
Citation: Wang, S.; Zhang, Y.; Fu, E.;

Tang, S. Multiscale Backcast

Convolution Neural Network for

Traffic Flow Prediction in The

Frequency Domain. Appl. Sci. 2022,

12, 11912. https://doi.org/10.3390/

app122311912

Academic Editor: Luís Picado

Santos

Received: 22 October 2022

Accepted: 14 November 2022

Published: 22 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Multiscale Backcast Convolution Neural Network for Traffic
Flow Prediction in The Frequency Domain
Shuying Wang 1, Yinong Zhang 1,*, En Fu 2 and Shaohu Tang 1,*

1 College of Urban Rail Transit and Logistics, Beijing Union University, Beijing 100101, China
2 Beijing Key Laboratory of Information Service Engineering, Beijing Union University, Beijing 100101, China
* Correspondence: zdhtyinong@buu.edu.cn (Y.Z.); tshaohu@163.com (S.T.)

Abstract: With the construction of intelligent transportation systems in recent years, intelligent meth-
ods for the prediction of traffic flow are becoming more and more important, and accurate prediction
plays a key role in enabling downstream scheduling algorithms. However, the accuracy of most
current forecasting algorithms remains unsatisfactory. Because traffic depends on the time of the day
and varies throughout the week, such as during peak commuting periods as opposed to other times,
traffic flow data show evident cyclical patterns. We capitalize on this notion and propose a multiscale
convolutional feedback network for frequency prediction based on frequency angle. We combine
multiscale convolution (MSC) with dilated convolution, and increase the convolutional receptive
field by expanding cavity size while retaining similar parameterization costs, and achieve multiscale
convolution with kernels referring to different receptive fields. At the same time, we incorporate
an autoencoding module by assigning the same set of hidden features to input reconstruction and
output prediction, which results in enhanced stability of features within the hidden layers. When
we tested our approach on the Traffic dataset, our model achieved the best performance as assessed
via the three indicators measured using mean squared error (MSE), mean absolute error (MAE), and
correlation coefficient (CORR), with improvements of 3.818%, 2.472% and, 0.1515%, respectively.

Keywords: traffic flow prediction; time series; convolutional neural networks; auto-encoder; intelli-
gent transportation systems

1. Introduction

Recent economic developments worldwide have led to a steady increase in road traffic.
Because many of the problems posed by the increase of traffic flow are difficult to solve,
such as traffic jams, traffic accident and so on [1–3], intelligent transportation systems (ITS)
have become increasingly important [4]. Current technology can maximize road utilization
without changing the existing road structure, and various scheduling algorithms rely on
traffic flow data, which can be accessed through various data mining algorithms. Traffic
flow and calendar time are strongly coupled because traffic flow varies over different time
periods, and can be treated as a natural time series. In addition, because traffic intersections
are key nodes for analyzing traffic flow and different intersections are strongly coupled
over space, traffic flow data are also characterized by spatial correlations. In summary,
traffic flow data represent a form of spatially correlated time series data, and the prediction
of traffic flow time series can guide the deployment of downstream processing algorithms.

In the last twenty years, a lot of traffic flow prediction approaches were proposed
from different perspectives [5–8]. The traffic flow data is represented by time series data;
hence, the most typical approaches used for traffic flow prediction are AutoRegressive
based approaches [9–11]. The AutoRegressive based methods suppose that the prediction
time stamp result is a linear combination of the past several time stamp values. This priori
hypotheses works well in solving some simple prediction tasks but brings new problems at
the same time, such as ignoring spatial correlation between multiple time series, unable to

Appl. Sci. 2022, 12, 11912. https://doi.org/10.3390/app122311912 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122311912
https://doi.org/10.3390/app122311912
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-5610-8617
https://doi.org/10.3390/app122311912
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122311912?type=check_update&version=2

Appl. Sci. 2022, 12, 11912 2 of 12

capture complex temporal varying mode, etc. Similarly, Support Vector Regression based
approaches [12,13], another classical approach, faces a homologous problem. The accuracy
of these classical approaches is relatively low due to the limited fitting and generalization
ability of functions, especially for solving prediction tasks with a modern complex traffic
flow time series dataset.

As the deep learning techniques develop, the fitting and generalization ability of learn-
ing system is greatly raised. In recent years, the methods used for traffic flow prediction
have been mainly based on deep learning techniques operating over temporal and spatial
dimensions, such as Feed-forward Neural Networks [14], Recurrent Neural Networks
(RNN) [15], and Convolutional Neural Networks (CNN) [16]. After intense research and
development, these networks have achieved good results in traffic flow prediction prob-
lems, as recently demonstrated by Bi-LSTM [17], StemGNN [18], and Autoformer [19].
These findings go far beyond traditional statistical methods, which are essentially focused
on the time-domain patterns of sequences and attempt to predict future information from
past point-in-time information. Notwithstanding the success of machine learning in this
area, two main problems remain unresolved. First, traffic flow data are strongly cyclical
(traffic flow is more intense than usual during the morning and evening rush hours, and
less intense on weekends than on weekdays). This important feature is difficult to model di-
rectly via a time-domain representation. Second, RNN architectures based on time-domain
information are greatly affected by the length of the input sequence (as the length increases,
model performance decreases and inference time increases). To overcome these limitations,
in this study, we eliminate the influence of time domain characteristics by operating our
analysis in the frequency domain, and we propose a multiscale convolutional feedback
network that is also based on the frequency domain. The core contributions of this article
are the following:

1. This paper proposes a new prediction network based on a deep learning approach,
which captures and learns the strong periodic pattern of traffic flow data by processing
the frequency domain characteristics of traffic flow data. The network is integrated
into a multiscale structure by combining dilated convolution modules of different sizes
to increase network responsiveness to different frequency components and increase
the robustness of network features. At the same time, inspired by the autoencoder
structure and the N-BEATS network [20], our network is divided into a feedback
branch and a prediction branch. The prediction branch is used to output the prediction
result, while the feedback branch is used to fit the input sequence. This approach
stabilizes features within hidden layers.

2. Our model outperformed four other models when challenged with the Traffic public
dataset, delivering superior results in terms of Mean Squared Error (MSE), Mean Ab-
solute Error (MAE), and Correlation coefficient (CORR). The role played by different
model components was studied via ablation experiments.

2. Related Works

In recent years, traffic flow prediction methods based on deep learning have received
more and more attention, and numerous new methods have emerged that build upon
classical deep learning algorithms. The most basic methods, such as the LSTM [21] and
GRU [22] models based on RNN architectures, are widely used in traffic flow prediction
problems. Recent studies have focused on solving the gradient problem associated with
LSTM and GRU models, and the problem of slow training speed, for example using
effective attention mechanisms. Attention mechanisms were proposed to improve the
accuracy of sequence-to-sequence (Seq2Seq) models [4] by assigning weights to features at
different time steps. This was achieved by calculating similarity with a given metric (Key)
to enhance the feature extraction capabilities of the model. For example, MTGNN [23]
attempts to model multivariate time series through an attention mechanism operating
over both temporal and spatial dimensions. Do et al. [24] establish the spatial-temporal
correlation of sequences by combining convolutional gating recursive units with attention

Appl. Sci. 2022, 12, 11912 3 of 12

mechanisms. Cheng et al. [25] use attention mechanisms to model different series at adjacent
intersections, known as sequential slots. They extract features from the upstream and
downstream sequence slots of each target location, and then use the attention mechanism
to assign weights to them. Xiao et al. [26] adopted LSTM in combination with the attention
mechanism to extract time domain features and used convolutional layers to extract spatial
features. Thanks to recent breakthroughs in applying the Transformer structure [27] to a
wide range of deep learning tasks, its core module named the self-attention mechanism,
has become an effective improvement on the standard attention mechanism. Unlike
standard attention mechanisms, the similarity indicator (Key) used to support self-attention
mechanisms is derived from a linear transformation of the input, hence the adoption
of the term “self” to denote this class of attentional algorithms. Zhang et al. proposed
SATP-GAN [28], which is based on self-attention mechanisms and generative adversarial
networks (GAN). Their approach uses self-attention instead of an RNN structure to extract
sequential time patterns and relies on reinforcement learning methods to adjust model
parameters. Yan et al. [29] proposed a Traffic Transformer model that uses global and
local encoders to improve transformers for traffic flow prediction problems. The latest
time series forecasting model, Autoformer [19], has also achieved excellent performance
on traffic flow dataset. This model incorporates a series-level autocorrelation mechanism
based on autocorrelation theory to replace the self-attention mechanism, with the goal of
capturing periodic information across the sequence more effectively.

In addition to the above methods, graph neural networks are also commonly used for
traffic flow modeling. Graph neural networks are deep learning methods for processing
graph data structures. They are better suited to describing the spatial relationships of
roads than convolutional networks; the latter can only handle spatial relationships in
Euclidean spaces represented by two-dimensional matrices or raster images, while graph
neural networks [29] can represent non-Euclidean pairwise relationships in road networks.
Through prior knowledge, self-learning, and other methods, it is possible to obtain a
graph structure adjacency matrix between traffic intersections. This tool can be used
to describe the degree of correlation between different intersections to explicitly model
spatial relationships associated with traffic flow data. Seo et al. [30] propose a graph
convolutional recursive network method that combines graph convolution with recurrent
neural networks. Yu et al. [31] propose a graph convolutional neural network with a
gating mechanism, which preserves the ability of the model to capture long-term temporal
correlations. To more effectively reconstruct the adjacency matrix of the traffic flow data
graph, StemGNN [18] exploits an attention mechanism to derive a relationship diagram for
the intersection by encoding traffic flow data via the GRU unit. This unit is used to model
the graph neural network and extract features in the frequency domain.

3. Model Architecture

This section describes the input data processing pipeline and the overall architecture
of the multiscale convolutional feedback network operating in the frequency domain.

3.1. Problem Definition and Preprocessing

In this paper, all processing characteristics of the model are defined in the frequency
domain. Problem definition and data flow are detailed below.

Given a multivariate time series X =
{

xi
t
}
∈ RN×T , X is a real matrix, N is the

number of variables, T is the length of time, and xi
t x the value of the ith sequence at

moment t. The prediction length is L:

Appl. Sci. 2022, 12, 11912 4 of 12



W k = F(XT) =
T−1
∑

t=0
xi

te
−i 2πk

K t

Wk = reshape
(
W k
)

Vl = f (Wk)
V l = reshape−1(Vl)

ŶL = F−1(V l
)
= 1

L

L−1
∑

k=0
V kei 2πk

K l

F (∗) is the Fourier transform, F−1(∗) is the inverse Fourier transform, W k is a
complex matrix containing the frequency representation of the input sequence XT . Taking
advantage of the conjugate symmetry that characterizes the output of the Fourier transform,
we only consider the half-side spectrum so k = [T/2] + 1, where [*] is the rounding
operation. Imaginary part and real part of the complex matrix are subsequently extracted
via the reshape(∗) operation and stacked onto two-dimensional vectors in the form of real
numbers. Wk is the converted real matrix. Taking one series with length T as an example,
the preprocessing method is shown in Figure 1:

Appl. Sci. 2022, 12, x FOR PEER REVIEW 4 of 12

⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧ 𝒲ഥ௞ = ℱሺ𝒳்ሻ = ෍ 𝑥௧௜𝑒ି௜ଶగ௞௄ ௧்ିଵ

௧ୀ଴𝒲௞ = 𝑟𝑒𝑠ℎ𝑎𝑝𝑒ሺ𝒲ഥ௞ሻ𝒱௟ = 𝑓ሺ𝒲௞ሻ𝒱ത௟ = 𝑟𝑒𝑠ℎ𝑎𝑝𝑒ିଵሺ𝒱௟ሻ𝒴෠௅ = ℱିଵሺ𝒱ത௟ሻ = 1𝐿 ෍ 𝒱ത௞𝑒௜ଶగ௞௄ ௟௅ିଵ
௞ୀ଴

ℱሺ∗ሻ is the Fourier transform, ℱିଵሺ∗ሻ is the inverse Fourier transform, 𝒲ഥ௞ is a com-
plex matrix containing the frequency representation of the input sequence 𝒳். Taking
advantage of the conjugate symmetry that characterizes the output of the Fourier trans-
form, we only consider the half-side spectrum so 𝑘 = ሾ𝑇/2ሿ ൅ 1, where [*] is the rounding
operation. Imaginary part and real part of the complex matrix are subsequently extracted
via the 𝑟𝑒𝑠ℎ𝑎𝑝𝑒ሺ∗ሻ operation and stacked onto two-dimensional vectors in the form of
real numbers. 𝒲௞ is the converted real matrix. Taking one series with length 𝑇 as an ex-
ample, the preprocessing method is shown in Figure 1:

Figure 1. Preprocessing method, where 𝑖 is imaginary unit. 𝑓ሺ∗ሻ is the learning target for the model, and the output of the model is in the same
format as 𝒲௞. The inverse of the 𝑟𝑒𝑠ℎ𝑎𝑝𝑒ሺ∗ሻ operation is used to convert 𝒱௟ into a com-
plex matrix 𝒱ത௟, which is then subjected to inverse Fourier transformation to obtain the
final prediction result 𝒴෠௅ of length 𝐿.

In general, our goal is to obtain a frequency mapping model, which receives the fre-
quency representation of the input time series and outputs the combination of the imagi-
nary part and the real part of the prediction frequency. Thus, we can ignore the temporal
features of input/output series to simplify our prediction problem.

3.2. Multiscale Backcast Convolution Neural Network
3.2.1. Dilated Multi-Scale Convolutional Layer

After the preprocessing method described in Section 3.1, the traffic flow time series
of two-dimensional multivariate data, initially composed of variable dimensions and time
dimensions, was transformed into three-dimensional data composed of variable dimen-
sions, frequency dimensions, and complex dimensions. We denote this object with 𝒲௞ ∈ℝே×௞×ଶ, where 2 in the final dimension represents imaginary and real parts. Because the

Figure 1. Preprocessing method, where i is imaginary unit.

f (∗) is the learning target for the model, and the output of the model is in the same
format asWk. The inverse of the reshape(∗) operation is used to convert Vl into a complex
matrix V l , which is then subjected to inverse Fourier transformation to obtain the final
prediction result ŶL of length L.

In general, our goal is to obtain a frequency mapping model, which receives the
frequency representation of the input time series and outputs the combination of the
imaginary part and the real part of the prediction frequency. Thus, we can ignore the
temporal features of input/output series to simplify our prediction problem.

3.2. Multiscale Backcast Convolution Neural Network
3.2.1. Dilated Multi-Scale Convolutional Layer

After the preprocessing method described in Section 3.1, the traffic flow time series
of two-dimensional multivariate data, initially composed of variable dimensions and
time dimensions, was transformed into three-dimensional data composed of variable di-
mensions, frequency dimensions, and complex dimensions. We denote this object with
Wk ∈ RN×k×2, where 2 in the final dimension represents imaginary and real parts. Because
the frequency domain representation of the time series records amplitude from low to
high frequency, the different frequency components are not independent. In order to use

Appl. Sci. 2022, 12, 11912 5 of 12

as few parameters as possible to explore the dependencies between different frequency
bands, we designed a multiscale convolutional feedback network for the frequency domain
based on a two-dimensional convolution module. Multiscale convolution comes from
the Inception Network [32], which uses multiple sizes of convolution kernels to extract
features of different scales for the same set of feature maps, and then combines results
across scales. This method can effectively improve the utilization rate of feature maps.
Building on this approach, model parameters are further reduced by using dilated convolu-
tion [33] to enhance the receptive field of the convolutional kernel without increasing the
number of parameters for convolutional kernels spanning multiple scales. The multiscale
convolutional layer adopted in this paper is shown in Figure 2.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 12

frequency domain representation of the time series records amplitude from low to high
frequency, the different frequency components are not independent. In order to use as
few parameters as possible to explore the dependencies between different frequency
bands, we designed a multiscale convolutional feedback network for the frequency do-
main based on a two-dimensional convolution module. Multiscale convolution comes
from the Inception Network [32], which uses multiple sizes of convolution kernels to ex-
tract features of different scales for the same set of feature maps, and then combines results
across scales. This method can effectively improve the utilization rate of feature maps.
Building on this approach, model parameters are further reduced by using dilated convo-
lution [33] to enhance the receptive field of the convolutional kernel without increasing
the number of parameters for convolutional kernels spanning multiple scales. The mul-
tiscale convolutional layer adopted in this paper is shown in Figure 2.

Figure 2. Multiscale convolutional layers.

In the figure, dilation represents the size of the dilation. Each multiscale convolu-
tional layer contains three convolutional kernels of different sizes. Size variation is gener-
ated by the size of the dilation, not by the size of the convolutional kernel. By increasing
dilation size, the receptive field of the convolutional kernel can be expanded without al-
tering the number of parameters associated with the convolutional kernel. The three con-
volutional layers use padding operations to keep the feature map size of the input and
output unchanged. After that, the features are normalized using the BatchNorm layer. By
using LeakyRelu as the activation function, and by downsampling the feature map using
maximum pooling, we obtain feature maps for the three different receptive fields. It
should be noted that the dimensions of the three sets of feature maps are the same.

3.2.2. Overall Architecture
The overall architecture diagram of our model is shown in Figure 3. First, the input

multivariate sequence 𝒳் ∈ ℝே×் is transformed to obtain the frequency domain repre-
sentation. Real and imaginary parts of the complex matrix are separated by the reverse
operation to form a three-dimensional real matrix 𝒲௞ ∈ ℝே×௞×ଶ, which is then used as
input for the model. 𝒲௞ goes through the first multiscale convolutional layer to obtain a
feature map of three sets with half frequency length: 𝒰ଵଵ, 𝒰ଶଵ, 𝒰ଷଵ = 𝑀𝑢𝑙𝑡𝑖𝑠𝑐𝑎𝑙𝑒𝐶𝑜𝑛𝑣ሺ𝒲௞ሻ 𝒰௜ଵ ∈ ℝ௠×௞ଶ×ଶ , 𝑖 ∈ {1, 2, 3}

In the above expression, m indicates the number of convolutional kernels in the con-
volutional layer, which is set to 512 for the experiments reported in this article. By apply-
ing a similar operation, we obtain a second multiscale convolutional layer 𝒰ଵଶ, 𝒰ଶଶ, 𝒰ଷଶ
with frequency length 4/𝑘.

After obtaining three sets of feature maps, we use the concatenation operation to con-
nect the three sets of feature maps:

Figure 2. Multiscale convolutional layers.

In the figure, dilation represents the size of the dilation. Each multiscale convolutional
layer contains three convolutional kernels of different sizes. Size variation is generated
by the size of the dilation, not by the size of the convolutional kernel. By increasing
dilation size, the receptive field of the convolutional kernel can be expanded without
altering the number of parameters associated with the convolutional kernel. The three
convolutional layers use padding operations to keep the feature map size of the input and
output unchanged. After that, the features are normalized using the BatchNorm layer. By
using LeakyRelu as the activation function, and by downsampling the feature map using
maximum pooling, we obtain feature maps for the three different receptive fields. It should
be noted that the dimensions of the three sets of feature maps are the same.

3.2.2. Overall Architecture

The overall architecture diagram of our model is shown in Figure 3. First, the input
multivariate sequence XT ∈ RN×T is transformed to obtain the frequency domain repre-
sentation. Real and imaginary parts of the complex matrix are separated by the reverse
operation to form a three-dimensional real matrixWk ∈ RN×k×2, which is then used as
input for the model. Wk goes through the first multiscale convolutional layer to obtain a
feature map of three sets with half frequency length:

U 1
1 ,U 1

2 ,U 1
3 = MultiscaleConv(Wk)

U 1
i ∈ Rm× k

2×2 , i ∈ {1, 2, 3}

In the above expression, m indicates the number of convolutional kernels in the
convolutional layer, which is set to 512 for the experiments reported in this article. By
applying a similar operation, we obtain a second multiscale convolutional layer U 2

1 ,U 2
2 ,U 2

3
with frequency length 4/k.

Appl. Sci. 2022, 12, 11912 6 of 12

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 12

 𝒰ଷ = 𝑐𝑜𝑛𝑐𝑎𝑡{𝒰ଵଶ, 𝒰ଶଶ, 𝒰ଷଶ} ∈ ℝ௠×ଷ×௞ସ ×ଶ 𝒰ଷ is used as an encoding feature for forecasting. We are inspired by the Autoen-
coder and StemGNN [6], where the feedback branch and the prediction branch are used
separately. First, the two branches expand or shorten the frequency length of 𝒰ଷ through
their respective fully connected layers, to accommodate the requirements of both branches
for their respective frequency bands: 𝒰௙௢௥௘௖௔௦௧ସ = 𝒰ଷ𝑊௙ ∈ ℝ௠×௟×ଶ, 𝒰௕௔௖௞௖௔௦௧ସ = 𝒰ଷ𝑊௕ ∈ ℝ௠×௞×ଶ 𝑊௙ and 𝑊௕ are learnable parameters. Following this step, the two sets of features
are processed by the convolutional layer. The output is represented in the frequency do-
main, so it needs to be converted to the time domain via inverse Fourier transformation.

Figure 3. Multiscale backcast convolution neural network structure. 𝒰௕௔௖௞௖௔௦௧ସ is used to reconstruct the 𝒳் of the input sequence to stabilize the hidden
features of the model, while 𝒰௙௢௥௘௖௔௦௧ସ is used to predict the future. The errors of the two
together constitute the training loss function: loss = ෍ሺ𝐵௧௜ሺ𝒳்ሻ െ 𝑥௧௜ሻଶ ൅ ෍ሺ𝑦ො௟௜ െ 𝑦௟௜ሻଶ

In the expression above, 𝐵௧௜ሺ𝒳்ሻ is the reconstruction value of the ith variable output
by the model backcasting at moment t, 𝑥௧௜ is the input value of the simulcast, 𝑦ො௟௜ is the
predicted value of the l-moment of the ith variable, and 𝑦௟௜ is the real value of the simul-
cast. The result is added as the loss value of the model, and model parameters are opti-
mized using the Adam optimizer [34].

Figure 3. Multiscale backcast convolution neural network structure.

After obtaining three sets of feature maps, we use the concatenation operation to
connect the three sets of feature maps:

U 3 = concat
{
U 2

1 ,U 2
2 ,U 2

3

}
∈ Rm× 3×k

4 ×2

U 3 is used as an encoding feature for forecasting. We are inspired by the Autoencoder
and StemGNN [6], where the feedback branch and the prediction branch are used separately.
First, the two branches expand or shorten the frequency length of U 3 through their
respective fully connected layers, to accommodate the requirements of both branches for
their respective frequency bands:

U 4
f orecast = U

3W f ∈ Rm×l×2,

U 4
backcast = U

3Wb ∈ Rm×k×2

W f and Wb are learnable parameters. Following this step, the two sets of features are
processed by the convolutional layer. The output is represented in the frequency domain,
so it needs to be converted to the time domain via inverse Fourier transformation.

U 4
backcast is used to reconstruct the XT of the input sequence to stabilize the hidden

features of the model, while U 4
f orecast is used to predict the future. The errors of the two

together constitute the training loss function:

loss = ∑ (Bi
t(XT)− xi

t)
2
+ ∑

(
ŷi

l − yi
l

)2

In the expression above, Bi
t(XT) is the reconstruction value of the ith variable output

by the model backcasting at moment t, xi
t is the input value of the simulcast, ŷi

l is the

Appl. Sci. 2022, 12, 11912 7 of 12

predicted value of the l-moment of the ith variable, and yi
l is the real value of the simulcast.

The result is added as the loss value of the model, and model parameters are optimized
using the Adam optimizer [34].

4. Experiments and Analysis
4.1. Dataset and Evaluation Metrics

We used the public Traffic dataset from the California Department of Transportation
as experimental input data to our model. This dataset contains 17,544 records of road
occupancy rates recorded by 862 sets of sensors between 1 July 2016 and 2 July 2018,
recording every 1 h. Part of the dataset is shown in Figure 4.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 12

4. Experiments and Analysis
4.1. Dataset and Evaluation Metrics

We used the public Traffic dataset from the California Department of Transportation
as experimental input data to our model. This dataset contains 17,544 records of road oc-
cupancy rates recorded by 862 sets of sensors between 1 July 2016 and 2 July 2018, record-
ing every 1 h. Part of the dataset is shown in Figure 4.

Figure 4. Part of the Traffic dataset used in our experiments.

In the experiment, the Autoformer’s experiment configuration [19] was followed; we
used the first 70% (12,184 data elements) as a training set, 70%–80% of the data as valida-
tion set, and the last 20% of the data as a test set to verify the model’s performance. The
performance of the model was measured using mean squared error (MSE), mean absolute
error (MAE), and correlation coefficient (CORR):

MSE = 1𝑛 ෍ሺ𝑦௧ െ 𝑦ො௧ሻଶ௡
௧ୀଵ

MAE = 1𝑛 ෍ |𝑦௧ െ 𝑦ො௧|௡
௧ୀଵ

CORR = 𝑐𝑜𝑣ሺ𝑌, 𝑌෠ሻ𝜎𝑌𝜎𝑌෠

Lower MSE/MAE values and higher CORR values correspond to better model per-
formance. We compared performance from our model with that associated with three
baseline models: Autoformer [19], StemGNN [18], and LSTM [21]. The LSTM model is a
Seq2Seq model with a hidden layer dimension of 256, a codec of 3 layers each, and a 20%

Figure 4. Part of the Traffic dataset used in our experiments.

In the experiment, the Autoformer’s experiment configuration [19] was followed; we
used the first 70% (12,184 data elements) as a training set, 70–80% of the data as validation
set, and the last 20% of the data as a test set to verify the model’s performance. The
performance of the model was measured using mean squared error (MSE), mean absolute
error (MAE), and correlation coefficient (CORR):

MSE =
1
n

n

∑
t=1

(yt − ŷt)
2

MAE =
1
n

n

∑
t=1
|yt − ŷt|

CORR =
cov
(
Y, Ŷ

)
σYσŶ

Appl. Sci. 2022, 12, 11912 8 of 12

Lower MSE/MAE values and higher CORR values correspond to better model perfor-
mance. We compared performance from our model with that associated with three baseline
models: Autoformer [19], StemGNN [18], and LSTM [21]. The LSTM model is a Seq2Seq
model with a hidden layer dimension of 256, a codec of 3 layers each, and a 20% dropout
rate to avoid overfitting. Autoformer [19] and StemGNN [18] were implemented using the
default configuration provided by the author.

4.2. Compare Experiments

The experimental platform used in this experiment carries the following specifications:
Intel i7-7700 CPU, GTX 1080 graphics card, 32 GB RAM, Ubuntu version 18.04. We used
Pytorch 1.10.1 (based on Python 3.8) as our deep learning framework.

Table 1 details the hyperparameter configuration adopted during model training. We
model the experimental configuration of Autoformer [19], setting both the input and output
length to 96. The final experimental results on the test set are shown in Table 2. Results are
based on the average of three experiments.

Table 1. Training Hyperparameter Configuration.

Hyperparameter Value

Batch Size 128
Epoch 40

Early Stop 3
Learning Rate (Initial value) 0.0005

Input Timestamp Length 96
Prediction Length 96

Model Hidden Dimension 512

Table 2. Comparison of Results Different Models.

Model MSE MAE CORR

Ours 0.6272 0.3629 0.8592
Autoformer [19] 0.6521 0.3983 0.8212
StemGNN [18] 0.7384 0.4622 0.7971

LSTM 0.6652 0.3721 0.8579

Compared with Autoformer, our model showed MSE, MAE, and CORR increased by
3.818%, 8.887%, and 4.627%, respectively. