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Abstract: The absence of a conventional association between the cell–cell cohabitation and its emer-
gent dynamics into cliques during development has hindered our understanding of how cell popu-
lations proliferate, differentiate, and compete (i.e., the cell ecology). With the recent advancement
of single-cell RNA sequencing (RNA-seq), we can potentially describe such a link by constructing
network graphs that characterize the similarity of the gene expression profiles of the cell-specific
transcriptional programs and analyze these graphs systematically using the summary statistics given
by the algebraic topology. We propose single-cell topological simplicial analysis (scTSA). Applying
this approach to the single-cell gene expression profiles from local networks of cells in different
developmental stages with different outcomes reveals a previously unseen topology of cellular ecol-
ogy. These networks contain an abundance of cliques of single-cell profiles bound into cavities that
guide the emergence of more complicated habitation forms. We visualize these ecological patterns
with topological simplicial architectures of these networks, compared with the null models. Bench-
marked on the single-cell RNA-seq data of zebrafish embryogenesis spanning 38,731 cells, 25 cell
types, and 12 time steps, our approach highlights gastrulation as the most critical stage, consistent
with the consensus in developmental biology. As a nonlinear, model-independent, and unsupervised
framework, our approach can also be applied to tracing multi-scale cell lineage, identifying critical
stages, or creating pseudo-time series.

Keywords: topological data analysis; single-cell genomics; cellular development; cellular complexity

1. Introduction

In recent years, technological developments in data visualization, especially the sub-
field of topological data analysis (TDA), has illuminated the structure of biological data
with features such as clusters, holes, and skeletons across a range of scales [1]. The TDA
approach has proven to be especially useful with recent advancements in experimental
techniques at the single-cell resolution in both genomics and neuroscience, such as ra-
diomics [2] and brain imaging [3,4]. The utility of the topology comes from the idea of
persistence, which extracts the underlying structures within data while discarding noisy
elements in the single-cell data collection. Unlike graph-based data such as human connec-
tomes, most of the time, the high-dimensional data collected from single-cell techniques are
similiarity-based. Under the assumption that these data were sampled from an underlying
space X , the goal is to first approximate X with a combinatorial representation and then
compute some sort of invariant features to recover the topology ofX . For interested readers,
Refs. [5–7] are a few recent reviews of the applications of TDA in various field of biology,
Ref. [8] is a practical introduction and guide on how to apply TDA to data science and
understand its results, and [9] is a gentle introduction and tutorial to the computation of a
persistent homology.
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Single-cell topological data analysis (scTDA) is one of the first attempts to apply
topology-based computational analyses to study temporal, unbiased transcriptional regula-
tion given the single-cell RNA sequencing data [10]. In order to visualize the most invariant
features of the entire gene expression data, scTDA clusters low-dispersion genes with
significant gene connectivity according to their centroid in the topological representation
and visualizes the data points in a low-dimension space with the Mapper algorithm [11].
Computing the library complexity as the number of genes whose expression is detected
in a cell, scTDA observes a mild dependence by the library complexity on the timescale
of the single-cell data of 1529 cells collected at 5 time points. This is expected because
the number of genes expressed by cells in the early stages of a developmental process
is larger than in the adult case, as pointed out in [12]. As a result, in scTDA, the library
complexity is not used for any purpose in the topological data analysis and not related to
any topological properties.

Intuitively thinking, if we were to introduce a definition for “cell complexity” which
characterizes the behaviors of cell–cell co-expression or interactions, the quantities of cell
complexity should be agnostic to the number of genes expressed by the cells and should be
different across differentiated cells and across the developmental process. Can we introduce
a better summary statistic for the cell complexity that can capture the developmental trajec-
tory with more distinctions between time points? To clarify, unlike the previous definition
of “library complexity”, which simply quantifies the number of genes expressed in a cell,
we wish to define a cell complexity measure to better model higher-order networks and
dynamic interactions in single-cell data. Understanding the cell–cell interactions can help
identify intercellular signaling pathways, and previous analytical studies have focused
on computing a communication score between the ligand–receptor pair of interacting
proteins [13]. For instance, the authors of [14,15] inferred the intercellular signaling path-
ways of cell–cell communications by computing the co-expression of all genes or other cell
markers. The alternative would be to compute the similarity between the gene expression
profiles, as in [16]. In this work, we aim to focus directly on the cell level and use the
similarity between each cell’s gene expression profiles as a graph to compute a topological
descriptor of the complexity. The more connected a group of cells is in this similarity graph,
the higher the complexity of this group of cells is. There are two major quests in this line of
research, and they are as follows.

1.1. Quest from Topological Data Analysis

Existing TDA applications usually focus on the low-dimensional graph visualization
and persistent homology of the data (e.g., computing the Betti numbers or barcodes up to
the second dimension), because interpreting the biophysical meaning of the geometry and
higher dimensional persistent modules is a conceptual challenge. Others have proposed
hybrid approaches to combine the merits of data geometry and topology by adaptively
selecting the proper thresholds in the pairwise distance matrix of the data points [17,18].
Another alternative to these low-dimensional TDA methods is simplicial analysis. Sim-
plicial architecture was studied in biological data through application in human brain
connectomes [19], where each connected pair of neurons is considered an edge to create a
graph, and the numbers of Rips–Vietoris simplices in up to seven dimensions are computed
in static graphs compared with random graphs. Likewise, in our inquiry, we are interested
in the intercellular interaction within the same type of cells (the cell complexity) rather than
the relationships between different groups of cell, as in scTDA [20]. However, the filtration
challenge of deriving a graph from the distance-based data by choosing the best threshold
hinders the practical application of such simplicial analysis in these point cloud data.

1.2. Quest from Single-Cell Resolution Data

With the increasingly popular usage of single-cell genomic techniques, it might be
possible to infer such cell–cell interaction (or cellular ecology) in a fine resolution. However,
as far as we are aware, there are only a few works in the literature exploring the cellular
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ecology from single-cell RNA sequencing data. For instance, the authors of [21,22] applied
the ecology and multi-agent models to model single-cell systems. We wish to complement
this line of work by connecting it to topological data analysis, where the focus is to model
the shape or manifold of the data from the similarity of the data points. For instance,
simplicial complexes are high-dimensional objects or generalizations of neighboring graphs
that represent the cliques of data points or, in other words, a notion of ecology. The ecology
does not have to be the organisms within a physical system. In the field of data science
where we represent biological cells by their measurements (e.g., gene expression profiles) as
data points residing in high-dimensional feature spaces, the ecology can be how these data
points are connected to one another in the feature space. If we adopt an ecology research
point of view, in order to characterize the dynamic systems of a community, one needs to
have knowledge or prior knowledge regarding the causal relationships between the agents
(e.g., how prey and predators interact and in what ways). In order to parse out causal
relationships, the temporal sequence of these events matters. Thus, the property of the
synchrony and asynchrony of the events is key to translating the feature space (represented
by a similarity graph) to an ecology, which has directed (e.g., causal) relationships among
the agents. This is why a temporal take on topological data analysis can potentially unlock
the first step, from finding a static representation of the overall shape of the data points to
discovering the event-directed representations (i.e., a temporal skeleton) of the data points.

One challenge of this hybrid direction is to conceptually understand the biological
meaning behind the dissimilarity of the omic data. For instance, what does it mean if two
cells have similar gene expression profiles to each other? Does that indicate homogeneity if
the two cells are from the same tissue, or is it an artifact from the manual labeling or classi-
fications not being perfect? Can we measure the “complexity” of the cell populations based
on the heterogeneity or diversity within populations? If we can, how do we evaluate and
interpret lower-order versus higher-order “complexity”? These are some open questions
we wish to engage the field to discuss and investigate together instead of answering them
directly in this first work.

The other challenge is the scalability and compariablity of the single-cell data. With the
advancements in multi-channel, high-throughput data collection techniques in biological
fields, how do we compute the pairwise distances of the point clouds efficiently? In
different trials of single-cell experiments, how do we make sure that the persistent modules
are comparable to one another?

1.3. Framework: Single-Cell Topological Simplicial Analysis (scTSA)

In this study, we propose a topological simplicial analysis (TSA) pipeline (Figure 1)
as an exploratory inquiry to solve three challenges. (1) With the algebraic geometry’s
definitions of forming higher-order simplices, we can potentially interpret that cliques
of higher orders indicate operational units of higher orders. (2) With the bootstrapping
techniques to sample the data points collected at each sublevel, we can scale the analysis
to large single-cell datasets and compare groups of cells quantitatively. (3) With a time
delay constraint on the filtration process, we can sort the projected data points of cells into
distinct groups of cells collected from the same time stamps. The framework first takes
the measurements of the single-cell RNA sequencing data, which generate a similarity
matrix among the cells based on their gene expression profiles. Other than performing the
persistent homology to obtain lower-order topological descriptors of the data, we compute
additional higher-order topological descriptors by counting the number of the simplices
which emerge from the filtration process. In addition, we introduce a technique to extract
the temporal skeleton of the developmental processes, called temporally filtrated TDA, and
show that the developmental trajectories of cells can be better revealed in this approach
compared with existing TDA mapping techniques.
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Figure 1. The analytical framework of the single-cell topological simplicial analysis (scTSA). The
pipeline starts with the single-cell sequencing data, which are then preprocessed into gene expression
profiles in a 2D matrix (rows are cells and columns are genes). This step can also go through another
layer of dimension reduction. From the matrix, we compute the filtrations over their feature space
and temporal constraints. The persistent homology can be computed from the filtration process
with either a persistent barcode or a persistence diagram. The filtrations obtained through the
processes can also be used for simplicial analysis, which groups the cells by time steps before the
analysis. Finally, one can visualize the data using the Mapper algorithm with or without the temporal
constraints.

We begin our presentation in Section 2 with a short overview of the mathematical
definitions of the single-cell data visualization problem and an introduction of the necessary
concepts and definitions in the language of computational topology. Section 2 formulates
the topological simplicial analysis pipeline we are proposing as well as the numerical
tricks applied in the implementation to ensure the scalablity. We apply this single-cell
topological simplicial analysis (scTSA) to the zebrafish single-cell RNA sequencing data
with 38,731 cells and 25 cell types over 12 time steps [23]. We select the top 103 genes based
on the scTDA pipeline from the high-dimensional, high-throughput transcriptomic data. In
Section 3, we introduce the dataset used to benchmark the method and present the analysis
results with their mathematical interpretations for the biological insights. In the last section,
we discuss the validity of using our framework to understand the higher-order cellular
complexity and conclude our methods by pointing out several future work directions as
the next step in this line of research.

