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Abstract: The exponential growth of the edge-based Internet-of-Things (IoT) services and its ecosys-
tems has recently led to a new type of communication network, the Low Power Wide Area Network
(LPWAN). This standard enables low-power, long-range, and low-data-rate communications. Long
Range Wide Area Network (LoRaWAN) is a recent standard of LPWAN that incorporates LoRa
wireless into a networked infrastructure. Consequently, the consumption of smart End Devices
(EDs) is a major challenge due to the highly dense network environment characterised by limited
battery life, spectrum coverage, and data collisions. Intelligent and efficient service provisioning
is an urgent need of a network to streamline the networks and solve these problems. This paper
proposes a Dynamic Reinforcement Learning Resource Allocation (DRLRA) approach to allocate
efficient resources such as channel, Spreading Factor (SF), and Transmit Power (Tp) to EDs that
ultimately improve the performance in terms of consumption and reliability. The proposed model is
extensively simulated and evaluated with the currently implemented algorithms such as Adaptive
Data Rate (ADR) and Adaptive Priority-aware Resource Allocation (APRA) using standard and
advanced evaluation metrics. The proposed work is properly cross validated to show completely
unbiased results.

Keywords: LPWAN; LoRaWAN; QoS; network; scalability; resource allocation; congestion; channel;
Internet of Things; 5G

1. Introduction

The requirements for next-generation communication systems are high-speed data
transmissions using 5G and 6G data communication standards [1]. One of the most
important requirements for a 5G network is long battery life of the EDs and seamless
integration with Internet-of-Things (IoT) networks. Some other important challenges such
as scalability, cost efficiency, battery life, processing power, indoor coverage, throughput,
and persistent connectivity need to be considered to improve IoT network services and
enhance quality. The term IoT is commonly used to specify various standards and research
areas used to access real physical objects. Several characteristics are required for data
communications in these networks, such as long or short range, low bandwidth, and the
ability to connect a large number of end devices (EDs) [2,3].

Some of the most commonly used IoT technologies are Radio Frequency Identifiers
(RFID) [4,5], limited-range technologies (NFC, Bluetooth, and ZigBee), Wireless Sensor
Networks (WSN), and cellular technology (2G, 3G, 4G) [6]. Several LPWAN standards
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such as Sigfox, Weightless, NB-IoT [7], and Low Power Wide Area Network (LoRaWAN)
are currently used to meet the requirements of different IoT applications. LoRaWAN is
considered as a competitive technology for various IoT networks. Moreover, LoRaWAN
relay devices can extract data from thousands of IoT sensor nodes over a considerable range
in kilometers. The massive connection of IoT devices with Base Station (BS) can have a
negative impact on signal strength and control messages. For these reasons, current cellular
network technologies are not suitable to fully support the envisioned IoT networks [8].
Another technology known as LPWAN has been launched as a result of the rapid growth
in the number of connected devices; this technology is best suited for networks with high
levels of connectivity [9]. In single hop technologies, EDs are directly connected to the
gateway, which further sends packets to a network server. Several applications are using
LPWAN technologies such as smart city applications, wearable (personal) IoT applications,
consumer applications, smart metering, logistics, industrial monitoring, and agriculture
monitoring applications.

Energy consumption of LoRa-enabled smart EDs is a major challenge due to the highly
dense wireless environment, limited battery life of LoRa EDs, coverage, interference, and
number of collisions [10]. All these possible QoS parameters drastically increase delay of
LoRa-enabled terminals which contribute towards high consumption. Using the current
LoRa framework for IoT applications, a huge amount of data transmitted towards gateway,
resulting in real-time Packet Error Rate (PER), low throughput, high number of collisions,
and retransmissions. All of these issues contribute significantly to transmission delay and
consumption. Intelligent, QoS-aware, and efficient service provisioning is urgently needed
to better address this problem, which directly affects QoS of such networks.

In this research, we provide a novel IoT-based approach to determine the best solution
for applications requiring smart health monitoring, which addresses the issues of energy
consumption and network capacity and improves performance by allocating efficient
resources to EDs. The smart sensors used in this paper are smart blood pressure, heart rate,
and pulse oximeters. These sensors continuously generate large amount of data to LoRa
gateway (GW), which they forward to the network server (NS). Due to its long range, low
cost, and efficient obstacle penetration (CSS modulation), LoRa network is one of the best
choices for smart health monitoring applications.

