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Abstract: China’s soybean spot price has historically been highly volatile due to the combined ef-
fects of long-term massive import dependence and intricate policies, as well as inherent environ-
mental elements. The accurate prediction of the price is crucial for reducing the amount of soybean-
linked risks worldwide and valuable for the long-term sustainability of global agriculture. There-
fore, a hybrid prediction model that combines component clustering and a neural network with an 
attention mechanism has been developed. After fully integrated complete ensemble empirical mode 
decomposition with adaptive noise (CEEMDAN) processing of the price series, the fuzzy entropy 
of each component is measured as the complexity characteristic. K-means clustering and reconstruc-
tion are applied to the components before being input to the CNN-GRU-Attention network for pre-
diction to improve the model ability and adaptability of the sequences. In the empirical analysis, the 
proposed model outperforms other decomposition techniques and machine learning algorithms re-
garding prediction accuracy. After applying the decomposition part, the results have RMSE, MAPE, 
and MAE values of 49.59%, 22.58%, and 21.99% lower than those of the individual prediction part, 
respectively. This research presents a novel approach for market participants in the soybean indus-
try for risk response. It gives a new perspective on agricultural product prices in sustainable agri-
cultural marketing, while also providing practical tools for developing public policies and decision-
making. 
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1. Introduction 
In 2021, China imported 96.51 million tons of soybeans, making up 59.68% of all soy-

bean exports worldwide and 82.77% of domestic soybean consumption. Extreme depend-
ence on imports has brought high price volatility [1]. The global outbreak of the COVID-
19 epidemic has caused the spot price of soybeans in China to enter a new upward trend 
[2]. By April 2022, it had grown to 6365.45 yuan/ton from 3760.00 yuan/ton in January 
2020. The relative growth is up 69.29%. The long-term price growth tendency is present 
alongside the short-term price uncertainty swings and will dramatically affect the global 
soybean trade as well [3]. There is always a strong demand for price risk avoidance among 
individuals, businesses, and governments involved in the soybean industry [4,5]. They 
seek effective management tools to deal with, control, and transfer risks [6]. An accurate 
soybean price prediction can offer a reliable and essential foundation for market operation 
and policy planning [7]. It is crucial for steady marketing and the sustainable supply of 
soybeans worldwide [8]. 

The supply chain associated with soybeans is extensive and has many intricate links 
[9]. It is disturbed not only by unforeseen events like global warming, natural disasters, 
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and epidemics but also by objective occurrences like international commerce and macro-
economic policy [10]. The spot price is extremely prone to volatility whenever an un-
known event occurs because of shifts in market expectations, giving its time series non-
linear, non-stationary, and other complex properties [11]. The development of a proper 
prediction model can enhance the overall predicting accuracy by better extracting deep 
nonlinear correlation and long- and short-term time dependence of the series [12]. 

Traditional econometric models like VAR, ARIMA, and GARCH, which have a better 
understanding of linear properties of the data, make parameter testing easier and have 
unambiguous meanings in the field of price forecasting research [13]. However, tradi-
tional models also have clear disadvantages in that their ability to anticipate outcomes 
largely relies on particular market circumstances [14]. They are less effective at capturing 
the properties of multiscale data and more constrained when dealing with nonlinear 
structural patterns [15,16]. As a result, in the majority of real-world situations, its effec-
tiveness for standalone applications is restricted [17–19]. 

There are two key benefits of machine learning and deep learning models over tra-
ditional models. On the one hand, through learning iterations with large historical data 
sets, they can recognize complicated nonlinear correlations between various system pa-
rameters and can produce predictions that are more accurate than those of standard mod-
els [20–22]. On the other hand, it is more consistent with the traits and formats of the input 
data, and it makes it simple to modify the model to fit various circumstances [23–25]. Sev-
eral improvements or enhancement directions have been derived from the majority of the 
mainstream research routes for price prediction techniques in the academic community 
based on machine learning or deep learning models [26]. One of the important concepts 
is to smooth out or reduce noise in the price series while leaving the general long-term 
trend untouched [27]. This reduces overall noise or volatility in the series, facilitating the 
use of machine learning or deep learning models for prediction [28]. To effectively address 
the time and frequency domain characteristics of price series, this concept integrates meth-
ods mostly from the field of signal analysis [29,30]. The method is also known as the de-
composition-integration prediction pattern [31]. The different spectral feature sequences 
reinforce the key information representation and help the model performance after cut-
ting down the redundancy [32,33]. 

Existing research demonstrates that deep learning neural network models offer great 
benefits for handling time series data with high noise and high disorder [34]. It has a sig-
nificantly higher capacity for feature expression due to its ability to extract characteristics 
layer by layer and highly abstract transversal features [35]. Compared to machine learning 
models, it offers a greater potential for price prediction because it better optimizes the 
overfitting problem and has more generalization capacity [36]. Niu et al. [37] decomposed 
the original series of the London FTSE and Nadex indices using the VMD method and 
input them into the GRU model with the attention mechanism. The prediction results 
demonstrated that their suggested model significantly outperforms the LSTM, GRU, Att-
GRU, and VMD-GRU models without the attention mechanism alone, although it has a 
lower directional prediction accuracy. Fang et al. [38] analyzed six categories of agricul-
tural futures prices using the EEMD method and forecasted using a hybrid SVM-NN-
ARIMA model. They found that the model performed better than the individual models, 
not only for forecasting but also for predicting high-frequency volatility components. The 
monthly average price of garlic was forecast by Wang et al. [39] using a hybrid ARIMA-
SVM prediction model. The results revealed that supply and demand have the greatest 
influence on garlic prices, and the hybrid approach outperformed the single model in 
terms of prediction accuracy. Cao et al. [40] combined EMD and CEEMDAN algorithms 
with LSTM neural networks to validate the performance of the proposed model by linear 
regression analysis of major global stock market indices. The experimental results re-
vealed that the proposed model performed better in one-step ahead forecasting of finan-
cial time series compared with individual LSTM, SVM, MLP, and other hybrid models. 
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However, the main focus of the above methods is on improving the prediction part, 
whose inputs are all components obtained directly after the decomposition process [15]. 
Following adaptive decomposition, the amount of information encoded in each compo-
nent varies, as does the complexity of the serial information [41]. A larger demand is 
placed on the liaison probing of the input features ahead to model training owing to the 
complexity of the time series correlation and the onerous soybean price implication char-
acteristic standard [42]. Further layout research on complexity and specific patterns is re-
quired to decompose the post-processing component [43]. The following studies have 
been investigated from this perspective. Liu et al. [44] proposed a hybrid prediction 
method for the price of carbon that first decomposed data into various components using 
the empirical wavelet transform method EWT, classified the components with the fuzzy 
C-means method, determined the lag order of various classified components using the 
partial autocorrelation function, and inputs them into GRU for prediction. Gao et al. [45] 
developed a feature selection-based FS-EMD-GRU short-term electric load forecasting 
model. Pearson correlation coefficients are introduced after decomposing the original load 
series, statistical components are correlated with the original series, and high correlation 
components are chosen as features to be input into GRU for forecasting alongside the 
original series. Liu et al. [46] applied the combined EMD-RNN-ARIMA model to wind 
speed prediction can improve the wind speed prediction performance. After sequence 
decomposition, the LSTM model is suitable for predicting high-complexity subsequences, 
while ARIMA effectively predicts low-complexity subsequences based on different sam-
ple entropy. Jin et al. [47] decomposed PM2.5 data into components by EMD decomposi-
tion, constructed CNNs to classify all components into a fixed number of groups based on 
frequency characteristics, and trained a GRU for each group as a sub-prediction model to 
finally obtain prediction results. 

