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ABSTRACT

Music signals are difficult to interpret from their low-

level features, perhaps even more than images: e.g. high-

lighting part of a spectrogram or an image is often insuf-

ficient to convey high-level ideas that are genuinely rele-

vant to humans. In computer vision, concept learning was

therein proposed to adjust explanations to the right abstrac-

tion level (e.g. detect clinical concepts from radiographs).

These methods have yet to be used for MIR.

In this paper, we adapt concept learning to the realm

of music, with its particularities. For instance, music con-

cepts are typically non-independent and of mixed nature

(e.g. genre, instruments, mood), unlike previous work that

assumed disentangled concepts. We propose a method to

learn numerous music concepts from audio and then au-

tomatically hierarchise them to expose their mutual rela-

tionships. We conduct experiments on datasets of playlists

from a music streaming service, serving as a few annotated

examples for diverse concepts. Evaluations show that the

mined hierarchies are aligned with both ground-truth hi-

erarchies of concepts ± when available ± and with proxy

sources of concept similarity in the general case.

1. INTRODUCTION

Music signals are challenging to interpret [1]. For instance,

inspecting a spectrogram by parts ± e.g. think of attention

maps [2] ± does not convey much meaning with respect to

the high-level descriptions that are useful to humans ± e.g.

the mood of a song. Fortunately, a solution was proposed

in a field that shares similar problems: computer vision.

As pixels of images are too low-level to be understand-

able, concept learning was introduced to rationalise the

abstractions steps involved in a feed-forward model (e.g.

detection of colours, shapes, patterns, ...), which in turn

can be used to describe the content of an image directly,

and to align models with human reasonings better. Indeed,

this field has had successful applications in explainabil-

ity (XAI) ± dissecting a model’s predictions into human-

grounded concepts [3±5], interactive learning [6] or knowl-

edge transfer between tasks [7]. However, these methods

have yet to be used for Music Information Retrieval (MIR).
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Music has particularities that are not captured by the

current formulation of concept learning. For instance, let

us consider genres as common musical concepts we would

like to detect from spectrograms. Genres are typically

blended as they influence or result from other genres (e.g.

Punk Rock). By contrast, most literature on concept learn-

ing has considered sets of few identified and disentangled

concepts, which does not apply to genres. Moreover, one

trend in MIR is to incorporate multiple types of descriptors

into a shared space (e.g. mood, genre, instruments [8, 9]),

thus requiring handling even more entanglements.

We thus propose to study a novel problem for concept

learning that is relevant for music: learning hierarchies

of concepts. Indeed, a hierarchy enables navigating thou-

sands of non-independent concepts without cognitive over-

load by uncovering their mutual relationships with a struc-

ture, thus rationalising which concepts share the same class

or are derived from one another. In addition, the use of

taxonomy ± i.e. hierarchy ± is common in musicology and

feels like a natural representation in this context [10, 11].

The problem we study is interesting for music represen-

tation learning because research is often limited by data

labelling, which is labour-intensive and can be ambigu-

ous or tied to a specific dataset. Meanwhile, concepts can

be learned with few shots, which open the doors to new

sources of music descriptors. In particular, we propose to

leverage a dataset of playlists from a music streaming ser-

vice as a folksonomy of concepts. Playlists are often built

with a specific concept; there exists one for any genre, in-

strument, mood, and many more niche ideas. Yet, there is

no overall ground-truth organisation of playlists, making

their use cumbersome. That is why we propose to solve

this task by first adapting a method from concept learning

research to learn music concepts from playlists in a few-

shot manner and then, building on top of this method, au-

tomatically derive a hierarchy from the learned concepts.

The paper proceeds as follows: we provide background

on concept and hierarchy learning (section 2); we adapt

the literature of concept-based explanations to the realm of

MIR (3); we present a novel way to organise the detected

concepts into a hierarchy in an unsupervised manner (4);

finally, we experiment and discuss our attempt to provide

a new audio concepts hierarchy with mixed types (5).