To achieve the best performance from LoRa EDs, it is very important to choose appro-
priate transmit power, bandwidth, and SF for the terminals. Another factor that plays an
important role is the distance between the smart EDs and the forwarding devices, called
gateways. By Increasing the distance between EDs and gateways, efficient mechanism
of transmit power must be considered. LoRaWAN solves these problems through ADR,
but to keep the complexity as low as possible, LoRa ADR allocates resources in a network
environment where we have a limited number of smart nodes. The number of received
packets is increased by conventional ADR for class A EDs but ultimately this enhances
energy consumption as well. To reduce energy consumption, we propose to integrate
dynamic reinforcement learning into the LoRa network. As we know, all attributes of EDs
sending packets to gateways are received by a central GW. Therefore, in our case GW runs
a dynamic reinforcement learning algorithm to update the parameters such as transmit
power, SF, BW, and channel for ED. The main contributions of the proposed technique are:

(i) Gaussian Mixture Model (GMM) is used for profiling, and after profiling we not only
consider PSR and PER, but also optimize the energy consumption of EDs.

(ii) After assigning EDs to profiles such as HPP or MPP, dynamic reinforcement learning
algorithm extract the current state of all configured EDs. Appropriate actions are
performed by resource learning agents according to the optimized policy to obtain a
refined Reward.

(iii) Finally, resource learning agents assign updated and optimized parameters to
EDs accordingly.
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The rest of the paper is organized as follows: Section 2 presents the related work.
Section 3 illustrates the system model and its formulations. Section 4 presents the results
and discussions. The last section concludes the paper with a future direction.

2. Related Work

This section highlights the articles that target the enhancement of network perfor-
mance in terms of energy consumption. The authors in [11] evaluated the performance
of LoRaWAN in an indoor environment. The main focus of researchers in this article; is
to determine the strength of LoRa network signals in an undesirable environment. Other
parameters such as collisions, success rate, delay, and energy were investigated. The au-
thors also analyzed the integration of LoRaWAN with 5G. The network was established
using a server, a gateway, and a terminal device. The quality of the received signal was
measured from different locations to cover an entire building. It was found that the signal
quality was not affected by walls between the rooms and the laboratory. Only the affected
area in the basement was impaired enough to contribute to losses. The authors in [12],
provide mathematical modeling to evaluate the factor of re-transmissions in LoRa network.
Intelligent, QoS-aware, and efficient service provisioning techniques are used by authors
specifically to address the issues, which directly affects QoS of LoRa networks. In [13],
the authors discussed issues such as collisions, throughput, and consumption to provide
sufficient solutions to improve the performance of LoRaWAN. The researchers in [14]
presented the comparison of LPWAN standards and focused mainly on the LoRa standard.
In [15], authors improved the performance of the LoRa network in terms of throughput
by allocating appropriate resources. Further allocation of the same parameters to multiple
nodes may increase the loss ratio in the densely populated environment. In [16], the authors
described infrastructure-based solutions for smart applications. They also presented the
various performance parameters of the LoRa network such as collisions and interference.
Several components of LoRaWAN architecture were thoroughly discussed and elaborated.
Various tests and simulations were performed to analyze the QoS parameters.

In [17], the authors discussed many factors affecting the number of collisions that
cannot be solved by conventional time series analysis algorithms. Therefore, deep learning
methods were applied to predict the collisions by analyzing these factors in an LPWAN
system. In this paper, a Long Short-Term Memory Extended Kalman Filter (LSTMEKF)
model was proposed for collision prediction in LPWAN considering temporal correlation,
which can improve LSTM performance. In [18], the authors elaborated different approaches
for large-scale smart device connectivity. They also discussed the advantages and disadvan-
tages of smart devices and their design aspects, especially with respect to smart applications
in urban areas. Authors in [19], implements Slotted Aloha in LoRaWAN environment to
evaluate the effect of number of collisions, packet success rate, throughput, delay and
energy consumption. Slotted Aloha in LoRaWAN somehow improve the performance of
LoRa network in terms of collision and throughput but delay factor is on a higher side.

In [20], authors use 3D Scattering model to evaluate propagation path delay in Lo-
RaWAN environment. The article largely contributes by investigating the propagation path
delay experienced by LoRaWAN under 3D semi-ellipsoid model. Similar to the previous
mechanism in [21], the authors investigated the failure probability of Aloha-based access
under the Bianchi model. The authors in [22], analyzed the collision probability of Aloha
by using the stochastic geometry approach. Furthermore, they also analyzed the maximum
load capacity under various packet loss rates.

