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Abstract: Deep learning based on neural networks has been widely used in image recognition, 
speech recognition, natural language processing, automatic driving, and other fields and has made 
breakthrough progress. FPGA stands out in the field of accelerated deep learning with its ad-
vantages such as flexible architecture and logic units, high energy efficiency ratio, strong compati-
bility, and low delay. In order to track the latest research results of neural network optimization 
technology based on FPGA in time and to keep abreast of current research hotspots and application 
fields, the related technologies and research contents are reviewed. This paper introduces the de-
velopment history and application fields of some representative neural networks and points out the 
importance of studying deep learning technology, as well as the reasons and advantages of using 
FPGA to accelerate deep learning. Several common neural network models are introduced. Moreo-
ver, this paper reviews the current mainstream FPGA-based neural network acceleration technol-
ogy, method, accelerator, and acceleration framework design and the latest research status, pointing 
out the current FPGA-based neural network application facing difficulties and the corresponding 
solutions, as well as prospecting the future research directions. We hope that this work can provide 
insightful research ideas for the researchers engaged in the field of neural network acceleration 
based on FPGA. 
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1. Introduction 
With the rise of the short video industry and the advent of the era of big data and the 

Internet of Things (IoTs), the data created by people in recent years has shown a blowout 
growth, providing a solid data foundation for the development of artificial intelligence 
(AI). As the core technology and research direction for realizing artificial intelligence, 
deep learning based on neural networks has achieved good results in many fields, such 
as speech recognition [1–3], image processing [4–6], and natural language processing [7–
9]. Common platforms to accelerate deep learning include central processing unit (CPU), 
graphics processing unit (GPU), field-programmable gate array (FPGA), and application-
specific integrated circuit (ASIC). 

Among them, the CPU adopts Von Neumann architecture and the program execu-
tion in the field of deep learning of artificial intelligence is less, while the computational 
demand for data is relatively large. Therefore, the implementation of AI algorithms by 
CPU has a natural structural limitation—that is, the CPU spends a large amount of time 
reading and analyzing data or instructions. In general, it is not possible to achieve unlim-
ited improvement of instruction execution speed by increasing CPU frequency and 
memory bandwidth without limit. 
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The ASIC special purpose chip has the advantages of high throughput, low latency, 
and low power consumption. Compared with FPGA implementation of the same process, 
ASIC can achieve 5~10 times the computation acceleration, and the cost of ASIC will be 
greatly reduced after mass production. But, deep learning computing tasks are flexible, 
each algorithm’s needs can be implemented effectively through slightly different dedi-
cated hardware architecture, and there is a high cost of research and development of ASIC 
and flow, with the cycle being long, yet the most important thing to note is that is logic 
cannot cause dynamic adjustment, which means that the custom accelerator chips (such 
as ASIC) must make a large amount of compromise in order to act as a sort of universal 
accelerator. 

At a high level, this means that system designers face two choices. One is to select a 
heterogeneous system and load a large number of ASIC accelerator chips into the system 
to deal with various types of problems. Or, one can choose a single chip to handle as many 
types of algorithms as possible. The FPGA scheme falls into the latter category because 
FPGA provides unlimited reconfigurable logic, whereas FPGA can update the logic func-
tion in only a few hundred milliseconds, and we can design accelerators for each algo-
rithm. The only compromise is that the accelerators involve programmable logic rather 
than a hardened gate, but this also means that we can take advantage of the flexibility of 
FPGA to help us in saving development costs even more. 

At present, artificial intelligence computing requirements represented by deep learn-
ing mainly use GPU, FPGA, and other existing general chips that are suitable for parallel 
computing in order to achieve acceleration. Due to the characteristics of high parallelism, 
high frequency, and high bandwidth, GPU can parallelize the operation and greatly 
shorten the operation time of the model. Due to its powerful computing ability, it is mainly 
used to deal with large-scale computing tasks at present. GPU-accelerated deep learning 
algorithms have been widely used and have achieved remarkable results. 

Compared with FPGA, the peak performance of GPU (10 TFLOPS, floating point op-
eration per second) is much higher than that of FPGA (<1 TFLOPS), and thus GPU is a 
good choice for deep learning algorithms in terms of accelerating performance. However, 
this is only the case when the power consumption is not considered. Because the power 
consumption of GPU is very high, sometimes tens of hundreds of times that of CPU and 
FPGA, the high energy consumption limits it to being used in high-performance compu-
ting clusters. If it is used on edge devices, the performance of GPU will be greatly sacri-
ficed. 

However, the DDR (double data rate) bandwidth, frequency, and number of compu-
ting units (low-end chips) of FPGA are not as high as GPU. For on-chip memory, FPGA 
has larger computing capacity; moreover, on-chip memory is crucial for reducing latency 
in applications such as deep learning. Accessing external memory such as DDR consumes 
more energy than the chip itself for computing. Therefore, the larger capacity of on-chip 
cache reduces the memory bottleneck caused by external memory reading and also re-
duces the power consumption and cost required by high-memory bandwidth. The large 
capacity of on-chip memory and flexible configuration capability of FPGA reduces the 
read and write of external DDR, while GPU requires the support of an external processor 
during operation. The addition of external hardware resources greatly reduces the data 
processing speed. Moreover, FPGA’s powerful raw data computing power and reconfig-
urability allow it to process arbitrary precision data, but GPU’s data processing is limited 
by the development platform. Therefore, in this context, FPGA seems to be a very ideal 
choice. In addition, compared with GPU, FPGA not only has the characteristics of data 
parallel, but also has the characteristics of pipeline parallel, and thus for pipelined com-
puting tasks, FPGA has a natural advantage in delay. On the basis of these advantages, 
FPGA stands out in the field of accelerated deep learning. 

In the previous work, the application, acceleration method and accelerator design of 
neural networks such as CNN (convolutional neural network), RNN (recurrent neural 
network), and GAN (generative adversarial network) based on FPGA were described in 
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detail, and the research hotspots of industrial application combined with FPGA and deep 
neural networks were fully investigated. They have made relevant contributions to the 
application and development of FPGA in neural networks [10–14]. It is worth noting that 
the analysis of the acceleration effect of different acceleration techniques on different neu-
ral networks is less involved in their work. Motivated by the current research progress, 
this paper reviews the latest optimization technology and application schemes of various 
neural networks based on FPGA, compares the performance effect of different accelera-
tion technologies on different neural networks, and analyzes and summarizes of potential 
research prospects. 

Compared with the previous work, the contributions of this paper are as follows: 
(1) The development history of neural networks is divided into five stages and presented 

in the form of tables, so that readers can understand the development history of neu-
ral networks more intuitively. 

(2) Study of the optimization technology of various neural networks based on FPGA, 
and introducing the application scenarios of various technologies and the latest re-
search results of various technologies. 

(3) Introducing the latest application achievements of CNN, RNN, and GAN in the field 
of FPGA acceleration, analyzing the performance achieved by deploying different 
neural networks using different optimization technologies on different FPGA plat-
forms, and finding that the use of Winograd and other convolutional optimization 
technologies can bring about huge performance gains. The reasons for this phenom-
enon are analyzed. 

(4) The future research directions of neural network acceleration based on FPGA are 
pointed out, and the application of FPGA accelerated neural network is prospected. 
The remainder of this paper is organized as follows: In Section 2, the history of neural 

networks is clearly shown in the form of a table. The history of neural networks is divided 
into five stages, being convenient for readers to comb and study. In Section 3, some com-
mon neural networks are introduced, and their applications based on FPGA and their 
effects are described. In Section 4, the acceleration technology of various neural networks 
based on FPGA is introduced, its advantages and disadvantages and application scenarios 
are pointed out, and the latest research status and achievements are described. In Section 
5, this paper describes the FPGA-based neural network accelerator and the acceleration 
framework in detail. These accelerators are often the comprehensive application of the 
acceleration technology described in Section 4, and they are compared with and summa-
rized in terms of the performance of different neural networks deployed on different 
FPGA platforms using different acceleration technologies. In Section 6, the current diffi-
culties in the application of FPGA-based neural networks are pointed out, and the future 
research directions are prospected. Finally, the paper is summarized in Section 7. The 
structural layout of the article is illustrated in Figure 1. 
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Figure 1. The structural layout of this paper. 

2. The Development of Neural Networks 
As shown in Table 1, the development process of neural networks can be roughly 

divided into five stages: the proposal of the model, the stagnation period, the rise of the 
back propagation algorithm, the confusion period, and the rise of deep learning. 

The period of 1943–1958 is considered as the model proposal phase, and the percep-
tron wave proposed in 1958 continued for about 10 years. With increasingly more scholars 
entering into this direction of research, some scholars gradually found the limitations of 
perceptron model. With the publication of the Perceptron by M. Minsky in 1969, the neu-
ral network was pushed to the bottom directly, leading to the “stagnation period” of neu-
ral networks from 1969 to 1980. 

After 1980, increasingly more scholars paid attention to the back propagation algo-
rithm, which reopened the thinking for researchers and launched another spring for the 
development of neural networks. 

Then, for a long period of time, scholars did not make breakthrough results, only 
working on the basis of existing research. In the mid-1990s, statistical learning theory and 
the machine learning model represented by the support vector machine began to rise. In 
contrast, the theoretical basis of neural networks was not clear, and optimization difficul-
ties, poor interpretability, and other shortcomings became more prominent; thus, neural 
network research fell into a low tide again. 

Until 2006, Professor Geoffrey Hinton, a neural network expert at the University of 
Toronto, and his students formally proposed the concept of deep learning. They proposed 
the deep belief network model in their published paper. Hinton et al. found that the multi-
layer feedforward neural network could be pre-trained layer by layer. In other words, the 
unsupervised pre-training method is used to improve the initial value of the network 
weights, and then the weights are fine-tuned. This model began the research boom of deep 
neural networks and opened the prelude to the research and application of deep learning. 
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Table 1. Development history of neural networks. 

Stage Year Character Content 

Generation of models 

1943 
Warren McCulloch and Walter 

Pitts McCulloch–Pitts model [15]  

1948 Alan Mathison Turing B-type Turing machine [16]  
1949 Donald Hebb Hebb algorithm [17]  
1951 McCulloch and Marvin Minsky The first neural network machine SNARC 
1958 Frank Rosenblatt Perceptron model [18]  

Lag phase 
1969 Marvin Minsky Perception [19]  
1974 Paul J. Werbos Backpropogation (BP) algorithm [20]  
1980 Kunihiko Fukushima Neocognitron model [21]  

The rise of backpropaga-
tion algorithms 

1982 John J. Hopfield Hopfield model [22]  
1985 Hinton and Sejnowski Boltzmann machine [23] 

1986 
David Rumelhart and James 

McClelland 
Redescription of the BP algorithm [24]  

1989 LeCun 
Introducing the BP algorithm to the convolu-

tional neural network [25]  

Confusion period 1990–2005 The rise of machine learning models has brought about great challenges to the 
development of neural networks 

The rise of deep learn-
ing 

2006 Geoffrey Hinton Deep Belief Networks [26]   
2012 Alex Krizhevsky AlexNet [27]   

2014 

Christian Szegedy GoogLeNet [28] 

Visual Geometry Group and 
Google DeepMind 

VGGNet [29]  

Ian J. Goodfellow GAN [30]  

Yi Sun and Xiaogang Wang DeepID [31] 

Ross Girshick and Jeff Do-
nahue 

Region-CNN (RCNN) [32] 

2015 Joseph Redmon You Only Look Once (YOLOv1) [33] 

2016 

AlphaGo, an artificial intelligence machine developed by Google’s DeepMind, 
beat Go world champion Lee Sedol 4-1 

Joseph Redmon YOLOv2 [34] 

2018 Joseph Redmon YOLOv3 [35] 

2020 Alexey Bochkovskiy YOLOv4 [36] 

2020–2022 YOLOv5, YOLOv6 [37], YOLOv7 [38], etc. 

At present, common deep learning models include deep neural networks (DNNs), 
convolutional neural networks (CNNs), recurrent neural networks (RNNs), and genera-
tive adversarial networks (GANs), among others. 

2.1. Deep Neural Network (DNN) 
Since a single-layer perceptron cannot solve linear inseparability problems, it cannot 

be used in industry. Scholars have expanded and improved the perceptron model by in-
creasing the number of hidden layers and corresponding nodes to enhance the expression 
ability of the model, and thus the deep neural network (DNN) was created. The DNN is 
sometimes called a multi-layer perceptron (MLP). The emergence of the DNN overcomes 



Appl. Sci. 2022, 12, 10771 6 of 45 
 

the low performance of a single-layer perceptron. According to the position of different 
layers in the DNN, the neural network layers inside the DNN can be divided into three 
types: the input layer, hidden layer, and output layer, as shown in Figure 2. Generally 
speaking, the first layer is the input layer, the last layer is the output layer, and the middle 
layers are all hidden layers. Layer to layer is fully connected, that is, any neuron in layer 
n must be connected with any neuron in layer n+1. Although the DNN appears compli-
cated, from a small local model, it is the same as the perceptron, namely, a linear relation 
z = ∑Wi Xi + b plus an activation function σ(z). 