2. Materials and Methods
2.1. Single-Cell Data in the Point Cloud Space

Genomic measurement and analysis at a single-cell resolution has enabled new under-
standings of complex biological phenomena, such as revealing the cellular compositions of
complex tissues and organisms [24]. Single-cell RNA sequencing (scRNA-seq) techniques
measure the gene expression profiles of individual cells through mechanisms such as
microfludics. For instance, the benchmark dataset of zebrafish embryogenesis [23] that
we use in this study applied Drop-seq, a massively parallel scRNA-seq method to profile
the transcriptomes of tens of thousands of embryonic cells [25]. These single-cell data are
usually point clouds in a finite metric space, where a finite point set S ⊆ Rd. Let d(·, ·)
denote the distance between two points in a metric space Z . The assumption is that data
were sampled from the underlying space X . The goal is to recover the topology of X . To
accomplish this goal, one needs to first approximate X with a combinatorial representation
(e.g., with the simplicial complex) and then compute a topological invariant summary
statistics (e.g., with the persistent homology).
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2.2. Definition of Simplicial and Temporal Filtration

Given the point cloud data, we then constructed a continuous shape on top of the data
to highlight the underlying topology and geometry. The process to build such a shape is
through mathematical filtration, which is often a simplicial complex or a nested family of
simplicial complexes that reflects the innate structure of the point cloud data at different
scales [8]. If we considered all the points in the point cloud data, each with a coordinate of
their locations in certain embedding, then they each occupied a spherical space with the
same radius ε around them, which is called a nerve ball. If two nerve balls overlapped or
contacted each other, then we considered an edge to be formed between them in this graph.
Filtration is a process for tuning the parameter ε from 0 to ∞ and recording the families
of the simplicial complexes generated through the increasingly connected (or “complex”)
graph.

Usually, the challenge is to extract relevant and useful information about the shape of
the data through defining such simplicial complexes from the graph (generated through the
filtration process). The Rips–Vietoris complex is one of the common choices in practice for
computing the topological invariants of point clouds, which are defined as follows: given
the vertex set Z , for each pair of vertices a and b, edge a-b is included in the Rips–Vietoris
complex C(Z , t) if d(a, b) ≤ t, and a higher dimensional simplex is included in C(Z , t) if
all of its edges are included. Since C(Z , t) ∈ C(Z , t′) whenever t ≤ t′, the filtered Rips–
Vietoris complex is a filtered simplicial complex as well as the maximal simplicial complex
that can be built on top of its 1−skeleton, and thus a clique complex or a flag complex is
formed.Unlike conventional low-dimensional topological data analysis, we computed the
simplices at a high dimension count (up to seven) during the entire filtration process. To
record the number of cliques, we computed the filtered simplicial complexes and recorded
their cumulative counts across the entire filtration process.

Since the topological data analysis usually only considers the graph constructed by the
spatial proximity (i.e., the distance matrix) between the data points in the low-dimensional
embedding, it is not clear how to incorporate timestamp information for meaningful
inference and visualization when facing the time series data streams. One approach would
be to simply consider the time stamp as the metadata for post hoc labeling of the topological
representations. Another alternative would be to consider time as an additional dimension
in the filtration process. We present temporal filtration as the following: alongside the
conventional sweeping of the parameter ε from 0 to ∞, we set another parameter τ to
indicate a hard constraint in edge forming between two points. Alternatively and intuitively,
temporal filtration is equivalent to conventional filtration by using the composite norm:

d((x, tx), (y, ty)) = max(
1
ε∗
|y− x|, 1

τ∗
|ty − tx|) (1)

where ε∗ and τ∗ are directly related to the spatial threshold ε (in the feature space) and the
temporal threshold τ, respectively. As a practical note from this notation, it can be used
without additional specialized software.

In other words, only if the time stamp difference between the two data points is within
the time delay limit τ can two nerve balls, if spatially proximal enough (less than ε), form
an edge in between. On the other hand, if the time stamp difference between the two data
points is larger than τ, then even if they are spatially proximal enough (less than ε), they
cannot form an edge. Given the problem settings, one can either set a reasonable time
delay limit τ given the domain knowledge or tune τ from 0 to ∞, similar to the filtration
process with the spatial filtration parameter ε. The latter approach can potentially extract
temporally invariant topological summary statistics.
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Figure 2 is an intuitive example of the criterion of edge forming in the temporal
filtration. In the example, we have seven data points, which are marked by their time
stamps (when they were measured). The node marked 1 indicates it is collected at time
step 1. There is a one-time step difference between each data point of consecutive numbers.
To illustrate the differences between the conventional and temporal filtration, the schematic
is a snapshot of the full filtration process frozen at a set of filtration thresholds. In all four
cases, we consider the case where the spatial threshold ε of the nerve ball around each data
point is one (which, in our case, only contains every data point’s nearest neighbor and not
the second-nearest neighbor). If we only performed spatial filtration, we would consider
them all to be connected. However, that would not match the temporal skeleton. Instead,
we could set a temporal constraint τ such that only if two data points that were spatially
(in the feature space) proximal to each other were also measured to be temporally close to
each other would their edge be included. If τ was small (e.g., one time step apart), then
we would have a fine resolution temporal skeleton which separated the data points into
three main phases. If τ was medium-sized (e.g., two time steps apart), then we would have
a relatively crude-resolution temporal skeleton which separated the data points into two
main phases. If τ was big (e.g., three time steps part), then we would have a crude temporal
skeleton which grouped them all into connected components. This also demonstrates
the possibility of using τ as a hierarchical mechanism to parse the persistent features of
different temporal resolutions.

Figure 2. Intuitive example of the temporal filtration. Presented here are seven data points which
are marked by their time stamps (when they were measured). In all four cases, we considered the
case where the spatial threshold ε of the nerve ball around each data point was one (which, in our
case, only contained every data point’s nearest neighbor and not the second-nearest neighbor). If we
only performed the spatial filtration, we would consider them all to be connected. However, that
would not match the temporal skeleton. Instead, we could set a temporal constraint τ such that only
if two data points that were spatially (in the feature space) proximal to each other were also measured
temporally close to each other would their edge be included. If τ is small (e.g., one time step apart),
then we have a fine resolution temporal skeleton which separates the data points into three main
phases. If τ is big (e.g., three time steps part), then we have a crude temporal skeleton which groups
them all into connected components.

