) in the linear and the exponential decay 
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functions are in the range (0, 1) such that w2>w1. Figure 4-3 depicts the procedure for 

incremental learning using the proposed hybrid method. 

4.5 Experiments and Results  

The proposed incremental SVMs are evaluated using the temporal datasets (say T1 

through T5) and the measures “accuracy of prediction” and “learning time complexity.” In 

this paper, the learning time complexity (O(n3)) unit is 1012 (Tera) instructions (TI).  

Data preparation. For these experiments, the MEDLINE dataset is used to create the 

training datasets. The training datasets are prepared using the procedure discussed in Chapter 

2. Table 4-1 shows the datasets and the corresponding time durations. 

Table 4-1 Datasets used in the experiments. 

Time Interval Training Snapshot Labeling Snapshot 

T1 1991-1993 1994-1996 

T2 1994-1996 1997-1999 

T3 1997-1999 2000-2002 

T4 2000-2002 2003-2005 

T5 2003-2005 2006-2008 

 

Baseline experiment using batch mode learning. To assess the performance of the 

incremental SVM, we conduct a baseline experiment using the conventional SVM model 

(batch mode learning) for the link prediction problem. In batch mode learning, at any given 

time period, the data instances are accumulated from all previous time periods. We use 10-

fold cross-validation to evaluate the performance of the prediction model. The model’s 

performances metrics are shown in Table 4-2 along with the time complexity of learning the 

models. This table reports the performance of the conventional SVM learning model, which 
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re-trains all the data instances to learn the link prediction model. The learning time 

complexity increases up to 66.4 TI and no significant improvement in accuracy is observed. 

Experiments for the accumulation method. Initially, an SVM model is trained by 

the first dataset at T1 and is then updated by the new data package at T2 using the 

accumulation method. This is repeated for the datasets at T3 and T4. Although the model’s 

size gradually increases, it is smaller than the model trained by the batch mode learning. 

Table 4-3 shows the model’s accuracy and time complexity of learning in increments. As 

observed, the accuracy is close to the batch learning model. However, the learning time 

complexity of the accumulation method at T4 (when all the data packages are available) is 2.7 

times less than the batch mode learning. 

Table 4-2 The link prediction performance reported by the conventional SVM model 

Time interval Positive Recall Positive Precision Accuracy Time complexity (TI) 

T1 73.3 72.2 72.1 1.0 

T1-T2 77.6 71.5 72.6 8.3 

T1-T3 79.3 70.3 72.3 28.0 

T1-T4 71.8 74.6 73.7 66.4 

 

The initial results show the success of the incremental learning approach, which 

preserves only a subset of the historical information for the model adaptation. However, one 

drawback of this model is the large number of support vectors extracted from the trained 

model (about half the data package). Therefore, updating the model is still time-consuming. 

To make the learning process faster, two approaches based on the ensemble method and the 

sampling method are introduced in the following sections. 
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Table 4-3 The link prediction performance reported by the incremental SVM model using 
the accumulation method. 

Time interval Recall Precision Fall out Accuracy Time complexity 

T1 73.3 72.2 29.4 72.1 1.0 

T1-T2 77.4 71.6 32.5 72.5 4.6 

T1-T3 80.1 70.1 35.9 72.1 11.2 

T1-T4 72.1 75.2 23.7 74.2 24.1 

 

Experiments for the ensemble method. In this method, we demonstrate: 

•  The potential of the ensemble approach for decision-making 

•  The impact of historical data on the link prediction problem.  

The data in each time period was divided into 5 sub-datasets for training the 

corresponding SVM models referred to as a package. Each sub-dataset is used to generate the 

model; the learning time complexity is much less than for previous methods. However, the 

prediction phase entails more computations to find the most likely predicted link. To vote 

among the models, we use three weight functions: uniform, linear decay and exponential 

decay. 

 Uniform weight function. This method ascribes the same weight to all the historical 

information, which is represented by individual SVM model sets. Table 4-4 shows the 

ensemble method’s performance using the uniform weight function.  

Linear decay weight function. Using the linear decay weight function (Equation 6), 

the most recent data package is assigned the largest weight (1) and the oldest package is 

assigned the smallest weight (0.25). 
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Table 4-4 The link prediction performance reported by the incremental SVM model using 
the ensemble method and the uniform weight function. 

Data Model set weights Accuracy Time complexity 

T1 1 71.6 0.01 

T1-T2 1, 1 71.5 0.01 

T1-T3 1, 1, 1 71.6 0.01 

T1-T4 1, 1, 1, 1 72.1 0.01 

 

Table 4-5 shows the ensemble method’s performance using the linear decay weight 

function. The results reveal that current data has more impact on future links than historical 

information does. Therefore, very old information can be eliminated to make the training 

phase faster. 

Table 4-5 The link prediction performance reported by the incremental SVM model using 
the ensemble method and the linear decay weight function 

Data Model set weights Accuracy Time complexity (TI) 

T1 1 71.6 0.01 

T1-T2 0.75, 1 71.7 0.01 

T1-T3 0.5, 0.75, 1 71.7 0.01 

T1-T4 0.25, 0.5, 0.75, 1 72.5 0.01 

 

 Exponential decay weight function. As mentioned above, the most recent data has 

the greatest effect on link prediction. The exponential decay weight function computes a 

sharp weight reduction trajectory. To assess the impact of historical information, eight 

exponential decay functions obtained by Equation 10 with parameters a= {0.25, 0.5, 0.75, 1, 

1.25, 1.5, 1.75, 2} were examined. Figure 4-4 shows the weight functions calculated by 



63 

Equation 10. Table 4-6 shows the performance of the ensemble method using eight 

exponential decay functions.  