2. PRELIMINARIES AND RELATED WORK

We first present the literature on concept learning and hi-

erarchy mining, then frame our problem through XAI to

uncover common pitfalls to avoid when interpreting data.
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(a) Concept learning from music playlists (b) Vector similarity computation (c) Graph hierarchy extraction
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Figure 1. Overview of our method (a) CAVs learning (section 3.1); (b) t-SNE projection of concepts Vgenre learned on

a small dataset with 219 music genres; (c) resulting extracted hierarchy H(S(Vgenre)). Nodes colours denote ground-truth

clusters. Experiments on a bigger concept dataset are conducted in section 5.

2.1 Concept learning

Concept learning has witnessed growing interest in recent

years [4]. The introduction of concepts stems from the in-

adequacy of usual explanation spaces with human mental

models of problems: tabular features, pixels, and words in

sentences are sometimes too low-level to build relevant ex-

planations or to interact with. This idea is far from novel

from a purely technical standpoint: a stream of papers aim

to learn a set of sub-attributes in a fully supervised manner

(e.g. facial features [12], or animal attributes [13]), that

are then combined to predict some end-task labels, typi-

cally through a linear regression to track the importance

of each attribute. This idea has been revamped recently

for concept bottleneck learning [14] and prototypical part

learning [15]. In the same vein, disentanglement tech-

niques [16] have sought to realign latent representations

to interpretable attributes. All those works rely on the as-

sumption that a somewhat complete set of useful concepts

exists, well-defined and rather disentangled, and that a cor-

responding labelled dataset is readily available to train on.

This is rarely the case in practice. Kim et al. intro-

duced CAVs for images [3] and demonstrated that concepts

could be learned reliably from few annotated examples ±

technical details are provided in section 3.1. Going be-

yond the previously few datasets annotated for concepts,

this work has led to new and diverse applications: skin

lesion interpretations [17], emotion recognition [18], inter-

activity [6,19], automatic concept learning [20], batch nor-

malisation [21], sufficiency of explanations with shapley

values [22, 23], causal inference [24]. To our knowledge,

there exists no application in the music domain.

2.2 Unsupervised Hierarchy Mining

Using knowledge graphs and taxonomies is frequent lever-

age in MIR [25]. Unsupervised learning of hierarchy is,

however, less so. Part of it lies in the difficulty of ade-

quately defining the meaning of the hierarchical relations,

learning the hierarchy in a tractable way, and evaluating

the found hierarchy without ground-truth.

Fortunately, there is active literature coming from natu-

ral language processing (NLP) research. Many work pro-

posed variants of topic modelling [26] to enable sampling

hierarchised structures [27, 28]. However, these methods

get computationally intractable as the number of nodes,

topics, and hierarchical levels grows. Many successes thus

came from scalable greedy methods such as hierarchical

clustering [29, 30], rule-mining [31, 32] and graph-based

analyses [33, 34]. Outside of NLP, hierarchies have been

learned based on the latent manifold geometry [35], prede-

fined structure [36], and for images [37, 38].

To our knowledge, these techniques have never been

combined with concept learning, as we propose.

2.3 Explainability

Our end goal is to interpret music signals, which is linked

to explainability (XAI). Before jumping into our method

to learn a hierarchy of concepts, we need to acknowledge

that many works have debated the sanity of explanation

methods [39±43] and the fact that these methods largely

disagree with one another [44]. XAI has vast boundaries,

which has also percolated to its music sub-field for which

there exists many explanation paradigms and evaluations

[45]. Explanations for MIR are thus also prone to exhibit-

ing pathologies that hamper knowledge mining: e.g. short-

cut learning [46], lack of clear definitions [39, 47], flawed

evaluations [48], out-of-distribution artifacts [49, 50] or

misalignment with human reasonings [51±54].

Uncovering these failure cases sharpens our under-

standing of how models make decisions, and shows that

we have to go beyond evasive considerations on explain-
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ability to make them relevant [41] since trustworthy AI is

not achieved automatically with XAI [55]. One taxonomic

distinction we would like to underline is whether methods

aim to explain models or data [56]. Our method is intended

to belong to the latter category for which the purpose is not

to explain how models work (e.g. troubleshooting learned

filters) but rather to use them as proxies to gain new in-

sights about reality (e.g. causal inference [57]).

With all these aspects in mind and based on previous

literature, we formalise our three explanation goals:

1. Attribution. Identify musical concepts associated

with a given track’s audio signal.

2. Transferability. Detected concepts should be appli-

cable to various settings and tasks.

3. Generality. The hierarchy should be independent of

the signals and make sense for various settings.

Our first goal is linked to the traditional explanation lit-

erature supporting transparency [45,47] and is common in

concept-learning. We have defined our second and third

goals to stress that the finality of our work is to be as uni-

versal as possible.

3. LEARNING MUSIC CONCEPTS

In this section, we first adopt the few-shot supervision set-

ting of concept learning to learn the music concept v⃗C of

each playlist, viewed as a set C of audio signals examples.

3.1 Background on CAVs

We review some essential notions from the concept learn-

ing framework we use to learn playlist concepts [3].

We denote f⃗ [ℓ] the output of the l-th layer of a trained

neural network f taking as input some samples x ∼ X . A

"concept activation vector" v⃗C is defined for a set of posi-

tive examples C as the normal to a separating hyperplane

between {f⃗ [ℓ](x) | x ∈ C} versus negative examples ±

usually {f⃗ [ℓ](x) | x ̸∈ C}, we provide an illustration in

Figure 1(a). In practice, the hyperplane is learned through

a logistic regression on a subset of C, while holding out

the remaining samples for validation and testing 1 .

As additional insights, this setting is "sound" for few-

shot learning because it uses a pretrained model f with

prior knowledge on the domain ± relating to transfer learn-

ing [58] ± and learns a linear mapping on its space, hence

reducing the risk of over-parametrisation and justifying

why more complex mappings are not considered.

3.2 Sets of examples C

The work of Kim et al. [3] lends itself naturally to learn-

ing concepts from playlists. Indeed, playlists can be seen

as small sets of positive music examples built around a par-

ticular musical idea. As it will be further detailed in our ex-

periments, we can use data from music streaming services

where playlists are abundant. We will denote C = {Ci}
K
i

1 By definition, v⃗C is the learned parameter of a logistic regression.

the set of K sets of music tracks that will enable to learn a

CAV set V = {v⃗i}
K
i discriminating C in the f⃗ [ℓ] space.

It must be noted that playlists are more than a set of

tracks, we usually have access to textual data with a title

and a description that help rationalise the learnt concepts.

3.3 Backbone model f⃗ [ℓ]

As often in few-shot learning, CAVs learning makes use

of a pretrained model f ± referred to as backbone ± to

embed samples into a latent space with a higher level of

abstraction. In this paper, our working hypothesis is that

music concepts can be described solely through audio

signals. We wanted to fully explore the potential of audio

signals, which is a known challenging setting in MIR and

recommendation [59], and leave its combination with other

sources of features for future work. In addition, having au-

dio inputs enables using our model with any music track

from any dataset, hence supporting goal 2, while relying

on features such as collaborative filtering or other usage

data would have tied our model to a given dataset.

After having experimented with several models, as the

recent self-supervised model CLMR [60], we have cho-

sen to use MusiCNN [61] as the backbone since it had

demonstrated consistent performances across various mu-

sical tasks, which we deemed on par with our goal 2 and 3.

MusiCNN was trained on the Million Song Dataset [62].

3.4 Preliminary results

We provide some experimental observations to fix ideas

and prepare the next section. If we train CAVs as in the

original paper [3] ± further detailed in section 5.2, we ob-

tain a set of vectors V that allows to detect a set of K con-

cepts given any music input spectrogram. An example re-

sult of learned concepts is given in Figure 1(b) for one of

the studied datasets. Unsurprisingly, we find that many

associated concepts end up having close vector weights 2 .

If we were to use our concept detectors directly, we would

have many concepts activated simultaneously, which could

make predictions hard to read when K is very big. On the

positive side, note that vector proximity could be used as

a means to quantify concept similarities. With this idea,

we go a step further and next present our method to build

a hierarchy to help rationalise concept dependencies.

4. HIERARCHISING MUSIC CONCEPTS

Having learned numerous non-independent concepts V =
{v⃗i}

K
i , we next elaborate on how to organise them with a

structure to make them usable (goals 2, 3).

Many classes of structures are possible, and it would

be a mistake to select one with purely theoretical consid-

erations since cognitive and social sciences [63, 64] have

underlined that explanatory preferences are shaped by di-

verse factors that cannot be reduced to a set of so-called

golden explanation principles. Therefore, from an empiri-

cal standpoint, taxonomies seem to be frequent with music

2 In the figure, proximity is defined as the cosine similarity.
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concepts (e.g. genres [8], instruments [25]). We thus argue

that this class of graph is rather natural for humans and

chose to consider it only.

4.1 Similarity graph computation

Before mining a hierarchy, it is necessary to determine how

concepts ± now acting as graph nodes ± relate to one an-

other. Essentially, we are trying to define a similarity mea-

sure between concepts.

When sampling uniformly from a music dataset, con-

cept activations are rare signals overshadowed by uninfor-

mative negative detection. The straightforward solution of

estimating the empirical covariance of concept activations

is thus not a well-behaved measure of similarity. Fortu-

nately, there is another reliable, interpretable (and faster)

way to do it. We propose to consider the positive examples

of each concept playlist ± embedded in f⃗ [ℓ], and to check

on what side of other concept hyperplanes their centroid

lies. Formally, given V = {v⃗i}
K
1 , we compute the matri-

ces of concept similarities S and adjacency A (i.e. A is a

binarised matrix representing graph edges):

Si,j(V) = Ex∼Ci

[

σ(⟨v⃗j , f⃗
[ℓ](x)⟩)

]

(1)

Ai,j(V) =

[

Si,j(V) ≥
1

2

]

(2)

where σ denotes the logistic sigmoid function and Ci a ran-

dom variable sampling spectrogram excerpts from tracks

of the playlist Ci. Bias is integrated in v⃗j for simplicity.

The threshold at 1
2 for A translates having each playlist

centroid on the positive side of the concept hyperplanes.

Because V is learned through logistic regressions that re-

turn well-calibrated probabilities, S and A return similari-

ties with well-defined interpretations.

4.2 Hierarchy extraction

Having defined similarities between concepts, we next

simplify S and A to a hierarchy that highlights what con-

cepts are similar to many others and what others represent

unique and niche ideas.

For our problem and its scale, we propose to adapt

the greedy hierarchy construction of Heymann et Garcia-

Molina [33] that makes use of the notion of between-

ness graph centrality [65]. In this method, given an un-

weighted graph of similarities, a tree is greedily grown

by picking each node in decreasing order of centrality in

the similarity graph and linking it to the most similar and

already-added node in the tree. We denote by H(S(V)) the

result of this algorithm on the similarity graph given by the

adjacency matrix A(V) and using S(V) as similarity.

Though this algorithm was originally applied to word

tags, we argue that the inductive bias of the targeted hier-

archy is applicable to our problem. In particular, the use

of centrality is justified by the existence of noisy links in

the similarity graph, said links are assumed to be more fre-

quent higher up in the hierarchy (general-general assump-

tion). For us, this means that general concepts ± e.g. Pop

and Rock ± should be more likely to be similar than niche

concepts ± Bedroom Pop and Goth Rock. This sounds rea-

sonable for music content since we expect niche concepts

to relate to a specific musical idea, style, or instrument.
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Figure 2. Obtained hierarchy on the Deezer

dataset. An interactive plot of this fig-

ure, as well as many others, is available at

research.deezer.com/concept_hierarchy/.

