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Abstract 

Everyone is aware that air and environmental pollutants are harmful to health. 

Among them, indoor air quality directly affects physical health such as 

respiratory rather than outdoor air. However, studies that have analyzed the 

correlation between environment and health information have been conducted 

through public data targeting large-scale cohorts, and dissertations through 

real-time data analysis are insufficient. Therefore, in order to collect 

environmental and health data from various data sources and monitor and 

analyze real-time, this dissertation will review environmental detection sensor 

development and indoor air quality monitoring system studies based on Internet 

of things, and research how to use wearable devices for health monitoring 

systems. In addition, availability of big data and artificial intelligence analysis 

and prediction have increased, investigating algorithmic studies for accurate 

prediction of hazardous environments and health effects. In terms of health 

effects, techniques to prevent respiratory and related diseases were reviewed. 

Keywords: Air pollution; Artificial intelligence; Health effect; Indoor Air quality; 

Internet of Things; Respiratory disease 

 

1. Introduction 

Many studies have shown that air pollution has a direct negative effect on 
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human health. According to the World Health Organization, there are many 

toxins that have adverse impacts on health, pollutants with the strongest 

evidence for public health concern include Particulate Matter (PM), Carbon 

Monoxide (CO), Ozone (O3), Nitrogen Dioxide (NO2), and Sulfur Dioxide (SO2). 

The PM is an especially important source of health risks, as these very small 

particles can penetrate deeply into the lungs, enter the bloodstream, and travel 

to organs causing systemic damages to tissues and cells [1]. 

Chronic respiratory disease is one of the world's leading causes of death. 

Every year, more than 3 million people, or 6% of the world's deaths, die from 

Chronic Obstructive Pulmonary Disease (COPD). COPD is a non-curable 

progressive life-threatening long condition which restricts airflow in the lungs 

and causes dysfunction and serious illness [2].

The causes of air pollution vary and appear differently depending on the 

situation. The main sources of outdoor pollution come from residential energy, 

vehicles, power generation, agriculture and waste incineration and industry for 

cooking and heating. The main sources of pollution at home are cooking, 

burning fuels such as wood and coal in inefficient stoves or open stoves, 

resulting in a variety of pollutants, including PM and Volatile Organic 

Compounds (VOCs) [3]. Indoor air pollution induces an early significant 

impairment of airways function and subclinical cardiovascular damage. A long-

term PM and Black Carbon (BC) exposure, in the case of the older participants, 



 

5 

 

were associated to a significant burden of COPD and cardiovascular 

dysfunction[4]. Exposure to these environmental pollutants has a wide range 

of adverse health consequences for adults and children[5] and even fetal[1], 

ranging from respiratory diseases to cancer[6], stroke[7], cardiovascular 

disease[8], premature death, and cognitive ability[9]. Many studies have been 

conducted through comparison of exposure between cities by collecting 

information from cohort and public environment sites, and empirical studies 

through data of experiment are insufficient. Due to these data restrictions, 

there is a lack of explanation for individual-level heterogeneity. The sectors 

of Artificial Intelligence (AI) such as Machine Learning (ML), Deep Learning 

(DL) are rapidly expanding, affecting wide ranges of industry. Recently AI 

revolutionizes health care. AI technologies have the perfect platform to thrive 

and mature with the growing adoption of electronic health records, 

development in computational power, continuous monitoring systems, and 

availability of big data. It has become an important clinical decision-making 

tool that allows for personalized diagnoses, solutions, prognoses, and 

predictions of future health outcomes, guiding clinicians and other stakeholders 

in doing what is best for their patients[10]. Therefore, this study aims to 

review Internet of things (IoT)-based Indoor Air Quality (IAQ) and health 

monitoring systems and AI analysis methods for environment and health 

prediction. 
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2. Indoor Air Quality Monitoring System (IAQMS) 

It is a notable fact that air pollution directly affects human health in negative 

ways, and many studies have confirmed that indoor air is more fatal than 

outdoor air [11]. Indoor air pollution is a critical environmental health problem 

worldwide because the half of the world’s population depends on biofuel for 

cooking and heating indoors [12]. For this reason, health problems caused by 

the increasing number of Indoor air pollution worldwide are an essential topic 

for discussion among researchers around the world. Many researchers have 

proposed an improved IAQMS by sensor development and verification. But it is 

difficult to review all existing and suggested IAQMS in this paper. Because 

researchers are actively working to improve air quality [13]. 