 
Figure 2. Typical model of a DNN. 

With the deepening of the layers of neural networks, the phenomena of overfitting, 
gradient explosion, and gradient disappearance has become increasingly more serious, 
and the optimization function is increasingly more likely to fall into the local optimal so-
lution. In order to overcome this problem, scholars propose convolutional neural net-
works (CNN) based on the receptive field mechanism in biology. 

2.2. Convolutional Neural Network (CNN) 
The CNN model was developed from the early artificial neural network. On the basis 

of the research of Hub et al. on the cells in the visual cortex of cats, the CNN model is a 
specially designed artificial neural network with multiple hidden layers through the bio-
mimetic brain skin layer. Convolution operation is used to solve the disadvantages of 
large computation and loss of structure information of artificial neural networks. In 1982, 
Fukushima et al. [21] proposed the concept of Neocognitron to simulate human visual 
cognitive function, with it being considered to be the starting point of CNNs. In 1989, 
LeCun et al. [25] built the original Le-Net model, which included a convolutional layer 
and a fully connected layer. In 1998, LeCun et al. improved and proposed the classical 
Lenet-5 model, which better solved the problem of handwritten digit recognition. 

The birth of LeNet-5 established the basic embryonic form of CNN, which is com-
posed of a convolution layer, a pooling layer, an activation function, and a fully connected 
layer connected in a certain number of sequential connections, as shown in Figure 3. The 
CNN is mainly applied to image classification [39–41], object detection [42,43], and se-
mantic segmentation [44–46], as well as in other fields. The most common algorithms are 
YOLO and R-CNN, among which YOLO has a faster recognition speed due to the charac-
teristics of the algorithm. It has been upgraded to V7. R-CNN’s target location search and 
identification algorithm are slightly different from those of YOLO. Although the speed is 
slower than that of YOLO, the accuracy rate is higher than that of YOLO. 

Input layer

Hidden layer

Output layer
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Figure 3. The Lenet-5 model. 

A convolution neural network with local awareness and parameters share two char-
acteristics, local awareness, namely, the convolution neural network proposed that each 
neuron need not sense all pixels in the image and local pixels in an image-only perception; 
then, at a higher level, the information of these local pixels merge, and all the information 
of the image is obtained. The neural units of different layers are connected locally, that is, 
the neural units of each layer are only connected with part of the neural units of the pre-
vious layer. Each neural unit responds only to the area within the receptive field and does 
not consider the area outside the receptive field at all. Such a local connection pattern 
ensures that the learned convolution has the strongest response to the spatial local pattern 
of the input. The structure of the weight-sharing network makes it more similar to a bio-
logical neural network, which reduces the complexity of the network model and reduces 
the number of weights. This network structure is highly invariant to translation, scaling, 
tilting, or other forms of deformation. In addition, the convolutional neural network 
adopts the original image as input, being able to effectively learn the corresponding fea-
tures from a large number of samples and to avoid the complex feature extraction process. 

Since the convolutional neural network can directly process two-dimensional im-
ages, it has been widely used in image processing, and many research achievements have 
been made. The network extracts more abstract features from the original images through 
simple nonlinear models and only requires a small amount of human involvement in the 
whole process. However, as each layer of signals can only propagate in one direction and 
the sample processing is independent of each other at each moment, neither the DNN nor 
CNN can model the changes in time series. However, in natural language processing, 
speech recognition, handwriting recognition, and other fields, the chronological order of 
samples is very critical, and neither DNN nor CNN can deal with these scenarios. Thus, 
the recurrent neural network (RNN) came into being. 

2.3. Recurrent Neural Network (RNN) 
Different from CNN, RNN introduces the dimension of “time”, which is suitable for 

processing time-series-type data. Because the network itself has a memory ability, it can 
learn data types with correlation before and after. Recurrent neural networks have a 
strong model fitting ability for serialized data and are widely used in the field of natural 
language processing (NLP), including image classification, image acquisition, machine 
translation, video processing, sentiment analysis, and text similarity calculation. The spe-
cific structure is as follows: the recurrent neural network will store and remember the 
previous information in the hidden layer and then input it into the current calculation of 
the hidden layer unit. 

Figure 4 shows the typical structure of an RNN, which is similar to but different from 
the traditional deep neural network (DNN). The similarity lies in that the network models 
of DNN and RNN are fully connected from the input layer to the hidden layer and then 
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to the output layer, and the network propagation is also sequential. The difference is that 
the internal nodes of the hidden layer of the RNN are no longer independent of each other 
but have messages passing to each other. The input of the hidden layer can be composed 
of the output of the input layer and the output of the hidden layer at a previous time, 
which indicates that the nodes in the hidden layer are self-connected. It can also be com-
posed of the output of the input layer, the output of the hidden layer at the previous mo-
ment, and the state of the previous hidden layer, which indicates that the nodes in the 
hidden layer are not only self-connected but also interconnected. 

 
Figure 4. Typical structure of an RNN. 

Although the RNN solves the problems that the CNN cannot handle, it still has some 
shortcomings. Therefore, there are many deformed networks of RNN, among which one 
of the most commonly used networks is the long short-term network (LSTM). The input 
data of such networks is not limited to images or text, and the problem solved is not lim-
ited to translation or text comprehension. Numerical data can also be analyzed using the 
LSTM. For example, in predictive maintenance applications of factory machines, LSTM 
can be used to analyze machine vibration signals to predict whether the machine is faulty. 
In medicine, the LSTM can help in reading through thousands of pieces of literature and 
can find information related to specific cancers, such as tumor location, tumor size, num-
ber of stages, and even treatment policy or survival rate. It can also be combined with 
image recognition to provide keywords of lesions in order to assist doctors in writing 
pathological reports. 

In addition to the DNN, CNN, and RNN, there is also an emerging network called 
reinforcement learning, among which the generative adversarial network (GAN) is a dis-
tinctive network. 

2.4. Generative Adversarial Network (GAN) 
The GAN (generative adversarial network) is a machine learning model designed by 

Goodfellow et al. in 2014. Inspired by the zero-sum game in game theory, this model views 
the generation problem as a competition between generators and discriminators. The gen-
erative adversarial network consists of a generator and a discriminator. The generator 
generates data by learning, and the discriminator determines whether the input data are 
real data or generated data. After several iterations, the ability of the generator and dis-
criminator is constantly improved, and finally the generated data are infinitely close to 
the real data so that the discriminator cannot judge whether they are true or false. The 
GAN is shown in Figure 5. 

Input layer

Output layer

Hidden layer
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Figure 5. Typical structure of a GAN. 

The training of the network can be equivalent to the minimax problem of the objec-
tive function. That is, let the discriminator maximize the accuracy of distinguishing real 
data from forged data, and at the same time minimize the probability that the data gener-
ated by the generator will be discovered by the discriminator. During training, one of 
them (the discriminator or generator) is fixed, the parameters of the other model are up-
dated, and the model that can estimate the distribution of sample data is generated by 
alternating iterations. In GAN, the two networks compete with each other, eventually 
reaching a balance wherein the generating network can generate data, while the discrim-
inating network can hardly distinguish it from the actual image. 

In recent years, with the continuous development of neural networks, the combina-
tion of FPGA and neural networks has become increasingly closer, being used in various 
fields and having achieved certain results. 

3. Application of Neural Networks Based on FPGA 
The largest proportion of FPGA applications is in the field of communication, often 

used in large flow data transmission, digital signal processing, and other occurrences. 
With the continuous development of neural networks, the application field of FPGA has 
expanded from the original communication to a wider range of fields, such as national 
defense, the military industry, the aerospace industry, industrial control, security moni-
toring, intelligent medical treatment, and intelligent terminals, and increasingly more in-
telligent products have been derived from them. 

In the academic community, the application of the combination of FPGA and neural 
networks has attracted increasingly more attention, and the optimal design of neural net-
works based on FPGA has also become a research hotspot. Scholars have also conducted 
much research and have obtained some results. We introduce the current research results 
of the combination of FPGA and neural networks in terms of three aspects: the application 
of FPGA-based CNN, the application of FPGA-based RNN, and the application of FPGA-
based GAN, and analyzed the directions for improvement of these studies. 

3.1. Application of CNNs Based on FPGA 
In terms of intelligent medical treatment, in November 2019, Serkan Sağlam et al. [47] 

deployed a CNN on FPGA to classify malaria disease cells and achieved 94.76% accuracy. 
In 2020, Qiang Zhang et al. [48] adopted a CPU+FPGA heterogeneous system to realize 
CNN classification of heart sound sample data, with an accuracy of 86%. The fastest time 
to classify 200 heart sound samples was 0.77 s, which was used in the machine of primary 
hospital to assist in the initial diagnosis of congenital heart disease. In 2021, Jiying Zhu et 
al. [49] proposed a computed tomography (CT) diagnostic image recognition of cholangi-
ocarcinoma that was based on FPGA and a neural network, showing an excellent classifi-
cation performance on liver dynamic CT images. In September of the same year, Siyu 
Xiong et al. [50] used an FPGA-based CNN to speed up the detection and segmentation 
of 3D brain tumors, providing a new direction for the improvement of automatic segmen-
tation of brain tumors. In 2022, H. Liu et al. [51] designed an FPGA-based multi-task re-
current neural network gesture recognition and motion assessment upper limb 
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rehabilitation device, making it unnecessary for patients with upper limb movement dis-
orders to spend a large amount of time in the hospital for upper limb rehabilitation train-
ing. Using this device can help patients to complete the same professional upper limb 
rehabilitation training at home in the same way as in the hospital, helping the patients in 
reducing the burden of medical expenses and reducing the investment of a large number 
of medical resources. The intelligent rehabilitation system adopts a high-level synthesis 
design of HLS, and a convolutional recurrent neural network (C-RNN) is deployed on 
Zynq ZCU104 FPGA. The experiments showed that the system can recognize the unnat-
ural features (such as tremor or limited flexion and extension) in patients’ dynamic move-
ments and upper limb movements with an accuracy of more than 99%. However, the sys-
tem does not optimize the convolution operation in the network, nor does it optimize the 
memory access of parameters. 

In terms of national defense, in 2020, Cihang Wang et al. [52] found that a large num-
ber of high-precision and high-resolution remote sensing images were used in civil eco-
nomic construction and military national defense, and thus they proposed a scheme of 
real-time processing of remote sensing images that was based on a convolutional neural 
network on the FPGA platform. This scheme optimized CNN on FPGA from two aspects: 
spatial parallel and temporal parallel. By adding pipeline design and using the ideas of 
module reuse and data reuse, the pressure of the data cache was reduced, and the resource 
utilization of FPGA was increased. Compared with other schemes, the proposed scheme 
greatly improved the recognition speed of remote sensing images, reduced the power con-
sumption, and achieved 97.8% recognition accuracy. Although the scheme uses many 
speedup techniques, it does not optimize the convolution operation, which has the most 
significant performance improvement. In the next step, the traditional CNN convolution 
operation can be transformed into a Winograd fast convolution operation, so as to reduce 
the use of multiplication and accumulation operation, and thus improving the model op-
eration rate and reducing the resource occupancy. 

In the same year, Buyue Qin et al. [53] proposed a special processor for key point 
detection of aircraft that was based on FPGA and deployed a VGG-19 deep neural net-
work (DNN) to speed up the detection process of enemy aircraft, so as to detect enemy 
aircraft in the first time and avoid the danger of being attacked. The design was imple-
mented on Xilinx Virtex-7 VC709 FPGA at 150 MHz (Mega Hertz) using HLS high-level 
synthesis, fixed-point quantization, on-chip data buffering, and FIFO (first in first out) 
optimization methods. Compared to the Intel I7-8700K (@ 3.7 GHz, Giga Hertz) processor, 
the former is 2.95 times the throughput of the latter and 17.75 times the performance 
power ratio. Although the processor uses HLS high-level synthesis to simplify the diffi-
culty of network deployment on FPGA, HLS causes individuals to focus on the design 
and to pay less attention to the specific implementation of the bottom layer by integrating 
other languages such as C/C++ (the C/C++ programming language) into the HDL (hard-
ware description language). Compared with the implementation of VHDL (very high-
speed integrated circuit hardware description language) or Verilog (Verilog HDL), the 
optimization objective of the algorithm is not the actual on-board objective, and thus the 
final implementation often fails to meet the timing or power constraints. 

3.2. Application of RNNs Based on FPGA 
At present, in addition to the application of deep neural networks into the fields of 

image and video, an FPGA-based speech recognition system has also become a research 
hotspot. Among them, the commonly used speech recognition model is the RNN and its 
variant LSTM. Due to its huge market demand, speech recognition develops rapidly. In 
intelligent speech recognition products, in order to ensure certain flexibility and mobility, 
the speech recognition model is usually deployed on FPGA to meet the needs of intelli-
gence and production landing. 

In 2016, the work of J. C. Ferreira and J. Fonseca et al. [54] was considered as one of 
the earliest works to implement the LSTM network on the FPGA hardware platform, 
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which focused people’s attention from the software implementation of LSTM to FPGA 
hardware. In 2017, Y. Guan et al. [55] implemented the LSTM network using special hard-
ware IP containing devices such as data scheduler, FPGA, AXI4Lite (one of the Advanced 
eXtensible Interfaces) bus, and optimized computational performance and communica-
tion requirements in order to accelerate inference. In the same year, Y. Zhang et al. con-
ducted two works. First, they proposed an energy-efficient optimization structure based 
on tiling vector multiplication, binary addition tree, overlap computation, and data access 
methods [56]. The second further developed on the basis of the first work and improved 
the performance by adding sparse LSTM layers that occupy less resources [57]. Song Han 
et al. [58] proposed the ESE (efficient speech recognition engine), a sparse LSTM efficient 
speech recognition engine based on FPGA, which uses a load-balancing sensing pruning 
method. The proposed method can compress the size of the LSTM model by a factor of 20 
(10 times pruning, 2 times quantization) with negligible loss of prediction accuracy. They 
also proposed a scheduler that encodes and partitions the compression model into multi-
ple parallel PE and schedule complex LSTM data streams. Compared with the peak per-
formance of the uncompressed LSTM model of 2.52 GOPS (Giga Operations Per Second), 
the ESE engine reached the peak performance of 282 GOPS on a Xilinx XCKU060 FPGA 
with 200 MHz operating frequency. ESE, evaluated in the LSTM speech recognition 
benchmark, was 43 and 3 times faster than the Intel Core I7 5930K CPU and Pascal Titan 
X GPU implementations, respectively, and was 40 and 11.5 times more energy efficient, 
respectively. 

In 2018, Zhe Li et al. [59] summarized two previous works on the FPGA implemen-
tation of the LSTM RNN inference stage on the basis of model compression. One work 
found that the network structure became irregular after weight pruning. Another in-
volved adding a cyclic matrix to the RNN to represent the weight matrix in order to 
achieve model compression and acceleration while reducing the influence of irregular net-
works. On this basis, an efficient RNN framework for automatic speech recognition based 
on FPGA was proposed, called E-RNN. Compared with the previous work, E-RNN 
achieved a maximum energy efficiency improvement of 37.4 times, which was more than 
two times that of the latter work under the same accuracy. In 2019, Yong Zheng et al. [60] 
also used the pruning operation to compress the LSTM model, which was different from 
the work of Zhe Li et al. [59] in that they used the permutation block diagonal mask matrix 
to pry the model. The structured sparse features were created, and the normalized linear 
quantization method was used to quantify the weight and activation function, so as to 
achieve the purpose of hardware friendliness. However, compared with similar jobs, the 
acceleration effect was not very significant. 

In 2020, Yuxi Sun et al. [61] adopted the idea of model partitioning. Unlike Song Han 
et al. [58], who coded the compression model and divided it into multiple parallel PEs for 
processing, they extended the reasoning of deep RNN by dividing a large model into 
FPGA clusters. The whole FPGA cluster shared an RNN model, and thus each FPGA pro-
cessed only a part of the large RNN model, which reduced the processing burden of 
FPGA. The parallelism of the FPGA cluster and the time dependence of RNN made the 
delay basically unchanged when the number of RNN layers increased. Compared to Intel 
CPU, 31 times and 61 times speedup were achieved for single-layer and four-layer RNNS, 
respectively. 

In December of the same year, Chang Gao et al. [62] proposed a lightweight gated 
recursive unit (GRU)-based RNN accelerator, called EDGERDNN, which was optimized 
for low-latency edge RNN inference with batch size 1. EDGERDRNN used a delta net-
work algorithm inspired by pulsed neural networks in order to exploit the temporal spar-
sity in RNN. Sparse updates reduced distributed RAM (DRAM) weight and memory ac-
cess by a factor of 10, and reduced latency, resulting in an average effective throughput of 
20.2 GOP/s for batch size 1. In 2021, Jinwon Kim et al. [63] implemented an efficient and 
reconfigurable RNN inference processor AERO on a resource-limited Intel Cyclone V 
FPGA on the basis of the instruction set architecture that specializes in processing the raw 
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vector operations that constitute the data stream of RNN models. The vector processing 
unit (VPU) based on the approximation multiplier was used to complete the approximate 
calculation in order to reduce the resource usage. Finally, AERO achieved a resource uti-
lization of 1.28 MOP/s/LUT. As the authors stated, the next step can be achieved by the 
multi-core advantage of FPGA clusters in order to achieve higher reasoning speed. 

In June 2022, Jianfei Jiang et al. [64] proposed a subgraph segmentation scheme based 
on the CPU-FPGA heterogeneous acceleration system and the CNN-RNN hybrid neural 
network. The Winograd algorithm was applied to accelerate the CNN. Fixed-point quan-
tization, cyclic tiling, and piecewise linear approximation of activation function were used 
to reduce hardware resource usage and to achieve high parallelization in order to achieve 
RNN acceleration. The connectionist text proposal network (CTPN) was used for testing 
on an Intel Xeon 4116 CPU and Arria10 GX1150 FPGA, and the throughput reached 
1223.53 GOP/s. Almost at the same time, Chang Gao et al. [65] proposed a new LSTM 
accelerator called “Spartus” that was again based on spatiotemporal sparsity, with it uti-
lizing spatiotemporal sparsity in order to achieve an ultra-low delay inference. Different 
from the pruning method used by Zhe Li [59] and Yong Zheng et al. [60], they used a new 
structured pruning method of column balancing target dropout (CBTD) in order to induce 
spatial sparsity, which generates structured sparse weight matrices for balanced work-
loads and reduces the weight of memory access and related arithmetic operations. The 
throughput of 9.4 TOp/s and energy efficiency of 1.1 Top/J were achieved on a Xilinx Zynq 
7100 FPGA with an operating frequency of 200 MHz. 

3.3. Application of GANs Based on FPGA 
In 2018, Amir Yazdanbakhsh et al. [66] found that generators and discriminators in 

GANs use convolution operators differently. The discriminator uses the normal convolu-
tion operator, while the generator uses the transposed convolution operator. They found 
that due to the algorithmic nature of transposed convolution and the inherent irregularity 
in its computation, the use of conventional convolution accelerators for GAN leads to in-
efficiency and underutilization of resources. To solve these problems, FlexiGAN was de-
signed, an end-to-end solution that generates optimized synthesizable FPGA accelerators 
according to the advanced GAN specification. The architecture takes advantage of MIMD 
(multiple instructions stream multiple data stream) and SIMD (single instruction multiple 
data) execution models in order to avoid inefficient operations while significantly reduc-
ing on-chip memory usage. The experimental results showed that FlexiGAN produced an 
accelerator with an average performance of 2.2 times that of the optimized conventional 
accelerator. The accelerator delivered an average of 2.6 times better performance per watt 
compared to the Titan X GPU. Along the same lines as Amir Yazdanbakhsh et al., Jung-
Woo Chang et al. [67] found that the GAN created impressive data mainly through a new 
type of operator called deconvolution or transposed convolution. On this basis, a Wino-
grad-based deconvolution accelerator wsa proposed, which greatly reduces the use of the 
multiplication–accumulation operation and improves the operation speed of the model. 
The acceleration effect was 1.78~8.38 times of the fastest model at that time. However, as 
was the case for Amir Yazdanbakhsh et al., they only optimized the convolution operation 
in GANs, but did not optimize the GAN model framework. 

In the study of infrared image colorization, in order to obtain more realistic and de-
tailed colorization results, in 2019, Xingping Shi et al. [68] improved the generator based 
on Unet, designed a discriminator for deconvolution optimization, proposed a DenseUnet 
GAN structure, and added a variety of loss functions in order to optimize the colorization 
results. The data were preprocessed, and the face localization neural network used in pre-
processing datasets was accelerated by FPGA. It achieved better results than other image 
coloring methods on large public datasets. 

In terms of image reconstruction research, Dimitrios Danopoulos et al. [69] first used 
GAN to implement image reconstruction application on FPGA in 2021. Compared with 
CPU and GPU platforms, generator models trained with specific hardware optimizations 
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can reconstruct images with high quality, minimum latency, and the lowest power con-
sumption. 

In terms of hardware implementation of GAN, in 2021, Yue Liu et al. [70] proposed 
a hardware scheme of a generative adversarial network based on FPGA, which effectively 
meets the requirements of dense data communication, frequent memory access, and com-
plex data operation in generative adversarial networks. However, the parameters of 
GANs are not optimized by the acceleration design such as ping-pong cache, and thus 
there is a large amount of room for improvement in this research. 

4. Neural Network Optimization Technology Based on FPGA 
With the rapid development of artificial intelligence, the number of layers and nodes 

of neural network models is increasing, and the complexity of the models is also increas-
ing. Deep learning and neural networks have put forward more stringent requirements 
on the computing ability of hardware. On the basis of the advantages of FPGA mentioned 
in the introduction, increasingly more scholars are choosing to use FPGA to complete the 
deployment of neural networks. As shown in Figure 6, according to different design con-
cepts and requirements, FPGA-based neural network optimization technology can be 
roughly divided into optimization for data and operation, optimization for bandwidth, 
and optimization for memory and access, among others, which are introduced in detail 
below. 

 
Figure 6. Neural network optimization technology based on FPGA.(fixed-point quantization [71–
78], less computations [79–81], improve calculation speed [82–85], Winograd fast convolution algo-
rithm [86–91], Im2col convolution optimization algorithm [92–97], pipelined design [98–102], Roof-
line model [103–105], ping-pong cache [106–109], input feature map reuse [110,111], filter reuse 
[111,112], convolutional reuse [110–112], time reuse or space reuse [111], standardize data access 
and storage [113–115]). 

4.1. Optimization of Data and Its Operations 
In the aspect of optimization of data and its operation, scholars have made many 

attempts and achieved certain results. Aiming at the data itself, a method to reduce the 
data accuracy and computational complexity is usually used. For example, fixed-point 
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quantization is used to reduce the computational complexity with an acceptable loss of 
data accuracy, so as to improve the computational speed. In terms of operation, the opti-
mization is realized by reducing the computation times of multiplication and increasing 
the computation speed. The commonly used optimization methods include addition cal-
culation instead of multiplication calculation, the Winograd fast convolution algorithm, 
and the Im2col convolution acceleration algorithm, among others. 

4.1.1. Fixed-Point Quantitative 
Since the bit width of the number involved in the operation is finite and constant in 

FPGA calculations, the floating-point decimal number involved in the operation needs to 
be fixed to limit the bit width of a floating-point decimal to the range of bit width allowed 
by FPGA. Floating-point decimals mean that the decimal point position is not fixed, and 
fixed-point decimals mean that the decimal point position is fixed. Fixed-point quantiza-
tion is the use of finite digits to represent infinite precision numbers, that is, the quantiza-
tion function maps the full precision numbers (the activation parameters, weight param-
eters, and even gradient values) to a finite integer space. Fixed-point quantization can 
greatly reduce the memory space of each parameter and the computational complexity 
within the acceptable accuracy loss range, so as to achieve neural network acceleration. 

In 2011, Vincent Vanhoucke first proposed the linear fixed-point 8-bit quantization 
technology, which was initially used in X86 CPU, greatly reducing the computational cost, 
with it then being slowly applied to FPGA [71]. In March 2020, Shiguang Zhang et al. [72] 
proposed a reconfigurable CNN accelerator with an AXI bus based on advanced RISC 
machine (ARM)+FPGA architecture. The accelerator receives the configuration signal sent 
by the ARM. The calculation in the reasoning process of different CNN layers is completed 
by time-sharing, and the data movement of the convolutional layer and pooling layer is 
reduced by combining convolutional and pooling operations; moreover, the number of 
access times of off-chip memory is reduced. At the same time, fixed-point quantization is 
used to convert floating-point numbers into 16-bit dynamic fixed-point format, which im-
proves the computational performance. The peak performance of 289 GOPS is achieved 
on a Xilinx ZCU102 FPGA. 

In June of the same year, Zongling Li et al. [73] designed a CNN weight parameter 
quantization method suitable for FPGA, different from the direct quantization operation 
in the literature [72]. They transformed the weight parameter into logarithm base 2, which 
greatly reduced the quantization bit width, improved the quantization efficiency, and re-
duced the delay. Using a shift operation instead of a convolution multiplication operation 
saves a large number of computational resources. In December of the same year, Sung-en 
Chang et al. [74] first proposed a hardware-friendly quantization method named Sum-of-
Power-of-2 (SP2), and on the basis of this method proposed a mixed scheme quantization 
(MSQ) combining SP2 and fixed-point quantization methods. By combining these two 
schemes, a better match with the weight distribution is achieved, accomplishing the effect 
of maintaining or even improving the accuracy. 