2.3. Topological Data Analysis with Persistent Homology

Following the definition above, an abstract simplicial complex is given by a set Z
of vertices or 0-simplices, a set of k-simplices σ = [z0, z1, . . . , zk] where zi ∈ Z for each
k ≤ 1, and a set of k + 1 faces for each k-simplex obtained by deleting one of the vertices. A
filtered simplicial complex is given by filtration of a simplicial complex Y , with a collection
of subcomplexes {Y(t)|t ∈ R} of Y such that Y(t) ⊂ Y(t′) whenever t ≤ t′. The filtration
value of a simplex σ ∈ Y is the smallest t value such that σ ∈ Y(t). Topological data
analysis methods usually involve computing the persistent homology [26]. The Betti
numbers help describe the homology of a simplicial complex Y . The Betti number value
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BNk, where k ∈ N, is equal to the rank of the kth homology group of Y . The Betti intervals
over the filtration process help describe how the homology of Y(t) changes with t. A
k-dimensional Betti interval with endpoints [tstart, tend) corresponds to a k-dimensional
hole that appears at the filtration value tstart, remains open for tstart ≤ t < tend, and closes
at value tend.

Figure 3 is a schematic diagram outlining how to perform a filtration process (by
sweeping ε), document the “birth” and “death” of each complex (the colored lines of various
lengths in the chart), and generate this as a barcode representation [27] or a persistence
diagram [28] for the downstream analyses. In this schematic diagram, a point cloud of 19
data points is presented in a low-dimensional embedding space. In the filtration process, a
parameter ε is swept from zero to the maximum pairwise distance within the point cloud,
indicating a distance threshold under which the two points can form an edge to become
one connected component in the graph. For each value ε, we obtained a space Sε consisting
of vertices, the edges formed among the vertices, and the higher-dimensional polytopes
connected by these edges. For instance, a nerve ball of a radius ε grows around each point
cloud, and an edge will form if two nerve balls touch. Homology counts the number of
essentially different cycles—linear combinations of simplices that form a cycle (for example,
a loop formed by a sequence of edges)—that are not the boundary of something that can
fill in the hole (for example, a combination of 2D simplices or triangles spanning the inside
of the loop). We denote Hn as the nth homology group (i.e., the formation of the simplex
complexes of the order n), with 0-simplex as the nodes (or clusters), 1-simplex as the edges
between two nodes, 2-simplex as the loops (or triangles in this case), 3-simplex as the
tetrahedrons, and so on. We logged the existence of an n-simplex if and only if all of its
components (e.g., (n-1)-simplex, (n-2)-simplex, · · · , 1-simplex, and 0-simplex) were all in
Sε and marked their demises when some of these topological cavities were filled with the
additions of new edges (and potentially nodes). Each colored line indicates the “lifespan”
of a simplex, with its starting point as its “birth” (or first appearance) and ending point
as its “death” (or disappearance due to the two nerve balls fully overlapping). In this
example, the persistent homology of the data cloud can be presented in the form of a
“barcode” representation, which is a finite collection of intervals. The births and deaths of
the simplicial complexes up to the second order were recorded when the filtration process
gradually swept the distance threshold. The barcode representation is often replaced with
the visualization of a 2D persistence diagram, in which the x-axis indicates the birth time
(the distance threshold at which filtration appears) and the y-axis indicates its death time
(the distance threshold at which filtration disappears). In most cases, only the first two
orders of the filtrations are computed and included in persistent barcodes or diagrams.

By using temporal filtration in place of conventional filtration, we could extend the
methods of persistent homology into one for temporal persistent homology. Our method
is related to the research on multi-parameter persistence [29], which aims to construct a
topological space with more than one filtered space. In other words, the computation of
a persistent barcode or diagram can also be customized to use temporal filtration as its
filtration criterion by either using a composite norm function as in Equation (1) or using
multi-parameter filtration with a temporal constraint.
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Figure 3. Persistent homology via mathematical filtration. In this schematic diagram, a point cloud
of 19 data points is presented in a low-dimensional embedding space. In the filtration process, a
parameter ε is swept from zero to the maximum pairwise distance within the point cloud, indicating a
distance threshold under which the two points can form an edge to become one connected component
in the graph. For each value ε, we obtain a space Sε consisting of vertices, edges formed among
the vertices, and higher-dimensional polytopes connected by these edges. For instance, a nerve
ball of a radius ε grows around each point cloud, and an edge will form if two nerve balls touch.
Homology counts the number of essentially different cycles—linear combinations of simplices that
form a cycle (e.g., a loop formed by a sequence of edges)—that are not the boundary of something
that can fill in the hole (e.g., a combination of 2D simplices or triangles spanning the inside of the
loop). We denote Hn as the nth homology group (i.e., the formation of the simplex complexes of
an order n), with 0-simplex as the nodes (or clusters), 1-simplex as the edges between two nodes,
2-simplex as the triangles, 3-simplex as the tetrahedrons, and so on. We logged the existence of
an n-simplex if and only if all of its components (e.g., (n-1)-simplex, (n-2)-simplex, · · · , 1-simplex,
and 0-simplex) were all in Sε and marked their demises when some of these topological cavities
were filled with the additions of new edges (and potentially nodes). Each colored line indicates the
“lifespan” of a simplex, with its starting point being its “birth” (or first appearance) and ending point
being its “death” (or disappearance due to the two nerve balls fully overlapping). In this example,
the persistent homology of the data cloud can be presented in the form of a “barcode” representation,
which is a finite collection of intervals. The birth and death of the simplicial complexes up to the
second order were recorded when the filtration process gradually swept the distance threshold. The
barcode representation is often replaced with the visualization of a 2D persistence diagram, in which
the x-axis indicates the birth time (the distance threshold at which filtration appears) and the y-axis
indicates its death time (the distance threshold at which filtration disappears).

2.4. Empirical Simplicial Computation with Witness Sampling and Dimension Reduction

Overall, the witness sampling is critical for two reasons: (1) The single-cell data have
different noise granularity across cell types and data collection procedures [30], and thus
the number of cells collected in each time point and different cell type (as in the analyzed
developmental study [23]) can vary in magnitude, making direct simplicial computation
incomparable, and (2) in large-scale, high-throughput data, the large number of data
points and feature sizes can make computation especially expensive and infeasible. For
instance, the computation of filtration requires a comparison between a sweeping proximity
threshold and the distance between two data points, and computing the distance matrix
between all points is not only time-consuming but memory-exhaustive (e.g., 1 M points
would require 1 T to just store the distance matrix).
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For these larger datasets, if we included every data point as a vertex, the filtrated
simplicial complexes could quickly contain too many simplices for efficient computation.
To solve this numerical inconsistency issue, we instead extracted the lazy witness complexes
by sampling m data points [26] with a sequential maxmin procedure [31], setting a nearest
neighbor inclusion of two (as in the term “lazy”). The selection of m depends on the
scale of the dataset. The bigger the sample size m, the better the estimate. However,
different partitions of the data points have varying sizes. For instance, if there are only
50 data points collected in time step 1 while there are more than 100 points in other time
steps, then the maximum m that can be picked is 50. The computation of the witness
complex in high dimensions can be implemented with GUDHI [32], Ripser [33], and
JPlex software [34]. The codes to reproduce the empirical results can be accessed at https:
//github.com/doerlbh/scTSA, accessed on 15 August 2022.

Figure 4 outlines our scalable time series topological simplicial analysis pipeline. We
started with the high-throughput data points marked with their time stamps. To decrease
the number of data points for efficient computation (and also comparability across time
points), witness sampling was performed among these data points. Then, one could choose
to reduce the dimensions or not given the noise and distribution properties of the data.
The usage of dimension reduction is a useful step before filtration. Due to the “Curse of
Dimensionality”, the data points in a very high-dimensional space can be very sparse,
and thus the distances between them usually collapse to a constant (i.e., residing in a
hyperspherical space). As a result, the filtration computation around them can be ineffective
and unstable. Mapping them onto a low-dimensional space can partly solve this issue.

Figure 4. Pipeline of the time series topological data analysis for high-throughput data. We started
with the high-throughput data points marked with their timestamps. To decrease the number of data
points for efficient computation (and also comparability across time points), witness sampling was
performed among these data points. Then, one could choose to reduce the dimension or not given the
noise and distribution properties of their data. To perform the temporal simplicial analysis, the data
points were first separately grouped into different time points. Then, we computed their filtrations to
obtain their number of simplicial complexes at different orders. To perform the temporal persistent
homology and mapper visualization, one could apply the temporal constraint onto the data points
sampled so far to obtain a temporal skeleton.

Then, to perform the temporal simplicial analysis, the data points were first separately
grouped into different time points, and then their filtrations were computed to obtain the
number of simplicial complexes in different orders. To perform the temporal persistent
homology and mapper visualization, one could apply the temporal constraint onto the
sampled data points thus far to obtain a temporal skeleton.

https://github.com/doerlbh/scTSA
https://github.com/doerlbh/scTSA
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2.5. Topological Simplicial Analysis

Given the simplicial complexes of different orders from the witness sampling ap-
proach, we needed to correct for the effect of sampling. The larger the sample size, the
more likely the higher-order simplicial complexes emerge. One way to correct for this
amplification effect is to normalize this quantity directly to the quantity collected from
a null distribution of the data. Usually, for a graph, network, or more generically, data
with a binary connectivity format (e.g., a brain connectome), the Erdős–Rényi random
graph [35] can be used as a control model. However, in fully connected similarity-based
data, the average connectivity probability is entirely dependent on the filtration factor. To
avoid this caveat, we took a different approach by permuting the pairwise distances of
the data points, which is equivalent to a weighted version of the Erdős–Rényi random
graph. Another strategy would be permuting the feature at each dimension. In this way,
the low-dimensional embeddings computed by the multidimensional scaling could form
different connectivity profiles while maintaining the same distance distribution. Then, we
applied the same topological data analysis pipelines to the embeddings computed from the
pairwise distance matrices from both the actual data and the control models.

To this point, we propose a formal definition of cellular complexity as the normalized
n-simplicial complexity NSCn, a family of summary statistics with an increasing order n:

NSCn =
SCdata

n
SCnull

n
(2)

where NSCn is computed by taking the ratio between the number of the simplicial com-
plexes for a certain order n computed from the actual data (which we denote as SCn) and
the sum of those computed from the control models and from the actual data. An alter-

native would be NSCn = SCdata
n

(SCdata
n +SCnull

n )
. A value of 0.5 would indicate that the simplicial

complexity at the order n is the same in the data and the null models. Empirically, we
computed the NSCn with the order n from 1 to 7 as the summary statistics characterizing
the ecology among the data points with cliques and cavities of increasing modularities.