The most threatening air pollutants in global public health are considered PM. 

In order to monitor PM, a light scattering method capable of real-time 

measurement has been continuously studied [14]. Existing methods of 

measuring PM concentration include gravimetric and β-ray absorption methods, 

and light scattering method. The gravimetric and β-ray absorption method are 

difficult to measure in real time, and the equipment is large and heavy. In 

contrast, the light scattering sensor is small, light and inexpensive, and there 

is no need to collect dust with a filter, so data can be easily measured [15, 16]. 

However, there is a disadvantage to use the light scattering sensor because 
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particle separation is difficult, error rate is high, and it is more severe when an 

amount of rainfall is low [17]. 

A miniaturized and low-cost light scattering sensing device was developed to 

enable separation by PM particle size. A semiconductor laser diode was used 

inside, and a voltage level signal was converted to a frequency level by 

applying a fast fourier transform algorithm, and a DSP function was added to 

the Digital CUP. As a result, the developed sensor overcame the difficulty of 

real-time measurement and miniaturization of the existing β-ray absorption 

method. In addition, by connecting smartphone through bluetooth, PM can be 

monitored in real time and the device can be controlled [18].  

To evaluate the accuracy and precision of low-cost sensors, the standard 

device, metone Aerocet 531s which can calculate dust particles to 0.3μm to be 

controlled, was compared with three low-cost laser sensors. In the case of 

PM1.0, the error range of all sensors is quite large [19]. This study shows that 

it is difficult to detect very small particles such as PM1.0 with a commercially 

available inexpensive sensor. In the future, Research on the reliability of more 

precise and sensitive sensors is needed. 

 The most studied technology to detecting CO is the Metal-oxide 

semiconductor (MOS). MOS sensors are very sensitive, selective, robust, 

lightweight, long lasting, fast response and recovery time, stable and reversible, 
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very low power consumption and low manufacturing costs. MOS has been used 

extensively to measure and monitor trace levels of important gases such as CO 

and NO2  for environment [20, 21]. Both n-type and p-type MOSs are used for 

gas sensing, but n-type is more popular [22]. In n-type MOS, Tin dioxide(SnO2) 

is the most widely utilized. because it provides a high sensitivity in the case of 

CO sensing [20].  

For accurate IAQ evaluation, the interference gas effect of the electrochemical 

ammonia sensor and NO2 sensor was studied. The sensor of ammonia is greatly 

affected by Hydrogen Sulfide (H2S) and Hydrogen (H), and the presence of SO2 

and NO also affects the sensor operation. In addition, the operation of the NO2 

sensor is affected by all gases except Hydrogen Chloride (HCl). The H2S was 

the highest at 14 ppm, and the remaining gas values did not exceed 1 ppm, but 

were still affected [23]. Therefore, the presence of the interference gas in the 

electrochemical sensor may cause an error. 

The performance of electrochemical sensors of NO2 and SO2 was verified for 

accurate IAQ evaluation. The ppm/response time duration was calculated. In 

the NO2 detection, hybrid material-based sensors had a high average ratio, and 

in SO2 and H2S, GaN and metal oxide-based sensors were the highest [24]. 

Ventilation is essential for indoor air quality measurements. IAQMS has been 

developed to find general IAQ with modern cooking stove and traditional 
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cooking stove. In poorly ventilated kitchens, total suspended particles are more 

than 100 times higher than the standard due to excessive smoke generation 

[12]. 

It developed an overall air quality alarm system by detecting the levels of 

seven gases, including O3, PM, CO, NO2, SO2, VOCs, and CO2. To test the 

effects of various IAQ factors, the experiment was conducted by dividing the 

size of the space into church(big), class room(medium), and living room(small). 

Wind, location, airflow, human density, and room size were found to affect the 

quality of indoor notice [25]. 

 AirCloud, a cloud system for extensive, low-cost personal air quality 

monitoring, has been developed. Based on the fusion of sensor data, we 

invented an air quality analysis engine which learns and generates air quality 

models. On the cloud-side, this study creates an air-quality analytics engine 

that learns and creates air-quality models based on a combination of sensor 

data. This engine is used to calibrate Air Quality Monitoring (AQM) and mini-

AQMs in real-time, and predict PM2.5 concentrations. AirCloud can achieve 

superior accuracies at much lower cost than previous solutions [26]. 

A web-based system for indoor air quality monitoring was presented by 

applying four types of sensors: gas, PM, temperature, and humidity. The data 

measured by each sensor is sent to the base station via the WSN node and 
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stores the data collected using a self-developed server program that can be 

accessed via the web [27]. 

To develop IoT-based indoor air pollution monitoring, CO2, NO2, and CO are 

monitored using the low-cost gas sensors, and the obtained values were 

treated with Raspberry Pi. The system is designed using the python coding 

language. The monitored values can be accessed from the IoT platform. When 

each sensor interfaces with the Raspberry-Pi module through a different 

channel, it is output in ppm. A threshold value was set so that when the emission 

gas concentration is high, an alarm is generated [28]. 

To test the applicability of the comprehensive Air Quality Index (AQI), a 

widely used indoor air quality indicator,  

Comprehensive Air Quality Indicator, A small air quality monitoring system, 

has been developed. It responds well to real-time dynamic changes in VOCs, 

CO, and PM10, and is suitable as an IoT-based small-sized air quality 

monitoring system with low memory usage [29]. 

According to the developing trend of IAQMS, over the past few years, most 

researchers conducted Wireless Sensor Network (WSN)-based designs with 

Zigbee as the most reliable communication protocol. Given battery life 

expectancy and stable single-hop communication capabilities, IoT monitoring 

systems are considered the most reliable solutions for IAQ measurement. With 
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lower latencies and lesser power consumption, these systems also demand 

lesser efforts for maintenance [13]. 

3. Health monitoring System 

There is an increasing interest in person-generated wearable device data for 

research purposes.  

With the recent movement toward people(patient)-centered care and the 

widespread routine use of devices and technologies, person-generated health 

data have emerged as a promising data source for biomedical research [30].  

Also, there is an increasing interest in reusing person-generated wearable 

device data for research purposes, which raises concerns about data quality. 

However, the amount of literature on data quality challenges, specifically those 

for person-generated wearable device data, is just few. [31] 

 Therefore, this paper reviews the health data collection and utilization method 

by classifying it into wearable device types. 

Technological development in the wearable market is increasing exponentially. 

Personal health monitoring and Physical Activity (PA) are popular across all 

ages and clinical communities [32]. In addition, routine PA is also effective in 

preventing and managing chronic diseases such as cardiovascular disease, 

hypertension, diabetes, and obesity [33].  Among them, the type worn on the 
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wrist is the biggest growth. 

A remote health monitoring and support system using information and 

communication technology was developed to evaluate and manage the physical 

condition and PA level of home-care patients with COPD. The study using an 

iPad as a system device, and a developed application that handles input and 

transfer of the following data and six evaluation items related to symptom 

(cough, phlegm, breathing, sleep, appetite, vitality), number of steps per day, 

and energy consumption. This application enables remote monitoring to medical 

personnel such as doctors and nurses, preventing acute exacerbation of COPD 

and enabling early detection and treatment of acute exacerbation. In addition, 

the system can provide lifestyle guides that fit individual lifestyles and medical 

conditions [34]. 

Fractional Exhaled Nitric Oxide (FeNO) is a non-invasive indicator of airway 

inflammation in asthma. Recent studies have shown that FeNO is a potential 

outcome of COPD. Recently, a new hand-held FeNO analyzer (NIOX MINO) has 

been developed. The level of FeNO in short time was compared using NIOX 

MINO and stationary chemiluminescence analysis (NOA, Sensormedics) in 

COPD patients and healthy people. There was no significant difference in the 

short period, COPD patients show high variability for a long period. it was 

significantly associated with exacerbation rate.  Also, The FeNO 
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electrochemical hand-held analyzer is available in the COPD showing positive 

consistency with the stationary chemiluminescence analyzer [35]. 

Data was monitored by wearing Basis Peak for 5 months for 43 patients. As a 

result, it was possible to identify physiological differences between the 

condition of health among individuals [36].  

The system was proposed to measure environmental factors and notify 

workers with alarms and vibrations to protect safety in case of danger to 

workers, and to transmit situation information to the control center to take 

immediate action. It was combined Galaxy Watch’ Biosensor, Apple 

Watch(electrocardiogram(ECG), Heart Rate, Saturation of Percutaneous 

Oxygen(SpO2)), Gas Sensor(CO2, VOCs), and wireless communication 

technology. For accurate measurement and analysis, multiple levels of risk 

setting and ML techniques must be added [37]. 

A Surface Electromyogram(sEMG) electrode with a diameter of 10 and 24 mm 

was developed by screen printing PEDOT:PSS ink on 100% cotton fabric. The 

larger the diameter, the lower the resistance value(38). 

A wireless patch-type wearable pulse oximeter has been developed to 

measure the heart rate and SpO2 by reflecting light sources of two 

wavelengths(red 625nm, infrared 865nm) in a person's forehead. The size of 

the flexible circuit is 7cm×2cm, interfaced with an 8.5cm×3.5cm wireless 
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system board. It weighs only 15g, it is an elastic band that can be easily 

wearable on the forehead. By detecting and measuring the change in amplitude 

of photoplethysmographic (PPG) signals for red and infrared light due to 

changes in blood oxygen saturation, SpO2 is calculable from the infrared and 

red PPG signals' amplitude ratio. SpO2 values measured using our system were 

consistent with commercial non-abrasion pulse oximeters in both normal and 

inhale/exhale conditions [39]. 

These wearable biosignal monitoring sensors are used by adhering to the 

human body, so it is important to surface-treat materials that are harmless to 

skin contact. If the surface is treated with a flexible polymer material such as 

PDMS, as the electrode does not directly adhere to the skin, it can safely sense 

a bio-signal. However, PDMS has a high moisture permeation rate, so when 

adhered for a long time, there is a risk that body fluids such as human sweat 

penetrate and the sensor is oxidized [40]. 

COPD is one of most common diseases related to breathing. A new diagnostic 

method is developed to detect the COPD parameters by using a 

Microelectromechanical System (MEMS) based acceleration sensor. It records 

the data of acceleration that occur the movements of the diaphragm in three 

axes during breathing. With the proposed device in this work, the parameters 

such as tidal volume capacity, forced vital capacity and respiratory rate which 
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are commonly associated with COPD are successfully measured. The 

measurement results were very similar to spirometer and can be considered as 

an alternative instrument for spirometer [41].  

There is a study on wearable devices with clothing type. Typical clothing is 

soft and flexible and can be draped to our bodies [42]. It must be washable for 

reuse, but there are technical difficulties due to the fiber material with hard 

and non-washable electronic products and electrical materials [43]. 

All smart electro-clothing systems consisted of hardware and software, are 

mostly electronic and non-fiber materials with sensing subsystem, action 

subsystem, control subsystem, communications subsystem, location subsystem, 

power subsystem, storage subsystem, and display subsystem as a common 

component [43, 44] 

A smart jacket is designed for securing the coal miners’ life. This prototype 

senses the various health related parameters i.e. the presence of hazardous 

gas, pulse rate of miner, updated temperature/humidity, exact depth and 

geographical location of miner. All of these parameters are transmitted through 

Wi-Fi to the internet protocol. All miners were monitored. In addition, in the 

event of a disaster, the miners' lives can be secured immediately. This designed 

wearable embedded system will send the last GPS location to a specific IP as 

well as continuous updates of the miner’ pulse rate detected by the pulse sensor 
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to the control system [45]. 

For accessory types, Photonic textiles that can measure pulse oximetry were 

sewed on gloves. SpO2 is measured in accordance with a change with the 

amount of light transmitted by mounting an optical sensor at the finger’ tip. By 

measuring the amount of light transmitted by two different wavelengths (HeNe 

laser, Halogen lamp) with an optical sensor, oxygen-reduced and 

deoxygenated hemoglobin can be calculated to obtain oxygen saturation in 

body. Using photonic textiles is feasible for pulse oximetry [46]. 

 

4. AI analysis for Air Quality Prediction 

Research for air quality prediction has been conducted on the basis of various 

algorithm models. Most of studies’ settings are largely divided into comparison 

of artificial intelligence analysis techniques and developing new algorithms. 

Therefore, this paper reviews it in two ways.  

First, it reviews comparison of artificial intelligence analysis techniques for 

air quality prediction. 

The study was conducted to determine a predictive model for determining air 

pollution based on PM10 and PM2.5 pollution concentrations in Tehran. As a ML 

methods for air pollution prediction were used by Support Vector Regression 

(SVR), geographically weighted regression, Artificial Neural Networks (ANN), 
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and autoregressive nonlinear neural networks using external inputs. The most 

reliable algorithm for air pollution prediction is an autoregressive nonlinear 

neural network with external input using the proposed prediction model, with a 

one day prediction error of 1.79μg/m3 [47]. 

To predict PM and BC, a transportation-related air pollution factor, ML model 

performance was compared. This study investigates the Land Use Regression 

(LUR)’ boundaries approaches and the potential of two different ML models: 

ANN and gradient boost. Models was developed for PM performing better than 

those for BC. For the same contaminants, ANN and eXtreme Gradient Boosting 

(XGBoost) models showed better performance than LUR [48]. 

To assess PM prediction performance, it was compared ANN with MLR models. 

The model's input data was PM10 concentration and variables for weather. As 

a result of comparing the two models, the nonlinear ANN method showed better 

performance for prediction of PM10(49). 

The PM10 concentration in seoul was predicted using weather factors as an 

input dataset of MLR, Support Vector Machine (SVM), and Random Forest (RF) 

models, and the performance of the model was compared and evaluated. The 

model's input dataset was composed by nine meteorological factors obtained 

by Automatic Weather System (AWS): temperatures, precipitation, wind speeds, 

wind direction, yellow dust, and relative humidity. The prediction performance 
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of the ensemble model RF was the highest followed by the relative humidity 

and yellow dust which contributed greatly to the predictive performance of all 

models, and the maximum temperature and average wind speed showed 

relatively low. In case of Gwanak-gu and Gangnam-daero which are relatively 

close to Air quality monitorimg sites (AQMS) and AWS, SVM and RF models 

were highly accurate according to the model validations. By contrast, Yongsan-

gu which is relatively far from AQMS and AWS, both models didn't perform well. 

The results indicate that AQMS and AWS adjacencies have a very significant 

effect on PM10 concentration prediction [50]. 

In order to compare the performance of the PM concentration prediction 

algorithm, the performance of MLR, SVR, Auto-regressive integrated moving 

average(ARIMA), and Autoregressive integrated moving average with 

explanatory variable(ARIMAX) was compared. It was evaluated with Root Mean 

Square Error(RMSE) using air quality information and weather information. In 

the integrated concentration prediction, the performance of SVR was superior 

to that of MLR, and in the time series prediction by location, the performance 

of ARIMAX was superior to that of ARIMA [51].  

The study performs a traditional model k-Nearest Neighbors(k-NN) and 

Logistic Regression (LR) and a non-traditional Long-Short Term Memory 

(LSTM) network-based DL algorithm for the creation of alert messages 



 

19 

 

regarding to bin status and predicting the amount of air pollutant CO presence 

in the air at a specific instance. The recalls of LR and k-NN is 79% and 83% 

respectively, in a real-time testing for predicting bin status. The accuracy of 

modified LSTM and simple LSTM models is 90% and 88%, respectively, to 

predict the future gases concentration presence in the air. The system provided 

real-time monitoring of garbage levels along with notifications from alert 

mechanism and improved accuracy by utilizing ML [52].  

Second, it is a review on the development of algorithms for prediction of air 

quality. 

A data mining algorithm was developed by inter-applying ANN and k-NN to 

implement accurate PM prediction models. For ANN operation, a network, 

consisting of 13nodes in the input layer, 15nodes in the hidden layer, and 1node 

in the output layer was constructed. Output was classified using the k-NN 

algorithm and had the highest accuracy when K=9. The proposed model showed 

an improved prediction rate than ANN and k-NN [53]. 

A separation prediction model for each concentration of PM based on Deep 

neural network (DNN) was designed to improve PM10 prediction accuracy. In 

order to select the optimal hyperparameter, a total of 3,600candidate 

parameters were set for each model through the grid search technique. In this 

process, in order to select a hyperparameter value with a high generalization 
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performance, the hyperparameter search was performed by setting the number 

of folds of k-fold, which is one of the cross-validation methods, to 3. In addition, 

for performance comparison with the proposed concentration-specific 

separation prediction model, the hyperparameter optimization of the DNN 

based model was performed [54]. 

Predictive models were designed through MLR and ANN and the suitability 

of algorithms for PM prediction was evaluated through comparison with real 

data. To evaluate the suitability of algorithms for PM prediction, MLR and ANN 

were compared with real-world data. In the case of the algorithm PM prediction, 

ANN was better in performance, and the composition of the hidden layer to 

which the appropriate number of neurons was applied was important when 

designing the PM prediction model using ANN [55]. 

The PM10 concentration prediction algorithm was modeled using variables of 

weather and traffic-related air pollutant concentration such as CO, Nitric Oxide 

(NO), Nitrogen (N) data. A Generalized Additive Model was developed and 

evaluated. Through this study, weather variables such as temperature and wind 

speed were identified as major control factors for PM10 concentration, but 

traffic-related air pollutants and PM10 concentrations showed a weak 

relationship. Therefore Road traffic is not the main cause of PM [56]. 
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Despite the abundance of studies on PM2.5 and PM10 estimations from satellite 

remote sensing, only a few studies have been conducted on PM1.0 by using 

satellite observations. Thus, this study estimated hourly PM1.0 oncentrations in 

China by using an integrated Principal Component Analysis (PCA) and hybrid 

Generalized Regression Neural Network (GRNN) model that combines ground-

based observations of PM2.5 with a geostationary satellite Himawari-8 Aerosol 

optical depth data. Fusing PM2.5 data was advantageous for the continuous 

spatiotemporal estimation of PM1.0, and the estimation accuracy of each model 

was significantly improved. Specifically, the R2 of MLR increased from 0.21 to 

0.38, and the GRNN and PCA-integrated GRNN models improved by 8% and 

6%, respectively. Comparison of the linear regression model and GRNN 

model(including PCA-integrated GRNN) showed that the nonlinear model can 

determine the potential relationship between PM and predictors [57]. Due to 

the absence of low-cost, high-quality PM1.0 sensors, prediction of PM1.0 AI 

analysis is an important research topic. 

There is a study that proposes an air quality prediction system 'Gated 

Recurrent Units (GRU)' using six atmospheric sensor data(VOCs, CO2, PM, 

temperature, humidity, and light quantity) and DL models. The predictive 

accuracy performance of the proposed GRU model was compared to other 

models such as LSTM networks and linear regression. The proposed system 
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showed better performance with 85% higher accuracy for various parameters 

[58]. 

5. AI analysis for Health Effect Prediction 

Research for health effect prediction has been conducted on the basis of 

various algorithm models. The settings of most studies are largely divided into 

comparison of artificial intelligence analysis techniques and developing new 

algorithms. Therefore, this paper reviews it in two ways.  

First, it reviews comparison of artificial intelligence analysis techniques for 

health effect prediction. 

To predict sepsis mortality, there is a study comparing conventional context-

based logistic regression approaches with four ML techniques: Least absolute 

shrinkage and selection operator Regularization, RF, XGbost and DNN. All four 

ML models showed higher sensitivity, specificity, positive prediction, and 

negative prediction values compared to the logistic regression model [59]. 

When the most accurate predicted model is the goal, ML algorithms are more 

advantageous than conventional regression methods. When using ML methods, 

special attention is required in the form of model validation, and the usefulness 

of solving individual problems varies, so comparison with multiple approaches 

is required, and the criterion for how much flexibility can be allowed becomes 

the ultimate modeling technique [60]. 
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In order to predict the frequency of asthma, it was analyzed through three 

predictive models: SVM, Neural Net, and DL based on asthma-causing lifestyle, 

eating habits, environmental characteristics, and basic characteristics. The 

predictive ability of the model was compared on the basis of the accuracy of 

the model, RMSE, and Mean Absolute Error (MAE). SVM has a significant 

accuracy of 93.19%, but RMSE 0.320 and MAE 0.300 indicators are not good. 

The evaluation results of the DL are accuracy 74.78%, RMSE 0.252, and MAE 

0.120, which are generally good. In contrast, Neural net model is quite good 

with an accuracy of 93.19%, and RMSE 0.251 and MAE 0.124 indicators are 

also quite good. The neural net model is the best prediction model for asthma. 

Because the model is learned by feedforward neural networks learned by 

backpropagation algorithm [61]. 

Second, it is a review on the development of algorithms for prediction of health 

effect. 

The automated device for asthma monitoring and management, a wearable IoT 

sensor smart device, was used to collect general conditions such as the 

patient's physical condition, body temperature, emotion, heart rate, respiratory 

status, and behavior. A patient monitoring system based on Iterative Golden 

section optimized Deep Belief neural Network (IGDBN) using MATLAB for the 

collected data is developed. The developed IGDBN guarantees a higher 
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precision and a higher MCC value with a lower error rate than DNN, Hybrid 

random forest with linear model, Long short-term neural network, Fuzzy rule-

based neural classifier [62]. 

An electronic stethoscope was developed through artificial intelligence 

analysis of medical acoustic data by measuring lung sound. The device is 

divided into three parts including Sounds Collection Module (SCM), e-

healthcare Home Gateway (eHG), and smartphone. SCM records heart and lung 

sounds, eHG communicates with data translation and cloud servers, and mobile 

devices interface. For lung sound analysis, firstly perform a Short-Time 

Fourier Transformation (STFT) of the sound file and output signals for further 

classification. Use Convolutional neural network (CNN) and k-NN models for 

classification. After the STFT image is loaded, it is first converted into a gray-

tone image, and then used CNN model. The last extracted features are used as 

input to the k-NN model for the final classification [63]. 

The existing auscultation through the stethoscope may cause interpretation 

errors due to the subjective approach from a doctor. Therefore, objective 

evaluation is required using ML to detect wheezing. This study proposed an 

LSTM-based neural network, a novel wheezing detection model that 

distinguishes normal and wheezing. Mel-Frequency Cepstral Coefficients 

(MFCC) were used as the feature extraction method. A simulation was 
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performed through MATLAB R2020a. The performance of the proposed model 

was evaluated and compared with the existing Multilayer Perceptron (MLP), a 

widely used neural network that has proven efficiency in traditional respiratory 

sound classification. LSTMs are an up-and-coming alternative to feedforward 

networks since they provide relatively better results [64]. 

It is a difficult task for human listeners because some lung sound events have 

a frequencies's spectrum that is beyond human hearing ability. Thus, this paper 

proposed a system capable of detecting and classifying abnormal lung sounds, 

such as crackle or wheeze sounds. CNN was used to successfully detect and 

classify adventitious sounds in lung sound signals. various functions(Power 

Spectrum Density (PSD), Mel Spectrum (MS), MFCC) for converting lung sound 

signals into 2D images were presented. MS when feed into CNN, achieves 

results in line with the current cutting-edge technology and followed by PSD, 

MFCC [65]. 

6. Conclusion 

The reliability of IAQ and health effect sensors has been demonstrated 

through many studies. However, in the case of PM1.0 with small particles, large 

equipment must be used, and real-time prediction is difficult through small and 

portable sensors. Although it is possible to predict PM1.0 through artificial 

intelligence analysis of PM2.5 data with large particles, more research on 
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precise sensors that can be directly measured is needed. In addition, the 

reliability of electrochemical sensors should be studied in the future by 

overcoming the interference gas effect. IoT-based real-time monitoring is 

efficient to monitor, collect, and analyze more accurate air quality, and in the 

future, AI analysis needs to improve precision and accuracy.  

In addition, research on the convergence of medical and artificial intelligence 

has recently continued. This is because a doctor's subjective judgment 

increases the demand for accurate analysis and predictive power of artificial 

intelligence. Many AI-based studies have been conducted to predict lung 

disease from health effect data, and mortality from lung disease. In addition, a 

recent increase in demand for telemedicine has led to an increase in research 

on a development of remote healthcare services. 
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