In 2021, consistent with X. Zhao’s view of whole-integer quantization [75], Zhenshan 
Bao et al. [76] proposed an effective quantization method that was based on hardware 
implementation, a learnable parameter soft clipping fully integer quantization (LSFQ). 
Different from previous studies that only quantified weight parameters, input and output 
data, etc., their study quantified the entire neural network as integers and automatically 
optimized the quantized parameters in order to minimize losses through backpropaga-
tion. Then, the batch norm layer and convolution layer were fused to further quantify the 
deviation and quantization step. In the same year, Xiaodong Zhao et al. [77] optimized 
the YOLOv3 network structure through pruning and the Int8 (Integer8) quantization al-
gorithm with the trade-off between speed and accuracy. Good acceleration was achieved 
with limited and acceptable loss of accuracy. Some scholars proposed the use of the quan-
tization algorithm to map matrix elements participating in matrix multiplication opera-
tions from single-precision floating-point data to half-precision floating-point data. Under 
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the condition of ensuring the accuracy of the algorithm model, the consumption of on-
chip storage resources on FPGA is greatly saved and the computing speed is improved 
[78]. 

4.1.2. Multiplication Optimization 
Matrix operations mainly appear in the training and forward computation of neural 

networks and they occupy a dominant position; thus, it is of great significance to acceler-
ate matrix operation. The optimization of matrix multiplication can be achieved by reduc-
ing the number of multiplication computations and increasing the computation speed. 
Matrix operations often have remarkable parallelism. Scholars usually use the character-
istics of FPGA parallel computing to optimize matrix operations. In 2006, D. K. Iakovidis 
et al. [82] designed an FPGA structure capable of performing fast parallel co-occurrence 
matrix computation in grayscale images. The symmetries and sparsity of a co-occurrence 
matrix were used to achieve shorter processing time and less FPGA resource occupation. 
In 2014, Jeremy Fowers et al. [79] designed an FPGA accelerator with high memory band-
width for Sparse matrix–vector multiplication. 

As shown in Figure 7, the architecture uses specialized compressed interleave sparse 
row (CISR) coding to efficiently process multiple rows of the matrix in parallel, combined 
with a caching design that eliminates the replication of the buffer carrier and enables 
larger vectors to be stored on the chip. The design maximizes the bandwidth utilization 
by organizing the data from memory into parallel channels, which can keep the hardware 
complexity low while greatly improving the parallelism and speed of data processing. 

In 2016, Eriko Nurvitadhi et al. [80] used XNOR Gate to replace the multiplier in 
FPGA in order to reduce the computational difficulty and improve the computational ef-
ficiency from the perspective of the multiplier occupying more resources. In 2019, Asgar 
Abbaszadeh et al. [83] proposed a universal square matrix computing unit that was based 
on cyclic matrix structure and finally tested a 500 × 500 matrix on an FPGA with an oper-
ating frequency of 346 MHz, achieving a throughput of 173 GOPS. In 2020, S. Kala and S. 
Nalesh [84] proposed an efficient CNN accelerator that was based on block Winograd 
GEMM (general matrix multiplication) architecture. Using blocking technology to im-
prove bandwidth and storage efficiency, the ResNet-18 CNN model was implemented on 
XC7VX690T FPGA. Running at a clock frequency of 200MHz, the average throughput was 
383 GOPS, which was a significant improvement in comparison to the work of Asgar Ab-
baszadeh et al. In the same year, Ankit Gupta et al. [81] made a tradeoff between accuracy 
and performance and proposed a new approximate matrix multiplier structure, which 
greatly improved the speed of matrix multiplication by introducing a negligible error 
amount and an approximate multiplication operation. 

In 2022, Shin-Haeng Kang et al. [85] implemented the RNN-T (RNN-Transducer) in-
ference accelerator on FPGA for the first time on the basis of Samsung high-bandwidth 
memory–processing in memory (HBM-PIM) technology. By placing the DRAM-opti-
mized AI engine in each memory bank (storage subunit), the processing power was 
brought directly to the location of the data storage, which enabled parallel processing and 
minimized data movement. The HBM internal bandwidth was utilized to significantly 
reduce the execution time of matrix multiplication, thus achieving acceleration. 
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Figure 7. Neural network optimization technology based on FPGA. 

4.1.3. Convolution Optimization 
For the optimization of convolution algorithms, scholars have provided the follow-

ing two ideas. One is the Winograd fast convolution algorithm, which speeds up convo-
lution by increasing addition and reducing multiplication. Another is the Im2col convo-
lution optimization algorithm that sacrifices storage space in order to improve the speed 
of the convolution operation. This is described in detail below. 

(1) Winograd fast convolution algorithm 

The Winograd Fast Convolutional algorithm was first proposed by Shmuel Wino-
grad in his paper “Fast Algorithms for Convolutional Neural Networks” in 1980, but it 
did not cause much sensation at that time. In the 2016 CVPR conference, Lavin et al. [86] 
proposed the use of the Winograd fast convolution algorithm to accelerate the convolu-
tion operation. Since then, the Winograd algorithm has been widely used to accelerate the 
convolution algorithm. 

The Winograd algorithm can accelerate the convolution operation because it uses 
more addition to reduce multiplication calculation, thus reducing the amount of calcula-
tions, using less FPGA resources, and improving operation speed, not as well as when 
FFT (fast Fourier transform) is introduced into the plural. But with the premise being, in 
the processor, the clock cycle of the calculation of the multiplication are longer than the 
clock cycles of the addition. 

Taking the one-dimensional convolution operation as an example, the input signal 
as d = [d0 d1 d2 d3] T, and the convolution kernel as g = [g0 g1 g2] T, then the convolution can 
be written as the following matrix multiplication form: 
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For general matrix multiplication, six multiplications and four additions are re-
quired, as follows: r0 = d0g0 + d1g1 + d2g2, r1 = d1g0 + d2g1 + d3g2. However, the matrix trans-
formed by the input signal in the convolution operation is not an arbitrary matrix, in 
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Among them, the m1 = (d0 − d2) g0, m2 = (d1 + d2) (g0 + g1 + g2)/2, m3 = (d2 − d1) (g0 − g1 + 
g2)/2, m4 = (d1 − d3) g2. To calculate r0 = m1 + m2 + m3, r1 = m2 − m3 − m4, the number of opera-
tions required are four additions (subtraction) on the input signal d and four multiplica-
tions and four additions on the output m, respectively. In the inference stage of the neural 
network, the elements on the convolution kernel are fixed, and therefore the operation on 
g can be calculated well in advance. In the prediction stage, it only needs to be calculated 
once, which can be ignored. Therefore, the total number of operations required is the sum 
of the operation times on d and m, namely, four times of multiplication and eight times of 
addition. Compared with the direct operation of six multiplications and four additions, 
the number of multiplications decreases, and the number of additions increases. In FPGA, 
the multiplication operation is much slower than the addition operation, and it will oc-
cupy more resources. By reducing multiplication times and adding a small amount of ad-
dition, the operation speed can be improved. 

It is worth noting that the Winograd algorithm is not a panacea. As the number of 
additions increases, additional transform computation and transform matrix storage are 
required. As the size of convolution kernel and tile increases, the cost of addition, trans-
form, and storage needs to be considered. Moreover, the larger the tile, the larger the 
transform matrix, and the loss of calculation accuracy will further increase. Therefore, the 
general Winograd algorithm is only suitable for small convolution kernels and tiles. 

In FPGA, the neural network optimization based on the Winograd algorithm also has 
a large number of research achievements. In 2018, Liqiang Lu et al. [87] proposed an effi-
cient sparse Winograd convolutional neural network accelerator (SpWA) that was based 
on FPGA. Using the Winograd fast convolution algorithm, transforming feature maps to 
specific domains to reduce algorithm complexity, and compressing CNN models by prun-
ing unimportant connections were able to reduce storage and arithmetic complexity. On 
the Xilinx ZC706 FPGA platform, at least 2.9× speedup was achieved compared to previ-
ous work. In 2019, Kala S. et al. [88] combined the Winograd algorithm and GEMM on 
FPGA to speed up the reasoning of AlexNet. In 2020, Chun Bao et al. [89] implemented 
the YOLO target detection model based on the Winograd algorithm under PYNQ (Python 
productivity for Zynq) architecture, which was applied in order to accelerate edge com-
puting and greatly reduced the resource usage of FPGA and the power consumption of 
the model. In November of the same year, Xuan Wang et al. [90] systematically analyzed 
the challenges of simultaneously supporting the Winograd algorithm, weight sparsity, 
and activation sparsity. An efficient encoding scheme was proposed to minimize the effect 
of activation sparsity, and a new decentralized computing-aggregation method was pro-
posed to deal with the irregularity of sparse data. It was deployed and evaluated on Zed-
Board, ZC706, and VCU108 platforms and achieved the highest energy efficiency and DSP 
(digital signal processing) efficiency at the time. In 2022, Bin Li et al. [91] combined the 
Winograd algorithm with fusion strategy, reduced the amount of data movement and the 
number of accesses to off-chip memory, and improved the overall performance of the ac-
celerator. On the U280 FPGA board, the mean average precision (mAP) decreased by 
0.96% after neural network quantization, and the performance reached 249.65 GOP/s, 
which was 4.4 times Xilinx’s official parameters. 

(2) Im2col convolution optimization algorithm 

The Im2col convolution optimization algorithm is different from the Winograd algo-
rithm, which uses more addition operations instead of multiplication operations in order 
to occupy less resources in order to improve the operation speed. The Im2col convolution 
optimization algorithm adopts the idea of exchanging space for the improvement of com-
putation speed. By converting the receptive field of convolution kernel into a row 
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(column) for storage, the memory access time is reduced, and the operation speed is ac-
celerated. 

Because matrix multiplication involves nothing more than the dot product of the cor-
responding position, it only takes one traversal for both matrices to be multiplied, and 
thus matrix multiplication is very fast compared to convolution. From the perspective of 
matrix multiplication, the convolution operation is actually the process of circular matrix 
multiplication with the template moving. Although the image of each multiplication is 
locally different, the template remains the same. Every time one adds a template and a 
local dot product, one multiplies rows and columns in matrix multiplication. 

As shown in Figure 8, using the Im2col convolution optimization algorithm as an 
example, by converting each local multiplication and accumulation process into the mul-
tiplication of a row and a column of two matrices, the whole convolution process can be 
converted into a matrix multiplication process, and the convolution speed can be greatly 
improved. At the same time, it is worth noting that just because of the action mechanism 
of Im2col convolution optimization algorithm, the number of elements after Im2col ex-
pansion will be more than the number of elements of the original block. Therefore, opti-
mizing the convolution operation using Im2col consumes more memory. Therefore, when 
the Im2col convolution optimization algorithm is used, memory optimization technology 
is often used together. 

 

Figure 8. An example of the Im2col convolution optimization algorithm. 

In terms of FPGA-based neural network Im2col convolution optimization, in 2017, 
Feixue Tang et al. [92] used the Im2col algorithm to optimize the convolution algorithm 
and then converted the optimized convolution algorithm into a matrix operation, so as to 
improve the operation speed. In 2020, Feng Yu et al. [93] combined the quantization 
method with the Im2col algorithm for visual tasks and designed a dedicated data-stream 
convolution acceleration under the heterogeneous CPU-FPGA platform PYNQ, including 
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the changed data-stream order and Im2col for convolution. Compared with ARM CPU, 
120× acceleration was achieved on FPGA operating at 250 MHz. 

In 2021, Tian Ye et al. [94] applied the Im2col algorithm to the FPGA accelerator of 
homomorphic encryption of private data in order to optimize convolution, which greatly 
reduced the delay of the convolution algorithm. In October of the same year, Hongbo 
Zhang et al. [95] combined the Im2col algorithm with pipeline design and applied it to the 
lightweight object detection network YOLOV3-Tiny, achieving 24.32 GOPS throughput 
and 3.36 W power consumption on the Zedboard FPGA platform. 

In 2022, Chunhua Xiao et al. [96] proposed a smart data stream transformation 
method (SDST), which is similar to but different from the Im2col algorithm. Different from 
the Im2col algorithm, with the improvement of the peak performance of the GEMM ker-
nel, the overhead caused by the Im2col algorithm, which converts convolution to matrix 
multiplication, becomes obvious. SDST divides the input data into conflict-free streams 
on the basis of the local property of data redundancy, which reduces the external storage 
of data and keeps the continuity of data. A prototype system based on SDST was imple-
mented on Xilinx ZC706 APSoC (all programmable system-on-chip), and the actual per-
formance of accelerated CNN was evaluated on it. The results showed that SDST was able 
to significantly reduce the overhead associated with the explicit data conversion of con-
volutional inputs at each layer. In March of the same year, Bahadır Özkılbaç et al. [97] 
combined a fixed-point quantization technique with the Im2col algorithm in order to op-
timize convolution, reduce temporary memory size and storage delay, perform the appli-
cation of digital classification of the same CNN on acceleration hardware in the ARM pro-
cessor and FPGA, and observe the delay time. The results show that the digital classifica-
tion application executed in the FPGA was 30 times faster than that executed in the ARM 
processor. 

4.1.4. Pipelined Design 
Pipelined design is a method of systematically dividing combinational logic, insert-

ing registers between the parts (hierarchies), and temporarily storing intermediate data. 
The purpose is to decompose a large operation into a number of small operations. Each 
small operation takes less time, shortens the length of the path that a given signal must 
pass in a clock cycle, and improves the frequency of operations; moreover, small opera-
tions can be executed in parallel and can improve the data throughput. 

The design method of Pipeline can greatly improve the working speed of the system. 
This is a typical design approach that converts “area” into “velocity.” The “area” here 
mainly refers to the number of FPGA logic resources occupied by the design, which is 
measured by the consumed flip-flop (FF) and look-up table (LUT). “Speed” refers to the 
highest frequency that can be achieved while running stably on the chip. The two indexes 
of area and speed always run through the design of FPGA, which is the final standard of 
design quality evaluation. This method can be widely used in all kinds of designs, espe-
cially the design of large systems with higher speed requirements. Although pipelining 
can increase the use of resources, it can reduce the propagation delay between registers 
and ensure that the system maintains a high system clock speed. In the convolutional layer 
of deep neural networks, when two adjacent convolutional iterations are performed and 
there is no data dependency, pipelining allows for the next convolutional operation to 
start before the current operation is completely finished, improving the computational 
power, with pipelining having become a necessary operation for most computational en-
gine designs. In practical application, considering the use of resources and the require-
ments of speed, the series of pipelines can be selected according to the actual situation in 
order to meet the design needs. 

In terms of using pipeline design to accelerate neural networks, pipeline design is 
usually not used alone, but instead used in conjunction with other techniques. In 2017, 
Zhiqiang Liu et al. [98] used a pipeline design together with the space exploration method 
to maximize the throughput of a network model, optimizing and evaluating three 
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representative CNNs (LeNet, AlexNet, and VGG-S) on a Xilinx VC709 board. The results 
show that the performances of 424.7 GOPS/s, 445.6 GOPS/s, and 473.4 GOPS/s, respec-
tively, were clearly higher than in previous work. 

In 2019, Yu Xing et al. [99] proposed an optimizer that integrates graphics, loops, and 
data layout, as well as DNNVM, a full-stack compiler for an assembler. In the framework 
of a compiler, the CNN model is transformed into a directed acyclic graph (XGraph). The 
pipeline design, data layout optimization, and operation fusion technology are applied to 
XGraph, and lower FPGA hardware resource consumption is realized on VGG and Resid-
ual Network 50 (ResNet50) neural networks. On GoogLeNet with operation fusion, a 
maximum 1.26× speedup was achieved compared to the original implementation. In April 
of the same year, Wei Wang et al. [100] combined a pipeline design with a ping-pong 
cache and optimized Sigmoid activation function through a piecewise fitting method com-
bining the look-up table and polynomial. On a Xilinx virtex-7 FPGA with 150 MHz oper-
ating frequency, the computational performance was improved from 15.87 GOPS to 20.62 
GOPS, and the recognition accuracy was 98.81% on a MNIST dataset. 

In 2021, Dong Wen et al. [101] used the CNN for acoustic tasks and combined fixed-
point quantization, space exploration methods similar to the roof-line model, and pipeline 
design in order to achieve higher throughput of the designed FPGA accelerator. In 2022, 
Varadharajan et al. [102] proposed pipelined stochastic adaptive distributed architectures 
(P-SCADAs) by combining pipelined design and adaptive technology in the LSTM net-
work, which improved FPGA performance and saved FPGA resource consumption and 
power consumption. 

4.2. Bandwidth Optimization 
In the deployment of neural networks, all kinds of neural networks must rely on spe-

cific computing platforms (such as CPU/GPU/ASIC/FPGA) in order to complete the cor-
responding algorithms and functions. At this point, the “level of compatibility” between 
the model and the computing platform will determine the actual performance of the 
model. Samuel Williams et al. [103] proposed an easy-to-understand visual performance 
model, the roof-line model, and proposed a quantitative analysis method using opera-
tional intensity. The formula showcasing that the model can reach the upper limit of the 
theoretical calculation performance on the computing platform is provided. It offers in-
sights for programmers and architects in order to improve the parallelism of floating-
point computing on software and hardware platforms and is widely used by scholars to 
evaluate their designs on various hardware platforms to achieve better design results. 

The roof-line model is used to measure the maximum floating point computing speed 
that the model can achieve within the limits of a computing platform. Computing power 
and bandwidth are usually used to measure performance on computing platforms. Com-
puting power is also known as the platform performance ceiling, which refers to the num-
ber of floating pointed operations per second that can be completed by a computing plat-
form at its best, in terms of FLOP/s or GLOP/s. Bandwidth is the maximum bandwidth of 
a computing platform. It refers to the amount of memory exchanged per second (byte/s or 
GB/s) that can be completed by a computing platform at its best. Correspondingly, the 
computing intensity limit Imax is the computing power divided by the bandwidth. It de-
scribes the maximum number of calculations per unit of memory exchanged on the com-
puting platform in terms of FLOP/byte. The force calculation formula of the roof-line 
model is as follows: 

max

max

,

,

I I I
P

x I



 

 
 

   (3)

As shown in Figure 9, the so-called “roof-line” refers to the “roof” shape determined 
by the two parameters of computing power and bandwidth upper limit of the computing 
platform. The green line segment represents the height of the “roof” determined by the 
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computing power of the computing platform, and the red line segment represents the 
slope of the “eaves” determined by the bandwidth of the computing platform. 

As can be seen from the figure, the roof-line model is divided into two areas, namely, 
the computation limited area and the memory-limited area. In addition, we can find three 
rules from Figure 9: 
(1) When the computational intensity of the model I is less than the upper limit of the 

computational intensity of the computing platform Imax. Since the model is in the 
“eaves” interval at this time, the theoretical performance P of the model is completely 
determined by the upper bandwidth limit of the computing platform (the slope of 
the eaves) and the computational strength I of the model itself. Therefore, the model 
is said to be in a memory-limited state at this time. It can be seen that under the prem-
ise that the model is in the bandwidth bottleneck, the larger the bandwidth of the 
computing platform (the steeper the eaves), or the larger the computational intensity 
I of the model, the greater the linear increase in the theoretical performance P of the 
model. 

(2) When the computational intensity of the model I is greater than the upper limit of 
the computational intensity of the computing platform Imax. In the current compu-
ting platform, the model is in the compute-limited state, that is, the theoretical per-
formance P of the model is limited by the computing power of the computing plat-
form and can no longer be proportional to the computing strength I. 

(3) No matter how large the computational intensity of the model is, its theoretical per-
formance P can only be equal to the computational power of the computing platform 
at most. 

 
Figure 9. Roof-line model. 

It can be seen that increasing the bandwidth ceiling or reducing the bandwidth re-
quirement of the system can improve the performance of the system and thus accelerate 
it. Specifically, the bandwidth requirement of the system can be reduced by the techniques 
of data quantization and matrix calculation (described in detail in Section 4.1), and the 
upper limit of the bandwidth can be increased by data reuse and optimization of data 
access (described in detail in Section 4.3). 

In recent years, many application achievements based on the roof-line model are also 
involved in the optimization design of neural networks that are based on FPGA. In 2020, 
Marco Siracusa et al. [104] focused on the optimization of high-level synthesis (HLS). They 
found that although advanced synthesis (HLS) provides a convenient way to write FPGA 
code in a general high-level language, it requires a large amount of effort and expertise to 
optimize the final FPGA design of the underlying hardware, and therefore they proposed 
a semi-automatic performance optimization method that was based on the FPGA-based 
hierarchical roof line model. By combining the FPGA roof-line model with the Design 
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Space Exploration (DSE) engine, this method is able to guide the optimization of memory 
limit and can automatically optimize the design of a calculation limit, and thus the work-
load is greatly reduced, and a certain acceleration performance can be obtained. In 2021, 
Enrico Calore et al. [105] optimized the neural network compiler by pipeline design and used 
the roof-line model to explore the balance between computational throughput and bandwidth 
ceiling so that FPGA could perform better. 

4.3. Memory and Access Optimization 
Data storage and access is an essential part of neural networks. A large amount of 

data will occupy limited memory space. At the same time, a large amount of memory 
access will greatly increase the execution time of network models and reduce the compu-
tational efficiency. In the aspect of memory and access optimization, ping-pong cache, 
data reuse, standard data access, and so on are usually used for optimization. 

4.3.1. Ping-Pong Cache 
The ping-pong cache is a commonly used data flow control technique, which is used 

to allocate the input data flow to two random access memory (RAM) buffers in equal time 
through the input data selection unit and realize the flow transmission of data by switch-
ing between the two RAM reads and writes. 

As shown in Figure 10, a~c describes the complete operation process of completing 
the cache of data in RAM A and B and the output of data. Each letter represents the input 
and output of data at the same time, the inward arrow represents the cache of data, and 
the outward arrow represents the output data. The specific caching process is as follows: 
The input data stream is allocated to two data buffers in equal time through the input data 
selection unit, and the data buffer module is generally RAM. In the first buffer cycle, the 
input data stream is cached to the data buffer module RAM A. In the second buffer cycle, 
the input data stream is cached to the data buffer module RAM B by switching the input 
data selection unit, and the first cycle data cached by RAM A is transmitted to the output 
data selection unit. In the third buffer cycle, the input data stream is cached to RAM A, 
and the data cached by RAM B in the second cycle is passed to the output data selection 
unit through another switch of the input data selection unit. 

 
Figure 10. Ping-pong cache description. 

In this regard, many scholars also put forward their neural network optimization 
scheme on the basis of this technology. In 2019, Yingxu Feng et al. [106] applied the ping-
pong cache to the optimization of the pulse compression algorithm in open computing 
language (OpenCL)-based FPGA, which plays an important role in a modern radar signal 
processing system. By using the ping-pong cache of data between the dual cache matched 
filter and the Inverse fast Fourier transform (IFFT), 2.89 times speedup was achieved on 
the Arria 10 GX1150 FPGA compared to the traditional method. In 2020, Xinkai Di et al. 
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[107] deployed GAN on FPGA and optimized it with Winograd transformation and ping-
pong cache technology in order to achieve an average performance of 639.2 GOPS on Xil-
inx ZCU102. In the same year, Xiuli Yu et al. [108] implemented the deployment of the 
target detection and tracking algorithm on Cyclone IV FPGA of ALTERA Company, com-
pleted the filtering and color conversion preprocessing of the collected images, and used 
the ping-pong cache to solve the frame interleave problem of image data, improve the 
speed and real-time performance of image processing, and reduce the energy consump-
tion. It met the requirements of miniaturization, integration, real time, and intelligent de-
velopment of a visual processing system. In 2022, Tian-Yang Li et al. [109] studied the 
preprocessing of Joint Photographic Experts Group (JPEG) images; optimized the inverse 
discrete cosine transform (IDCT) algorithm, which is time-consuming in JPEG decoding; 
and used the ping-pong cache to store the transition matrix. The throughput of 875.67 FPS 
(frame per second) and energy efficiency of 0.014 J/F were achieved on a Xilinx XCZU7EV. 

4.3.2. Data Reuse 
Data reuse is simply the reuse of data. As can be seen from the roof-line model, when 

the data reuse rate was low, bandwidth became the bottleneck affecting performance, and 
the computing resources of FPGA were not fully utilized. Therefore, through data reuse, 
the actual application bandwidth of memory is greater than the theoretical bandwidth, 
which increases the upper limit of the bandwidth and also reduces the storage pressure 
of memory and the amount of data cache and data exchange, so as to reduce the unneces-
sary time spent. 

As shown in Figure 11, in the data operation of neural networks, data reuse is usually 
divided into input feature map reuse, filter reuse, and convolutional reuse. An input fea-
ture map reuse is the reuse of the same input and replacing it with the next input after all 
the convolution kernels are computed. A filter reuse means that if there is a batch of in-
puts, the same convolution kernel for the batch is reused and the data are replaced after 
all the inputs in the batch are calculated. Convolutional reuse uses the natural calculation 
mode in the convolutional layer and uses the same convolution kernel to calculate the 
output of different input map positions. In general, these three data reuse modes reuse 
data at different stages in order to achieve the purpose of increasing performance. Of 
course, data reuse can also be divided by time reuse and space reuse. For example, if the 
data in a small buffer is repeatedly used in multiple calculations, it is called time reuse. If 
the same data are broadcast to multiple PEs for simultaneous calculation, it is called space 
reuse. 

 
Figure 11. Common data reuse modes. 