In this paper, a hybrid model that incorporates component classification and atten-
tion mechanism combined with dual-coupled neural networks is developed. Firstly, fuzzy 
entropy-based K-means clustering is implemented based on the CEEMDAN technique for 
component reconstruction. It effectively reduces the redundant modeling volume after 
adaptive decomposition and explores the component complexity pattern while enhancing 
the performance of sequence distinctive features. Secondly, the CNN-GRU model is 
linked to capture the temporal dependent complex information while highly mining the 
input sequence features. The robustness and usability of the model are rapidly improved. 
To identify possible relationships between representative aspects and hidden chronolog-
ical contents once more, coupled attention mechanisms are applied. Dynamic weight as-
signment is used to evaluate the characteristics and crucial information, which reinforces 
the model interpretation and significantly improves prediction accuracy. Finally, an em-
pirical analysis based on actual data of China’s soybean spot price for the latest 10 years 
is conducted to prove the usefulness and superiority of the model provided in this paper. 

2. Methodology 
2.1. Overall Framework of the Mixed-Method Model 

The proposed prediction model is based on the hybrid CNN-GRU deep learning 
technique and adds an attention mechanism to capture the characteristic messages and 
temporal relationships of the reconstructed components using the frequency decomposi-
tion algorithm CEEMDAN and K-means clustering with fuzzy entropy. This paper’s pro-
posed model can be divided into two main sections. 

The first is the decomposition part. Using the CEEMDAN approach, the original soy-
bean price series is divided into components. Fuzzy entropy is calculated for each com-
ponent to determine its level of complexity. The complexity components are then approx-
imated using K-means clustering to produce labels for high, middle, and low fuzzy en-
tropy. The process of component rebuilding follows. The second is the prediction part. 
The reconstructed components are predicted using a dual-coupled neural network (CNN-
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GRU) encapsulating the attention mechanism. To obtain the forecast findings, the final 
linear integration is carried out (see Figure 1). 

The detailed modeling steps follow: 
(1) Soybean prices are decomposed by CEEMDAN into IMFs and Residual, which 

are then sorted from high to low frequencies; 
(2) K-means clustering is repeated for the decomposed components after the fuzzy en-

tropy magnitude is calculated. An approximate component reconstruction is then performed; 
(3) Three types of reconstructed components are predicted by the CNN-GRU-Atten-

tion model, and then the outcomes are linearly integrated to get the final results. 

 
Figure 1. The framework of the proposed model for China’s soybean spot price prediction. The 
original price series are decomposed using CEEMDAN in the Decomposition unit, and each decom-
posed component is transferred to the Clustering unit for fuzzy entropy calculation and K-means 
clustering. In the Reconstruction unit, the fuzzy entropy-based clustering components labeled High, 
Middle, and Low are reconstructed into three new components. New components are input to the 
Prediction unit for prediction, and final results are obtained by linear integration. 

2.2. CEEMDAN 
Complete ensemble empirical mode decomposition with adaptive noise [48] 

(CEEMDAN) effectively eliminates the mode-mixing problem in empirical mode decom-
position [49] (EMD). The reconstruction error is nearly zero compared to ensemble empir-
ical mode decomposition [50] (EEMD), which drastically reduces the computational cost. 

Define 𝐸𝐸𝑛𝑛(∙) as the modal component of the 𝑛𝑛th stage generated by applying the 
EMD algorithm, and the 𝑛𝑛th modal component generated by the CEEMDAN algorithm 
is denoted as an intrinsic mode function 𝐼𝐼𝐼𝐼𝐼𝐼𝑛𝑛 . The implementation steps of the 
CEEMDAN method are as follows: 

(1) The signal 𝑥𝑥(𝑡𝑡) to be decomposed is added to a Gaussian white noise sequence 
with 𝑁𝑁 times mean 0 to construct the sequence 𝑥𝑥𝑖𝑖(𝑡𝑡)(𝑖𝑖 = 1,2,⋯ ,𝑁𝑁). 

𝑥𝑥𝑖𝑖(𝑡𝑡) = 𝑥𝑥(𝑡𝑡) + 𝜀𝜀𝛿𝛿𝑖𝑖(𝑡𝑡)  (1) 
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where 𝜀𝜀 is the Gaussian white noise weight coefficient, 𝛿𝛿𝑖𝑖(𝑡𝑡) is the white noise sequence 
added for the 𝑖𝑖th time. 

(2) Decompose 𝑥𝑥𝑖𝑖(𝑡𝑡) by applying the EMD algorithm to obtain the first modal com-
ponent (𝐼𝐼𝐼𝐼𝐼𝐼) and the first unique residual component 𝑟𝑟1(𝑡𝑡). 

𝐼𝐼𝐼𝐼𝐼𝐼1(𝑡𝑡) =
1
𝑁𝑁
�𝐼𝐼𝐼𝐼𝐼𝐼1𝑖𝑖(𝑡𝑡)
𝑁𝑁

𝑖𝑖=1

 (2) 

𝑟𝑟1(𝑡𝑡) = 𝑥𝑥(𝑡𝑡) − 𝐼𝐼𝐼𝐼𝐼𝐼1(𝑡𝑡)  (3) 

(3) Add noise to the residual component of the 𝑗𝑗th (𝑗𝑗 = 2,3,⋯ ,𝑁𝑁) stage after decom-
position and continue to apply EMD for decomposition. 

