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Abstract: Scene parsing of high-resolution remote-sensing images (HRRSIs) refers to parsing different
semantic regions from the images, which is an important fundamental task in image understanding.
However, due to the inherent complexity of urban scenes, HRRSIs contain numerous object classes.
These objects present large-scale variation and irregular morphological structures. Furthermore, their
spatial distribution is uneven and contains substantial spatial details. All these features make it
difficult to parse urban scenes accurately. To deal with these dilemmas, in this paper, we propose a
multi-branch adaptive hard region mining network (MBANet) for urban scene parsing of HRRSIs.
MBANet consists of three branches, namely, a multi-scale semantic branch, an adaptive hard region
mining (AHRM) branch, and an edge branch. First, the multi-scale semantic branch is constructed
based on a feature pyramid network (FPN). To reduce the memory footprint, ResNet50 is chosen as
the backbone, which, combined with the atrous spatial pyramid pooling module, can extract rich
multi-scale contextual information effectively, thereby enhancing object representation at various
scales. Second, an AHRM branch is proposed to enhance feature representation of hard regions with a
complex distribution, which would be difficult to parse otherwise. Third, the edge-extraction branch
is introduced to supervise boundary perception training so that the contours of objects can be better
captured. In our experiments, the three branches complemented each other in feature extraction and
demonstrated state-of-the-art performance for urban scene parsing of HRRSIs. We also performed
ablation studies on two HRRSI datasets from ISPRS and compared them with other methods.

Keywords: HRRSIs; scene parsing; adaptive hard region mining; multi-scale features; edge extraction

1. Introduction

Urban scene parsing of high-resolution remote-sensing images (HRRSIs) (or semantic
segmentation in computer vision) refers to parsing different semantic regions from the
images. It is crucial to the widespread applications of remote sensing, such as change
detection [1–3], ecological environment monitoring [4,5], natural disaster assessment [6,7],
building area statistics [8–10], UAV remote sensing [11,12], etc. In recent years, deep
learning has significantly developed [13]. Benefiting from this, many advanced semantic
segmentation methods have been proposed [14]. Their advantage lies in that they can auto-
matically learn rich discriminative semantic features from large amounts of images. Based
on these features, the model can further parse out regions that belong to different semantics.

Although those approaches perform well in natural image processing, they still have
many shortcomings when dealing with complex urban scenes in HRRSIs. For example,
features extracted from trees and grass in urban scenes often present ambiguous boundaries,
which prevent accurate detection of edges. In addition, the sizes of different types of objects
in HRRSIs vary drastically (such as cars and buildings). Therefore, urban scene parsing
requires a model that can effectively extract not only the boundary contours of objects, but
also multi-scale features.
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Multi-scale contextual information plays a very important role in various vision tasks.
Therefore, various neural networks have been proposed to improve the multi-scale feature
capturing ability. A feature pyramid network (FPN) [15] combines the low-level feature
maps from top-down pathways with the high-level ones in bottom-up pathways via lateral
connections, which greatly enhances the multi-scale feature extraction capability of the
model. UNet [16] uses a concatenated form to combine features with different scales
in the skip connection process. Furthermore, the DeepLab series [17–19] adopts atrous
convolution to maintain a higher resolution of the feature maps. On this basis, an atrous
spatial pyramid pooling (ASPP) module is proposed to extract multi-scale features from
high-level semantic feature maps with high-resolution by arranging atrous convolutions
with different dilation rates in parallel.

Although these methods can effectively extract multi-scale features, they still lack
effective representations of low-level features (e.g., edge details) in complex scenes in
HRRSIs. To remedy this deficiency, [20] proposed a Dice-based [21] edge-aware loss
function to supervise the prediction results of the segmentation network. However, it
does not make use of edge features explicitly, making the representation of features less
efficient. Moreover, BES-Net [22] leverages edge information explicitly to enhance semantic
features and improves intra-class consistency, thereby achieving effective prediction results
concerning edge regions. It integrates edge information directly in the middle layers of the
feature extraction network, which enhances the representation of edge features. However,
in addition to edge information, the features of these intermediate layers also contain
enormous complex and redundant features. Although explicit edge supervision can force
models to optimize for object edges, they still lack an effective mined edge representation.

In addition to the edges, there are inevitably plenty of hard regions with a complex
distribution of objects in urban scenes of HRRSIs. The existence of these regions seriously
hinders the improvement of classification accuracy. Therefore, enhancing the feature
representation capacity of the model for such regions is the key to improving the model‘s
overall performance. Online hard example mining (OHEM) [23] selects and optimizes hard
example points according to the loss value. PointRend [24] uses a multilayer perceptron
to re-train difficult sample points for further improvement. These methods select and
optimize hard examples from the prediction logits of the model with pixels as the basic
unit. Therefore, they lack an effective representation of the regional information that is
difficult to classify. To put this into perspective, in the urban scenes of HRRSIs, there are
widespread areas with an unbalanced distribution of objects, and they are very difficult
to classify. For example, numerous multi-class objects coexist in a small residential area,
while a large area such as a park is dominated by low vegetation. Therefore, sufficient and
effective mining of informative features in hard regions with a complex distribution of
ground objects is the key to urban scene parsing of HRRSIs. However, simply performing
pixel-to-pixel mining of hard examples from the logits predicted by the network will
inevitably lose important contextual information, resulting in an ineffective representation
of hard regions. In this work, we managed to mine the information of hard regions from
the features in the middle layers of the model. Since this information is orthogonal to edge
details and multi-scale features, it can compensate for the insufficient representation of
difficult regions in the model.

In response to the issues described above, we propose a multi-branch adaptive hard
region mining network (MBANet) for parsing urban scenes in HRRSIs. The network
comprises three branches: (1) the semantic branch, (2) the AHRM branch, and (3) the
edge branch. Specifically, the multi-scale semantic branch is the main branch. It adopts
FPN-structured ResNet50 as the backbone and then cascades the ASPP module to extract
multi-scale contextual information. We propose a prediction uncertainty gating mechanism
based on information entropy for the AHRM branch. Through the screening of the gating
mechanism, this branch can adaptively mine the regions with strong uncertainty in the
prediction results. Then, the mined hard region features are fused by FPN to obtain the
representation of uncertain regions. In the edge-extraction branch, we construct another
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gating unit to qualitatively filter edge features in the outputs of different blocks of ResNet
based on the degree of confusion of the predicted results. The gating unit can effectively
filter out most redundant information except the edge features. Then, FPN is used to fuse
the filtered edge features to extract the edge information of objects. At the end of this
branch, we use explicit edge supervision to guide the learning of the model. The final result
is obtained by summing the features of these three branches and then upsampling them
to restore their resolution. Finally, we conducted appropriate experiments on two HRRSI
datasets from ISPRS. The ablation experiments demonstrate that each branch is effective.
Compared to prior methods, our model achieves state-of-the-art (SOTA) performance.

The main contributions of this paper are summarized as follows:

1. A multi-branch adaptive hard region mining network is proposed to perform urban
scene parsing of HRRSIs. It consists of a multi-scale semantic branch, an AHRM
branch, and an edge-extraction branch. We performed experimental validation on
two HRRSI datasets from ISPRS and obtained SOTA performance;

2. A prediction uncertainty gating mechanism based on an entropy map is proposed.
Then, an adaptive hard region mining branch is constructed based on this gating unit
to adaptively mine hard regions in the images and extract their informative features;

3. An edge-extraction branch is constructed using the gating unit based on the predicted
confusion map to filter out most of the redundant information except edge features
in the output of each block of ResNet, thereby qualitatively screening edge features.
Finally, an edge loss is used to supervise its training explicitly.

The remainder of this paper contains the following sections. We present related works
in recent years in Section 2. Then, we detail the MBANet in Section 3. We present the
datasets and experimental setup of our experiments in Section 4. We analyze the branches
of MBANet in detail with ablation experiments and verify the compatibility of the three
branches in Section 4.3. Furthermore, we compare the MBANet with several other methods
in Section 4.4. Finally, we summarize in Section 5.

2. Related Work

In the fields of image processing and remote sensing, deep learning-based urban scene
parsing methods have been widely developed and have achieved many prominent results.
The following is a brief review and analysis of several key technical issues we face, which
mainly include three aspects: (1) multi-scale feature extraction, (2) hard region mining,
and (3) edge extraction.

2.1. Multi-Scale Feature Extraction

The HRRSIs studied in this research are orthophotos of urban scenes that contain rich
ground object information. In urban scenes, there are many objects that vary greatly in
size, such as large buildings and cars. Therefore, how to efficiently and comprehensively
represent objects of different sizes is the key to urban scene parsing of HRRSIs. Ref. [15]
proposed a top-down and lateral-connected FPN for several vision tasks. It effectively
improves the multi-scale feature representation capability of the model by aggregating
intermediate layer features of different resolutions. Due to its delicate structure and out-
standing performance, this structure has become an excellent and widely used multi-scale
feature extractor in various tasks. Different from the top-down approach of FPN to obtain
multi-scale feature maps, ref [25] used spatial pyramid pooling modules with different
pooling strides to obtain feature maps of different resolutions from high-level semantic
feature groups. With these features, a parallel feature pyramid network is constructed
to enhance the representation of multi-scale contextual information, and it achieves out-
standing performance on several object-detection datasets. Usually, as the depth of the
network increases, the receptive field becomes larger and the resolution of the extracted
feature map becomes smaller. Therefore, feature maps with higher resolution often cor-
respond to smaller receptive fields. In order to resolve this conflict, ref [26] proposed an
attention-guided contextual feature pyramid network. This network extracts contextual
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information of different receptive fields from high-level semantic features. It then uses
an attention-guided module to eliminate the redundant information, thereby identifying
the salient dependencies among the extracted context. The network achieved outstanding
performance on several vision tasks. In order to detect some targets on challenging images,
ref [27] proposed a weighted feature pyramid network. Based on an FPN, the network
uses a Gaussian kernel to calculate the weights of the outputs of each layer of the FPN.
Subsequently, their feature assignments are balanced in a weighted manner in the lateral
connections, thereby improving the ability to detect special objects. There are semantic
differences between different layer features of an FPN. To bridge the semantic gap, ref [28]
proposed using gating units to fuse features from different layers of the FPN alternatively.
Under the gating mechanism, the features of each layer contain information with different
semantics, and therefore greatly suppress the noise interference in the feature fusion pro-
cess. Rather than using the gating mechanism, ref [29] introduced a semantic enhancement
module in the decoder of an FPN to enhance shallow features. The method is to use an
edge-extraction module to supplement deep features and utilize a context aggregation
module to boost the performance of multi-feature aggregation.

The above methods use an FPN as the basic structure, as it can effectively extract
multi-scale semantic features. An FPN formulates the encoder–decoder network, which
upsamples the multi-scale features to increase their resolution. Further extraction of rich
multi-scale features from higher-resolution feature maps can provide strong information
support for scene parsing. PSPNet [30] introduces the pyramid pooling module, which
further extracts multi-scale features from high-level semantic feature maps by using pooling
with different strides in parallel. In order to maintain high-resolution feature map output,
the DeepLab series [17–19] used the ASPP module to enhance contextual information
representation, and achieved outstanding segmentation performance. Many advanced
semantic segmentation networks in remote sensing also adopt a similar structure [31–34].
Motivated by these concepts, we adopt the FPN-based structure with ResNet50 as the
backbone network and further connect the ASPP module to build the main multi-scale
semantic branch of MBANet.

2.2. Hard Region Mining

Hard example mining is an important strategy commonly used in deep learning.
The main idea is to improve the model’s performance by paying more attention to hard
samples and training the network model in a targeted manner. In the image classification
task, ref [35] proposed a simple online batch selection strategy to speed up the training of
network models. This method sorts all samples according to the latest loss values and builds
a mini-batch with a certain probability of being selected. This method guides the model to
optimize toward hard examples by selecting with a higher frequency training samples that
contribute more to the objective function, thereby speeding up model convergence. Based
on [35], ref [23] proposed an efficient OHEM algorithm for region-based object detectors.
This method sorts the loss values of all samples in each forward calculation and selects
the top N hard examples with the largest losses. These samples are then used to retrain
the model, thereby highlighting the model’s attention to hard samples. In [36], the authors
extended OHEM to semantic segmentation tasks and significantly improved the model’s
performance. However, sorting the loss values for a huge number of samples requires
additional computation. Moreover, in the semantic segmentation task, this method still
requires back-propagation for all samples, resulting in low computational efficiency.

Apart from OHEM, some advanced works have designed sophisticated networks to
deal with hard examples. PointRend [24] selects hard examples based on rough predictions
of the network and uses a small multilayer perceptron to refine the predictions for each pixel.
This model is applied in the semantic segmentation task to optimize each hard sample in
pixels. This method implicitly exploits the contextual information contained in each pixel in
the high-level semantic feature map, which may lack an effective representation of regional
features. Ref. [37] proposed a deep layer cascaded network to select hard samples in an
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image by setting a fixed threshold for the maximum probability value obtained by each
pixel in network logits. The early stages of the network deal with easy and deterministic
regions, while the late stages only deal with hard regions. Finally, the segmentation results
are obtained from the sum of the prediction results of different stages. However, the spatial
distribution of these difficult samples may be discrete, and using 2D convolution on discrete
pixels may result in a lack of necessary contextual information to determine their classes. In
order to maintain regional information, ref [38] used a sliding window method to determine
the classification difficulty of the region by calculating the overall loss of samples in a fixed-
size window. After selecting hard regions in a certain proportion, the corresponding regions
are upsampled to restore their resolution to the scale of the original image and used as new
training data to retrain the network. However, the sliding window method often requires
much computation, resulting in low model training efficiency.

To make up for the aforementioned shortcomings, we propose an adaptive mining
network for hard regions. The network adopts a gating mechanism based on information
entropy to adaptively mine the hard regions in the middle layers of the network. These
features can be used as a complement to multi-scale and edge features to enhance the
representative capacity of the model.

2.3. Edge Extraction

Extracting object edges accurately and efficiently is the key to semantic segmentation,
especially in HRRSIs with very complex surface object distributions. In recent years, various
research works have attempted to improve the segmentation performance by fully utilizing
the edge information and have achieved outstanding results. Ref. [39] proposed an edge
distribution attention module, which implicitly learns representative and discriminative
edge features to assist semantic segmentation of HRRSIs. However, this method does not
contain a corresponding loss function for edge supervision. Another work [40] proposed
an adaptive edge loss (AEL) based on the idea of OHEM. However, OHEM always sets
a fixed scale hard sample quantity regardless of the input images. AEL optimizes this
method. It dynamically adjusts the proportion of hard examples according to input images,
while splitting the calculation and optimization of easy and hard examples; therefore, it can
dynamically optimize hard examples. It does not explicitly extract object edges. Instead, it
implicitly utilizes the edge information obtained from the segmentation results. Ref. [41]
used the Canny operator to extract detailed spatial information (mainly edge features) from
the input image, and combined this information with features from the middle layers of the
backbone network to extract edge information. Ref. [42]similarly used the Canny operator
to extract edge details and combined this edge information with the high-level semantic
features to extract edge features. Finally, an auxiliary loss is designed for supervising the
edge feature. The edge features extracted by these two networks are integrated into the
decoder of the segmentation network in a layer-by-layer progressive manner to highlight
edge regions for further better segmentation. Based on UNet structure, [43] designed a
dual-stream semantic segmentation network, where the edge branch is used to extract
boundary features of different resolutions. Subsequently, edge information is incorporated
into the main branch through the attention mechanism. Finally, it adopts a loss function
for the edge detection network branch and sets a weight parameter for this loss to balance
its proportion with the semantic segmentation loss. Both BES-Nets [22,44] designed edge-
extraction branches and use edge loss supervision. Furthermore, they both constructed
fusion modules to fuse edge features with high-level semantic features of the main branch.
Instead of applying feature-level fusion, in order to improve the segmentation accuracy, ref
[45] fuses the extracted edge features into the preliminary predictions. Finally, a separate
re-segmentation subnetwork is built to refine the edge-guided segmentation results.

Some works regard edge detection as an auxiliary task for semantic segmentation [46–48].
They use an auxiliary branch network for edge detection and an explicit edge loss to supervise
model training. However, these works do not fuse the extracted edge information into the
final segmentation results, but only provide boundary constraints for semantic segmentation.
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Among them, ref [47,48] both designed edge-extraction structures for encoder and decoder
to enhance their boundary information. Another work [49] treats edge detection as post-
processing for semantic segmentation. In this work, an edge-extractor module is designed
to process the segmentation results directly. Moreover, the predictions are modified through
an edge loss function to carry out edge refinement and learning of discriminative features.

Drawing on ideas from previous works, this paper proposes a gated edge-extraction
branch complementing the multi-scale semantic and AHRM branches. We also set an edge
loss for this branch to supervise edge information of different network layers explicitly.

3. Methodology

In this section, we described the proposed method. First, the framework of MBANet is
introduced. Subsequently, the structure of the semantic branch, AHRM, and edge branches
are described in detail. Finally, the loss functions used in MBANet are introduced.

3.1. The Framework of MBANet

MBANet uses ResNet50 as the backbone network and replaces the normal convolution
of the last block with atrous convolution to extract feature maps with higher resolution
(output stride = 16). MBANet consists of three branches in parallel, namely, a semantic
branch, an AHRM branch, and an edge branch, as shown in Figure 1.
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Figure 1. The framework of our MBANet.

The semantic branch uses ResNet50 as the backbone to formulate an FPN for extracting
hierarchical multi-scale semantic features, which are then fed to an ASPP module to capture
multi-scale contextual information. Following the idea of DeepLab, the low-level features
of the first block of ResNet are added to the outputs of ASPP to enrich the extracted
contextual information. The AHRM branch exploits an entropy-based gating mechanism
that adaptively mines hard regions from the outputs of the last three blocks of ResNet
to enhance the features of these hard regions. Finally, the enhanced multi-scale feature
outputs from the three blocks are integrated with FPN to obtain the salient features of hard
regions. Similarly, the edge branch uses another gating mechanism based on the prediction
confusion map (PCM) [50] to explicitly extract object edges from the outputs of the last
three blocks of ResNet, after which the multi-scale edge features are aggregated in FPN.
Finally, to enrich the detailed spatial information, the aggregated features are combined
with the features of the 7 × 7 convolutional layer of ResNet. The features extracted by these
three branches have complementary properties. Therefore, the final features of MBANet are
simply the sum of these three sets of features. The final features are passed through the 3× 3
and 1 × 1 convolutional layers to perform classification and finally upsampled to generate
prediction results. Details of each branch are described in the following subsections.
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3.2. Semantic Branch