In the FPGA-based deep neural network acceleration experiments, a large part of the 
acceleration was based on data reuse to increase the bandwidth upper limit and reduce 
the amount of data cache and data exchange. For example, in 2020, Gianmarco Dinelli et 
al. [112] deployed the scheduling algorithm and data reuse system MEM-OPT on a Xilinx 
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XC7Z020 FPGA and evaluated it on LeNet-5, MobileNet, VGG-16, and other CNN net-
works. The total on-chip memory required to store input feature maps and cumulative 
output results was reduced by 80% compared to the traditional scheme. In 2021, Hui 
Zhang et al. [110] proposed an adaptive channel chunking strategy that reduced the size 
of on-chip memory and access to external memory, achieving better energy efficiency and 
utilizing multiplexing data and registering configuration in order to improve throughput 
and enhance accelerator versatility. In 2022, Xuan-Quang Nguyen et al. [111] applied the 
data reuse technology that were based on time and space to the convolution operation in 
order to improve data utilization, reduce memory occupancy, reduce latency, and im-
prove computational throughput. The same convolution calculation was about 2.78 times 
faster than the Intel Core i7-9750H CPU and 15.69 times faster than the ARM Cortex-A53. 

4.3.3. Standardized Data Access and Storage 
A large amount of data operation and frequent data access are the problems that 

neural networks must encounter when they are deployed on portable systems such as 
FPGA. In the optimization design of neural networks that are based on FPGA, FPGA is 
usually used as a coprocessor, that is, the CPU writes the instructions to the memory, and 
then the FPGA reads and executes the instructions from the memory unit, and following 
this, writes the calculation results to the memory. Therefore, by standardizing data access, 
the read and write efficiency of data can be improved, and the actual bandwidth upper 
limit can be increased. 

In the aspect of standardizing data access, scholars often cut the feature map into 
small data blocks stored in discontinuous addresses for feature mapping to standardize 
data access patterns. Takaaki Miyajima et al. [113] standardized data access by partition-
ing storage space and separately accessing sub-modules of each memory space in order 
to improve effective memory bandwidth. Bingyi Zhang et al. [114] matched the limited 
memory space on FPGA by data partitioning, eliminated edge connections of high nodes 
by merging common adjacent nodes, and normalized data access by reordering densely 
connected neighborhoods effectively, which increased data reuse and improved storage 
efficiency. Some scholars have used custom data access paths in order to ensure the timely 
provision of parameters and intermediate data in model inference, as well as to make full 
use of local memory in order to improve inference efficiency and reduce the amount of 
external memory access, thus improving bandwidth utilization [115]. 

5. Design of the DNN Accelerator and Acceleration Framework Based on FPGA 
In the optimization design of neural networks that are based on FPGA, some FPGA 

synthesis tools are generally used. The existing synthesis tools (HLS, OpenCL, etc.) that 
are highly suitable for FPGA greatly reduce the design and deployment time of neural 
networks, and the hardware-level design (such as RTL, register transfer level) can im-
prove the efficiency and achieve a better acceleration effect. However, with the continuous 
development of neural networks, its deployment on FPGA has gradually become the fo-
cus of researchers. This further accelerates the emergence of more accelerators and accel-
eration frameworks for neural network deployment on FPGA. This is because with the 
acceleration of the specific neural network model, the idea is the most direct, and the de-
sign purpose is also the clearest. These accelerators are often hardware designs for the 
comprehensive application of the various acceleration techniques described above. When 
used in specific situations, such accelerators usually only need to fine-tune the program 
or parameters to be used, which is very convenient [13]. Figure 12 shows the number trend 
of relevant papers retrieved by the FPGA-based neural network accelerator on Web of 
Science by August 2022. The average number of papers published each year is about 140. 
It can be seen that the research on the FPGA accelerated neural network has attracted 
increasingly more attention in recent years, which is introduced below. 
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Figure 12. The most recent number of papers on the FPGA neural network accelerator in Web of 
Science. 

5.1. FPGA Accelerator Design for Different Neural Networks 
With the continuous development of deep learning, neural networks have achieved 

great success in various fields, such as image, speech, and video, and neural networks are 
developing towards deeper and more complex network design. The way in which to de-
ploy more complex neural networks on FPGA and meet certain speed requirements has 
become the focus of researchers. In the existing research, a large number of neural network 
accelerator designs that are based on FPGA have emerged. The main one is the CNN ac-
celerator that is based on FPGA, the RNN accelerator based on FPGA, and the GAN ac-
celerator based on FPGA. The following is a detailed introduction. 

5.1.1. The CNN Accelerator Based on FPGA 
In the design of many accelerators for FPGA-accelerated convolutional neural net-

works, most of them focus on improving the network computing power, data transmis-
sion speed, and memory occupancy. Scholars usually improve the parallel computing 
ability of convolutional neural networks in order to improve the computational efficiency 
and reduce the amount of data and data access in order to solve the problem of large data 
transmission overhead and large data volume. 

In order to solve the problem of heavy computational workload, which limits the 
deployment of deep convolutional neural networks on embedded devices, the hardware 
structure shown in Figure 13 was designed in [116]. In this hardware architecture, all buff-
ers use the ping-pong data transfer mechanism to mask the data transfer time with the 
computation time to improve the performance. 

The computing engine (CE) is mainly composed of two computing unit (CU) arrays 
and several register arrays. Inside each computing unit is a “tree” structure of the bottom 
multiplier combined with the multilayer adder. Each CU array has 224 CU and can be 
configured to compute, in parallel, three different parallel modes of output feature maps 
of the dimension 4 × 14 × 4, 16 × 14 × 1, or 32 × 7 × 1. The flexible configuration ensures 
high CU utilization in different convolution parameters, so as to maintain a high operation 
speed. The register array includes the input feature map register (I-REG), the weight reg-
ister (W-REG), the partial sum register (PS-REG), the output feature map register (O-
REG), and the pooling register (PL-REG). On-chip buffers include buffers for input feature 
map (IBUF), weight (WBUF), partial sum (PBUF), and output feature map (OBUF). Each 
buffer consists of multiple blocks of RAM, which allow more data to be read or written 
simultaneously to improve read/write efficiency. 
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Figure 13. Accelerator architecture based on a high-speed computing engine (CE) [116]. 

In this framework, the image and weight data were first added to the double data 
rate SDRAM (DDR) by the CPU-controlled direct memory access (DMA), and the top con-
troller of the accelerator was configured, through which the control instructions were as-
signed to each module. The data transfer module reads the input data and weight param-
eters from the DDR to the on-chip buffer. Then, the computing engine (CE) performs the 
convolution operation, and the final result is written back to the DDR through the data 
transmission module. The architecture successfully deployed VGG-16, ResNet50, and 
YOLOv2-Tiny lightweight networks on a Xilinx ZynQ-7 ZC706 evaluation version oper-
ating at 200 MHz. The performances of 163 GOPS and 0.36 GOPS/DSP were achieved on 
VGG-16 with only 448 DSP resources. The performances of 0.24 GOPS/DSP and 0.27 
GOPS/DSP were achieved on ResNet50 and YOLOv2 Tiny, respectively, achieving a better 
balance between hardware resource consumption, performance, and reconfigurability 
compared to previous work. 

Although this structure design achieves better performance and less resource con-
sumption, on the whole, this structure does not consider the model parameter optimiza-
tion of the fully connected layer, and the transmission overhead incurred when processing 
a large amount of data may limit the actual performance. In addition, this “tree” structure 
of a computing unit array can only process regular convolution operations. Although it 
can be configured into three different parallel modes in order to enhance the adaptability 
of the convolution layer to a certain extent, it is still not suitable for the convolutional 
neural network after sparse processing. Therefore, with the application of increasingly 
more irregular convolution operations, the usage scenarios of this hardware structure 
may be limited. 

Some research has focused on the compression of neural network models by using 
compression techniques such as quantization and pruning operation in order to reduce 
the amount of data, reduce the memory footprint, and improve the data operation rate. 
Reference [74] adopted a hardware-friendly quantization scheme suitable for Gaussian-
like weight distribution, that is, an intra-layer multi-scheme quantization framework in-
tegrated with SP2 and a fixed-point scheme. On Zynq XC7Z020 and XC7Z045, the 
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performance was improved by 2.1–4.1 times compared with using the DSP alone for all 
multiplication operations. 

References [117–119] all adopted the method of mixed precision quantization, adopt-
ing different quantization strategies according to different data accuracy requirements, 
making the delay lower and the reasoning accuracy higher. In [120], layered fine pruning 
was used to optimize VGG13BN and ResNet101, which achieved less than 1% precision 
loss and greatly improved the operation speed when more than 70% parameters and float-
ing-point arithmetic were cut off. Some scholars combined pruning and quantization; 
used the hybrid pruning method to compress the model; reduced the data bit width to 8 
bits through data quantization; and designed the FPGA accelerator to make CNN more 
flexible, more configurable, and have a higher performance. From the aspect of data oc-
cupancy, a compressed storage and computation fusion (CSCF) algorithm was designed 
in [121] to compress the input data and improve the processing efficiency. Some scholars 
used a binary neural network to reduce data accuracy in order to improve data transmis-
sion speed, so as to improve the computational efficiency of convolutional neural net-
works [122]. 

In addition, the idea of reducing the multiplication operation or logical shift and ad-
der can be used to replace the idea of a multiplier, so as to reduce the occupation of re-
sources and improve the speed of a multiplication operation [74,123]. As shown in Figure 
14, the method of reducing the multiplication operation was proposed in [123]. In this 
example, a traditional 3 × 3 convolution operation will use nine multiplication operations 
and eight addition operations. The simplified convolution operation reduces the number 
of multiplication operations by counting the number of numbers appearing for the first 
time in the convolution kernel. Under the condition that the number of additional opera-
tions is unchanged, the number of multiplication operations is reduced to 2. However, in 
general, the values in the convolution kernel are essentially different, and there are not 
many repeated terms, as in the example. Therefore, this method may not have a good 
effect in practical application, unless the repeated terms in the convolution kernel are in-
creased by some means. In [124], the idea of skipping multiplication operation was di-
rectly adopted in order to avoid unnecessary computation by skipping multiply accumu-
late (MAC) with zero weight, so as to improve the operation speed. Of course, the on-chip 
resources of FPGA can also be divided into multiple small processors in order to improve 
the computing power [125], or a single neural network model can be distributed to the 
FPGA cluster in order to improve the overall computing throughput [61]. 

 
Figure 14. A simple operation used to reduce multiplication. 
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5.1.2. The RNN Accelerator Based on FPGA 
Because the traditional RNN has the problem of gradient disappearance and explo-

sion, the network performance is not good in the application, requiring long-term input 
information. Some researchers proposed a variant of RNN, long short-term memory 
(LSTM), to solve this problem. Although LSTM can solve the gradient disappearance 
problem, it cannot avoid the gradient explosion problem, and because it introduces many 
gating units, it leads to the problem of a large number of parameters [126]. Others have 
proposed the gate recurrent unit (GRU), which, like LSTM, has been put forward to solve 
problems such as long-term memory and gradients in back propagation [127]. In many 
cases, the GRU and LSTM are practically similar in performance. The largest difference 
between GRU and LSTM is that GRU combines the forgetting gate and the input gate into 
one “update gate,” and the network does not provide additional memory states. Instead, 
the output results are continuously recycled back as memory states, and the input and 
output of the network become particularly simple. However, GRU still cannot completely 
solve the problem of vanishing gradient. At present, the literature in this field mainly fo-
cuses on LSTM and GRU models. The design of an FPGA-based recurrent neural network 
accelerator is essentially the same as that of a convolutional neural network accelerator, 
which are carried out from the perspective of improving the computing performance and 
resource utilization of FPGA and reducing the storage pressure. 

In order to reduce RNN memory overhead for acoustic task, the [101] used a quanti-
tative method to reduce the activation volume, wherein the time-consuming floating-
point arithmetic was replaced by the faster floating-point arithmetic, greatly improving 
the network operation speed and joining the parameters of the mechanism of sharing and 
pipelined design in order to increase parallelism and reduce storage, further improving 
the network throughput and reducing the delay. However, the data quantized by this 
scheme is still the floating point. Fixed-point quantization can greatly improve the speed 
of data operation and reduce the memory overhead without much impact on the accuracy. 
Due to the feedback dependence of LSTM, high parallelism cannot be achieved on general 
processors such as the CPU and GPU. Reference [128] proposes an implementation 
scheme of the LSTM network acceleration engine based on FPGA by taking advantage of 
FPGA’s characteristics of low power consumption, low delay, and good parallelism. The 
optimization is carried out by a fixed-point algorithm, a pulsating array, and a nonlinear 
function lookup table. 

Compared with CPU and GPU implementation, the FPGA has the lowest power con-
sumption, the lowest delay, and the highest energy efficiency ratio. This scheme is shown 
in Figure 15. 