𝐼𝐼𝐼𝐼𝐼𝐼𝑗𝑗(𝑡𝑡) =
1
𝑁𝑁
�𝐸𝐸1

𝑁𝑁

𝑖𝑖=1

�𝑟𝑟𝑗𝑗−1(𝑡𝑡) + 𝜀𝜀𝑗𝑗−1𝐸𝐸𝑗𝑗−1�𝛿𝛿𝑖𝑖(𝑡𝑡)��  (4) 

𝑟𝑟𝑗𝑗(𝑡𝑡) = 𝑟𝑟𝑗𝑗−1(𝑡𝑡) − 𝐼𝐼𝐼𝐼𝐼𝐼𝑗𝑗(𝑡𝑡)  (5) 

(4) Repeat step 3 until the termination condition is satisfied. The termination criterion 
is that the number of residual signal extremum points should be at most two. Finally, the 
original signal sequence is decomposed into 𝑁𝑁 modal components and the residual term 
𝑅𝑅(𝑡𝑡). 

𝑥𝑥(𝑡𝑡) = �𝐼𝐼𝐼𝐼𝐼𝐼𝑛𝑛(𝑡𝑡)
𝑁𝑁

𝑛𝑛=1

+ 𝑅𝑅(𝑡𝑡)  (6) 

2.3. Fuzzy Entropy and K-Means Clustering 
2.3.1. Fuzzy Entropy 

Fuzzy Entropy [51] is a nonlinear dynamic indicator of time series complexity meas-
ure that uses an exponential function to fuzzy the similarity measure formula and make 
its value fluctuate continuously and smoothly with parameter changes. 

(1) For a time series {𝒖𝒖(𝑖𝑖): 1 ≤ 𝑖𝑖 ≤ 𝑁𝑁} of a given length 𝑁𝑁, the vector set sequence 
{𝑿𝑿𝑖𝑖𝑚𝑚 , 𝑖𝑖 = 1,2, … ,𝑁𝑁 −𝑚𝑚 + 1} can be constructed by 

𝑿𝑿𝑖𝑖𝑚𝑚 = {𝒖𝒖(𝑖𝑖),𝒖𝒖(𝑖𝑖 + 1), … ,𝒖𝒖(𝑖𝑖 + 𝑚𝑚− 1)} − 𝒖𝒖0(𝑖𝑖)  (7) 

where 𝑚𝑚 is the embedding dimension and 𝒖𝒖0(𝑖𝑖) is the baseline of 𝑿𝑿𝑖𝑖𝑚𝑚, defined by 

𝒖𝒖0(𝑖𝑖) =
1
𝑚𝑚
� 𝒖𝒖(𝑖𝑖 + 𝑗𝑗)
𝑚𝑚−1

𝑗𝑗=0

 (8) 

(2) The distance 𝑑𝑑𝑖𝑖𝑗𝑗𝑚𝑚 between two vectors 𝑿𝑿𝑖𝑖𝑚𝑚 and 𝑿𝑿𝑗𝑗𝑚𝑚 is defined by 

𝑑𝑑𝑖𝑖𝑗𝑗𝑚𝑚 = 𝑑𝑑�𝑿𝑿𝑖𝑖𝑚𝑚,𝑿𝑿𝑗𝑗𝑚𝑚� = max
𝑘𝑘∈(0,𝑚𝑚−1)

{|[𝒖𝒖(𝑖𝑖 + 𝑘𝑘) − 𝒖𝒖0(𝑖𝑖)] − [𝒖𝒖(𝑗𝑗 + 𝑘𝑘) − 𝒖𝒖0(𝑗𝑗)]|}  (9) 

where 1 ≤ 𝑖𝑖, 𝑗𝑗 ≤ 𝑁𝑁 −𝑚𝑚 + 1, 𝑖𝑖 ≠ 𝑗𝑗. 
(3) Based on the distance 𝑑𝑑𝑖𝑖𝑗𝑗𝑚𝑚 defined above, the similarity of 𝑿𝑿𝑖𝑖𝑚𝑚 and 𝑿𝑿𝑗𝑗𝑚𝑚 can be 

calculated using the fuzzy function. 

𝐷𝐷𝑖𝑖𝑗𝑗𝑚𝑚 =  𝜇𝜇�𝑑𝑑𝑖𝑖𝑗𝑗𝑚𝑚,𝑛𝑛, 𝑟𝑟� = e− 𝑙𝑙𝑛𝑛 2�𝑑𝑑𝑖𝑖𝑖𝑖
𝑚𝑚 𝑟𝑟⁄ �

𝑛𝑛
 (10) 

𝑟𝑟 is the similarity tolerance parameter. 
(4) The matching template probability function 𝜙𝜙𝑚𝑚 for 𝑚𝑚 is defined as follows: 

𝜙𝜙𝑚𝑚(𝑛𝑛, 𝑟𝑟) =
1

𝑁𝑁 −𝑚𝑚
� (

1
𝑁𝑁 −𝑚𝑚 − 1

� 𝐷𝐷𝑖𝑖𝑗𝑗𝑚𝑚
𝑁𝑁−𝑚𝑚

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖

)
𝑁𝑁−𝑚𝑚

𝑖𝑖=1

 (11) 
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(5) Similarly, repeating steps 1 to 4 for 𝑚𝑚 + 1, the following equation for 𝜙𝜙𝑚𝑚+1(𝑛𝑛, 𝑟𝑟) 
can be obtained. 