5. EXPERIMENTS

We first detail our experimental setups, then validate that

concepts can be reliably learned from audio, and finally

show that our proposed structuring method leads to con-

sistent hierarchies for MIR applications.

5.1 Datasets

The set of playlists CD we use was exported through the

API of the streaming platform Deezer 3 . We have filtered

3635 playlists of mixed types to be used as concepts: all

1498 editorial playlists available ± considered thoughtfully

curated but biased by popularity, and 2137 public user

playlists with the lower artist popularity ± to improve di-

versity. Playlists have a mean length of 75 tracks and a

minimum of 40. This dataset includes the playlist ids, ti-

tles, descriptions, and public 30s audio preview for each

track. There are 245074 unique tracks from 116497 unique

artists: playlists overlap is thus very limited.

In order to compare our computed hierarchy to existing

taxonomies, we make use of the APM Music dataset [66].

This is a more traditionally tagged dataset, but its relevance

for our task is to include a ground-truth two-level hierarchy

of the music genres (219) and moods (165) tag types. We

aggregate sets of positively tagged examples as Cgenre for

each genre tags and respectively Cmood for moods.

5.2 Validating concept learning

We first present experimental evidence related to learning

sets of concepts (section 3), to validate goal 1.

5.2.1 Experimental setup

Concept examples are split in a 70% (train) / 10% (val-

idation) / 20% (test) fashion. According to the require-

ments of our backbone [61], we convert audio inputs to

3 https://developers.deezer.com/api
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Source Audio (↓) CF (↓) BERT (↑) W2V1 (↑) W2V2 (↑)

H(S(VD)) 2.449 ± 0.022 0.845 ± 0.013 0.345 ± 0.007 0.286 ± 0.009 0.542 ± 0.007

H(SCF) 2.413 ± 0.021 0.345 ± 0.007 0.416 ± 0.008 0.336 ± 0.010 0.601 ± 0.008

H(SBERT) 2.858 ± 0.028 0.868 ± 0.013 0.726 ± 0.005 0.505 ± 0.011 0.652 ± 0.008

H(SW2V-1) 2.952 ± 0.028 0.932 ± 0.012 0.523 ± 0.008 0.804 ± 0.005 0.721 ± 0.007

H(SW2V-2) 2.843 ± 0.026 0.847 ± 0.012 0.531 ± 0.008 0.596 ± 0.009 0.836 ± 0.004

Random 3.388 ± 0.027 1.104 ± 0.006 0.239 ± 0.004 0.142 ± 0.006 0.452 ± 0.006

Table 1. Evaluation of the full hierarchy on audio, user-logs and title semantic similarities with 95% confidence. Audio

and CF source are endowed with an Euclidean distance, the last three semantic sources use cosine similarities.

mel-spectrograms with log-magnitudes. Representations

are extracted from the penultimate layer of the backbone,

denoted as f [ℓ] ± which gave us the best performances

for concept learning overall. Our complete training code,

with further details and exact parameters, is provided for

reproducibility at github.com/deezer/concept_

hierarchy.

5.2.2 Learning metrics evaluation

On the Deezer dataset CD, the mean balanced accuracy of

learning concepts is 83.8% ± 0.3, with a 95% confidence

interval. In detail, we display a histogram of test balanced

accuracies in Figure 3, showing that a majority of playlist

concepts can be learned reliably from audio.

As a rationalisation of failure cases, the hypothesis we

made in section 3.4 to detect concepts from audio may not

always hold. For instance, it fails when playlist concepts

rely on factors extraneous to audio (e.g. playlist of a movie

soundtrack) or when the backbone space is not expressive

enough to discriminate concepts. This actually happens in

these experiments with concepts similar in all respects but

for their singing languages: e.g. the model makes no differ-

ence between Japanese and British jazz. We filter concepts

vi below a given test accuracy threshold to account for this

effect. Fixed at 70%, 192 concepts are filtered out, leading

to K = 3443 remaining concepts. This threshold was set

empirically by checking that those left-out concepts were

indeed unclear from audio (e.g. OST, new releases, charts).

We denote the resulting concept set VD.

The two smaller APM datasets lead to similar results

with a 78.3% ± 0.8 for genres, denoted Vgenre, and a

71.3% ± 0.6 accuracy for mood tags, denoted Vmood.

As a wrap-up of this section, goal 1 of detecting con-

cepts from audio seems satisfied in our experiments.
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Figure 3. Concept learning performances. The middle line

indicates the cut-off at 70% accuracy, the right line is the

mean accuracy of the remaining CAVs.

5.3 Hierarchy Mining

We conduct a three-fold evaluation of our proposed hier-

archy extraction method (section 4) in order to evaluate

goal 3: structure; ground-truth comparison; alignment with

other sources of concept similarities.

5.3.1 Structure priors

We first provide evidence supporting our choice to extract

a hierarchical tree graph over other choices of structures.

Though we do not have access to a ground-truth graph of

the relations between concepts in CD, we have some priors

on what a satisfying result should be like. For instance, we

know that musical concepts are often blended (e.g. gen-

res). It is thus safe to assume that a good graph of con-

cepts should be connected. Extending this property, iso-

lated nodes should strongly be discouraged. As another

prior assumption on our target graph, we know that we can

usually find several similar playlists to a given one, but that

very strongly connected nodes should be infrequent, spar-

sity should thus also be valued.

With these two priors in mind, we inspect various graph

baselines that could straightforwardly be obtained from VD

without our hierarchy extraction step: the similarity graph

A(VD) from equation (2); a similarity graph obtained from

S(VD) with an adjusted threshold to match the sparsity of

H(S(VD)) (Sparse A); a top-1 most similar neighbours

graph of each node; reference random graphs. Their re-

spective sparsity and connectivity is shown in Table 2. It

appears that baseline graphs become disconnected as soon

as sparsity drops. We also underline that random baselines

provide better-behaved graphs than their counterparts, in-

dicating that similarity links are not evenly distributed

among nodes, thus pointing to the existence of communi-

ties in the graph that justifies the use of betweenness [67].

Using a hierarchy extraction algorithm helps maintain a

low sparsity while connecting every node in the graph.

Graph #Edges (↓) #CC (↓) #IN (↓)

H (proposed) 3442 (0.03%) 1 0

A(VD) 1309163 (11%) 1 0
Sparse A 3443 2766 2735

Top-1 3443 134 0

Random Sparse A 3443 516 430
Random Top-1 3443 7 0

Table 2. Structure evaluation. We count the number of

edges in each graph, of connected components (CC), and

of isolated nodes (IN). Lower is better.
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This study does not prevent using sparse and connected

graphs other than hierarchies. We believe that other rele-

vant structures may exist. Nonetheless, as additional ben-

efits of using hierarchies, we note that tree-like graphs are

always planar, which eases their visualisation and naviga-

bility by having only one most-relevant parent per node.

5.3.2 Ground-truth evaluation

To validate our generated concept hierarchy, we compare

H(S(Vmood)) and H(S(Vgenre)) to the expert tag hierarchy

provided with the APM dataset ± which is unavailable for

VD. As those hierarchies are two-levelled ± i.e. clustering

of tags, we evaluate the accuracy of the mined edges at

linking neighbours from the same cluster and compute a

silhouette score [68]. Judging from the results given in

Table 3, the generation is promising but far from perfect.

The estimated hierarchy of genres is illustrated in

Figure 1(c) to help interpret the results. As a typical fail-

ure case, the orange cluster ("Electronica") ends up in

two separate branches, which can happen because of the

greedy construction of our hierarchy. In other cases, how-

ever, the ground-truth may be questioned: "Latin influ-

ence", "Latin", "Ethnic Dance" and "Calypso" form a link

in our hierarchy, but belong to four different clusters in the

ground-truth ± due to non-musical taxonomic considera-

tions ± despite being musically similar. It is not easy to

quantify the performance upper-bound we have between

our musical concept detection and the practical expert tax-

onomies we compare to. Nevertheless, seeing that our gen-

erated hierarchies roughly align with ground-truth struc-

tures is a good sanity check.

Tags Accuracy (%) Silhouette

Hmood 45.1 -0.09 ± 0.05
Hgenre 49.1 -0.17 ± 0.04

Table 3. Evaluation of our unsupervised hierarchy against

ground-truth clustering of moods and genres tags.

5.3.3 Alignment to various sources

Coming back to the difficult setting of VD, we finally eval-

uate our hierarchy of concepts with mixed types, illustrated

in Figure 2. As we do not have a ground-truth in this gen-

eral case, we evaluate whether the edges of our hierarchy ±

built from S(V) ± make sense on other sources of similar-

ity. Specifically, since our data is collected from a stream-

ing service, collaborative filtering embeddings [69] based

on listening logs are available to estimate playlist similari-

ties (SCF). Playlists similar in concepts could indeed be ex-

pected to be co-listened by users, though popularity biases

are also at play. We also leverage playlist titles and expect

neighbours to be rather close semantically. To that end, we

use a large language model [70] that can embed any text

prompt (SBERT), and two music-specialised word embed-

ders for which we average representations of in-vocabulary

words of each concept names: SW2V-1 [9] and SW2V-2 [71].

For reference, we generate hierarchies from each domain-

specific source, include a random hierarchy, and a Audio

measure based on CAVs weights, following our observa-

tions made in section 3.4.

We compute the average similarity on each hierarchy’s

edges given those several sources of similarities. Results

are provided in Table 1. By construction, each hierarchy

maximises performance on the source it was built on. We

rather inspect how one source of knowledge transfers to

other sources. Collaborative filtering being the canonical

way of estimating similarities in the streaming industry

our dataset is extracted from and in general [45], we un-

derline that our hierarchy ± solely based on audio ± closely

matches its transfer performances, which is a good result 4 .

We have thus shown that our hierarchy transfers to other

sources of knowledge (goal 3).

5.4 Qualitative discussion

We retrieve many associations that make sense for humans

in H(S(VD)): blues and jazz; rock and pop; motivation,

dancing, running, and party are close to one another ±

which aligns with previous work [72]. More interestingly,

we observe that "LSD Trip" is the parent of "Surf", "Sum-

mer of love", and "Stoner Rock", effectively associating an

activity to a sport, an historic phenomenon, and a music

genre. Yet, we also find some association that make sense

for the model but not for humans: e.g. "Rock Christmas"

is also a child of "LSD Trip". This phenomenon is hard

to avoid with fully unsupervised methods [53, 73]. We can

find many more interesting associations, but we have to be-

ware of confirmation biases, as often in XAI [51, 52, 74].

We provide online visualisations of the results 5 .

As observable limitations, VD is biased by the stream-

ing platform usage towards French, English, and Brazilian

content, which could be addressed in future work with im-

portance sampling. Then, some concept titles are mislead-

ing, e.g. playlists "City sounds: <city>" are confounded

by the taste of their curator, resulting in city concepts be-

ing close to the 60’s genre, despite this not being obvious

solely judging from the title. Finally, as already mentioned,

the backbone fails to discriminate linguistic information:

e.g. "Queer Pop" and "[Current] Pop" differ by their lyric

theme but are neighbours in the hierarchy.

6. CONCLUSION

Spectrograms are hard to interpret. We propose to extend

concept learning to learn hierarchies of music concepts

from playlists, with greater flexibility than usual music tag-

gers. Our results should be viewed as complementary to

expert music ontologies, as a means to witness how music

is organically described by users and editors, and thus to

capture new or evolving salient aspects of music.

This topic is novel and further steps are necessary in

order to overcome cultural biases of our data, and to dis-

cover causal relations for our structure. Future work in-

clude leveraging the found hierarchy for dynamic music

recommendation ± e.g. exploring and switching branches.

4 Why not use CF embeddings then? As a reminder, they are tied to
the dataset, and thus fail goal 2. They are only used for comparison.

5 research.deezer.com/concept_hierarchy/
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