 

Figure 4-4 Uniform, linear, and exponential weight functions used in the voting policy for 
the ensemble method. 

Table 4-6 The link prediction performance reported by the incremental SVM model using 
the ensemble method and the exponential decay weight function 

Data Accuracy (%) 

a 0.25 0.5 0.75 1 1.25 1.5 1.75 2 

T1 71.6 71.6 71.6 71.6 71.6 71.6 71.6 71.6 

T1-T2 71.7 71.7 71.6 71.6 71.6 71.6 71.5 71.5 

T1-T3 71.7 72.1 71.8 71.8 71.8 71.8 71.7 71.6 

T1-T4 72.5 72.5 72.7 72.7 72.7 72.7 72.5 72.5 

Average 71.9 72.1 72.0 72.0 72.0 72.0 71.9 71.8 

 
Table 4-6 shows that the exponential decay functions where the parameter a is in the 

range (0.5, 1.5) perform better. This range mostly concerns the current data package. 

However, it neither ignores historical information (a≥1.75) nor relies heavily on historical 

information (a≤0.25).  

To compare the weight functions used for the voting, Table 4-4 and Table 4-5 show 

detailed and average accuracy rates of the ensemble method using the uniform, linear decay, 
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and exponential decay weight functions. The exponential decay function where the parameter 

a was close to 1 outperformed the other weight functions. 

 

 

Figure 4-5 Accuracy of the ensemble method using the uniform, linear decay and 
exponential decay weight functions for voting. The results were exhibited for two, three, and 

four temporal data packages. 

 

Experiments for the hybrid method. The ensemble method was fast learning and 

reported classification accuracy comparable with both the accumulation method and the 

baseline experiment. However, in the prediction phase voting among the different models 

was computationally more expensive than using a single model. Additionally, we learned 

from the ensemble method that link prediction is heavily influenced by the most recent data. 

The hybrid method uses both the accumulation approach and the ensemble approach. Similar 

to the accumulation approach, the hybrid method uses the support vectors obtained from the 

previous models and samples them in a similar way to the ensemble approach. 

Table 4-7 shows the hybrid method’s performance with linear decay sampling. Table 

4-8 shows the performance of the hybrid method using exponential decay sampling. The 

results show that the hybrid method is remarkably efficient and its accuracy is close to that of 
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batch mode learning. The learning process of the hybrid method at the final step (T1-T4) is 

25.5 times faster than that of batch mode learning. Furthermore, the hybrid method 

performance is slightly better than that of the other approaches.  

Table 4-7 The link prediction performance reported by the incremental SVM model using 
the hybrid method and linear decay sampling. 

Data Recall Precision Fall out Accuracy Time complexity 

T1 73.3 72.2 29.4 72.1 1.0 

T1-T2 76.7 71.5 32.3 72.3 3.4 

T1-T3 79.8 70.0 35.9 72.0 6.0 

T1-T4 71.4 74.7 24.2 73.6 7.8 

 

Figure 4-6 illustrates the accuracy rates and learning time complexities (components 

of the performance) reported for batch mode learning, the accumulation method, and the 

hybrid method. This figure shows the power of support vectors for sampling historical 

information.  

Table 4-8 The link prediction performance reported by the incremental SVM model using 
the hybrid method and exponential decay sampling. 

Data Recall Precision Fall out Accuracy Time complexity 

T1 73.3 72.2 29.4 72.1 1.0 

T1-T2 77.0 71.2 33.0 72.1 2.0 

T1-T3 79.3 70.2 35.5 72.0 2.4 

T1-T4 72.3 74.4 24.9 73.7 2.6 

 

Figure 4-6 shows that the hybrid model predicts the links between concept nodes as 

accurately as the conventional SVM (which uses all the information). However, the learning 

time complexity of the hybrid model is dramatically lower. Therefore, we achieved a 
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desirable accuracy rate using the hybrid model, for which the training data only contained a 

portion of the previous data packages. Thus, the incremental SVM was deemed an efficient 

model. 

 

Figure 4-6 Performance of batch mode learning (all data), accumulation method (including 
support vectors), and two hybrid methods using linear decay (including linear support 

vectors) and exponential decay (including exponential support vectors) sampling in terms of 
accuracy rate and learning time complexity 

4.6 Conclusion 

This chapter proposes applying an incremental learning approach for the link 

prediction problem to the network concepts extracted from the biomedical literature. 

Specifically, three approaches to incremental SVM learning are proposed: 1) the 

accumulation method, 2) the ensemble method, and 3) the hybrid method. The accumulation 

method uses preserved information (as support vectors) and new data to update the model. 

The ensemble method creates a series of sub-models and predicts the link based on a voting 

system across sub-models. The hybrid method combines the benefits of the two previous 

methods, in which the support vectors are sampled and accumulated for updating the SVM 

model. The support vectors in the hybrid method are sampled using a weight function (linear 
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decay or exponential decay) to represent historical information such that the recent data has a 

greater effect on link prediction.  

The experiment results show that historical information sampling using exponential 

decay weights outperforms the other methods. Furthermore, the accuracy of the incremental 

SVM was comparable to the computationally expensive model trained by the conventional 

SVM. Our future work includes using the incremental learning approach for large streaming 

datasets.
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5 . Link Discovery Using Iterative Link Classification 

5.1 Introduction 

In recent years, mining complex networks, known as graph mining, has drawn 

significant attention in the area of data mining. Due to its capacity for representing 

relationships in data and the theoretical and algorithmic advances in graph theory, graph 

mining has gained relevance in several domains including biomedicine, social media, and e-

commerce. It offers a way of understanding relationships among entities in data. Link 

prediction, the predicting of a possible future association between any two entities in a 

network that are not currently associated, is one of the most common graph mining 

techniques used to predict friendship or follower relationships in social network data. Link 

prediction has been adapted for various other applications, such as predicting protein 

interactions in protein-protein interaction networks [67], identifying spurious links caused by 

inaccurate or incomplete information in networks [68][69], and as a collaborative filtering 

mechanism in e-commerce [70]. 

Link prediction generally uses various types of network structure information to 

predict the relationships among the entities in the network. Some studies have included 

semantic and domain-specific information as well as topological measures to predict links. In 

both cases, link prediction methodologies have proved reasonably accurate in forecasting 

unknown relationships in networks based on the past or present topological structure of 

networks.  

Link prediction can also be considered a way of predicting the future state of an 

evolving network by predicting new links. This provides an opportunity to work on the 
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evolved network before it actually evolves. In this work, we introduce an iterative 

classification-based link prediction methodology that propagates knowledge of predicted 

links by adding these links to the network. 

The hypothesis underlying our approach is that if adding new information, in this case 

predicted links, to a network changes the neighborhood of a node pair, then this can increase 

the proximity (closeness) between nodes that were weak in the first place. Let us take social 

networks as an example. Social networks evolve rapidly through the addition of new 

relationships, which changes the topology of the subgraph that includes the users connected 

through these new relationships. Inferring a new relationship between user A and user B can 

increase the probability of new links forming between the friends of users A and B. This 

premise can be applied to several other networks, including user-item networks in 

recommendation systems and security analysis in covert networks. In recommendation 

systems, if we predict that a user will buy an item, we can recommend more items that may 

not have been possible to relate to the user without that initial prediction. In a covert network, 

if we can predict the interaction between persons using an iterative approach we can infer 

relationships between their associates. 

An initial premise behind our iterative classification-based approach is that only 

predictions made with initially with high confidence should be considered candidates for 

addition into the network as actual links. This helps to predict more promising links in the 

network in subsequent iterations. Such an iterative method improves the possibility of 

predicting the relationships that are not possible to identify from the structure of the network 

in an initial iteration. In an iterative classifier scheme, a classifier is used iteratively to assign 

labels to unlabeled links and is trained using features and labels of known nodes. Our 
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experimental results prove that iterative link prediction improves the accuracy of link 

prediction.  

In this paper, we propose a link-propagation-based, supervised approach to boost the 

performance of link prediction. In this approach, a model is trained using the structural 

features of the network and then, for test purposes, applied to node pairs that are not 

associated in the updated network. The relations predicted with high probability are accepted 

as valid and added to the data as known links. The updated network is used to compute the 

features for next iteration. We expected that iteratively applying the link prediction algorithm 

would increase the possibility of predicting relationships that were missed in the previous 

prediction step. The evolution of the network involves both the addition of new links and the 

removal of existing links. Therefore, we wanted to investigate the possible effects of 

updating the graph by removing links that we predicted would disappear as well as adding 

predicted links. We also proposed a supervised approach for predicting links that would 

disappear using the topological measures extracted from the network. We evaluated the 

impact of links disappearing on our iterative model by using both the model for predicting 

disappearing links and the link prediction model to update the graph in each iteration. 

To the best of our knowledge, ours is the first work to propose a link-propagation-

based, iterative classification approach for predicting new links. The rest of the paper is 

organized as follows. Section 5.2 addresses recent studies on link prediction and iterative 

classification. Our approach is explained in detail in Section 5.3. Section 5.4 describes the 

experimental setup. The results of the hypothesis testing using MEDLINE data are discussed 

in Section 5.5. In Section 5.6, we discuss how the results of our iterative classification 
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approach might be adapted for different domain networks, including co-authorship networks 

and protein-protein interaction networks. Finally, we present our conclusions in Section 5.7. 

5.2 Related Work 

Iterative classification. Iterative classifier algorithms have become an important 

research topic in the area of node classification. The basic idea behind iterative classification 

is that the node labels are predicted iteratively: the classifier makes an inference and uses that 

inference to make further inferences. Chakrabarti et al. [71] propose a method for classifying 

hypertext into a topic hierarchy. This model uses the local text in the document and the text 

from the related neighbor objects to improve the accuracy of classification. Neville et al. 

proposes an iterative classification method, updating entities’ attributes iteratively and 

making inferences about entities in relational data [72]. The experiment results showed a 

significant increase in accuracy when the inferences made in the initial iteration are fed back. 

Heß and Kushmerick [73] propose an iterative classification for relational data that is similar 

to the method proposed by Neville et al. [72]. Unlike the approach proposed by Neville et al.  

[72], their method built separate classifiers for intrinsic and extrinsic features and used an 

ensemble approach to make a decision. In the process of identifying covert sub-networks, 

Galstyam and Cohen [74] propose an iterative node classification algorithm to classify 

groups of individuals within a large population.  

Link Prediction. Liben-Nowell and Kleinberg[1] first introduced the concept of 

predicting new links in a network using the topological features of the network as prediction 

measures. Experiments demonstrated that several individual topological features outperform 

random predictors in predicting future links. Hasan et al. [17] propose a supervised link 

prediction method; instead of using an individual predictor, they propose a binary classifier 
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which uses all the topological features as feature set. This follows several feature-based 

classification methods that use topological features[75][76], social features [77], and node 

attributes[78]. Several probabilistic methods use a probabilistic graph model, where each 

node pair is assign a probability based on their similarities and a transition probability in 

random walk[5][79]. Kashima et al. [80] propose a semi-supervised link prediction algorithm 

based on node information, which uses label propagation for predicting links in a network. 

To apply label propagation, they model a node pair into triplets (node, node, type). They 

predict the missing information in the triplets by applying the label propagation method on 

them. One of the major differences between this and our approach is that we propagate 

predicted link information in every iteration rather than propagating node attributes or labels 

to predict the similarity. The purpose of our work is not just to predict the links in a static 

network but also to use these predictions to predict relationships in future evolved networks. 

In the following section, we discuss the methodology of link-propagation-based prediction. 

5.3 Iterative Link Classification 

In this section, we introduce an iterative-based approach to predicting future 

associations among nodes in a network. Given that a new link changes the topological 

features that were originally used for training the model, it is possible that using topological 

features along with the new predicted links can help improve the predictive performance of a 

link prediction model. 

Understanding iterative link classification. A supervised link prediction method 

uses the topological features from a current snapshot of a graph. With dynamic or 

evolutionary graphs, a new link changes the topological features of the graph. In some cases, 

these new links can significantly change topological features such as distance, centrality, 
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neighborhood, etc. An iterative link classification approach uses these new topological 

features that are generated by adding the predicted links in the graph. Therefore, one of the 

necessary conditions is that the addition of new links changes the topology of the network. 

With iterative link prediction, we use “predicted links” (i.e., links classified as true in 

the prior iteration) as actual links in the new iteration. This introduces an element of 

uncertainty because these links are only predicted and may or may not appear in future. 

Therefore, it is important that only links that are classified as positive with high confidence 

are added. The predictive performance of the base classifier is also important. It is vital to 

select a sound base classifier and to only included predicted links with high confidence to 

reduce error accumulation in an iterative classification model.  

Methodology. Algorithm 1 presents the iterative link classification approach for 

predicting the formation of links in a network. The network is denoted by G = (N, E), where 

N is a node set and E is an edge set. The training dataset (T) and the testing dataset (τ) consist 

of node pairs that are not connected in the current state of the network. Each instance in the 

datasets consists of the topological similarities between the node pair along with the known 

label.  

Training model. An initial model is trained to predict the possibility of link formation 

using the training dataset (step 1). We train the model once and use it iteratively to predict 

the links.  
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Feature extraction. A set of features (Φ) is extracted from the network (Step 2a). The 

feature set is composed of both neighborhood and proximity features:  

• Common Neighbors[29]: This is a simple and direct approach to measuring the 

similarity between two nodes. Let the two nodes be s and t. The number of neighbors 

that are common to them represents the similarity. The similarity score is defined as  

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶(𝑠𝑠, 𝑡𝑡) = |𝜏𝜏(𝑠𝑠) ∩ 𝜏𝜏(𝑡𝑡)| 

• Adamic/Adar [30]: The Adamic and Adar measure is like the common neighbors 

measure but weighs the common neighbors: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴(𝑠𝑠, 𝑡𝑡) = �
1

log|𝜏𝜏(𝑧𝑧)|𝑧𝑧𝑧𝑧𝑧𝑧(𝑠𝑠)∩𝜏𝜏(𝑡𝑡)
 

• Jaccard Coefficient [31]: The Jaccard coefficient is commonly used in information 

retrieval to measure the similarity between two sets. It measures the probability that a 

selected node from the union of two neighborhoods is in both neighborhoods.  

Input: Graph G, training dataset (Τ), testing dataset (τ), Number of 

iteration (N) 

1. Train classifier using T. 

2. At each iteration i: 

a. Compute the features for τ from G  

b. Apply classifier on τ to predict links 

c. Update G with high confident links (L) 

3. Repeat Until i <= N or |L| > 0 

Algorithm 1: Iterative link classification 
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𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽(𝑠𝑠, 𝑡𝑡) =
|𝜏𝜏(𝑠𝑠) ∩ 𝜏𝜏(𝑠𝑠)|
|𝜏𝜏(𝑠𝑠) ∪ 𝜏𝜏(𝑠𝑠)| 

 

• Preferential Attachment[29]: Preferential Attachment models the growth of 

networks on the presumption that the node with the highest number of neighbors has 

the highest chance of being part of the newly formed edge. In our case, the score 

between two nodes is calculated as: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃𝑃𝑃(𝑠𝑠, 𝑡𝑡) =  |𝜏𝜏(𝑠𝑠)|. |𝜏𝜏(𝑡𝑡)| 

 

• Cycle-Free Effective Conductance (CFEC) [32]: The cycle-free effective 

conductance (CFEC) measures the proximity between two nodes in a network. The 

CFEC between the node s and t is formulated as 

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑠𝑠, 𝑡𝑡) =  𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠 .𝑃𝑃𝑐𝑐𝑐𝑐.𝑒𝑒𝑒𝑒𝑒𝑒(𝑠𝑠 → 𝑡𝑡) 

 

where 𝑑𝑑𝑒𝑒𝑒𝑒𝑠𝑠 denotes the degree of node s. The cycle-free escape probability 

𝑃𝑃𝑐𝑐𝑐𝑐.𝑒𝑒𝑒𝑒𝑒𝑒(𝑠𝑠 → 𝑡𝑡) is the probability that a random walk beginning at s will reach t without 

visiting any node more than once.  

𝑃𝑃𝑐𝑐𝑐𝑐.𝑒𝑒𝑒𝑒𝑒𝑒(𝑠𝑠 → 𝑡𝑡) =  � 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑟𝑟)
𝑟𝑟𝑟𝑟𝑟𝑟

 

where R is the set of simple paths between the nodes s and t. In a random walk, the 

probability of a path P (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑃𝑃)), where the transition probability from node i to node j is 

𝑝𝑝𝑖𝑖𝑖𝑖 =  𝑤𝑤𝑖𝑖𝑖𝑖

𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖
, is defined with the following equation: 
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𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑅𝑅) = �
𝑤𝑤𝑣𝑣𝑖𝑖𝑣𝑣𝑖𝑖+1
𝑑𝑑𝑑𝑑𝑑𝑑𝑣𝑣𝑖𝑖

𝑁𝑁

𝑖𝑖=1
 

Automatic labeling. uses both the current snapshot of the network at time t (Gf) and 

the network snapshot at time t+1 (Gs) to generate the labels for the training set. A node pair, 

which is not connected in Gf, is labeled as positive or negative depending on whether the link 

in Gs is strong or weak, respectively. The strength of the connection is determined as strong 

or weak based on the user-defined parameters minimum support(δ) and margin(η) [7]. The 

edge weight in Gs is represented by S: 

• Connection is strong if 𝑆𝑆 ≥  δ 

• Connection is emerging if η ×  δ ≤ 𝑆𝑆 < δ  

• Connection is weak if 𝑆𝑆 <  η ×  δ (or) 𝑁𝑁𝑁𝑁 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 

The training model is built only once during the initial phase, and this model is used 

during the subsequent link prediction phases for the updated graph. The process for 

iteratively updating the graph is presented in the next sub-section. 

Classifying the test data. The initial trained model is used to classify the unknown 

relationships among node pairs in the testing dataset (step 2b). To classify the test instances, 

we use the features extracted in step 2a.  

Identifying confidence links and updating the graph. Using the model, we classify 

several links in the test dataset as predicted links. Among these predicted links, a set of links 

with high confidence (L) are selected to add to the original graph as edges (Step 2c). High 

confidence predicted links are added to the graph. Updating the graph with the new predicted 

links changes the topology of the graph, which, in turn, modifies the features for every pair 

of nodes.  
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Termination condition. Step 2 is repeated until the termination condition is satisfied. 

The iterative prediction process is continued until there are no new links predicted to update 

the graph. It is not always guaranteed that this condition will be met. In such cases, we may 

choose to iterate for a fixed number of iterations. 

We propose two setting variants depending upon how the test dataset is handled in 

each iteration: selective and complete settings. Selective settings use instances that are not 

classified as predicted in the previous iteration. By contrast, complete settings consider all 

instances in every iteration, irrespective of whether they are classified as predicted links. 

Supervised method for predicting disappearance of links. Most networks evolve 

through the addition and deletion of links. To better forecast the evolution of a network, we 

need an approach that predicts the disappearance of existing links as well as the formation of 

new links. In this section, we propose an approach that uses the topology of the network to 

predict the disappearance of links. 

Similar to the link prediction method, we predict which links will disappear using 

features extracted from the network and model it as a classification problem. We extract the 

homogenous feature set for the node pairs in the training dataset as presented in the link 

prediction methodology. In order to generate the labels for the training data, we compare the 

current snapshot with the consecutive snapshot. For example, Gf and Gs are two snapshots 

generated from two consecutive time periods. Gf is used to extract features and Gs is used to 

generate the labels for the training data.  

In the training data, we consider the node pairs that are connected in the current 

snapshot (Gf) but may or may not continue to connect in the next snapshot (Gs). Labels are 

generated depending on the status of the connections in Gs. If the link is present in Gf and 
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continues to be present in Gs, we label it as “Stay” and if it is not present in Gs, we label it as 

“Disappear.” 

5.4 Experiment Setup 

Datasets considered for experiments. We evaluated the iterative links prediction 

using 3 datasets. These are presented below. 

MEDLINE Dataset. We generated the concept graph using the freely available 

published literature dataset from MEDLINE [13]. The MEDLINE dataset is curated by 

National Institute of Health and is available in XML file format. The dataset contains 

metadata about the publications, which includes information on authors, publishing dates, 

document ID (PMID), and keywords. The keywords are from MeSH (Medical Subject 

Headings) [28], a medical thesaurus curated by the National Library of Medicine. In a 

concept graph, we consider the keywords (medical concepts) as nodes and the co-occurrence 

relationships between the concepts as edges. The total number of publications a concept 

appears in is represented as the node weight and the number of documents in which any two 

concepts (nodes) are mentioned together is represented as the edge weight between concepts. 

For our experiments, we generated several snapshots of a graph using the literature 

published between the years 1991 to 2000, with each snapshot containing 3 years of data. 

Using these snapshots, we created training datasets as described in the supervised link 

prediction section. We divided each training dataset into five balanced datasets referred as d0 

to d4. 

Co-authorship dataset. The co-author network represents the collaboration of authors 

who publishing articles. In a co-author network, a node represents an author that has 

published at least one article and a collaboration between authors is considered an edge. The 
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number of articles published by an author is consider a node weight, and the number of 

articles two authors publish together is considered an edge weight.  

In this work, we generated the co-author networks from the Digital Bibliography & 

Library Project (DBLP) dataset for the period 1981 to 2010. We created multiple networks, 

each with duration of 10 years.  

Protein-Protein Interaction Dataset. Protein-Protein Interaction networks are key for 

understanding the interactions between proteins. We generated our protein interaction 

network from Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) 

database, which is one of the most extensive collections of known and predicted protein 

interaction data. The known sources are based on high-throughput lab experiments and 

knowledge from various databases such as Kyoto Encyclopedia of Genes and Genomes 

(KEGG). The interactions between the proteins are based on different prediction methods, 

including genomic context predictions and automated text mining. The dataset contains the 

pair of proteins and their scores based on evidence of their interaction derived from the 

corresponding data source. The scores range from 0-1000 based on the confidence of 

interaction, 0-150 means no or low confidence of interaction, and 900-1000 denotes the 

highest confidence of interaction.  

Experiments. We designed several experiments to assess the performance of our 

iterative link prediction methodology:  

• The performance of the model was evaluated based on accuracy, precision, and recall. 

We compared the performance of the typical supervised link prediction with our 

iterative algorithm. 
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• To evaluate the effect of the quality of the link added to network on the overall 

performance of the iterative algorithm, we filtered the links propagated to the next 

iteration using their classification probabilities.  

• We evaluated the proposed link prediction algorithm using two different learning 

approaches to build the training model: a C4.5 decision tree and a support vector 

machine (SVM). The rationale behind this evaluation was to study the effectiveness 

of our link prediction algorithm for different machine learning approaches.  

• We performed several experiments using knowledge of both link formation and the 

future disappearance of links to assess the impact of disappearing links on the 

performance of the iterative link classification model. 

Experimental setup. Our supervised link prediction uses the graph’s topological 

features to learn and predict the formation of new links. Initially, we build a model (m0) 

using the dataset (d0) to predict the formation of new links. Using this model, we iteratively 

perform the link classification on the datasets d1 to d4. The final evaluation metrics are the 

average of the individual performance metrics of all the data sets. 

The experiments are designed to evaluate the performance of the iterative link 

classification model compared to traditional link prediction. The results for the initial 

iteration are considered the results of a traditional link prediction model.  

We applied a C4.5 decision tree on the training dataset to generate a classifier model. 

We used evaluation metrics classification accuracy, precision, recall, and F1 score for 

evaluating the performance of the prediction models. 
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5.5 Experiment Results and Discussion 

Performance boost with iterative link prediction model. We evaluated our 

algorithm by comparing it with typical supervised link prediction. We consider five subsets 

of labeled data. In each experiment, we considered a subset for building a classifier and 

applied the iterative method on the remaining subsets. The evaluation metrics were 

calculated by averaging the results across experiments performed on multiple subsets of data. 

 

Figure 5-1 Classification accuracy, precision, and recall for the iterative algorithm in 
selective setting 

The classification accuracy, precision, and recall of the iterative classification 

approach is presented in Figure 5-1. As can be observed, the results show an increase in the 

accuracy of the prediction model from 72.89% for the initial iteration to 78.82% for the fifth 

iteration. This is due to the increase in the number of relevant links predicted (positive recall) 

from 75.18% to 88.18%. The increase in the recall after the first iteration suggests that our 

approach is able to predict more links based on the links during the first iteration.  

We repeat the same experiment for the complete setting. The results, shown in Figure 

5-2, demonstrate no change in performance between the selective and complete settings.  
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Figure 5-2 Classification accuracy, precision, and recall for the iterative algorithm in the 
complete setting. 

The confidence of added links on performance. This experiment is designed to 

evaluate the impact of confidence of links added to the graph on the overall performance of 

our iterative prediction model. We used class membership probabilities (CMP) to identify 

high confidence links in every iteration, which were then used to update the graph. In 

general, the classifier assigns a class label to an instance if the CMP of that class label is 

greater than 50%. We use the CMP given by the classifier as the confidence. 

In this set of experiments, we repeated the iterative link classification by varying the 

CMP threshold, which represents a confidence level from 30% to 90%. The results of the 

iterative link classification in both the selective and complete setting are plotted in Figure 5-3 

and Figure 5-4, respectively. In the selective setting, the addition of low confidence links to 

the graph resulted in a decrease in positive precision and an increase in positive recall 

compared to the 50% CMP baseline. Adding lower confidence links or noisy links into the 

network had a negative effect on the topology of the network, which strengthened the 

features of most of the positive and negative instances. This resulted in a model biased 

towards positive labels which increased false positives and reduced negative recall.  
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By contrast, a higher CMP threshold led to a reduction in the number of links added 

to the graph. Adding fewer links to the network did not affect the topology sufficiently to 

predict new links in subsequent iterations. Results show that a confidence threshold of 50% 

to 70% led the best link prediction performance. 

In the complete setting, the recall and precision were not affected by low confidence 

links, which suggests that the selective method is affected more by noisy links than the 

complete method.  

 

Figure 5-3 Performance of our prediction model, varying the confidence threshold from 30% 
to 90% in the selective setting 
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Figure 5-4 Performance of our prediction model, varying the confidence threshold from 30% 
to 90% in the complete setting 

Disappearing links. For each experiment, we used two models: one to predict the 

links that will form in the future and one to predict the links that will disappear in future. At 

each iteration, we update the graph by adding the links predicted and removing the links 

predicted to disappear from the network. 

Before incorporating the disappearing link prediction to our link prediction approach, 

we test the performance of the proposed supervised disappearing links model alone. The 

experiment tests for performance metrics, including accuracy, precision, recall, and F1 score. 

The results are plotted in Figure 5-5. Using our supervised model, we achieved an accuracy 

of 72.89% when predicting the disappearing links in a network. 
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Figure 5-5 The performance metrics for the supervised method for predicting disappearing 
links. 

 

 

Figure 5-6 Performance of our prediction model, varying the confidence threshold from 30% 
to 90% in the selective setting. We consider the links predicted and those predicted to 

disappear to update the graph in every iteration. 
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Figure 5-7 Performance of our prediction model, varying the confidence threshold from 30% 
to 90% in the complete setting. We consider the links predicted and those predicted to 

disappear to update the graph in every iteration. 

We then evaluated the disappearing link phenomenon in the iterative link prediction 

model. During every iteration, as well as adding high confidence links, we also remove high 

confidence disappearing links from the graph. The results of experiment carried out in both 

the selective and complete settings are plotted in Figure 5-6 and Figure 5-7. In both the 

settings, results show that removing disappearing links does not influence the overall 

performance of the prediction model when compared with adding predicted links alone.  