𝜙𝜙𝑚𝑚+1(𝑛𝑛, 𝑟𝑟) =
1

𝑁𝑁 −𝑚𝑚
� (

1
𝑁𝑁 −𝑚𝑚 − 1

� 𝐷𝐷𝑖𝑖𝑗𝑗𝑚𝑚+1
𝑁𝑁−𝑚𝑚

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖

)
𝑁𝑁−𝑚𝑚

𝑖𝑖=1

 (12) 

(6) The formula for the fuzzy entropy value of the initial time series {𝒖𝒖(𝑖𝑖): 1 ≤ 𝑖𝑖 ≤ 𝑁𝑁} 
is defined as follows: 

𝐼𝐼𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐸𝐸𝑛𝑛(𝑚𝑚,𝑛𝑛, 𝑟𝑟) = lim
𝑁𝑁→∞

[ln𝜙𝜙𝑚𝑚(𝑛𝑛, 𝑟𝑟) − ln𝜙𝜙𝑚𝑚+1(𝑛𝑛, 𝑟𝑟)]  (13) 

2.3.2. K-Means Clustering 
K-means clustering [52] is an unsupervised algorithm that is widely used and is scal-

able and efficient for fitting datasets, aiming to classify object 𝑿𝑿(𝑡𝑡) =
{𝑥𝑥1(𝑡𝑡), 𝑥𝑥2(𝑡𝑡),⋯ , 𝑥𝑥𝑛𝑛(𝑡𝑡)} into the 𝐾𝐾 clusters with the closest mean. The 𝐾𝐾 cluster center of 
mass is calculated starting with the input of the cluster. 

(1) Calculate the distance between the data points 𝑿𝑿𝑘𝑘(𝑡𝑡) = {𝑥𝑥1𝑘𝑘(𝑡𝑡), 𝑥𝑥2𝑘𝑘(𝑡𝑡),⋯ ,𝑥𝑥𝑛𝑛𝑘𝑘𝑘𝑘 (𝑡𝑡)} 
and the 𝐾𝐾 cluster centers, connecting each point to the nearest center. 

𝑐𝑐𝑘𝑘(𝑡𝑡) =
1
𝑛𝑛𝑘𝑘
�𝑥𝑥𝑖𝑖𝑘𝑘(𝑡𝑡)
𝑛𝑛𝑘𝑘

𝑖𝑖=1

 (14) 

(2) Repeat the calculation of the 𝐾𝐾 center of mass position until it no longer moves, 
thus grouping the objects with min

𝑥𝑥𝑖𝑖
𝑘𝑘∈𝑋𝑋

𝐽𝐽(𝑡𝑡) at their minimization. 

𝐽𝐽(𝑡𝑡) = ����𝑥𝑥𝑖𝑖𝑘𝑘(𝑡𝑡) − 𝑐𝑐𝑘𝑘(𝑡𝑡)��
𝑛𝑛

𝑖𝑖=1

𝐾𝐾

𝑘𝑘=1

 (15) 

2.4. Description of CNN-GRU-Attention 
2.4.1. CNN 

Convolutional neural network [53] (CNN) performs layer-by-layer convolution and 
pooling operations on the input data. The convolution layer is the core of CNN, which 
performs the convolution operation on the input using local connectivity and weight shar-
ing to extract the deep features. The convolution process can be represented by the fol-
lowing equation: 

𝑪𝑪 = 𝑓𝑓(𝑿𝑿 ∙ 𝑾𝑾 + 𝒃𝒃)  (16) 

𝑪𝑪 is the output feature map of the convolution layer, 𝑿𝑿 is the input data, 𝑓𝑓(∙) is the 
nonlinear activation function, 𝑾𝑾 is the weight vector of the convolution kernel, 𝒃𝒃 is the 
bias term. 

The pooling layer performs operations on the output of the convolutional layer 
through certain rules to retain the main features while reducing the number of parameters 
and computation to prevent overfitting. The pooling process can be expressed by the fol-
lowing equation: 

𝒑𝒑 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑪𝑪)  (17) 
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2.4.2. GRU 
A Gated recurrent unit [54] (GRU) is a modified version of the long short-term 

memory (LSTM) architecture that combines the input gate and forget gate into an update 
gate with an additional reset gate (see Figure 2). 

 
Figure 2. Diagram of LSTM and GRU structure. (a) The structure diagram of a vanilla LSTM archi-
tecture. “C” represents the memory cell, “i” denotes the input gate, “f” represents the forget gate, 
and “o” denotes the output gate; (b) The simple architecture of GRU. “h” is the activation function, 
“z” refers to the update gate, and “r” stands for the reset gate. 

The GRU model can regulate the information without storing the cell. At time 𝑡𝑡, the 
activation function 𝒉𝒉𝑡𝑡

𝑗𝑗 is a linear interpolation between the candidate activation function 
𝒉𝒉𝑡𝑡

~𝑗𝑗 and the previous activation function 𝒉𝒉𝑡𝑡−1
𝑗𝑗 . 

𝒉𝒉𝑡𝑡
𝑗𝑗 = �1 − 𝒛𝒛𝑡𝑡

𝑗𝑗�𝒉𝒉𝑡𝑡−1
𝑗𝑗 + 𝒛𝒛𝑡𝑡

𝑗𝑗𝒉𝒉𝑡𝑡
~𝑗𝑗  (18) 

The update gate 𝒛𝒛𝑡𝑡
𝑗𝑗 determines the degree of cell update activation. The activation 

function is 𝒉𝒉𝑡𝑡
~𝑗𝑗: 

𝒛𝒛𝑡𝑡
𝑗𝑗 = 𝜎𝜎(𝜔𝜔𝑧𝑧𝑨𝑨𝑡𝑡 + 𝑈𝑈𝑡𝑡𝒉𝒉𝑡𝑡−1)𝑗𝑗  (19) 

𝒉𝒉𝑡𝑡
~𝑗𝑗 = 𝑡𝑡𝑡𝑡𝑛𝑛ℎ �𝜔𝜔𝑨𝑨𝑡𝑡 + 𝑈𝑈𝑟𝑟�𝒓𝒓𝑡𝑡

𝑗𝑗 × 𝒉𝒉𝑡𝑡−1��
𝑗𝑗

 (20) 

𝒓𝒓𝑡𝑡
𝑗𝑗 is the reset gate, which is closed to allow the unit to forget past information. 

𝒓𝒓𝑡𝑡
𝑗𝑗 = 𝜎𝜎(𝜔𝜔𝑟𝑟𝑨𝑨𝑡𝑡 + 𝒉𝒉𝑡𝑡−1)𝑗𝑗  (21) 

𝜎𝜎 is the sigmoid function, 𝜔𝜔 is the weight or parameter. The update gate controls 
the past state, cells with long-term relevance are called active update gates 𝐹𝐹, and cells 
with short-term relevance are called active reset gates 𝑟𝑟. 

2.4.3. Attention Mechanism 
The concept of an attention mechanism [55] can be explained as carefully selecting 

important items from a large amount of information and concentrating on those elements 
while disregarding the majority of the irrelevant information. The process of focusing is 
reflected in the weight coefficient calculation, where a higher weight denotes paying more 
attention. 

The model computes the environment vector 𝒄𝒄𝑖𝑖  based on the input vector 𝒉𝒉𝑖𝑖(𝑖𝑖 =
1,2,⋯ , 𝑘𝑘)  and jointly predicts the current hidden state. 𝒄𝒄𝑖𝑖  can be obtained from a 
weighted average of the previous states. 

𝒄𝒄𝑖𝑖 = �𝑡𝑡𝑖𝑖𝒉𝒉𝑖𝑖

𝑘𝑘

𝑖𝑖=1

 (22) 
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The attention weight 𝑡𝑡𝑖𝑖 is obtained by calculating the score 𝑠𝑠𝑖𝑖, according to which 
the degree of influence of each hidden layer vector on the output is evaluated. 

𝑠𝑠𝑖𝑖 = tanh(𝑤𝑤𝑇𝑇 + 𝒃𝒃𝑖𝑖)  (23) 

The correlation degree of ℎ𝑖𝑖  and 𝑐𝑐𝑖𝑖  is represented by 𝑠𝑠𝑖𝑖 . The final weight coeffi-
cients are acquired by normalizing 𝑠𝑠𝑖𝑖 using the SoftMax function. 

𝑡𝑡𝑖𝑖 = 𝑠𝑠𝑝𝑝𝑓𝑓𝑡𝑡𝑚𝑚𝑡𝑡𝑥𝑥(𝑠𝑠𝑖𝑖) =
𝑒𝑒𝑠𝑠𝑖𝑖

∑ 𝑗𝑗𝑒𝑒𝑠𝑠𝑖𝑖
 (24) 

3. Analysis of Experiments 
The purpose of this research is to implement the CEEMDAN method with fuzzy en-

tropy K-means clustering of components and CNN-GRU-Attention hybrid model to pre-
dict soybean prices. The model was split into two parts: the decomposition part 
(CEEMDAN with component clustering) and the prediction part (CNN-GRU-Attention). 
The entire empirical analysis is centered on major focused issues. 

First, how effective is the model’s prediction compared to other approaches? Does 
CNN-GRU-Attention consistently predict soybean prices with high accuracy? Second, 
consider whether the decomposition was more useful than the alternative that wasn’t 
used. Third, is the suggested model decomposition approach better than alternative de-
composition techniques? Are the overall outcomes of the suggested model optimal for 
predicting soybean prices? Before discussing the specific model, we will describe the data 
and criteria used in the empirical evidence. 

3.1. Data Sources and Standard Measurement 
In this paper, China’s soybean spot price time series data is selected as model inputs 

and forecast objects. The data are obtained from the Eastmoney Choice financial database 
(https://choice.eastmoney.com/ (accessed on 29 May 2022)). The data frequency is daily, 
and the price unit is “yuan/ton”. The timespan runs from 29 July 2011 to 27 May 2022, 
with 2505 sample data. The first 90 percent is the training set, and the last 10 percent is the 
test set. The data is described in Table 1, and the graphical description is shown in Figure 3. 

Table 1. Basic statistical analysis of soybean spot prices. 

Object Count Mean Min Max Standard Deviation 
Soybean 2505 4499.3869 3490.0000 6433.5400 779.6956 

Training set 2255 4321.7175 3490.0000 6030.0000 592.3186 
Testing set 250 6101.9643 5680.0000 6433.5400 270.3752 

 
Figure 3. The plot of Training and testing set split of China’s soybean spot price. 
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The series is Min-Max normalized prior to entering the prediction phase of the model 
training, and the processing formula is 𝑥𝑥′ = (𝑥𝑥 − 𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛)/(𝑥𝑥𝑚𝑚𝑚𝑚𝑥𝑥 − 𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛) where 𝑥𝑥 and 𝑥𝑥′ 
represent the original and normalized data, respectively. 

The difference between the observed and predicted values—known as the loss er-
ror—is used to assess the effectiveness of model prediction. The evaluation criteria em-
ployed in this research are root mean square error (RMSE), mean absolute percentage er-
ror (MAPE), and mean absolute error (MAE). The formulas for their calculations are as 
follows, accordingly. 

𝑅𝑅𝐼𝐼𝑅𝑅𝐸𝐸 = �
1
𝑛𝑛
�(𝐹𝐹�𝑖𝑖 − 𝐹𝐹𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

 (25) 

𝐼𝐼𝑀𝑀𝑀𝑀𝐸𝐸 =
100%
𝑛𝑛

�
|𝐹𝐹�𝑖𝑖 − 𝐹𝐹𝑖𝑖|

𝐹𝐹𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 (26) 

𝐼𝐼𝑀𝑀𝐸𝐸 =
1
𝑛𝑛
� |𝐹𝐹�𝑖𝑖 − 𝐹𝐹𝑖𝑖|
𝑛𝑛

𝑖𝑖=1

 (27) 

𝑛𝑛 is the length of the test set sequence, 𝐹𝐹𝑖𝑖  and 𝐹𝐹�𝑖𝑖 is the true value and the predicted 
value, respectively. 𝑖𝑖 is the test set sequence number. Obviously, the smaller the value of 
the evaluation criteria in the (0, +∞) range, the more reliable and accurate the prediction 
results. 

3.2. CEEMDAN Processing 
The data are divided up into numerous kinds of spectra by the frequency decompo-

sition algorithm. The spot price of soybeans is divided into 8 IMFs and 1 residual using 
CEEMDAN. The components are arranged from high to low frequency, as shown in Figure 4. 

 
Figure 4. China’s soybean spot price decomposed components using CEEMDAN. 
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3.3. Fuzzy Entropy-Based Components Clustering 
Fuzzy entropy calculation and K-means clustering were performed following the de-

composition of the price series into reciprocal spectra. The results are shown in Figure 5. 
Furthermore, in Table 2, the high and middle fuzzy entropy components, H1 and M1, 
respectively, are represented. The low fuzzy entropy components are designated by L1–
L7. The clustering explains how different sequence information is incorporated into vari-
ous components. 

Next, L1–L7 are reconstructed into new components to prepare the prediction. H1 
and M1 do not need to be reconstructed because they are already separate components. 