In [23], the authors suggested LoRaWAN for smart health monitoring applications.
The article mainly focused on monitoring blood pressure, glucose, and temperature in
a rural area. The main motivation of the paper is to reduce the burden of long trips for
people living in remote areas, to visit hospitals, while minimizing the communication cost.
Moreover, the results demonstrated that the power consumption of our monitoring system
is at least ten times lower than other long range cellular solutions, such as GPRS/3G/4G.
In [24], the authors proposed a system that focuses mainly on two tasks: first, on monitoring
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the status of miners, and second, on overall monitoring. Semiconductor gas sensors were
used to monitor the level of unsafe gasses. The microcontroller sounds an alarm to the
person through a buzzer when the level of a smoke sensor exceeds the threshold and
sends the information to the monitoring region through the LoRaWAN module. There
are a number of reasons why miners can collapse and lose consciousness while working
underground. The system employs the LoRaWAN module to send a crisis warning to
the supervisor whenever someone falls somewhere for any cause in order to solve this
issue. An intelligent alarm system is installed for the miners’ safety to warn them in time to
escape the mine in an emergency. Using LoRaWAN technology, this system continuously
scans the mine and warns the workers and the appropriate person from the ground station.
Thus, the proposed system reduces the mortality rate and disease alerts for the workers in
the mining industry.

Authors in article [25] assessed the functionality of a LoRa network with numerous
smart EDs. Through a dependable network, these endpoint devices link patients, nurses,
and medical professionals. In this study, we investigate several LoRaWAN protocol ele-
ments that significantly affect power usage and transmission latency. Additionally, based
on software simulations, our LoRa-based network implementation appears to be a viable
choice for enabling strong, dependable, and affordable IoT implementation with modest
bandwidth needs.

Table 1 presents several research papers and highlights the objectives in terms of
application requirement, SF, BW, Tp and energy consumption. The researchers in [26]
proposed an unsupervised learning approach to prioritize packets at different levels. On
average, 1000 smart nodes send data to the gateway. K-means was used as an unsupervised
method to extract different clusters based on the measurements received from smart
applications such as humidity and weather temperature. Various weights were calculated
based on the readings received from the smart nodes at the gateway. These weights help to
place the smart nodes in different clusters. Overall, this approach works well to improve
performance in terms of delay and energy. The priority scheduling algorithm PST was used
and the result shows that it significantly reduces delay and consumption. In this paper [27],
author’s present mathematical models that performs characterization of LoRa enabled
smart nodes current consumption and energy cost of transmitted packets. The models,
which have been derived based on measurements on a currently prevalent LoRaWAN
hardware platform, allow us to compute the impact of relevant physical and Medium
Access Control (MAC) layer LoRaWAN parameters, as well as error rate and collisions, on
the basis of energy performance.

In [28], the authors used resource scheduling algorithms to mitigate the delay in
wireless communication. The authors used banker’s algorithms to manage resources
efficiently in this study. The execution time of this algorithm was also taken into account
for fair allocation of resources. The authors in [29] discussed that wireless communication
networks reduce the overall cost of deployment and increase flexibility. However, all these
benefits come at a cost of high delay probability and loss of packets. This study mainly
focused on modeling LoRaWAN as an event-triggered modeling scheme in Matlab.

The authors in [30] proposed a routing-based profiling algorithm in which end devices
are distributed non-uniformly. They further assumed that there are different number of end
devices in each profile (cluster). A stochastic model was implemented in this research to
know about the consumption of nodes in a multi-hop environment. A cross-layer optimiza-
tion protocol called Adaptive Transmission Power Control-Based Reliable Data Forwarding
(APRF) scheme was put forth by the authors in [31] and uses broadcast technology to
increase network dependability, decrease communication delay, and ultimately improve
performance in terms of energy consumption.

Furthermore, the authors in [32] proposed two different spreading factor (SF) allocation
techniques, EXPLoRa-SF and EXPLoRa-TA. These schemes provide low interference in a
cluster-based environment with enhanced time-on-air (ToA). Additionally, EXPLoRa-SF
algorithm assigns the same SF and performs successful transmission without any collision.
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The simulation suggests that the high value of SF provides long coverage but sometimes
they contribute to a high number of collisions. To increase LoRaWAN scalability and energy
consumption in a dense IoT environment, the authors of [33] presented an adaptive priority-
aware resource allocation approach. In [34], authors evaluate the coverage of LPWAN
technology via real-life measurements. The experiments were conducted in the city of
Oulu, Finland, using the commercially available hardware devices. Authors observed the
maximum communication range of over 15 km on ground and close to 30 km on water.

Table 1. Resource Allocation Schemes for a Heterogeneous Scenario.

Research
Papers

Publication
Year Objective Energy Application

Requirements
Spreading
Factor (SF)

Bandwidth
(BW)

Transmit
Power (TP)

[32] 2017 Mitigate the number of
collisions and delays Yes No Yes No No

[35] 2019 Enhance QoS (reliability,
consumption, and delay) Yes Yes Yes Yes No

[36] 2018
Analyze unfairness of
LoRaWAN in terms
of allocation

Yes No Yes Yes No

[37] 2019 Mitigate the number
of collisions No Yes No No No

[38] 2016 Analyze the effect
of interference. No No Yes No No

[39] 2020 Increase utilization of channel
and mitigate a collision Yes No Yes No No

[40] 2020
Optimize delay and
consumption by allocating
resources dynamically

Yes No Yes Yes No

In [35], the authors performed network slicing in LoRa networks using different slicing
strategies as well as different distributions of the spreading factor. They used an adaptive
dynamic inter-slice resource reservation algorithm based on maximum likelihood estima-
tion that avoids resource starvation and prioritizes one slice over another depending on
urgency and reliability. In addition, a novel intra-slicing strategy was evaluated that maxi-
mizes the efficiency of resource allocation in each slice with respect to its QoS requirements.
Simulation results conducted in realistic IoT scenarios highlight the utility of our proposal
in improving the consumption and delay of IoT devices.

The main goal of dynamic resource allocation is to improve QoS in terms of energy
consumption. First, a machine learning approach, Gaussian mixture model (GMM), is
applied to GW to create an optimal number of profiles. Then, the optimized resources
(channel, spreading factor, and transmit power) are allocated to the terminals to improve
the performance in terms of reliability and consumption. After thorough investigation, it is
concluded that few studies provide energy efficiency by fine-tuning the transmit power (TP)
or allocating the Spreading Factor (SF). To the best of our knowledge, only priority-aware
dynamic resource allocation with adaptive congestion control at the profile level provides
optimal results in terms of network capacity and reliability.

3. System Model and Formulations

The system model depicts a scenario for smart health monitoring in residential areas,
e.g., smart pulse oximeter, blood pressure, and heart rate. The said scenario is implemented
using two gateways (GW’s) and all nodes are randomly distributed over an area of 5 km2.
All the end devices (EDj) are initially configured using LoRa model SX1272, where j is
1 ≤ j ≤ 3000. All EDj are static and use the class A specification. Class A EDs use two
receive windows (Rx1 and Rx2) for responses from the gateway in case of an acknowledged
communication [18].

3.1. Profiling with Gaussian Mixture Model

The GMM with K-means algorithm is implemented on the gateway in the LoRaWAN
environment. After the optimal profiles are defined by the GMM algorithm, the intelligent
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EDs are assigned to each profile according to the probability density function. Based on
the Adaptive Scheduling Algorithm (ASA), the traffic from different profiles is prioritized
according to Low Priority Profile (LPP), Middle Priority Profile (MPP), and High Priority
Profile (HPP). An example of smart blood pressure readings in form of systolic and diastolic
are presented through Gaussian distribution in Figure 1.

Figure 1. Gaussian distribution of Smart Blood Pressure Wearable in Terms of Systolic and Diastolic.

Px(x) is the probability density function representing patients lying in different regions
depends on readings. Moreover, µ, σ, and σ2 are terminologies depicting the average
(mean), standard deviation, and variance of the bell shape curve. Equation (1) shows the
probability distribution function for one-dimensional data readings of patients.

Px(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 (1)

Mathematically, Gaussian distribution of EDs or its vector representation becomes
X = {x1, x2, x3, ... xn} ∈ R3.

To know about profile k of xi, zi|W is nearly equal to categorical (w), which means:

P(Zi = k|w) = Wk (2)

P(Zi = k|w) means that EDi belongs to profile k. Wk is a mixture weight of k which is
equal to 1 if the value of mixture is between 0 and 1.

∑k Wk = 1, if 0 ≤Wk ≤ 1 (3)

As each profile has its own center and co-variance, where Xi is generated from proba-
bility distribution as shown below:

Xi |Zi = k ∼ N
(

µk, ∑k

)
(4)

µk is considered as profile center and ∑k is the co-variance of profile.
Given the profile center and its co-variance, we can compute probability P for specific

value of Xi:
P(Xi = xi

∣∣ µk, ∑k). (5)

Figure 2 shows the system model for smart health monitoring scenario covering
residential area of 5 to 6 Km2.

P(x/c) =
1√

2π |∑ c|
. e−

1
2 (xi−µc)

T ∑−1
c (xi−µc) (6)
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Figure 2. Smart Health monitoring LoRa network.

P(x/c) is probability density function of ith node with respect to center point of
profiles c. After this, in exponential component, we are subtracting mean component
from the ith instance of end devices (xi − µc)

T and in the middle we are multiplying it by
inverse of co-variance ∑−1

c (xi − µc). The co-variance component describes the shape of
Gaussian distribution.

To handle such sensitive patient data, we need to deploy two gateways in our LoRa
network. Sometimes multiple GWs increase the interference [38], but we need to deploy
these GWs at points where the interference between EDs will be as negligible as possible.
With this large number of EDs sending to the GW, the biggest challenge is keeping the packet
acceptance rate high. Achieving high throughput means a low number of retransmissions,
which drastically reduce the consumption of the sending EDs.

3.2. Reinforcement Learning through RLA

Reinforcement learning (RL) algorithms are based on reward R and policy π. In RL, we
have certain agents. These agents perform actions A based on the current state S. After they
perform an action A, they receive a reward R. Policy is a kind of function that determines
what actions should be taken in different states S. We will figure out and optimize this
function so that the agent gets maximum R. Reward is a function F depends on S and action
A it takes: Reward: F: S ∗ A→ R [41].

The goal of the policy derivation algorithm is to allocate the most appropriate resources
to EDs that will ultimately help them consume less energy. This can be translated in RL
jargon as determining the optimal action a (from a set of A admissible actions, i.e., a ∈ A) for
a state S (with s ∈ S). When an action is performed in S, a reward is obtained. The reward
consists essentially of updated configuration parameters such as (DR, SF, Tp, and BW). The
functionR defines such a reward mathematically as a mapping between state-action pairs
and real numbers, i.e.,R: S × A→ R.



Entropy 2022, 24, 1607 8 of 20

The RLA is in charge of distributing these updated resources to EDs after obtaining
the incentive. To enable RL entities to likely shift from one state to another, these transitions
can be stochastic. That is, P(S′|s, a) is the probability of the next state S′ after action a is
executed according to the strategy.

To find an optimal action policy, i.e., Policy: π: (S→ A) that maximizes the expected
total reward over a finite time horizon:

Vπ(St) = E [Rt+1 + ∂ Rt+2 + ∂2Rt+3 + . . . . . . .], 0 ≤ ∂ < 1 (7)

where ∂ is the weighted value or discount rate. In practice, we are more interested in the
immediate reward, so we need ∂ = 0 to reduce the impact of other rewards.

Vπ(St) = E
(
∑∞

i=1 ∂i−1Rt+i

)
(8)

The main focus of this manuscript is to dynamically allocate resources through rein-
forcement learning [41] based on DRLRA. The major purpose of this method is to assign the
EDs with effective resources, which ultimately improves performance in terms of energy
usage. A total of 3000 intelligent EDs are deployed and considered. After profiling through
GMM (described earlier), EDs are assigned to HPP or MPP or LPP through resource learn-
ing agents (RLAs). Now, we need to implement RLAs on GW for the number of EDs in the
LoRa network. The reason for using different RLAs for a set of EDs in the selected profile is
that GMM basically performs soft profiling, which means that sometimes we have EDs in
the same profile that are far apart due to their elliptical shape. Therefore, EDs that are close
to each other in the same profile are assigned to a single RLA. The RLA gathers data on the
EDs’ present state S and takes specific actions A based on an ideal strategy. After the action
A, the reward R is calculated and the updated parameters (DR, SF, Tp, BW, Channel freq,
and CR) are assigned to a group of smart Eds. Eds that are not far from each other may need
the same parameters as DR, SF, Tp, BW, and Channel freq. To avoid collisions, we assign
different coding rates (CR) to EDs managed by a single RLA.

The smart health monitoring network is based on 3000 end devices (EDi) where
i ∈ 1, 2, 3, . . . . 3000), deployed in a densely populated area. All the EDi and GW are
randomly deployed on a certain location, and we can identify these Edi based on their
geographical coordinates. Moreover, the location of EDi is represented as (xi, yi, zi) in
the geographical area. LoRaWAN is a single-hop network between EDi and GW. The
communication between EDi and GW is accomplished with the help of several channels
and these channels are dynamically assigned to EDi based on traffic. First of all, GW is
responsible for making profiles by using a probabilistic approach, known as GMM. It is
used to design optimum number of profiles. After the number of profiles are decided the
GW assignes different priorities Pr to profiles. Priorities are set for each profile so that we
transmit only critical readings from EDi, to intelligently manage traffic. In this way, network
capacity is intelligently managed and performance in terms of energy consumption is also
improved. After the first reading transmitted to GW by an EDi, the EDi now follow the
extended Aloha, which states that the next reading is transmitted only if it differs by +/−5%
from the previous reading. The state of EDi that need to be maintained by RLA contains
information of distance (d), ToA (extracted from current SF), current SF, Tp associated with
EDi, received signal strength (RSS) at GW, and current channel usage by EDj in percentage
(%). Now, the RLA calculates reward, and assigns updated parameters to EDi.

The resources such as transmit power and SF are allocated by Adaptive Data Rate
(ADR) in a conventional LoRa network [14]. In smart health monitoring scenario, EDs
from HPP transmit packets towards GW for 15 min or 900,000 milliseconds at maximum.
After 15 min, Eds from MPP are allowed to transmit readings towards GW for 5 min or
300,000 milliseconds. The RLA is designed for set of Eds on GW, which automatically
updates the allocated parameters for Eds according to requirement. The major goal of this
study is to evaluate how the DRLRAP affects the energy usage of the LoRa network.
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Figure 3 shows the flow of Dynamic Reinforcement Learning Resource Allocation
Profiling with Resource Learning Agents.

Figure 3. Cont.
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Figure 3. RLA Procedure in DRLRA.

The main parameters affecting the performance of the LoRaWAN network are SF, TP,
BW, and channel attributes. Therefore, the dynamic RLA must be well equipped in terms
of learning before allocating resources to EDs. The data channels used by the LoRa network
are 868 MHz and 6 SF from 7 to 12 are used. TP used in our model is from 2 dbm to 14 dB
with a spacing of 2 dbm.

Based on collected parameters, dynamic RLA responded with a reward in terms of
updated configuration. The reward according to corresponding actions is calculated as in
Equation (9):

EDr = c
∑N

i=0 Fi

∑N
i=0 Ei

(9)

where, N is the number of EDs, F is the total number of frames received at the GW for a
specific duration, and E is the total energy consumed during the active duration of ED.
According to the Equation (9), the reward for concerned EDr increases with the increase
in number of the total number of frames. With the increase in consumption of energy, the
reward for EDr decreases. The reward r is automatically varying with the change that
occurs in the state of ED. To optimize the reward, we have to give priority to the success rate
of frames by multiplying it with term c. Algorithm 1 presents the overall flow of DRLRAP.
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Algorithm 1: DRLRAP based on GMM Profiling.

Declare variables: Edi, distance (d), Initial SF, Initial DR, Initial Tp, BW, ToA, Channel Usage (CH_US),
(EDj)Pr, Pr
To mitigate Energy Consumption, Delay:
START LOOP for EDi do
1. if EDi BELONGS TO HPP OR EDi with Maximum value (Pr) in HPP
2. Initially, EDi transmits packets at a Maximum value of SF i.e.,
SF12 & TP = 14 dBm.
3. Dynamic RL defines Groups inside HPP based on d and RSS.
4. Design RLA for each Group inside HPP.
5. RLA checks EDi State takes Action and calculates Reward.
6. RLA use Q Function to calculate future Reward.
7. At GATEWAY
8. if RSS of EDi < SENSIEDi, SFi AND CH_US EDi > 70% (CH_US EDi by ALCAA Algorithm)
9. Then Perform
10. if SFEDi is 12, Keep it the same,
11. else DECREASE SFEDi by 1.
12. UPDATE EDi with new SFi, BW, and DRi.
13. At GWj, REPEAT
14. if RSS of EDi >= SENSIEDi, SFi AND CH_US EDi > 50%
15. Then Perform
16. if SFEDi is 12, DECREASE SFEDi by 1. (INCREASE DR)
17. UPDATE EDi with new SFi, BW, DRi, and Adjust TPEDi
18. Set RSSThresh and TPV (TP Inc/Dec value)
19. REPEAT
20. if SENSISF EDi > RSSThresh
21. TP= TP − TPV
22. UPDATE EDi with new SFi, BW, DRi, and Adjust TPEdi

The SX1272/73 works at 3.3 V per the LoRaWAN specification document [5], and the
current consumptions in idle, transmit (at 20 dBm), and receive states are, respectively,
Iidle = 1.5 A, ITx = 125 mA, and IRx = 10.5 mA [10]. The voltage Vp, the current, and the
length of time that the corresponding state lasts are multiplied to determine the energy
consumption. For instance, the energy consumption E cons for a transmission when an ED
is in the transmitting state is: Vp?ITx?ToA. If no data is being transmitted or the receiving
windows are not open, an ED will be in an idle state.

Econs = ∑
i

∑
packets

(V) ? (I) ? (ToA) (10)

The current consumption will be IRx after an ED opens the receiving windows and
enters the idle listening mode. The ED enters receiving mode and the current consumption
stays IRx if the Ack preamble is detected.

Table 2 shows the sensitivity according to DR, SF, and BW for the SX1272 LoRa module.

Table 2. Sensitivity According to DR, SF, and BW for SX1272 LoRa Module.

Data Rate (DR) SF with Bandwidth (BW) Sensitivity of ED w.r.t SF Bit Rate of Concerned ED

DR5 SF = 7 & BW = 125 Khz −123 dBm 5470
DR4 SF = 8 & BW = 125 Khz −126 dBm 3125
DR3 SF = 9 & BW = 125 Khz −129 dBm 1760
DR2 SF = 10 & BW = 125 Khz −132 dBm 980
DR1 SF = 11 & BW = 125 Khz −134 dBm 440
DR0 SF = 12 & BW = 125 Khz −137 dBm 250

4. Results and Discussions

This section is dedicated to the simulation results targeting PSR, PER, and EDs con-
sumption. GWj assign three different priorities Pr (HPP, MPP, and LPP) to the Profs so that
different simulations are performed to determine the behavior of EDi in terms of Packet
Success Ratio (PSR), Packet Error Rate (PER), and collisions. The normalized values of PSR,
PER, and collisions are calculated for all profs. The simulation performed two GWj in the
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scenario we created, so we have two HPP at the same time. The reason for selecting HPP
individually for each GWj is that we can have critical values from other EDi. To account for
the severity of patients in the smart health monitoring scenario, we want as many EDi as
possible to be able to send data simultaneously, while also keeping QoS in mind.

The results of DRLRA are extensively compared with ADR and APRA schemes for
resource allocation. We used Python for the implementation of LoRaWAN in the smart
health monitoring scenario. The simulation is performed using well-known libraries of
python used to create an EDs, agents, gateways, etc. The idea behind using Python libraries
is to create an environment that is flexible enough to control and manage all network-
related functions. Different objects are assembled and configured as well as scheduled
for certain discrete events. Table 3 provides all the details about parameters used during
the simulation.

Table 3. Parameters Used In Simulation.

Parameters Values

Application Scenario Smart Health Monitoring Scenario (SBP, SPO, SHR)
Area 5–10 km2

SF 7, 8, 9, 10, 11, 12
BW 125 Khz

Channels 868 Mhz EU Standard
End Devices 1000

Tx Power 2 dBm–17 dBm
ADR Enabled

No. of Gateways 2
CR 4/5

Packet Size 20 bytes
Optimal Profiles Profk = 3
Simulation Times 1 Hour

One major assumption is the static nature of LoRa EDs. Due to its static nature, EDs
that are far from the GW need more transmit power to perform successful transmission.
This leads to the high energy consumption of EDs. Another limitation is the absence
of a dedicated LoRa simulator available in the market. Further, multiple GWs increase
throughput but it also contributes towards interference [38] and cost factors. In our case,
we are using GMM with K-means probabilistic approach to create profiles that ultimately
mitigate number of EDs per profile. This increases throughput as the number of collisions
automatically decreased with the small number of EDs transmitting data at one time. The
structure of the complete packet used in the simulation is shown in Figure 4.

Figure 4. 20 Bytes Packet Structure.

GWj assigns three different priorities Pr (HPP, MPP, and LPP) to prof. Different simula-
tions are performed to know the behavior of EDi in terms of PSR, PER, and collisions. The
normalized values of PSR, PER, and collisions are calculated for all prof. The simulation
carried out two GWj means at one time we have two HPP. The reason to choose HPP for
each GWj individually is that we may have critical readings from other EDi as well. After
both the GWj select their HPP and MPP profiles, now the EDi in HPP will be allowed to
transmit packets. The behavior of PSR with a varying number of nodes will be rigorously
analyzed. The packet size for our simulation environment is 20 bytes.

In the simulation environment, there are 1000 patients in total, but each of these
patients is equipped with three different smart LoRa-enabled wearables (smart blood
pressure monitoring, smart pulse oximeter, and smart heart rate monitoring). Figure 5
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shows the behavior of Packet Collision Rate (PCR) in percentage (%) having EDs on x-axis.
In this simulation, a total number of 1000 patients with three smart wearables each transmit
data towards GWj. Initially, EDi transmits data with SF 12, BW 125 KHz, and Tp 14 dBm.
ADR is enabled after the first uplink for all the EDi in a said geographical area. As with
smart health monitoring systems, the EDi generates a small amount of data, so the payload
size is limited to 20 bytes. The behavior for conventional LoRaWAN is presented in Figure 5,
which shows a severe increase in PCR with the increase of EDi. So, in the health monitoring
scenario, where we have some critical patients, conventional LoRaWAN strongly failed.
Figure 5 shows the PCR analysis in LoRaWAN for 3000 EDs.
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EDi in Figure 5 follows Pure Aloha to transmit data towards GWj. A total of 85%
losses are observed in the case of LoRa conventional MAC scheme Pure Aloha. In the
case of extended Aloha scheme used in this paper, after sending first uplink packet by an
EDi through Pure Aloha, second packet is forwarded towards GWj if and only if there is
a significant difference between previous and current readings. In this way, unnecessary
traffic is blocked, and network capacity is managed efficiently. Figure 6 shows the behavior
of PCR for HPP. GMM is used to perform profiling based on probabilities assigned to EDi.
After running the simulation, the GMM distributes EDi into three profiles (HPP, MPP, and
LPP). In the first attempt, the 300 EDi are included in HPP by GMM algorithm. From 3000
EDi, approximately 300 EDi are of those with critical readings. After assigning priorities,
now all EDi in HPP is allowed to transmit data towards the designated GWj.

Figure 7 presents the results of PCR through GW2 having 425 EDs (GMM approach
running on GW2 assign 425 EDs in HPP based on readings). Now, these 425 EDs are on a
priority to transmit their frames towards GW2. With the increase in the number of EDs, the
PCR ratio is a little bit on a higher side as compared to HPP served by GW1.

With the help of thorough modelling and dynamic resource distribution, the Packet
Success Ratio (PSR) for HPP is demonstrated. DRLRA allocates resources such as SF, BW,
channel, and Tp on the basis data (readings) received from network environment. Figure 8
demonstrates DRLRA algorithm in terms of PSR for HPP. Its comparison with APRA and
ADR is also shown in the above simulation. DRLRA outperforms ADR and APRA by 2.2%
and 0.975%. PSR of about 97% is achieved with the help of profiling and DRLRA algorithm.
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Results in Figure 9 show performance of DRLRA algorithm by dynamically allocating
resources in HPP through GW2. In this simulation, GMM select 425 EDs in HPP on the
basis of critical readings received. Inside HPP we have several groups, decided on the basis
of distance d and RSS. RLA is responsible to assign resources to EDs inside the group on
the basis of reward. Overall, the performance in terms of PSR is enhanced as compared to
conventional ADR and APRA by 2.1% and 0.5%.
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Figure 8. PSR W.R.T DRLRA for HPP and Comparison with ADR and APRA.

Figure 9. PSR W.R.T DRLRA for HPP and Comparison with ADR and APRA.

Figure 10 shows the behavior of PSR for MPP. Almost 900 EDs are assigned to MPP
depending on the values generated by these smart nodes. The results of PSR after allocating
resources by DRLRA outperform ADR and APRA by 1.6% and 0.5%.

Figure 11 depicts the performance of LoRa network in terms of PER w.r.t number
of EDs. As in our HPP, we have total of 300 nodes that are transmitting critical readings,
so we allocate maximum bandwidth and other parameters by DRLRA. DRLRA profiling
algorithm outperforms ADR by increasing PSR and mitigating the effect of PER. PER
drastically decreased with the increase in data throughput.
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Figure 11. PER W.R.T DRLRA for HPP and Comparison with ADR and APRA.

Figure 12 shows results of PER for EDs in MPP. Due to increase in the number of EDs
in MPP, PER is little bit on a higher side but still DRLRA profiling outperforms both ADR
and APRA by achieving mitigated PER.
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Figure 13 depicts the simulation of energy consumption for DRLRA, ADR, and APRA
in HPP. To compute energy consumption, it considers several parameters such as current
drainage, voltage, processing of packets, and ToA of packets transmitted according to SF.
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Figure 13. Energy Consumption after Allocating Resources in HPP Through GW1.

Figure 14 presents the results of energy consumption for DRLRA, ADR, and APRA in
HPP through GW2. DRLRA profiling algorithm enhance performance in terms of energy
consumption and network capacity.
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Figure 14. Energy Consumption after Allocating Resources in HPP through GW2.

5. Conclusions

LPWAN is the most overwhelming choice for many IoT applications, including to
monitor smart homes, smart agriculture, and smart meters. The literature focuses on
using Pure Aloha with LoRaWAN to further increase delay with an increase in packet
loss. Due to inter-packet arrival and re-transmissions, there has been an increase in delay.
However, to achieve optimum performance in LoRaWAN, the delay must be mitigated.
To achieve optimum performance in terms of delay, un-supervised probabilistic approach
called GMM with K-means is introduced which designs the profiles. Furthermore, ASA
is used to prioritize traffic from profiles. The results show that in an environment where
thousands of smart EDs are transmitting frames, ASA with an un-supervised probabilis-
tic approach drastically mitigates the factor of delay. Another objective regarding the
energy consumption of EDs is rigorously analyzed and addressed in the LoRa network.
Dynamic reinforcement learning resource allocation is used to allocate resources to EDs
in different profiles. Inside the profiles, we define different groups based on distance and
RSS. This helps RLA to allocate resources inside the group to EDs that are far from each
other. Furthermore, a comparison with other benchmark resource allocation techniques
is also provided. Results of an algorithm for dynamic allocation of resources outperform
conventional ADR. The energy consumption is further reduced when we allocate resources
by using DRLRA. The out-performance in terms of PER, throughput, collision, and reduced
energy consumption can substantially lead towards Green IoT. The future direction of this
research is to analyze PPD under a 3D scattering model in LoRaWAN. This analysis may
help to decide an optimal placement for gateways for the LoRaWAN scenarios, which may
improve the delay experienced by end devices and their energy efficiency.
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