2.6. Topological Data Visualization with Low-Dimensional Mapping

To build and visualize the topological representation of the point cloud data, we used
the Mapper algorithm [36] through the implementations provided by KeplerMapper (https:
//github.com/scikit-tda/kepler-mapper, accessed on 15 August 2022) with modifications
for temporal filtration at https://github.com/doerlbh/tkMapper, accessed on 15 August
2022. In brief, a dissimiliarity matrix was computed from the preprocessed RNA-seq
data by finding the pairwise correlation distance. This metric space was then reduced
to a low-dimensional embedding with the multi-dimensional scaling [37]. Given this
embedding, the point cloud data are chopped into coverings of hypercubes with 50%
overlapping between the cubes. The choice of 50% was empirically determined by our
dataset. We varied the overlap parameter among 25%, 50%, and 75%, and 50% gave the
best clustering effect. Then, for each hypercube, the data points within the cube were
clustered with the single-linkage rule. This step further aggregated all the points into a
network in which each vertex corresponded to a cluster, and each edge corresponded to
a non-vanishing intersection between the clusters. As defined in Section 2.2, if temporal
filtration were applied, then edge forming would also controlled by the additional time
delay constraint for the clusters formed with both spatial and temporal proximity, and the
edges would only exist between two clusters if all points in the two clusters were within
the time delay limit τ. In other words, the filter function was the same one that we applied
to persistent homology, which could either be single filtration with the temporal constraint,
single filtration with the temporal composite norm, or multi-parameter filtration. Once
we reached a network representation, the network could eventually be visualized with
force-directed algorithms for insights.

https://github.com/scikit-tda/kepler-mapper
https://github.com/scikit-tda/kepler-mapper
https://github.com/doerlbh/tkMapper
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3. Results

We benchmarked the scTSA method on the zebrafish single-cell RNA sequencing
data with 38,731 cells and 25 cell types over 12 time steps [23]. The dataset studied the
embryogenesis, which is the process where the cells gradually differentiate into distinct
fates through stages of transcriptional change. The goal of this study was to facilitate a
comprehensive identification of cell types with their time stamps in order to reconstruct
their developmental trajectories (e.g., transcriptional states, branch points, and asyncrhony).
As the gene expression profiles obtained from the vertebrate embryo were time stamped
from 3.3 to 12 hours post-fertilization (hpf), they provided a perfect testbed for time series
analysis to reconstruct the transcriptional trajectories and characterize the time-dependent
development properties.

We processed the scRNA sequencing data into entries of 103 dimensions corresponding
to the expression levels of 103 significant genes (which we selected using scTDA). We then
standardized the features by removing the mean and scaling to the unit variance. Before we
performed the persistent homology, we first embedded the dataset into a low-dimensional
space using dimension reduction. In Figure 5, we embedded the data using principal
component analysis (PCA), t-distributed stochastic neighbor embedding (TSNE) [38], and
uniform manifold approximation and projection (UMAP) [39] and colored them by time
step. We observed that they all demonstrated a temporal gradient.

Figure 5. Dimension reduction of the dataset. PCA, TSNE, and UMAP applied to our preprocessed
gene expression profiles.

We performed persistent homology and temporal persistent homology on the scaled
dataset. In this case, τ was set to be one (meaning that we only cared about the linkage
formed between consecutive time points). Figure 6 compares the persistence diagrams for
the two approaches. From the persistence diagrams, the persistent features detected by
persistent homology were not noticeably different from those detected by temporal persis-
tent homology. While not a focus of this work, further study using downstream machine
learning tasks can potentially pinpoint the benefits of these temporal persistent features.

For the simplicial analysis, we first grouped the data by their time steps. The data
collected at the 12 time steps were highly imbalanced (1 (2225 data points), 2 (200), 3 (1158),
4 (1467), 5 (5716), 6 (1026), 7 (4101), 8 (6178), 9 (5442), 10 (5200), 11 (1614) and 12 (4404)).
For each time point, we performed a witness sampling of 200 data points since it was the
lowest number of samples among all time points. We identified the simplicial complexity
to vary over the time, suggesting a potential better summary statistic with better distinction
among the time steps (Figure 7). The normalized simplicial complexity (computed as the
ratio of the number of simplicial complexes discovered within the data to the number of
those discovered within the null model) suggested an abundance of high-dimensional
simplices over the null models. The existence of a significant number of high-dimensional
simplices was observed for the first time at the single-cell level. In all time points, the
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number of simplices of dimensions larger than one in the null model was far smaller than
those found in the actual data. In addition, we observed relative differences between
what we discovered in the null models, and the actual data increased drastically when
the dimensions were higher. Furthermore, the number of low-dimensional simplices (up
to three dimensions) of the data appeared to be equal to or smaller than that of the null
models (with a normalized complexity less than one), suggesting a possible transfer from a
lower-order clique structure to a higher-order structure.

Figure 6. Persistence diagrams. The persistence diagrams computed from the persistent homology
and temporal persistent homology are shown here. The x-axis corresponds to the birth of all the
persistent modules arising in the filtration process, and the y-axis corresponds to their death.

Figure 7. Simplicial dynamics across developmental stages. (A) The number of n-simplices is com-
puted from the sampled data points in each time point. (B) The normalized n-simplicial complexity
(i.e., the normalized number of n-simplices) is computed as the ratio of the number of nth-order
simplicial complexes from the data to the number of those from the null models. The normalized
simplicial complexity of a higher order appears to be well above one in certain developmental
stages, with a distinctive separation between the fifth and sixth time points. (C) The heat map of the
normalized n-simplicial complexity across the time points supports the observation.

In order to investigate the trade-off between the higher-order and lower-order sim-
plicial complexity in the developmental stages, we mapped the normalized 3-simplicial
complexity against the normalized 1-simplicial complexity. Figure 8 suggests a gradu-
ally increasing higher-order complexity starting from the fifth time point and an overall
below-null lower-order complexity in a monotonically increasing direction from the second
time point. Compared with the null model, the presence of a much larger number of
cliques across a range of dimensions in the single-cell data suggests that the connectivity
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between these cells might be highly organized into numerous fundamental building blocks
(e.g., proto-cell types) with increasing complexity. These two figures both suggest that the
gastrulation stage (from time point 5 to time point 6) is a very critical stage in vertebrate
development, matching the established understanding in developmental biology that it is
a process where the embryo begins the differentiation process to develop into different cell
lineages [40]. Before gastrulation, the embryo is a continuous epithelial sheet of cells. After
the gastrulation stage, organogensis starts, where individual organs develop within the
newly formed germ layers.

Figure 8. Simplicial dynamics across developmental stages. To investigate the trade-off between the
higher-order and the lower-order simplicial complexity in the developmental stages, the normalized
3-simplicial complexity is mapped against the normalized 1-simplicial complexity. The colors indicate
different time points. The arrow indicates the transition between the centroids in each group of time
points. A transition of lower-order and higher-order normalized cell complexity is marked with the
white trajectories across sequential time points.

This observation is further supported by the visualization of topological data analy-
sis mapping. Figure 9 compares the network visualizations with and without temporal
filtration. We observed that, when color-labelled with the time points, the conventional
topological data analysis outlined a progression of cellular development, but there were
many subsequent time points in the middle of earlier time steps. For instance, we can see
that there are many dark blue nodes from the 11th or 12th time points in the middle of the
web, where the majority of the nodes are earlier stages from the 5th to the 7th time points.
When using temporal filtration (with τ set to be just one time step), we observed that the
network had much more of a skeleton and more branches, where each branching node
consisted only of points of the same time stamp. The gastrulation stage, which happened
between the fifth and sixth time points, appeared to belong to two separate tracks, sup-
porting the hypothesis that after the notochord and prechordal plate territories become
transcriptionally distinct, the gastrulation process refines the boundary between the two
cellular populations [23].

These filtrated simplicial architectures may also offer insights into cell lineage trac-
ing. We performed hierarchical clustering of the summary statistics computed from the
transcriptome data of different cell types. We compared the results using the proposed nor-
malized simplicial complexity versus the one using the Betti numbers (which is more con-
ventionally used in many downstream topological data analyses). As shown in Figure 10,
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the normalized simplicial complexity offered a more reasonable clustering performance in
terms of more distinctive summary statistics than the Betti numbers by themselves.

Figure 9. Temporal filtration identifies the critical stage of cellular complexity change. The colors
indicate the time points, and each node corresponds to a small cluster of cells collected at the same
time points. The conventional TDA mapping (the left panel) identifies a bifuraction structure, but
there are spatial locations that have a mixture of clusters that belong to non-consecutive time points.
This makes the identification of a developmental pathway challenging. When applying the temporal
filtration (the right panel), the mapping identifies a clean separation of two tracks, or two sub-
populations of cells that evolve in the gastrulation stage, matching the observation in our summary
statistics from the algebraic topology.

Figure 10. Cell lineage tracing with the simplicial statistics. In this analysis, hierarchical clustering
was performed on the summary statistics of transcriptomic data of different cell types. (A) The
heat map and clustering results when using the Betti numbers as the clustering features. (B) The
heat map and clustering results when using the normalized simplicial complexity as the features for
hierarchical clustering.

4. Discussion

What is cellular complexity and what does higher-order complexity mean? As an
inquiry to this question, we explored the possibility of introducing the mathematical
notion of higher-order simplicial complexes into analyzing distance-based single-cell data.
Benchmarked on single-cell gene expression data with multiple developmental stages,
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we proposed single-cell topological simplicial analysis and demonstrated that simplicial
complexity can be a well-defined summary statistic for celluar complexity.

This investigation provides a scalable, parameter-free, expressive, and unambiguous
mathematical framework to represent the cellular complexity with its underlying structure.
By “parameter-free”, we mean that it does not have arbitrary hyperparameters that the
users have to set in order to perform the analysis. The parameter τ is instead a user-specified
parameter that is relevant to the specific application and problem of interest. An analogy for
a prediction model would be that the learning rate is an arbitrary hyperparameter, and the
prediction window would be a user-specified parameter relevant to the application. Locally,
these structures are characterized in terms of the simplicial complexes. Globally, these
structures are characterized in terms of the cavities formed by these simplices. Topological
cavities are usually formed and then later filled with the addition of new edges (and
potentially nodes). When computing the persistent homology, we performed a filtration
process which innately tracked the formation and later filling of topological cavities of
different dimensions. The temporal persistent homology characterized the information
of cavities with the lifespan of these topological objects. This framework revealed an
intricate topology of cellular similarity which included a vast number of cliques of cells
and of the cavities that bound these cliques together. These topological summary statistics,
which captured the relationships among the high-dimensional cliques, uncovered the
transcriptional differences in the connectivity of cells of different types during the graph
reconstruction process.

From the scTSA visualization, we discovered for the first time in any single-cell data an
abundant number and variety of higher-order cliques and cavities. When compared with
the control models, the framework measured a much higher number of high-dimensional
cliques and cavities in the graph construction filtration process. The critical stage identified
by the framework matched the current understanding in developmental biology. Compared
with the statistics of the Betti numbers, the normalized simplicial complexity demonstrated
better distinctions between time points and cell types.

Topological data analysis, as in many other machine learning methods, has many
empirical considerations related to sample size and dimensionality selection. To demon-
strate the sensitivity of persistent homology to the sampling size and reduced dimensions,
we perform the following experiment. We use the full dimensions of the standard scaled
dataset, varied the sampling size from 50 to 100, 500, and 1000 data points, and computed
their persistence diagrams. We then set the sample size to 1000, varied the PCA dimensions
to be the first 2, 10, and 103 (full) dimensions, and computed their persistence diagrams. We
observed no clear difference. Then, we perform simplicial analysis with witness sampling
using sample sizes from 10 to 100, 200, and 300. In this case, we observe a slightly higher
number of higher-order simplical complexes, but the overall shape and distinction between
the time steps were maintained (Figure 11). Future studies can investigate strategies for
increasing the stability of simplicial analysis for the sample size.