The semantic branch is the main branch of MBANet, which aims to extract multi-scale
features that are very important for the accurate segmentation of objects with different
scales. To balance feature representation capability, computational complexity, and memory
footprint, we choose ResNet50 as the backbone network. In order to maintain an effective
representation of small objects (e.g., cars), the DeepLab series [17–19] replaces conventional
convolutions in the last two blocks of ResNet with atrous convolutions (output stride = 8)
to obtain high-resolution feature maps. Subsequently, the ASPP module is concatenated
to capture multi-scale contextual information. To reduce memory footprint, MBANet
uses atrous convolution as a substitute for the conventional convolution in the last block
of ResNet (output stride = 16). Meanwhile, in order to obtain higher resolution feature
maps, we utilize an FPN to aggregate the features of the last three blocks of ResNet.
This approach can not only aggregate multi-scale features to a certain extent, but also
increase the resolution of feature maps (equivalent to output stride = 8) while having
fewer channels (1/4 of the fourth block of ResNet). Compared to the DeepLab series,
this method significantly reduces the number of feature map input channels to the ASPP
module, and therefore decreases computational cost and memory usage. The features
obtained by the ASPP module are concatenated with those of the first block of ResNet.
Then, their channels are decreased to 64 by 1 × 1 convolution. The final feature of MBANet
is obtained by fusing the 64-channel features and the output features of the other two
branches. To provide explicit supervision to the semantic branch, the 64-channel features
are smoothed with 3 × 3 and 1 × 1 convolutional layers and upsampled to obtain semantic
segmentation results. Lastly, the semantic loss (Loss_semantic in Figure 2) is computed
over the segmentation results and labels.
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Figure 2. The framework of the semantic branch.

Apart from this, we utilize the feature maps of the last three blocks of ResNet to make
coarse auxiliary predictions and set an auxiliary loss for each block (Loss_aux1, Loss_aux2,
and Loss_aux3 in Figure 2).

This setting serves two purposes. On one hand, it can provide deep supervision for
the backbone network with the help of separately designed losses for different blocks.
On the other hand, the coarse predictions in the setting act as the basis of the two gating
mechanisms used in the other two branches.

3.3. AHRM Branch

The goal of the AHRM branch is to explicitly extract the features of hard regions from
the outputs of the last three blocks of ResNet as showen in Figure 3. Therefore, effectively
measuring the classification difficulty of each sample is the key to hard region mining.
As mentioned above, we use the last three blocks of ResNet for coarse prediction. As with
the final segmentation results, the coarse results consist of six channels at a given location,
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corresponding to the probabilities of the six classes in the dataset. We will use the entropy
of the six channels, represented as a vector, to measure the classification difficulty of a
sample, because high entropy implies low prediction stability, and vice versa.

We calculate the entropy of the three auxiliary prediction results for every pixel and
thus obtain three entropy maps. Pixels with higher entropy in the maps are harder to
classify. We downsample the three entropy maps to obtain the gating unit of each block.
The features of each block are then multiplied by the value of the corresponding gate to
highlight the features of hard regions in the image. Features of hard regions with different
resolutions from the three blocks are aggregated by the FPN. Finally, the aggregated features
are reduced to 64 channels by 3 × 3 convolution and upsampled to restore their resolution.
These 64-channel hard region feature maps are part of the final feature maps of MBANet.

As shown in Figure 4b, we have visualized the entropy map of the prediction results
of the last block’s auxiliary branch so as to gain a deeper understanding of the method.
The entropy of each pixel in this image ranges from 0 to 1.6. Observing the entropy maps
of all the test images, we empirically found that the value range stabilizes in the range of
(0, 1.8). Samples with higher entropy are continuously distributed around the boundary
to form connected regions. The brighter regions in the image have higher entropy, which
means that the prediction uncertainty for the region is higher and, therefore, more difficult
to classify accurately. It can be seen that these regions are mostly distributed near the
edges. Note that the upper left part of the entropy map is brighter except for the edge
regions. It can be found in the input image that many cars are parked in this area. The close
arrangement of these cars and the interference of shadows make it difficult to parse this
area accurately. The AHRM branch uses the entropy map as a gating unit, which multiplies
pixel-by-pixel feature map outputs by different blocks of ResNet so as to enhance features
in hard regions while suppressing features in easy regions.
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Figure 3. The framework of the AHRM branch.
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(a) Input Image (b) Entropy Map(b) Entropy Map (c) PCM 

Figure 4. Visualization of the two gating mechanisms. (a) The input image of size 512 × 512. (b) The
entropy map of the auxiliary prediction result of the last block of ResNet. The rightmost vertical
axis represents the different entropy values in the image. The higher the brightness, the higher the
entropy. (c) The PCM of the auxiliary prediction result of the last block of ResNet. The higher the
brightness, the higher the prediction confusion.

3.4. Edge Branch

It can be seen that hard regions (i.e., brighter regions in Figure 4b) mostly cluster
around the edges. These hard-to-classify regions are very difficult to train with direct
supervision. In this work, we elaborately devise an edge branch to extract edge features
explicitly which is shown in Figure 5. In prior approaches, the most commonly used
edge-extraction method is to learn edge information from the intermediate layers through
a simple convolutional layer [22,44]. These learnable convolution kernels perform feature
extraction on all pixels equally in the feature map and are combined with an edge loss (e.g.,
BCE loss) to guide model training. The method of feature learning used by these methods
has a certain blindness. However, the fundamental driver for learning edge features with
convolutional kernels is edge loss supervision. Therefore, in this paper, we manage to
remove this blindness.
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Figure 5. The framework of the edge branch.

Our previous work [50] proposed a prediction confusion map (PCM), as shown in
Figure 4c, which is generated through the following steps. (1) For a given pixel, sort
the predicted logits; (2) take the difference between the top two maxima; (3) reverse this
difference to obtain the prediction confusion of the pixel; (4) extend these operations to all
pixels in the image to yield a PCM.

Unlike the entropy map calculation method, a PCM is obtained from only the top
two maxima in the prediction logits, corresponding to the probabilities of the two most
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likely classes of the pixel. The PCM uses the inversion of the difference between these two
maxima to measure the prediction confusion of each pixel. The smaller the difference is, the
more difficult it is to classify the corresponding pixels. It is difficult to predict the brighter
points of the PCM accurately because of the inversion operation. As shown in Figure 4c,
most of the highly confusing pixels are concentrated around the edges. Furthermore,
compared with the ambiguous representation of edges by the entropy map of Figure 4b,
the PCM highlights the object boundaries more clearly. As a result, the PCM can effectively
represent edges in prediction results. Inspired by this, we utilize a PCM as the gating unit
of the edge branch to capture edge information from intermediate feature maps. The edge
gating mechanism can effectively tackle the blindness of indiscriminate feature learning.

Similar to the AHRM branch, we compute the PCMs based on the predictions of the
last three blocks of ResNet and downsample them as the edge-extraction gating units.
The gating units are multiplied by the outputs of the corresponding blocks to extract
edge information from intermediate layer features explicitly. Finally, the edge features of
different resolutions are aggregated by an FPN. The features obtained by the first 7 × 7
convolutional layer of ResNet contain many spatial details, which can make up for the
insufficient representation of boundary details in the intermediate layers of ResNet. We use
two 3 × 3 convolutional layers to filter out redundant details and concatenate them with
the aggregated edge features. Subsequently, their channels are reduced to 64 by a 1 × 1
convolutional layer, and their resolution is restored by upsampling. These 64-channel edge
feature maps are part of the final feature of MBANet.

To provide explicit supervision for the edge branch, we use a 3 × 3 and a 1 × 1
convolutional layer to obtain edge prediction results on the final edge features, and calculate
the edge loss between the edge prediction and the edge labels. Specifically, since edge
prediction is a binary classification task, a binary cross-entropy (BCE) loss is employed
in this branch. We extract the boundaries of objects from the ground truth to construct
edge labels.

3.5. Loss Function

The proposed MBANet consists of three parallel network branches. Apart from the
loss of the final result, both the semantic branch and the edge branch have loss supervision.
Furthermore, auxiliary losses are set for the last three blocks of the backbone network—
ResNet. Therefore, the final loss (Loss_ f inal) consists of six parts, among which the loss
of the final result of the network (Loss), the loss of the semantic branch (Loss_semantic),
and the other three auxiliary losses (Loss_aux1, Loss_aux2, and Loss_aux3) are all cross-
entropy losses. A BCE loss (Loss_edge) is used to supervise training in the edge branch.
We set a weighting factor α to balance the proportion of auxiliary losses. Additionally, we
performed ablation studies on the Vaihingen dataset, and eventually found the optimal
value of α = 0.6. Therefore, the final loss Loss_ f inal is formulated as

Loss_ f inal = Loss + Loss_semantic + Loss_edge + 0.6 · (Loss_aux1 + Loss_aux2 + Loss_aux3). (1)

4. Experiments and Results

We detail the two HRRSI semantic segmentation datasets from ISPRS and the specific
experimental setting.

4.1. Datasets

The ISPRS Vaihingen and Potsdam datasets were employed for experimental valida-
tion. These two datasets are sampled from the orthographic projection maps of the cities of
Vaihingen and Potsdam in Germany, which contain many typical urban scenes. Vaihingen
is a small village with numerous independent buildings. Potsdam, on the other hand, is a
relatively large city with many dense and large buildings. Therefore, the characteristics of
the two datasets are significantly different and represent different styles of urban scenes.
The images are annotated into six classes: Impervious surfaces, Building, Low vegetation,



Remote Sens. 2022, 14, 5527 11 of 23

Tree, Car, and Clutter/background. Since the size of the original images is too large for
training, we used a sliding window method to cut them into small patches of size 512× 512.
In addition, we set an overlap ratio of 1/3 for the sliding window for the training images.
We present the two datasets in detail in Table 1, including the size of the original large
images, the ground sampling distance (GSD), wave bands, scenes, and the number of
original large images and small patches.

Table 1. The ISPRS datasets used in this paper.

Dataset Vaihingen Potsdam

Size 2494 × 2064 6000 × 6000

GSD 9 cm 5 cm

Wave
Bands NIR, R, G NIR, R, G, B

Scenes Small Village Large City

Train Test Train Test

Original
Images 16 17 24 14

Small
Patches 705 398 7776 2016

4.2. Experiment Setup

The detailed experimental setup is shown in Table 2. Following the settings of [17], we
use the Poly learning strategy to speed up the model convergence, which is expressed as

lr = lrinit × (1 − current_iterations
max_iterations

)0.9 (2)

Following the settings of [50], this paper uses multiple metrics to measure model
performance, including OA, mIoU, and mean F1, as well as IoU score and F1 score for
each class.

Table 2. Experimental setup.

Operating
System Ubuntu 18.04.5 LTS GPU GeForce RTX 3090 (24 G)

DeepLearning
Framework Pytorch-1.7

Batch
Size 8

Training
Epoch 100 Optimizer SGD (momentum = 0.9)

Vaihingen Potsdam

Learning
Rate 0.01 0.005

4.3. Ablation Study

The effectiveness of each branch is verified in this section. Further, the effectiveness
of the gating mechanism in the AHRM branch and the edge branch is verified. Finally,
the optimal value of the auxiliary loss weight α is studied.

4.3.1. Ablation Study for the Semantic Branch

This paper utilizes atrous convolution to replace the conventional convolution in the
third and fourth blocks of ResNet50 (output stride = 8) as a backbone to build a fully
convolutional network (FCN) as the baseline model. Since the structure of the semantic
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branch is similar to DeepLab v3+, we compare its performance with FCN and DeepLab v3+.
We calculate the F1 and IoU scores for each class separately, as well as the final OA, mean
F1, and mIoU scores, and further count their memory usage. The experimental results are
presented in Table 3. Our semantic branch achieved the best results except for Car. This
is because the features extracted by ResNet used in DeepLab v3+ have higher resolution
(output stride = 8), which better preserves the semantic information of the small-scale class
of Car. However, although our method sacrifices accuracy for Car, it greatly reduces the
GPU memory usage and therefore achieve, outstanding results.

Table 3. Comparison of FCN, semantic branch, and DeepLab v3+ on Vaihingen dataset.

F1 Imp. Surf. Build Low Veg. Tree Car Mean F1 OA Memory Usage

FCN 91.04 94.19 81.92 88.13 79.13 86.88 88.91 16,980 M

DeepLab v3+ 91.37 94.18 82.79 88.75 83.67 88.15 89.39 18,696 M

Semantic Branch 92.03 95.11 83.46 89.10 82.58 88.46 90.02 10,005 M

IoU mIoU

FCN 83.56 89.02 69.38 78.77 65.47 77.87 88.91 -

DeepLab v3+ 84.12 89.01 70.63 79.77 71.93 79.64 89.39 -

Semantic Branch 85.23 90.68 71.62 80.35 70.32 80.34 90.02 -

Additionally, in this subsection, we investigate the influence of deep supervision
provided by auxiliary losses on the semantic branch. We empirically set α = 0.6 and
performed experimental validation on the Vaihingen dataset. The experimental results are
displayed in Table 4. Undoubtedly, the auxiliary loss can positively impact the semantic
branch. Therefore, all of our subsequent experiments retain these three auxiliary losses.

Table 4. The impact of deep supervision on semantic branch.

F1 Imp. Surf. Build Low Veg. Tree Car Mean F1 OA

Semantic Branch 92.03 95.11 83.46 89.10 82.58 88.46 90.02

Semantic Branch with Deep Supervision 92.55 95.48 83.64 88.92 82.82 88.68 90.28

IoU mIoU

Semantic Branch 85.23 90.68 71.62 80.35 70.32 80.34 90.02

Semantic Branch with Deep Supervision 86.12 91.36 71.88 80.05 70.67 80.64 90.28

4.3.2. Ablation Study for the AHRM Branch

In this section, we study the semantic and AHRM branches’ compatibility and further
verify the gating mechanism’s effectiveness in the AHRM branch. Based on the semantic
branch, we add AHRM branches without or with gating units, and test their performance
on the Vaihingen test set. The experimental results are illustrated in Table 5.
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Table 5. Ablation study for the AHRM branch.

F1 Imp. Surf. Build Low Veg. Tree Car Mean F1 OA Memory Usage

Semantic Branch 92.55 95.48 83.64 88.92 82.82 88.68 90.28 10,005 M

+ AHRM without gate 92.32 95.42 83.85 89.15 83.41 88.83 90.32 -

+ AHRM with gate 92.85 95.59 84.22 89.25 83.17 89.02 90.61 10,786 M

IoU mIoU

Semantic Branch 86.12 91.36 71.88 80.05 70.67 80.64 90.28 -

+ AHRM without gate 85.73 91.24 72.19 80.42 71.54 80.79 90.32 -

+ AHRM with gate 86.66 91.55 72.73 80.59 71.19 81.11 90.61 -

The model’s performance can be slightly improved by simply aggregating the features
of the intermediate layers and concatenating them with the features extracted by the
semantic branch. Furthermore, with the assistance of the proposed gating unit, the model’s
performance is significantly improved.

However, the addition of the AHRM branch slightly increases the memory usage of
the GPU. In the experimental results, all classes except Car obtained the highest scores,
which verifies the effectiveness of the AHRM branch and the gating mechanism based on
the entropy map. This may be because the entropy map does not adequately represent the
edges of cars. Therefore, we try to explore solutions from the edge branch.

4.3.3. Ablation Study for the Edge Branch

Similar to the AHRM branch, in this section, we study the compatibility of the semantic
and the edge branches and further demonstrate the effectiveness of the gating mechanism
in the edge branch. We add edge branches without or with gating units based on the
semantic branch and test their performance on the Vaihingen test set. The experimental
results are provided in Table 6.

Table 6. Ablation study for the edge branch.

F1 Imp. Surf. Build Low Veg. Tree Car Mean F1 OA Memory Usage

Semantic Branch 92.55 95.48 83.64 88.92 82.82 88.68 90.28 10,005 M

+ edge without gate 92.41 95.29 84.25 88.96 83.68 88.92 90.34 -

+ edge with gate 92.62 95.43 84.33 89.28 84.11 89.15 90.56 11,190 M

IoU mIoU

Semantic Branch 86.12 91.36 71.88 80.05 70.67 80.64 90.28 -

+ edge without gate 85.89 91.00 72.79 80.12 71.94 80.91 90.34 -

+ edge with gate 86.26 91.26 72.90 80.63 72.58 81.22 90.56 -

The experimental results of the edge branch are consistent with the AHRM branch.
Adding an edge branch without gating units can slightly improve model performance,
and with gating units, the improvement is greater. Moreover, the edge branches take up
little GPU memory. Experimental results show that all classes except Building achieve
the highest scores, demonstrating the effectiveness of the edge branch and the gating
mechanism based on PCM. This may be because the edge features of buildings are relatively
fixed (usually rectangular) and are easier to extract even without edge supervision. It
should be noted that compared with the AHRM branch, the addition of the edge branch
can effectively improve the accuracy for cars, which can make up for the deficiency of the
AHRM branch.
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4.3.4. Integration of the Three Branches

In this section, we integrate three branches to build the MBANet. Considering that
the results of auxiliary predictions inevitably influence the model performance (since
gating units are derived from them), we conducted a series of experiments to compare
the performance when different weights of the auxiliary loss on the Vaihingen dataset are
used. The results are summarized in Table 7. It demonstrates that our network achieved the
best results when α = 0.6. Notably, the model obtained the worst results when α = 0. In
this case, the auxiliary branch loses the supervision information, so the gating unit cannot
effectively select specific features. On the contrary, it introduces significant noise to the
features of the semantic branch, resulting in poor model performance.

We sorted the three branches’ experimental results and counted their memory footprint.
The final results are summarized in Table 8, which demonstrates that the three branches in
our model are compatible and that their features complement each other. The other two
branches occupy little memory storage, which is convenient for deployment and training.

Table 7. Ablation study for weight parameter α.

F1 Imp. Surf. Build Low Veg. Tree Car Mean F1 OA

α = 0 92.40 95.37 83.31 88.93 82.16 88.43 90.18

α = 0.2 92.57 95.39 84.66 89.32 83.03 89.00 90.59

α = 0.4 92.81 95.56 84.49 89.37 82.78 89.00 90.70

α = 0.6 93.02 95.63 84.74 89.38 84.58 89.47 90.82

α = 0.8 92.65 95.40 84.14 89.24 84.60 89.20 90.50

α = 1.0 92.69 95.46 83.75 89.14 84.42 89.09 90.44

α = 2.0 92.71 95.35 83.60 88.86 82.93 88.69 90.31

α = 5.0 89.94 92.72 82.07 88.08 63.73 83.31 88.11

IoU mIoU

α = 0 85.87 91.14 71.40 80.07 69.72 80.16 90.18

α = 0.2 86.17 91.18 73.41 80.71 70.98 80.97 90.59

α = 0.4 86.57 91.50 73.15 80.79 70.62 81.02 90.70

α = 0.6 86.95 91.62 73.53 80.81 73.28 81.81 90.82

α = 0.8 86.30 91.20 72.62 80.56 73.31 81.35 90.50

α = 1.0 86.38 91.31 72.04 80.41 73.05 81.18 90.44

α = 2.0 86.41 91.11 71.83 79.95 70.84 80.65 90.31

α = 5.0 81.72 86.43 69.60 78.69 46.77 73.76 88.11
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Table 8. Experimental results of the final model and memory usage on Vaihingen dataset.

F1 Imp. Surf. Build Low Veg. Tree Car Mean F1 OA Memory Usage

FCN 91.04 94.19 81.92 88.13 79.13 86.88 88.91 16,980 M

Semantic Branch 92.55 95.48 83.64 88.92 82.82 88.68 90.28 10,005 M

+ AHRM 92.85 95.59 84.22 89.25 83.17 89.02 90.61 10,786 M

+ edge 92.62 95.43 84.33 89.28 84.11 89.15 90.56 11,190 M

MBANet 93.02 95.63 84.74 89.38 84.58 89.47 90.82 11,592 M

IoU mIoU

FCN 83.56 89.02 69.38 78.77 65.47 77.87 88.91 -

Semantic Branch 86.12 91.36 71.88 80.05 70.67 80.64 90.28 -

+ AHRM 86.66 91.55 72.73 80.59 71.19 81.11 90.61 -

+ edge 86.26 91.26 72.90 80.63 72.58 81.22 90.56 -

MBANet 86.95 91.62 73.53 80.81 73.28 81.81 90.82 -

As a complement, we demonstrate the effectiveness of our method on the Potsdam
dataset. The experimental results are summarized in Table 9. Compared to the baseline,
the OA, mean F1 , and mIoU scores are improved by 1.91%, 2.59%, and 3.94%, respectively,
on the Vaihingen dataset, while on the Potsdam dataset, the improvement rates are 1.14%,
1.7%, and 2.4%, respectively. For intuitive understanding, we visualized the prediction
results of some small patches and marked the advantageous regions with red dotted
ellipses, as shown in Figures 6 and 7.

Table 9. Experimental results of the final model on the Potsdam dataset.

F1 Imp. Surf. Build Low Veg. Tree Car Mean F1 OA

Baseline 92.25 95.67 85.94 87.37 94.08 57.40 85.45 89.73

MBANet 93.20 96.78 87.12 88.36 95.64 61.78 87.15 90.87

IoU mIoU

Baseline 85.61 91.71 75.35 77.57 88.82 40.25 76.55 89.73

MBANet 87.26 93.76 77.18 79.15 91.65 44.69 78.95 90.87
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Figure 6. Visualization of the prediction results of different methods on the Vaihingen dataset. (a)–(e)
correspond to five different input images, labels and segmentation results.
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Figure 7. Visualization of the prediction results of different methods on the Potsdam dataset. (a)–(e)
correspond to five different input images, labels and segmentation results.

4.4. Comparison with Other SOTA Methods

This section compares the performance of MBANet with other SOTA methods. Fur-
thermore, we compare the computational complexity of the model with some commonly
used methods.

The previous experiments in this paper were conducted on small patches of size
512 × 512. This section tests the performance of MBANet on the original large images.
Since the original images are too large to test, we use the sliding window (SW) method for
testing. We set an overlap ratio of 1/3 for each sliding window to prevent tearing when
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the predicted small patches are stitched together. Furthermore, we use multi-scale testing
(MS) and flipping (Flip) to improve the model generalization ability. To compare with other
methods, we only calculated five classes, excluding Clutter, when computing mIoU and
mean F1 scores on the original large image.

We performed ablation studies on three test augmentation methods. The experimental
results are recorded in Tables 10 and 11. We can see that each method is very effective in
improving the model’s performance. Additionally, comparison results with other SOTA
methods are recorded in Tables 12 and 13.

Table 10. Performance of different testing methods on the Vaihingen dataset.

F1 SW MS Flip Imp. Surf. Build Low Veg. Tree Car Mean F1 OA

Base 93.02 95.63 84.74 89.38 84.58 89.47 90.82

SW ! 93.26 95.74 85.01 89.91 86.34 90.05 91.18

SW + MS ! ! 93.56 96.02 85.75 90.34 87.95 90.72 91.59

SW + Flip ! ! 93.44 95.95 85.60 90.43 87.63 90.61 91.53

SW + MS + Flip ! ! ! 93.60 96.14 86.19 90.77 88.33 91.01 91.82

IoU mIoU

Base 86.95 91.62 73.53 80.81 73.28 81.81 90.82

SW ! 87.37 91.83 73.93 81.67 75.97 82.15 91.18

SW + MS ! ! 87.89 92.35 75.05 82.39 78.49 83.24 91.59

SW + Flip ! ! 87.68 92.21 74.82 82.53 77.98 83.04 91.53

SW + MS + Flip ! ! ! 87.97 92.56 75.73 83.10 79.10 83.69 91.82

Table 11. Performance of different testing methods on the Potsdam dataset.

F1 SW MS Flip Imp. Surf. Build Low Veg. Tree Car Mean F1 OA

Base 93.20 96.78 87.12 88.36 95.64 61.78 87.15 90.87

SW ! 93.57 96.97 87.72 89.00 95.88 62.87 92.63 91.31

SW+MS ! ! 93.83 97.15 88.15 89.16 96.30 64.19 92.92 91.62

SW+Flip ! ! 93.92 97.16 88.40 89.48 96.31 64.24 93.06 91.75

SW+ MS+Flip ! ! ! 94.04 97.23 88.65 89.57 96.63 64.77 93.22 91.90

IoU mIoU

Base 87.26 93.76 77.18 79.15 91.65 44.69 78.95 90.87

SW ! 87.92 94.12 78.12 80.18 92.09 45.85 86.49 91.31

SW+MS ! ! 88.38 94.45 78.82 80.45 92.87 47.27 86.99 91.62

SW+Flip ! ! 88.54 94.48 79.22 80.97 92.88 47.32 87.22 91.75

SW+ MS+Flip ! ! ! 88.76 94.60 79.61 81.1 93.48 47.89 87.51 91.90
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Table 12. Comparisons with SOTA methods on Vaihingen dataset.

Method Imp. Surf. Build Low Veg. Tree Car Mean F1 mIoU OA

UZ_1 [51] 89.2 92.5 81.6 86.9 57.3 81.5 - 87.3

RoteEqNet [52] 89.5 94.8 77.5 86.5 72.6 84.2 - 87.5

S-RA-FCN [53] 91.5 95.0 80.6 88.6 87.1 88.5 79.8 89.2

U-FMG-4 [54] 91.1 94.5 82.9 88.8 81.3 87.7 - 89.4

V-FuseNet [55] 92.0 94.4 84.5 89.9 86.3 89.4 - 90.0

DLR_9 [56] 92.4 95.2 83.9 89.9 81.2 88.5 - 90.3

TreeUNet [57] 92.5 94.9 83.6 89.6 85.9 89.3 - 90.4

DANet [58] 91.6 95.0 83.3 88.9 87.2 89.2 81.3 90.4

PSPNet [30] 92.8 95.5 84.5 89.9 88.6 90.3 82.6 90.9

ACFNet [59] 92.9 95.3 84.5 90.1 88.6 90.3 82.7 90.9

BKHN11 92.9 96.0 84.6 89.9 88.6 90.4 - 91.0

CASIA2 [60] 93.2 96.0 84.7 89.9 86.7 90.1 - 91.1

CCNet [61] 93.3 95.5 85.1 90.3 88.7 90.6 82.8 91.1

BES-Net [22] 93.0 96.0 85.4 90.0 88.3 90.6 - 91.2

MBANet 93.6 96.1 86.2 90.8 88.3 91.0 83.7 91.8

Table 13. Comparisons with SOTA methods on Potsdam dataset.

Method Imp. Surf. Build Low Veg. Tree Car Mean F1 mIoU OA

UZ_1 [51] 89.3 95.4 81.8 80.5 86.5 86.7 - 85.8

U-FMG-4 [54] 90.8 95.6 84.4 84.3 92.4 89.5 - 87.9

S-RA-FCN [53] 91.3 94.7 86.8 83.5 94.5 90.2 82.4 88.6

V-FuseNet [55] 92.7 96.3 87.3 88.5 95.4 92.0 - 90.6

TSMTA [62] 92.9 97.1 87.0 87.3 95.2 91.9 - 90.6

Multi-filter CNN [63] 90.9 96.8 76.3 73.4 88.6 85.2 - 90.7

TreeUNet [57] 93.1 97.3 86.6 87.1 95.8 92.0 - 90.7

CASIA3 [60] 93.4 96.8 87.6 88.3 96.1 92.4 - 91.0

PSPNet [30] 93.4 97.0 87.8 88.5 95.4 92.4 84.9 91.1

BKHN3 93.3 97.2 88.0 88.5 96.0 92.6 - 91.1

AMA_1 93.4 96.8 87.7 88.8 96.0 92.5 - 91.2

BES-Net [22] 93.9 97.3 87.9 88.5 96.5 92.8 - 91.4

CCNet [61] 93.6 96.8 86.9 88.6 96.2 92.4 85.7 91.5

HUSTW4 [64] 93.6 97.6 88.5 88.8 94.6 92.6 - 91.6

SWJ_2 94.4 97.4 87.8 87.6 94.7 92.4 - 91.7

MBANet 94.0 97.2 88.7 89.6 96.6 93.2 87.5 91.9

For the Vaihingen dataset, our MBANet achieved the highest scores on all classes
except Car, and the OA, mean F1, and mIoU scores all exhibited SOTA performance. For
the Potsdam dataset, scores for all classes except Impervious surfaces and Building reached
SOTA level. We visualized the prediction results on the original large images and illustrate
them in Figures 8 and 9.
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Image Label Baseline Ours

Figure 8. Visualization of the prediction results of the proposed method and the baseline model
(FCN) on the original large images of the Vaihingen dataset.

Image Label Baseline Ours

Figure 9. Visualization of the prediction results of the proposed method and the baseline model
(FCN) on the original large images of the Potsdam dataset.

4.5. Model Complexity Analysis.

Our MBANet is suspected of being too complex because it contains three network
branches. Therefore, we compared the computational complexity of MBANet with other
well-known networks. The comparison results are shown in Table 14. Due to the multi-
branch structure, our network inevitably has more parameters than other models. However,
benefiting from the setting of output stride = 16 in the backbone, much computational work
in the network is concentrated on feature maps with smaller resolutions, which enormously
reduces the computational complexity.
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Table 14. Computational complexity of different networks.

Model Backbone Params. (M) Macs (G)

FCN ResNet50/os=8 28.23 119.39

PSPNet ResNet50/os=8 28.29 133.6

DANet ResNet50/os=8 36.66 164.75

DeepLab v3 ResNet50/os=8 40.23 166.39

DeepLab v3+ ResNet50/os=8 40.35 182.94

MBANet ResNet50/os=16 60.66 102.4

5. Conclusions

This paper proposes a multi-branch adaptive hard region mining network for urban
scene parsing of HRRSIs. The network consists of three branches: a semantic branch,
an adaptive hard region mining branch, and an edge branch. First, a multi-scale semantic
branch is designed to effectively extract multi-scale features of objects with varying sizes
in urban scenes. Secondly, a gating mechanism based on the entropy map is proposed,
which can adaptively mine the hard-to-classify regions in the images and construct an
adaptive hard region mining branch. Furthermore, to extract the edges of objects explicitly,
an edge gating mechanism based on a prediction confusion map (PCM) is proposed to
formulate an edge branch. The experimental results on the ISPRS Vaihingen and Potsdam
datasets demonstrate that the features extracted by the three branches can complement
each other and are compatible. In addition, the proposed method is evaluated on the
original large-scale images of two datasets, and its computational complexity is compared
with prior works. Our network has an advantage in computational complexity, despite
having more model parameters due to its sophisticated design philosophy. Experiments
show that our method can achieve SOTA performance on two high-resolution urban
scene semantic labeling datasets from ISPRS. Although MBANet achieves outstanding
performance, the model has a large number of parameters. Our future work will focus on
designing lightweight models to achieve high-accuracy urban scene parsing.
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