The accelerator architecture firstly divides the input matrix and weight matrix into 
small blocks in advance, increases the parallelism of the matrix operation, and combines 
the pulsating array algorithm in order to accelerate the computation. Moreover, the prob-
lem of low data reading efficiency caused by data discontinuity during sequential data 
reading is solved by rearranging the elements in the matrix. Among them, the traditional 
processing element (PE) from memory read data performs various calculations and then 
writes the results back to the storage architecture, wherein the pulsating array appears in 
the form of lines, and each PE calculation no longer relies on memory access, only the first 
array PE in terms of reading data from memory, after processing the results directly to the 
next PE. At the same time, the first PE can read the next data from memory, and so on, 
until the last PE in the array writes the result back to memory every clock cycle. In this 
structure, each PE is processed in parallel, which greatly reduces the number of memory 
accesses. Secondly, in view of the difficulty of realizing activation functions such as 
Tanh/Sigmoid in FPGA, a look-up table (LUT) and polynomial approximation are used 
instead. Finally, a fixed-point operation is carried out on the data in the unit computation, 
and a fixed-point number is used instead of a floating-point number for multiplication 
and addition operation, which greatly saves the resources of FPGA, improves the compu-
tation speed, and reduces the delay. 
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Figure 15. System structure of the LSTM accelerator. 

There are also some studies devoted to the compression of neural networks. Refer-
ence [129] proposed a hybrid iterative compression algorithm (HIC) for LSTM/GRU to 
compress LSTM/GRU networks. The utilization of block RAM (BRAM) is improved by 
rearranging the weights of the data stream of the matrix operation unit based on block 
structure matrix (MOU-S) and by fine-grained parallel configuration of matrix vector mul-
tiplication (MVM). At the same time, the combination of quantization and pruning greatly 
reduces the storage pressure. In order to accelerate the inference of LSTM, the authors of 
[130] produced an improvement on the basis of the previous compression method for 
weight pruning, called “bank balanced sparsity (BBS).” In view of the problem that BBS 
requires a large amount of extra memory overhead to store indexes, the compression effi-
ciency was greatly limited. The implementation of a shared index bank balanced sparsity 
compression method (SIBBS) reduces the memory overhead by 2–8 times and achieves up 
to 79.5 times delay reduction with almost the same accuracy. 

5.1.3. The GAN Accelerator Based on FPGA 
GANs mainly consist of a generator and a discriminator, producing better output 

through mutual game learning between generator G and discriminator D. In the original 
GAN theory, both G and D are not required to be neural networks, as long as the corre-
sponding functions that are generated and discriminated against can be fitted. However, 
in practical application, deep neural networks used as G and D generally, so in the GAN 
accelerator design based on FPGA, it is basically aimed at the generator and the discrimi-
nator to optimize. Therefore, it is essentially optimized for CNN, RNN, or other neural 
network, mainly from the lower network number, wherein the accelerators are designed 
from the perspectives of reducing storage pressure, reducing computational complexity, 
and improving network computing speed. 

Reference [69] focused on optimizing multiplicative and cumulative operation in 
GANs to reduce power consumption. In some works, the binarized GAN [131] and the 
ternary GAN [132] were used to reduce the precision of weight data, so as to improve the 
operation speed. In [133], the deconvolution operation in GAN was optimized to achieve 
higher throughput and resource utilization. On the basis of optimizing deconvolution op-
eration, the authors of [134] used the pruning operation to reduce the computational com-
plexity and the scale of the network model. Some scholars used a new fast transformation 
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algorithm (FTA) for deconvolution calculation, which solved the computational imbal-
ance problem well and eliminated the extra memory requirement of overlapping parts 
and sums [135]. In addition, the authors of [136] optimized the intensive convolution com-
putation in GAN and the invalid computation caused by the insertion of a “zero” value 
in the deconvolution operation, using the reconfigurable mechanism to switch the two 
convolution functions flexibly on the same process element group (PEG), thus increasing 
the utilization of on-chip resources and improving parallelism. In order to solve the prob-
lem of high computational complexity and the need to store a large amount of intermedi-
ate data in the training of GAN on an embedded platform, a reconfigurable accelerator 
based on FPGA was also proposed in [137] for effective GAN training. 

The acceleration framework is shown in Figure 16. Firstly, the cascade fast FIR (finite 
impulse response) algorithm (CFFA) is optimized for GAN training, and the fast convo-
lution processing element (FCPE) based on the optimization algorithm is introduced to 
support various computing modes during GAN training. In the input prefetcher module 
and weight prefetcher module, 16-bit fixed point and 8-bit fixed point were used, respec-
tively, to process data, greatly improving the data processing speed. Finally, the architec-
ture achieved 315.18 GOPS performance and 83.87 GOPS/W energy efficiency on the Xil-
inx VCU108 FPGA platform with 200 MHz operating frequency. Experiments showed 
that the architecture was able to achieve high energy efficiency with less FPGA resources. 
Although the architecture can effectively avoid the large consumption of hardware re-
sources by cascading small parallel FIR structures to larger parallel FIR structures, this 
operation greatly increases the delay. When the number of cascades reaches a certain limit, 
the performance loss caused by the delay is incalculable. 

 
Figure 16. The GAN acceleration framework. 

Table 2 shows the performance comparison of different neural networks deployed 
with different optimization methods on different FPGA platforms in recent years. From 
Table 2, we can see that the use of Winograd and other convolution optimization technol-
ogies can bring about great performance gains because the most important operation in 
the neural network is the convolution operation, which occupies most of the operation of 
the whole neural network and consumes the largest number of resources and has the long-
est processing time. Therefore, the optimization for a convolution operation can bring 
about much higher performance gains than other optimization techniques. 
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Table 2. Performance comparison of different networks deployed using different optimization 
methods on different FPGA platforms in recent years. 

Reference Platform Freq (MHz) Neural Network Methodology Performance 

[107] 
ZCU102 FPGA 200 GAN Winograd, Pipeline, 

Fixed-16 
639.2 GOPS 

VC706 FPGA 167  162.5 GOPS 
[138] XCKU9P FPGA 200 LSTM Pruning, Fixed-16 200 GOPS 

[74] 
XC7Z020 FPGA 

100 

ResNet-18 

Mixed quantization 

77.0 GOPS 
MobileNet-v2 71.8 GOPS 

XC7Z045 FPGA 
ResNet-18 359.2 GOPS 

MobileNet-v2 326.9 GOPS 

[139] 
Stratix10 GX2800 

FPGA 
260 LSTM 

Optimize multiplication,  
Fixed-8 

7041 GOPS 

[131] 
Xilinx ADM-PCIE-

7V3 FPGA 
200 

Vanilla LSTM Pruning, optimize mul-
tiplication 

379507 FPS 
GRU 378788 FPS 

[117] 
XC7Z020 FPGA 

100 

ResNet-18 

Mixed quantization 

101.3 GOPS 
MobileNet-V2 80.1 GOPS 

XC7Z045 FPGA 
ResNet-18 446.8 GOPS 

MobileNet-V2 363.5 GOPS 

[140] ZC706 FPGA 200 

VGG-16 

Pipeline 

706 GOPS 

AlexNet 624 GOPS 
ZFNet 648 GOPS 

YOLO 702 GOPS 

[135] Stratix 10SX FPGA 185 GAN 
Convolution optimiza-

tion, memory optimiza-

tion 

2211 GOPS 

[130] XCKU115 FPGA 200 LSTM 
Pruning, Fixed-8, Fixed-

12 
1424.8 GOPS 

[141] 
Arria 10 GX1150 

FPGA 
220 

Bayes-VGG11 

Optimize calculation 

533.75 GOPS 

Bayes-ResNet18 1590 GOPS 
Bayes-C3D 1449 GOPS 

[64] 
Xeon 4116 CPU + 
Arria10 GX1150 

FPGA 
163 VGG + BiLSTM 

Winograd, Fixed-8, 
Fixed-16 

1223.53 GOP/s 

[142] XCZU7EV FPGA 
640 MNIST LSTM Memory optimization, 

16–27 fixed 
44.5 GOPS 

420 Character LSTM 363.7 GOPS 

5.2. Accelerator Design for Specific Application Scenarios 
In the practical application of neural networks, people often customize FPGA accel-

erators with required functions according to specific application scenarios. Since acceler-
ators customized according to specific application scenarios are relatively easy to design 
and can effectively solve the corresponding problems, this method is commonly used to 
accelerate neural networks in specific application scenarios, especially in speech recogni-
tion, image processing, natural language processing, and other fields. 
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5.2.1. FPGA Accelerator for Speech Recognition 
Speech recognition is a technology that enables machines to automatically recognize 

and understand human spoken language through speech signal processing and pattern 
recognition. In short, it is the technology that allows a machine to transform a speech sig-
nal into a corresponding text or command through the process of recognition and under-
standing. Speech recognition has been applied in many fields, including speech recogni-
tion translation, voice paging and answering platforms, independent advertising plat-
forms, and intelligent customer service. Speech recognition has strong real-time perfor-
mance and high delay requirements, and thus it generally relies on the FPGA platform. 

In terms of accelerating the application of speech recognition, the authors of [143] 
focused on the preprocessing stage of speech signals and proposed the use of a GAN to 
enhance speech signals and reduce noise in speech signals, so as to improve speech quality 
and facilitate speech recognition and processing. In order to reduce energy consumption 
and improve the speed of speech recognition, the authors of [138] proposed an FPGA ac-
celerator structure called balanced row dual-ratio sparsity inducing pruning algorithm 
(BRDS) for speech recognition, as shown in Figure 17. The accelerator compresses the 
LSTM network by pruning algorithm in order to reduce computational complexity and 
uses data reuse and pipeline design to achieve low power consumption and low delay. 
However, the acceleration architecture does not consider the problem of multi-core par-
allel load imbalance after LSTM model compression, which may occur in the actual use, 
thus affecting the performance of the whole accelerator. 

 
Figure 17. BRDS: FPGA accelerator for speech recognition. 

To solve this problem, as early as 2017, the ESE system architecture proposed in [58] 
can be well solved. The proposed hardware structure is shown in Figure 18. The architec-
ture takes the ESE accelerator on FPGA as the core and solves the problem of multi-core 
parallel load imbalance by using multiple channel units composed of processing units and 
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activation vector queue units. The processing unit adopts a double-buffer structure and ping-
pong data transmission mode to improve the execution efficiency. The faster processing unit 
can obtain data from the activation vector queue unit and continue to work without waiting 
for other processing units. At the same time, the problem of workload imbalance between 
different processing units is solved. Compared with CPU (i7 5930 K) and GPU (GTX Titan X), 
the ESE architecture on the Xilinx XCKU060 FPGA platform was 43 times and 3 times faster 
than CPU and GPU platforms, respectively, and the energy efficiency ratio was 40 times and 
11.5 times higher, respectively. However, the architecture design is relatively complex, involv-
ing an FPGA hardware accelerator, a CPU software program, and external memory modules. 
Task allocation and scheduling coordination among the three modules have become the bot-
tleneck restricting the performance of the architecture [13]. 

 
Figure 18. ESE system architecture. 

5.2.2. FPGA Accelerator for Speech Recognition 
Image processing refers to the process of extracting, analyzing, and processing image 

information by computer, which is one of the earliest application fields of deep learning. 
Image processing techniques include point processing, group processing, geometric pro-
cessing, and frame processing. The main research contents include image enhancement, 
image restoration, image recognition, image coding, image segmentation, among others. 
Since 2012, ImageNet competition, image recognition, and processing technology have 
been widely used in image classification, face recognition, and other fields. In the design 
of an FPGA accelerator for image processing, the accelerator is designed mainly for the 
purpose of reducing the amount of data, memory, and computation demand [97,144–146]. 

Some scholars adopted the idea of increasing intra-layer and inter-layer parallelism 
to speed up computation and reduce memory consumption [147]. Some scholars used 
pipeline technology to deploy VGG 16 on an Intel Arria 10 FPGA and achieved a through-
put of 736.9 GOPS. Reference [148] focused on optimizing the multiplication operation in 
the convolution layer and adopted the deep separable convolution (DSC) layer to greatly 
reduce the network complexity while maintaining the classification accuracy. The appli-
cation of MobileNetv2 on FPGA achieved a throughput of 413.2 GOPS. Different from the 
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general direction of optimizing convolution computation, the authors of [109] focused on 
optimizing non-convolution operations in order to improve throughput and energy effi-
ciency. Some scholars based their work on quantization technology in order to reduce the 
amount of neural network data, so as to accelerate the calculation of face direction recog-
nition [149]. Referenced [150] designed FPGA accelerators from the perspective of reusing 
hardware resources, so as to reduce the utilization of FPGA resources. 

Reference [151] quantitatively analyzed the influence of aggregation and combina-
tion order of a change graph neural network (GNN) on performance, finding that the op-
timal execution order was not fixed. In addition, there were some problems, such as 
memory bottleneck, insufficient parallel computing capacity in combination stage, load 
imbalance, and the influence of feature dimension change between layers on graph parti-
tioning efficiency. In order to solve these problems, an adaptive GNN accelerator frame-
work (AGA) was proposed, which is able to provide flexible workflow support. Different 
commands are executed in different layers, memory subsystem and sparse elimination 
technology are used to alleviate memory bottlenecks, more parallel design is added to 
improve the utilization of computing resources, and the inter-layer graph partitioning 
strategy is optimized. At the same time, hardware resources are dynamically allocated in 
order to achieve load balance. 