 
Figure 5. Fuzzy entropy of the components decomposed using CEEMDAN and K-means clustering 
map. (a) The values of the different dots represent the fuzzy entropy of each component, and the 
numerical units are e−4; (b) The white dots show the centers of the different K-means clusters. The 
purple, yellow, and green circles indicate the low, middle, and high fuzzy entropy component clus-
tering sets, respectively. 

Table 2. The clustering labels of different decomposed components. 

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 Res 
H1 M1 L1 L2 L3 L4 L5 L6 L7 

Notes: H, M, and L represent high, middle, and low fuzzy entropy clustering labels, respectively. 

3.4. Model Instructions and Parameter Setting 
The accuracy of the results in the prediction phase was impacted by using different 

time steps. Because of the small size and lack of global parameters when the time step is 
3, the prediction results exhibit substantial variances and some data oscillations. When 
the time step is 30, the time horizon is too wide, and it is easy to overlook some defining 
characteristics in the short term, which produces unreliable prediction outcomes. The final 
time step is chosen as 10 since it has the lowest error and maximum accuracy. 

A total of 18 models were used for comparison in the prediction analysis, and the 
specific abbreviations and instructions are shown in Table 3. In addition, the hyperparam-
eters of the main deep learning models (CNN and GRU) used in the proposed model are 
described in Table 4. 

  



Sustainability 2022, 14, 15522 11 of 22 
 

Table 3. The instructions for comparison models. 

Model Model Instruction Abbreviation 
Model 1 Convolutional Neural Network CNN 

Model 2 
Combined model of Convolutional Neural Net-

work and Gated Recurrent Unit 
CNN-GRU 

Model 3 
Combined model of Convolutional Neural Net-
work and Gated Recurrent Unit with Attention 

mechanism 
CNN-GRU-Attention 

Model 4 Gated Recurrent Unit GRU 

Model 5 
Gated Recurrent Unit with Attention mecha-

nism 
GRU-Attention 

Model 6 Long Short-term Memory network LSTM 
Model 7 Multilayer Perceptron model MLP 
Model 8 Support Vector Regression model SVR 

Model 9 
A hybrid model by integrating CEEMDAN 

with fuzzy entropy clustering and CNN 
CEEMDAN-CNN 

Model 10 
A hybrid model by integrating CEEMDAN 

with fuzzy entropy clustering and CNN-GRU 
CEEMDAN-CNN-GRU 

Model 11 
(Proposed 

model) 

A hybrid model by integrating CEEMDAN 
with fuzzy entropy clustering and CNN-GRU 

with Attention mechanism 

CEEMDAN-CNN-GRU-At-
tention 

Model 12 
A hybrid model by integrating CEEMDAN 

with fuzzy entropy clustering and GRU 
CEEMDAN-GRU 

Model 13 
A hybrid model by integrating CEEMDAN 

with fuzzy entropy clustering and GRU with 
Attention mechanism 

CEEMDAN-GRU-Atten-
tion 

Model 14 
A hybrid model by integrating CEEMDAN 

with fuzzy entropy clustering and LSTM 
CEEMDAN-LSTM 

Model 15 
A hybrid model by integrating CEEMDAN 

with fuzzy entropy clustering and MLP 
CEEMDAN-MLP 

Model 16 
A hybrid model by integrating CEEMDAN 

with fuzzy entropy clustering and SVR 
CEEMDAN-SVR 

Model 17 
A hybrid model by integrating EMD with 

fuzzy entropy clustering and CNN-GRU with 
Attention mechanism 

EMD-CNN-GRU-Attention 

Model 18 
A hybrid model by integrating EEMD with 

fuzzy entropy clustering and CNN-GRU with 
Attention mechanism 

EEMD-CNN-GRU-Atten-
tion 

Table 4. Parameter setting of the hybrid proposed model. 

Models Parameters Values 

CNN 

Filters 64 
Kernel size 2 
Activation Relu 

Pooling size 2 
Flatten -- 
Epochs 500 

Batch size 64 
GRU Neurons 128 
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Activation tanh 
Epochs 500 

Batch size 64 
Attention Weights compute Softmax 

3.5. Prediction Results 
The experiment was split into two main sections to address the three key difficulties 

stated at the start of the empirical analysis. The first compares the prediction part model’s 
(CNN-GRU-Attention) results to examine whether it can accurately and consistently fore-
cast soybean prices. The second is a comparison of the predictions made using the various 
models that have been suggested to see if using the decomposition method increases the 
precision of the prediction part. To confirm the best option, further evaluate the predic-
tions from various decomposition methods. 

3.5.1. Comparison of the Prediction Part 
The prediction part (CNN-GRU-Attention) is compared with widely used deep 

learning and machine learning methods based on the same data and parameters before 
utilizing the total suggested model. The specific prediction results are shown in Figure 6. 

 
Figure 6. Comparison results of the prediction part with different models. (a) Comparison of RMSE, 
MAPE and MAE values for different prediction models; (b) The predicted values of the proposed 
model’s prediction part components are compared as well as the actual value, and the results of the 
comparison over the last 31 days are displayed in a zoomed-in style. 

A calculation was utilized to determine the percentage decrease in the particular 
evaluation criteria of the comparison models to have a clearer representation of how much 
the prediction accuracy of one model improved over another (e.g., the Percentage change 
in RMSE value regarding the comparison of CNN-GRU and CNN-GRU-Attention = 100% 
× (CNN-GRU-CNN-GRU-Attention)/CNN-GRU). 

As shown in Figure 6, the RMSE, MAPE, and MAE values for CNN-GRU are 27.3987, 
0.2293, and 14.1113, respectively. For CNN-GRU-Attention, the values are 25.9292, 0.1563, 
and 9.3975. Compared to the CNN-GRU without the attention mechanism, the CNN-
GRU-Attention model reduced the RMSE, MAPE, and MAE values by 5.36%, 31.84%, and 
33.40%, respectively. It shows that the attention mechanism has a highly developed ca-
pacity for information extraction and that, when given weights to increase prediction ac-
curacy, it could efficiently extract the information relations handled by the previous 
model. The inclusion of the attention mechanism makes it possible to more accurately 
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identify several significant trends and recurrent characteristics within the soybean price 
series, which frequently indicate some issue or phenomenon inside the spot market. 