In the introduction, we posed some open questions we wish to engage the field to
discuss and investigate together, instead of answering them directly in this first work. Here,
we will briefly share our preliminary takes on some of the specific ones.

Why does expression similarity deserve the name of complexity? To clarify, the expres-
sion similarity may not be a measure of complexity. However, the temporally connected
higher order co-expression structure characterized by similarity can be a useful measure of
complexity. If the task requires several agents to work together at the same time or follow a
specific sequence of actions by different agents, then it is more complex than a task which
only requires a few agents or does not need to follow a specific sequence. The notion of sim-
ilarity is usually related to clustering and thus the separation of homogeneous groups. To
expand on this understanding, the similarity relationships that are further constrained by
temporal sequences would relate to functionally separating groups of homogeneous agents,
thus potentially being informative of their interactions.
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Figure 11. Sensitivity analysis of the effectiveness of witness sampling and PCA dimension reduction
on the persistent homology and simplicial analysis. (A) Persistence diagrams of the dataset when
sampling 50, 100, 500, and 1000 data points. (B) Persistence diagrams when choosing the first 2,
10, and 103 (all dimensions) principal components. (C) The overall distribution of the normalized
simplicial complexity did not change much when the sampling size at each time step rose from 10 to
100, 200, and 300.
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Is there a reason to believe gene expression similarity has something to do with
interactions rather than reflecting the number of similar cells that happen to be present in
the sample? This temporally constrained gene expression similarity can both reflect the
number of similar cells that coexist at the same time and also potentially be related to some
level of functional interaction, as discussed above. We wish to leave further investigations
on the types of interaction for future works and welcome discussions on and critique of
these interpretations.

Finally, there are other potentially applicable questions we can explore. Can we deter-
mine the developmental stages without physiological features? Can we generate pseudo-
time series based on single-cell sequencing data? Finally, and most importantly, does
the vast presence of high-dimensional cliques suggest that the interaction between these
cells is organized into fundamental building blocks of increasing complexity? Through
this inquiry with topological simplicial analysis, we can form a hypothesis that the cells
organize themselves into high-dimensional cliques for certain functional or developmental
reasons. Further research includes developing mechanistic theories behind the emergence
of such high-dimensional cellular cliques and experimentally testing these hypotheses to
reveal the missing link between functions and cellular complexity.

5. Conclusions

In summary, our work describes a novel, scalable, and unsupervised machine learning
method that facilitates the understanding of and solutions to three main technical challenges
in bioinformatics. By “machine learning”, we refer to the general goal of building a model
that learns from the data. Topological data analysis is a class of unsupervised learning
methods. The topological features identified from the process can be further applied to
downstream machine learning tasks, such as the hierarchical clustering of cellular lineage.

5.1. A Lack of Time Series Analytical Methods in Quantifying the Underlying Temporal Skeleton
within the Manifold of the Similarities among Data Points

In persistent homology and mapper visualization, our temporal filtration uses a user-
specified time separation parameter τ, which can be either discrete (consecutive time
steps) or continuous (by a time delay quantity). This enables the computation of persistent
components that are computed only on data points that are temporally proximal and thus
provides a temporal skeleton representation. In simplicial analysis, we can group the data
points by time step and compute the normalized simplicial complexity as a quantity to
inform the ecology of cells in the transcriptomic feature space.

5.2. A Lack of Scalable Computational Methods for Characterizing Single-Cell Sequence Signals in
the Scale of 10,000+ Data Points While Single-Cell Sequencing Data Have Dominated
Bioinformatics in Recent Years

The usage of witness sampling and dimension reduction enable the computation of
persistent homology for large numbers of high-dimensional data points. Sampling is also a
required step for comparing the topological features in groups of data points with different
counts. The normalization against null distribution of the data sample partly corrects for
the amplification effect of higher-order topological quantities. The usage of dimension
reduction techniques such as PCA helps with data management and computation without
a significant loss of performance.

5.3. A Lack of Insight and Interpretation that Connects the Mathematical Language of Algebraic
Topology for the Physical References to Biological Phenomena

In the introduction and discussion, we initiated the discussion of the interpretations of
the topological properties. More specifically, we pointed out how the temporally directed
relationships among data points can be related to functionally separating groups of homo-
geneous agents in the feature space and thus be potentially informative of their interactions.
With our temporally directed treatment of filtration or grouping techniques, our study is a
small but first step to using topological data analysis as not only a descriptor tool for static
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manifolds but also a discovery tool for dynamic or mechanistic components in the future.
Our goal in this work was not to fully answer the question of interpreting the biological
insights’ topological properties but to further motivate and facilitate our understanding
of the question. As more techniques of topological data analysis are applied to biological
problems, we wish to encourage discussion and critique from the biology and machine
learning research communities.

5.4. Summary

In summary, we proposed a new family of filtrations for longitudinal time series
multidimensional data along with auxiliary data analysis tools. We demonstrated our
application to the temporal inference problems using a set of time-resolved gene expression
data. The key technique, called temporal filtration, substitutes a conjunctive distance and
time threshold for the conventional distance threshold for point cloud data augmented
with time stamps. In addition to persistent homology, mapper constructions, and the use
of witness sampling with this technique, an original set of standardized summary statistics,
the normalized simplicial complexities, is proposed. These techniques were used to conduct an
exploratory analysis of zebrafish embryonic development through the lens of longitudinal
single-cell RNA sequencing data. The applications showcased clear improvements in the
interpretability of visualizations compared with a cross-sectional approach and suggest
that the key events in the evolution of a biological system can be more effectively detected
using normalized simplicial complexity than using Betti numbers. Other than the biological
application in single-cell genomics, the time series problem is a topic that is especially
applicable beyond the application proposed in our work and thus a major interest in
the unsupervised machine learning communities dealing with high-dimensional time
series signals.
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