As shown in Figure 19, AGA consists of off-chip memory, a memory controller, 
DMA, a DMA controller, on-chip buffer, a processing module (PM), and a workflow con-
troller. Although compared with CPU and GPU, this architecture had 665 times and 24.9 
times the performance speedup ratio, respectively, and 3180 times and 138 times the en-
ergy efficiency speedup ratio, respectively, this architecture only performs sparse data 
processing without optimizing the most resource-consuming and time-consuming multi-
plication operations, which greatly limits the performance of the accelerator. 

 
Figure 19. The Adaptive GNN accelerator (AGA) framework. 

5.2.3. FPGA Accelerator for Natural Language Processing 
Natural language processing (NLP) is a technology that uses the natural language 

used by humans to communicate with machines. It studies various theories and methods 
that can realize effective communication between humans and computers using natural 
language, and it is also one of the important application fields of deep learning. 

In terms of accelerating NLP, the authors of [152] point out that although the lan-
guage representation based on transformer [153] has achieved the most advanced 
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accuracy on various NLP tasks, the deployment of large model networks has always been 
a challenge for resource-constrained computing platforms. Weight pruning is used to re-
duce weight parameters, which can effectively compress network models and improve 
network performance. In order to solve the problem of large storage demand and network 
performance degradation caused by a large number of parameters when RNN is applied 
to natural language processing, the authors of [154] focused on the computing resource 
demand of RNN and adopted fixed-point quantization technology in order to design an 
FPGA accelerator, which reduced the memory consumption by 90%, and the accuracy loss 
was less than 1%. 

Different from [154] on quantifying input data, some scholars have devoted them-
selves to NLP task optimization based on the BERT (bidirectional encoder representation 
from transformers) network model [155] and have adopted the idea of full quantization 
to a design accelerator. Not only input data but also weights, activations, Softmax, layer 
normalization, and all the intermediate results are quantified in order to compress the 
network and improve performance [156]. 

Some scholars put forward an optimization scheme for heterogeneous NLP models that 
can automatically improve the performance of NLP models on CPU, GPU, and FPGA by iden-
tifying key performance operations and their performance problems in various NLP models 
[157]. In order to accelerate the inference of the BERT model, the authors of [158] proposed an 
FPGA-based overlay processor T-OPU for the inference of the BERT model in view of the large 
number of natural language models and the update of fast characteristics. T-OPU is composed 
of a data extraction unit, a matrix multiplication unit (MMU), an output control unit, a nonlin-
ear vector memory (NVM) unit, and a nonlinear vector (NV) unit, which can efficiently exe-
cute various natural language processing models. 

5.3. FPGA Accelerator for Optimization Strategy 
In the neural network accelerator design based on FPGA, one often needs to study 

the characteristics of the neural network and carry out targeted optimization on the basis 
of the characteristics of its operation, wherein the reasonable optimization strategy can 
significantly improve the performance of the accelerator and resource utilization, the com-
mon optimization strategy for the calculation of the optimization, and optimization for 
storage, among other improvements. 

5.3.1. Optimization for Calculation 
In neural networks, the convolution layer and convolution operation are usually the 

focus of our optimization, especially in convolutional neural networks applied to image 
processing. The convolutional operation is more intensive, the processing time is longer, 
and the resources are more occupied, which limits the deployment of convolutional neu-
ral networks in edge platforms such as FPGA. 

The usual optimization direction is to increase the parallelism between different lay-
ers of the neural network model, the parallelism between different output feature maps, 
the parallelism between different pixels, and the parallelism between different pixels in 
order to shorten the processing time and improve the network performance. It can also 
use circular flow and loop unfolding to build a deeper pipeline to shorten the overall ex-
ecution time of the network and reduce the time overhead. The matrix cycle is divided 
into smaller modules by cyclic block technology, and each module can be computed in 
parallel to improve computing parallelism. Moreover, through data reuse, the number of 
memory accesses can be reduced, so as to improve the computational efficiency. Reference 
[159] used data reuse and task mapping technology in order to improve memory band-
width and throughput, so as to improve design efficiency. In [160], the parallelism be-
tween channels was utilized through cyclic unrolling, so as to improve the network run-
ning speed and network performance. On the FPGA operating frequency of 110 MHz, the 
peak performance of 213.7 GOP/s and top-5 accuracy of 79.05% were achieved, and the 
energy efficiency ratio was at least 4.3 times that of other CPU and GPU platforms. 
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5.3.2. Optimization for Storage 
Due to the large amount of data and parameters in neural networks, problems of 

parameter and data storage are inevitable when neural networks are deployed. In the op-
timization of storage, the strategy of reducing data precision is usually used to reduce the 
amount of data, so as to improve the operation speed. The data reuse method can be 
adopted in order to greatly reduce the data storage and the memory space occupation. 
For example, ShortcutFusion, an accelerator optimization tool proposed in [161], reduces 
memory footprint by maximizing on-chip data reuse under given resource constraints. 
The data processing time was found to be 2.8 times faster than NVIDIA RTX 2080 Ti, and 
the energy efficiency ratio was nearly 10 times higher on a Xilinx KCU1500 FPGA. Some 
scholars have used a memory management framework to realize automatic data layout 
and to solve the memory competition problem of the CPU-FPGA heterogeneous system 
by analyzing cross-layer memory competition. By automatically generating the optimal 
data placement strategy and the cache partition mechanism of the parallel execution ker-
nel, the performance of both the FPGA kernel and the CPU kernel in the heterogeneous 
system is improved [115]. 

5.4. Other FPGA Accelerator Designs 
In addition to the above accelerator design, there are some other accelerator designs, 

such as the accelerator design based on the hardware template. By using a ready-made 
hardware template to design the accelerator, it is only necessary to improve the module 
and configure parameters according to specific problems, which greatly improves the de-
ployment of the model [162]. 

Some scholars design accelerators for different algorithms and optimize them accord-
ing to the characteristics of each algorithm. For example, by analyzing the parallelism of 
the SAR (synthetic aperture radar systems) real-time back projection algorithm, a fully 
parallel processing architecture of the back projection (BP) algorithm based on FPGA is 
proposed in [163]. In the BP imaging algorithm, fixed-point quantization and distributed 
memory technology are combined. Compared with other algorithms implemented on 
FPGA, DSP, GPU, and CPU without optimization, the optimized algorithm on the Xilinx 
XC7VX690T FPGA has more obvious characteristics of output images and a more obvious 
focusing effect. There was also a study [164] that used OpenCL language to optimize the 
FPGA-based fuzzy C-means (FCM) algorithm in order to increase the parallelism of the 
model by enabling advanced compilers or synthesis tools to operate task parallel models 
and create efficient designs, thus improving the algorithm speed. Compared with the con-
ventional single-core CPU, the optimized FCM algorithm can achieve 89 GFLOPS, which 
is 186 times higher than the CPU. 

6. Current Challenges and Future Outlook 
Deep learning takes neural networks as the main model. With the continuous devel-

opment of deep learning, the research on accelerating various neural networks has at-
tracted increasingly more attention. Although FPGA has made some achievements in ac-
celerating various neural networks with its advantages such as being reconfigurable, hav-
ing low energy consumption, and having low delay, it also has some shortcomings such 
as difficult hardware programming, a long reconstruction time, and a high learning cost. 
Therefore, FPGA needs a certain amount of time and technical support to achieve a wider 
application range, be used in higher application scenarios, and become more well-known 
to people. According to the current development status, in terms of the FPGA-accelerated 
neural network, the key research directions for the future are mainly as follows: 
(1) Improve the FPGA ecological environment. At present, the ecosystem of FPGA is 

relatively closed, and a few companies such as Xilinx and Intel control the main in-
dustrial chain set for FPGA. The lack of industry standards and basic specifications 
produces FPGA learning and development problems, such as high threshold, long 
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cycle, and limited use of development tools emerging one after another. The wide 
application of deep neural networks in various fields has prompted researchers to 
put forward some performance requirements for deep neural networks. The way in 
which to use FPGA in order to accelerate deep neural networks and improve the 
performance of deep neural networks has gradually become the focus of scholars. 
However, due to the limitations of the FPGA ecosystem, the speed of its application 
cannot keep up with the development speed of software algorithms, and this also 
limits the further application of deep neural networks. This is an urgent problem for 
researchers to solve. 

(2) Train FPGA professionals. At present, there is the complexity of the FPGA learning 
threshold being high, the content and learning cycle being long, and the existence of 
problems such as an incomplete training system causing the FPGA to lack professional 
talent reserves and a shortage of reserve forces, and so on and so forth. With the devel-
opment of large data and artificial intelligence technology, the demand for professional 
talents in the FPGA area is becoming increasingly larger, with the problem is becoming 
increasingly more prominent. 

(3) Optimize the activation function. At present, in the computational optimization of 
FPGA-based deep neural networks, most of the optimization schemes are for the con-
volution operation and the cycle part of matrix operation, while there are a few im-
provement schemes for the activation function optimization, and therefore this is a 
potential performance breakthrough. 

(4) Optimize convolution and other operations. From this article, reviewing different 
FPGA platform application optimization technology deployments found in the neu-
ral network performance comparison table, we found that use of convolution opti-
mization or other optimal performance gains come about when other forms of com-
puting is the highest, meaning that one can explore the method of updating in order 
to optimize convolution or other operations, with this gaining better performance. 

(5) Data optimization. By replacing the high-width data with the low-width data, the 
data processing time can be reduced, and the data storage pressure can be alleviated, 
so as to improve the acceleration performance of the model, and at the same time, it 
brings about the disadvantage of precision loss. Later, the research on dynamic pre-
cision data quantization can be strengthened in order to make the fixed-point number 
corresponding to different layers of the neural network have different integer and 
decimal places, so as to achieve a shorter fixed-point number while maintaining the 
required higher accuracy and smaller accuracy loss. 

(6) Neural network model optimization. It is also a feasible scheme to improve the per-
formance of neural networks by optimizing the structure of the neural network 
model or realizing its rapid deployment on the FPGA platform. 

(7) The cluster for FPGA. Through multiple FPGAs speeding up the neural network rea-
soning, one can achieve higher performance and lower latency, and the difficulties 
of this method are how to coordinate between each FPGA processing scheduling 
problem and task assignment problem. The future can be from a variety of fine-
grained classification and distribution of weights between the FPGA for optimiza-
tion, so as to improve the utilization rate of the on-chip memory and reduce storage 
requirements. 

(8) Multiple FPGA accelerators. Similar to FPGA clustering, acceleration can be achieved 
by distributing tasks among multiple FPGA accelerators. The difficulty of this 
method is task scheduling and assignment among accelerators. In the future, we can 
focus on the effective task allocation, scheduling, and processing methods among 
multiple FPGA accelerators, so that the acceleration scheme of multiple FPGA accel-
erators can achieve better acceleration effect. 

(9) Lightweight network. The lightweight network is very suitable for deployment on 
edge platforms such as FPGA. On the one hand, the deployment difficulty of the 
lightweight network is greatly reduced, and on the other hand, the lightweight 
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network is more suitable for edge platforms with fewer available resources, relatively 
low performance, and high-power consumption requirements. This means the de-
ployment of the lightweight network on FPGA to complete the specified task or re-
place the network with a lightweight network when the task indicators can be com-
pleted, which will be the direction of future research. 
As a revolutionary realization method of machine learning, deep learning technology 

with neural network as the core has broad development prospects in the future. Similarly, 
various deep neural networks will also face various application scenarios, which have 
certain requirements on the performance of neural networks and their deployment platforms. 
At present, on the basis of the advantages of FPGA reconfiguration, low latency, and high 
parallelism, use of FPGA to accelerate various neural networks has gradually become the 
choice of most researchers. Although the FPGA ecosystem is still not perfect and there are still 
many problems to be solved, it can be predicted that, with the passage of time, FPGA-based 
deep neural network acceleration technology will gradually mature and eventually promote 
the reform and development of the whole field of artificial intelligence. 

7. Summary 
This paper firstly introduces the development process and application field of some 

representative neural networks, analyzes and summarizes the development process of 
neural networks, and divides the neural network process into five stages. It points out the 
importance of studying deep learning technology based on neural networks, as well as 
the reasons and advantages of using FPGA to accelerate deep learning. Several common 
neural network models are introduced. This paper summarizes the current mainstream 
FPGA-based neural network acceleration technology, method, accelerator, and accelera-
tion framework design and the latest research status, as well as analyzing the performance 
of various technologies. The techniques with higher performance gain are summarized, 
and the reasons for this phenomenon are provided. At the same time, the current difficul-
ties in the application of neural networks based on FPGA are pointed out, and the future 
research directions are prospected. The aim is to provide research ideas for the researchers 
engaged in the field of neural network acceleration based on FPGA. 
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