In contrast to the CNN (RMSE: 33.9952, MAPE: 0.4547, and MAE: 27.5918) or GRU 
(27.4469, 0.2463, and 15.2130) models alone, the CNN-GRU model has RMSE values that 
are 19.40% and 0.18% lower, MAPE values that are 49.57% and 45.83% lower, and MAE 
values that are 48.86% and 44.86% lower. The value of information processing may be 
understood by focusing on how CNN dominated data characteristic recognition and 
GRU-anchored chronological information prediction, improving combined prediction ac-
curacy significantly. The combination of the two models outlined above is thus a more 
crucial step in the prediction of soybean prices. The profound potential relationship be-
tween input feature space and temporal dependencies is the baseline for the model to 
achieve the benefits. 

In addition, the GRU-Attention model performs slightly worse than GRU, likely be-
cause it solely considers chronological correlation. This causes the model’s accuracy to 
decline since the attention mechanism unintentionally increases the weight of unim-
portant information. 

After linking the attention mechanism, the prediction part model’s capacity to dis-
cern the depth of the input feature space and chronological correlation is confirmed, giv-
ing it a significant advantage in soybean spot price prediction. 

3.5.2. Comparison of the Hybrid Models 
Validation was conducted following the implementation of the decomposition part 

using the same parameters and data set. The predictions for their standard measurement 
are shown in Figure 7. In addition, the RMSE, MAPE, and MAE values for CEEMDAN-
SVR, which are 334.7073, 4.7625, and 280.0073, respectively, are not represented in the 
figure due to the anomalous values. 

 
Figure 7. Comparison results after implementing the decomposition part. (a) Comparison of RMSE, 
MAPE and MAE values for different hybrid models; (b) The predicted values of the hybrid models 
with the proposed model components are compared as well as the actual value and the results of 
the comparison over the last 31 days are displayed in a zoomed-in style. 

As seen in Figure 7, the value of each evaluation criterion gradually declines as the 
prediction model’s complexity rises after assembling the decomposition part. It can be 
inferred that suitable stripping disassembled the data information with good sequence 
complexity gradient and expected partial model applicability enhancement after 
CEEMDAN processing and reconstructing the components by fuzzy entropy clustering. 

In terms of RMSE, MAPE, and MAE, CEEMDAN-CNN-GRU has values of 13.8469, 
0.1712, and 10.4263. The results for CEEMDAN-GRU-Attention are 14.7061, 0.1547, and 
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9.3746, correspondingly. When compared to the CEEMDAN-CNN-GRU and CEEMDAN-
GRU-Attention models, the RMSE values of CEEMDAN-CNN-GRU-Attention (12.9781) 
are decreased by 6.27% and 11.75%, the MAPE values (0.1210) are decreased by 29.32% 
and 21.78%, and the MAE values (7.3312) are decreased by 29.69% and 21.80%, respec-
tively. This indicates that the prediction component is still applicable in component pre-
diction, which lowers the sequence’s overall complexity and improves the model’s ability 
to understand distinctive data and temporal relevance to produce better outcomes. 

Meanwhile, CEEMDAN-CNN-GRU has 13.97% and 6.96% lower RMSE, 9.70% and 
1.89% lower MAPE, 9.82%, and 1.97% lower MAE values than CEEMDAN-CNN (RMSE: 
16.0957, MAPE: 0.1896 and MAE: 11.5628) and CEEMDAN-GRU (RMSE: 14.8826, MAPE: 
0.1745 and MAE: 10.6355), respectively. It is verified that the joint model has the same 
good prediction performance after decomposition as the individual model. 

Moreover, as illustrated in Figure 8, it is clear that the implementation of the decom-
position part significantly improves overall prediction accuracy. The result of 
CEEMDAN-CNN-GRU-Attention has RMSE, MAPE, and MAE values of 49.95%, 22.58%, 
and 21.99% lower than CNN-GRU-Attention, respectively. The evaluation metrics de-
crease significantly compared to the prediction part models with proposed model com-
ponents, demonstrating the effectiveness in raising applicability and utility. 

The value information contained in the series is effectively rearranged following the 
series decomposition–component clustering procedure, making it more appropriate for 
the combination model’s forecasting component. The aforementioned findings further 
show that, to improve forecasting outcomes, the complex combination model for soybean 
spot prices can more fully and successfully account for both short-term repetitious infor-
mation and long-term reliance in its series. 

 
Figure 8. The comparison results of whether to implement the decomposition part. 
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3.5.3. Comparison of Various Decomposition Methods 
The prediction results of the standard measurement caused by different decomposi-

tion means are depicted in Figure 9, which are also tested using the same data set and 
parameter expansion. 

 
Figure 9. Comparison results of using different decomposition. (a) Comparison of RMSE, MAPE, 
and MAE values for three various decomposition methods; (b) The predicted values of the hybrid 
models with diverse decomposition techniques are compared as well as the actual value, and the 
results of the comparison over the last 31 days are displayed in a zoomed-in style. 

As demonstrated in Figure 9, EMD-CNN-GRU-Attention has the following RMSE, 
MAPE, and MAE values: 21.6874, 0.1988, and 12.0041, respectively. The respective values 
for EEMD-CNN-GRU-Attention are 23.6603, 0.2999, and 18.1278. The prediction part with 
CEEMDAN as the axis produces the best training results with 40.16% and 45.15% lower 
RMSE values, 39.13% and 59.65% lower MAPE values, 38.93%, and 59.56% lower MAE 
values than EMD and EEMD, respectively. It proves that the CEEMDAN-CNN-GRU-At-
tention has superior model stability, fits a stronger trend of data variance, and has greater 
consistency of evaluation criteria. The relative advantages of making improvements are 
becoming more and more clear. 

As seen above, the CEEMDAN technique is more suited to deconstructing the vari-
ous hidden implicit information about soybean prices. The serial complexity of soybean 
prices, however, dictates the limitations of its application, despite the partial performance 
increase of the EMD method. In addition, the EEMD processing’s overall assessment met-
rics are slightly greater than those of the EMD, most likely due to its inability to completely 
remove Gaussian white noise during reconstruction or prediction, which is overdone in 
terms of processing. 