Different machine learning algorithms. To further assess the performance of our 

propagation model, we tested our approach using different machine learning algorithms. We 

considered an SVM and a C4.5 decision tree. Figure 5-8 and Figure 5-9 show the results for 

the machine learning algorithms, SVM and C4.5 decision tree, respectively. We observed an 

increase in accuracy of about 2-3% using the SVM compared to the C4.5 decision tree.  
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Figure 5-8 Classification metrics for propagation-based link prediction, using an SVM to 
train the model 

 

Figure 5-9 Classification evaluation metrics for iterative classification-based link prediction, 
using a C4.5 decision tree algorithm 

5.6 Iterative Classification on other Domains 

As discussed previously, link prediction applies to areas ranging from social network 

analysis to biomedical research. In this section, we validated our iterative classification 

approach on co-author data and on a protein dataset.  

Co-authorship network. We performed the iterative link classification on the co-

author network in both the selective and complete settings. The results, presented in  

Figure 5-10 and Figure 5-11, show an increase in accuracy from 75.48% for the 

traditional link prediction method to 78.53% for the iterative link classification method. 
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Protein-Protein Interaction Network. For this experiment, we validated our 

iterative link prediction algorithm, by applying it to the protein interaction network to predict 

the interactions among the proteins. We extracted the topological features from the network 

and created labels from the dataset. We labeled the data by comparing the scores of known 

relationships from the database to the experimental scores. A pair of proteins with low 

confidence in the known database source is labeled positive if it has high evidence of 

interaction in the experimental data source. Otherwise, we label it negative. 

The results of this experiment are presented for both selective and complete settings 

in Figure 5-12 and Figure 5-13, respectively. Using our methodology, we observed an 

increase in accuracy of approximately 1%. 

 

 

Figure 5-10 Classification accuracy, precision, and recall for the iterative algorithm on 
DBLP dataset with complete settings 
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Figure 5-11 Classification accuracy, precision, and recall for the iterative algorithm on 
DBLP dataset with selective settings 

 

Figure 5-12 Classification accuracy, precision, and recall for the iterative algorithm on 
protein-protein interaction network with complete settings 

 

Figure 5-13 Classification accuracy, precision, and recall for the iterative algorithm on 
protein-protein interaction network with selective settings 
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5.7 Conclusions and Future work 

Predicting the links in a network helps to give an indication of the future state of the 

network. This provides an opportunity to use knowledge of new link formations to improve 

the performance of prediction models. In this work, we propose a link-propagation-based 

prediction methodology that propagates the predicted knowledge of links by introducing the 

predicted links into the network. Our method uses several features extracted from the 

network to predict links. We propose two settings, selective and complete, based on how the 

test data is used in every iteration. Results show an increase in accuracy of 6-7% over single 

pass link prediction and a 10% increase in the prediction of relevant links. Our experiments 

show that the performance of model in the selective setting is influenced by the confidence 

level of links added to the graph. By contrast, the complete setting showed stable 

performance regardless of the confidence level of added links.  

We also tested the ability of the supervised link prediction model to predict the 

disappearance of links in a network. We used disappearing links as well as predicted links to 

update the graph in every iteration of our algorithm. Results show that considering link 

disappearance does not contribute to any improvement in the accuracy of the prediction 

model. We also applied SVM and C4.5 decision tree machine learning algorithms on our 

link-propagation-based method to compare the performance.  

We studied our methodology using two other datasets: co-authorship and PPI 

networks. For the co-authorship data, we observed about a 2-3% increase in overall accuracy 

compared to the typical link prediction approach. We did not find significant change in 

accuracy for the PPI network data. For future research, we intend to examine the 

characteristics of the new links formed using an iterative approach.  
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Whereas we currently use class membership probability of predicted links as a 

measure of the confidence level for adding links to the network, we will explore the 

possibility of using interestingness of predicted links as confidence level measures for 

selecting links to add in each iteration. 
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6 . Conclusions and Future Work 

6.1 Conclusions 

In the field of link analysis, link prediction plays a vital role in analyzing complex 

networks. Most link prediction algorithms use topological and statistical information about 

the network to predict the likelihood of future node associations. Earlier studies have 

proposed link prediction methods based on analysis of snapshots, which is not suitable for 

real-world networks, in which data is highly dynamic. In this work, we make several 

advances in bringing existing link prediction methods to work on real-time applications. We 

also propose a link-propagation-based link prediction method for improving the performance 

of the link prediction method proposed  by Katakuri et al. [7]. 

In Chapter 2, we studied the supervised link prediction methodology from a temporal 

perspective to address the following questions:  

• Does the performance of the link prediction model deteriorate over time?  

• How would the link prediction perform in a sliding window setting?  

For this study, we considered automating hypothesis discovery from biomedical 

literature. We also discussed various temporal aspects that had to be considered when 

evaluating link prediction models on a time-varying network. We designed several 

experiments to study the performance of models with regard to temporal aspects. Based on 

the experiment results, we observed the following: 

• When using a sliding window model, the durational size of the testing window should 

be commensurate with the durational size of the training window.  
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• Although the model’s performance begins to decline when temporal distance is 

increased, it is reasonably reliable for a short period of time, which eliminates the 

need to update the model at every instance of new data arrival. 

We Investigated three levels of semantic-type-based pruning: comprehensive, 

selective and precise. We studied the effects of pruning on the overall performance of the 

predictive model. We observed that the selective and precise settings yielded better results 

than the comprehensive setting. We also evaluated the link prediction approach by 

rediscovering the known de facto study cases. Using a comprehensive concept network, we 

able to discover only one out of six links from case studies. By contrast, the link prediction 

algorithm was able to uncover four of these links out of six using precise and selective 

pruning. 

While the proposed link prediction model predicts a significant number of possible 

links in a network at any given time, not all the predicted links are interesting. In several 

cases, it is vital to identify the most interesting links from among these predicted links. In 

real-world applications, it is advisable to suggest only the most interesting predictions. To 

achieve this, the predictions need to be ordered and ranked based on their interestingness.  

In Chapter 3, we propose a supervised method for ranking the predicted links using 

interestingness measures. This method uses several interestingness measures that are 

common in the field of data mining to identifying the interestingness of predicted links. We 

consider 13 different interestingness measures and studied the correlations between them. We 

observed that some of the measures ranked links similarly. We used a supervised method that 

uses the network features to predict scores and rankings. Our results show that methods for 
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predicting the rankings of predicted links using interestingness measures are more precise 

than those for predicting the actual scores.  

As previously stated, a link prediction model deteriorates over the time and needs to 

be regularly updated to accommodate recent data, while also preserving the historical 

patterns. In Chapter 4, we propose incremental learning approaches to the link prediction 

problem for use in predicting hypotheses on a concept graph. We used incremental support 

vector machine (SVM) learning with three different methods: 1) the accumulation method, 2) 

the ensemble method and 3) the hybrid method. For the accumulation method, information 

from the old model is preserved as support vectors and is used with the new data to update 

the model. For the ensemble method, a series of models is created at different durations and 

links are predicted based on a voting system using these models. We studied the ensemble 

method using different weighting functions: the uniform, linear decay and exponential decay 

functions. The hybrid method combines the benefits of the two previous methods in which 

the support vectors are sampled and accumulated for updating the SVM model. Sampling the 

support vectors in the hybrid method employs either the linear decay or exponential decay 

weighting function to represent the historical information so that recent data have a greater 

effect on link prediction.  

The experimental results showed that the accuracy of all incremental SVM methods 

was comparable to the computationally expensive model trained by the conventional SVM. 

Among the incremental methods proposed, the ensemble method showed the least time 

complexity.  

In Chapter 5, we proposed an iterative link classification methodology that propagates 

knowledge of predicted links by introducing the predicted links into the network. We 
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proposed two methods, namely selective and complete, based on how the test data is used in 

every iteration. We observed a significant increase in accuracy over the baseline link 

prediction method and a significant increase in the number of relevant links predicted. Our 

experiments show that the performance of the selective method is influenced by the 

confidence level of links that are added to the graph, whereas the complete setting exhibits a 

more stable performance regardless of the confidence level of added links.  

We also introduced a supervised link prediction model to predict the links likely to 

disappear in a network. That is, we used the predicted disappearing links along with the 

predicted links to update the graph in every iteration of our algorithm. We found that 

incorporating disappearing links does not increase the accuracy of the iterative link 

prediction model. We also applied SVM and C4.5 decision tree algorithms on our link-

propagation-based method to compare performance.  

We evaluated our iterative link prediction method on three domains: a concept 

network, a co-authorship network and a protein-protein interaction network. We observed an 

increase in accuracy compared to the traditional link prediction approach. 

6.2 Future Directions 

In this section, we describe future directions for our research. Although this 

dissertation has addressed several challenges in advancing link prediction methods for real-

time link prediction, our future research will extend the work on link prediction in the 

following directions: 

• We will continue to evaluate how frequently the model needs to be updated. 

Additionally, we will focus on the incremental approach for updating the model 

instead of retraining the entire model.  
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• We will explore adopting the ensemble approach, which uses multiple methodologies, 

to make better predictions instead of relying on a single method. 

• We will further examine the possibility of employing incremental learning 

approaches for large streaming datasets. 

• We intend to use the lessons learned from this research to develop a real-time 

distributed link prediction framework to handle graph stream data. 

• We will investigate the topological and temporal characteristics of additional links 

predicted using our iterative method.  

• We are currently using the class membership probability of predicted links as 

confidence measures to add links to the network. In the future, we will explore the 

possibility of using the interestingness of predicted links as confidence measures.  
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Abstract 

In recent years, link prediction has been applied to a wide range of real-world 

applications which often generate massive dynamic networks that require an effective real-

time approach to predicting the formation of future links. Traditionally, link prediction 

approaches utilize a single snapshot of a network to predict future links. However, real-world 

network data often evolves dynamically at a rapid pace by adding and removing links. 

Therefore, there is a need for a dynamic and online link prediction framework. This 

dissertation focuses on challenges and solutions with the aim of advancing a link prediction 

framework for use in real-time analytics.  

For real-time link prediction, the framework should 1) be reliable and accurate, 2) 

maintain learning models, and 3) calculate node similarities in real time. In a real-world 

application that deals with time-varying networks, it is important to understand predictive 

models in a time-varying context. In this work, we develop several guidelines for using 

prediction models in a dynamic network. We also propose an incremental support vector 

machine method for link prediction, which updates the model using the latest data available 

as well as historical information.  

While being able to forecast future links accurately is vital, another equally important 

problem is to identify the most important and relevant links among large numbers of future 
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links. To address this problem, we propose a domain-independent, supervised method that 

predicts the rank of future links using objective interestingness measures.  

We also propose an iterative link classification method, which updates the network 

using only predicted links with a high confidence level at each iteration. Using this method, 

we observed a significant improvement in accuracy and recall over the baseline link 

prediction method.  

Our proposed solutions address two out of the three requirements defined above, by 

focusing on maintaining the learning models and increasing the reliability and accuracy of 

link prediction in a dynamic network. In our future work, we plan to extend this research to 

address the final requirement by developing the approximation algorithms for computing 

similarity measures in large dynamic and streaming networks, in real time, using distributed 

computing frameworks. 
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