3.5.4. The Comparison of All Model Components 
The one-by-one comparison results of the models involved in the research are illus-

trated in Figures 10–12 to display how the RMSE, MAPE, and MAE values have increased 
or decreased relative to each other. The purpose of the comparison is to determine the 
percentage change in prediction accuracy between any two models compared to the par-
ticular value of the evaluation standards. When the percentage change is negative (posi-
tive), it indicates a percent reduction (rise) in the specific value of the evaluation criterion 
for the model in the row compared to the model in the column or a percent improvement 
(decrease) in the model’s ability to predict outcomes accurately. Utilizing color is a more 
perceptual technique to see the shift. The prediction accuracy of the model in the row over 
the model in the column is higher when the blue degree of the color block between the 
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two models is darker, whereas a lower prediction performance is indicated by a deeper 
red degree. For instance, in Figure 10, the RMSE value of CNN-GRU-Attention is 49.95% 
higher than that of CEEMDAN-CNN-GRU-Attention and 31.11% lower than that of the 
CNN model alone, implying that the model prediction accuracy of CNN-GRU-Attention 
is less than the former and greater than the latter. Accordingly, the three models with the 
decreasing order prediction accuracy for the data are CEEMDAN-CNN-GRU-Attention, 
CNN-GRU-Attention, and CNN. All three assessment criteria show a huge decrease when 
the decomposition part is combined compared to the prediction part alone, and some 
findings are even close to double the improvement. 

After adaptive decomposition, the fuzzy entropy clustering strategy can efficiently 
mine the complexity and difference patterns of component information. This method also 
improves the model’s adaptability and functionality while increasing the performance 
level of the sequence input characteristic space and chronological dependence correla-
tions. Also, the CNN-GRU-Attention model has much higher prediction accuracy than all 
other models in its prediction part. In all compared instances, the model with the decom-
position part outperforms the model without, in terms of prediction accuracy. Compared 
to previous strategies, the decomposition strategy suggested in this research offers the 
best model utility enhancement. In addition, the Supplementary Materials contain all the 
model predictions and the original data used in this research. 

 
Figure 10. The comparison results for all models of the percentage change in RMSE value. The cal-
culation equation is: RMSE (%) = 100 × (RMSE in rows− RMSE in colums)/RMSE in rows . The 
meaning of the formula is the percentage change between the specific value of the RMSE for the 
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model situated in the rows compared to the columns. The blue block indicates that the model in the 
row has a better prediction accuracy than that in the column, while the red shows the lower. 

 
Figure 11. The comparison results for all models of the percentage change in MAPE value. The cal-
culation equation is: MAPE (%) = 100 × (MAPE in rows− MAPE in colums)/MAPE in rows . The 
meaning of the formula is the percentage change between the specific value of the MAPE for the 
model situated in the rows compared to the columns. The blue block indicates that the model in the 
row has a better prediction accuracy than that in the column, while the red shows the lower. 
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Figure 12. The comparison results for all models of the percentage change in MAE value. The cal-
culation equation is: MAE (%) = 100 × (MAE in rows− MAE in colums)/MAE in rows. The meaning 
of the formula is the percentage change between the specific value of the MAE for the model situated 
in the rows compared to the columns. The blue block indicates that the model in the row has a better 
prediction accuracy than that in the column, while the red shows the lower. 

4. Conclusions and Discussion 
In this paper, a decomposition-integration prediction model is proposed that com-

bines a component clustering strategy with a dual-coupled neural network that incorpo-
rates an attention mechanism. The original sequence is processed by CEEMDAN using 
fuzzy entropy as a condition for K-means clustering of discrepant components. The re-
constructed sequences are put into a CNN-GRU model for prediction, which integrates 
an attention mechanism. 

Firstly, the integrated CNN-GRU model can effectively distill the data characteristics 
and temporal dependencies. The coupled attention mechanism achieves the input feature 
space and chronological importance assessment through the dynamic assignment of 
weights to deeply improve the prediction part. This is in line with the argument by Ribeiro 
and Coelho [56], which shows that the integrated models collectively forecast soybean 
prices more accurately than a single model. 

Secondly, the complexity and volatility of time series can be decreased by using 
CEEMDAN. The results of the fuzzy entropy-based K-means clustering can efficiently 
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combine the component information, greatly reduce the number of prediction models 
needed after adaptive decomposition, and improve adaptability and superiority. This is 
comparable to the findings of Wang et al. [43], who used the futures prices of wheat, corn, 
and soybeans for forecasting and showed that all hybrid models, when combined with 
the decomposition technique, outperformed the individually upgraded models. 

Thirdly, two experimental sections are set up to address the three main issues 
brought up at the start of the empirical analysis. These sections comprehensively confirm 
that the proposed model can not only efficiently extract crucial characteristic information 
and recognize relative dependencies between long- and short-term time series but also 
improve prediction findings. The model parameters employed in the prediction part are 
predetermined. However, the idea put out by Xu and Zhang [8] can be a starting point for 
more research by examining various model settings for an algorithm, delay, hidden neu-
ron, and data-splitting ratio. 

Therefore, this research confirms that the fuzzy entropy K-means clustering, coupled 
with the attention neural network (CNN-GRU-Attention) and the application of the 
CEEMDAN approach, outperforms all models in the experiment and can more accurately 
predict China’s soybean spot price. In addition, Multiple uncertainties, including those 
related to climate change, natural disasters, international commerce, and macroeconomic 
policies, also impact soybean spot prices. Events with high stochasticity pose numerous 
difficulties for the soybean trade. To support the decomposition algorithm, this paper con-
ducts research from a univariate time-series forecasting perspective. By considering dif-
ferent uncertainty characteristics and indirectly impacting statistical parameters [57], fur-
ther study on the consequences of soybean price volatility and other studies can be done. 
Pre-processing elements like data complementation or cleaning can be considered, given 
the high complexity of nonlinearity and non-stationarity of soybean price series. The ap-
proaches utilized in this research all use pre-existing model frameworks. It is then possible 
to try to construct model methods for certain difficulties to offer suggestions for other 
similar prediction issues [58]. 
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Nomenclature 
ARIMA Autoregressive integrated moving average 
CEEMDAN Complete ensemble empirical mode decomposition with adaptive noise 
CNN Convolutional neural network 
EEMD Ensemble empirical mode decomposition 
EMD Empirical mode decomposition 
GARCH Autoregressive conditional heteroskedasticity 
GRU Gated recurrent unit 
IMF Intrinsic mode function 
LSTM Long short-term memory 
MAE Mean absolute error 
MAPE Mean absolute percentage error 
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MLP Multilayer perceptron 
RMSE Root mean square error 
RNN Recurrent neural network 
SVM Support vector machine 
SVR Support vector regression 
VAR Vector autoregression 
VMD Variational mode decomposition 
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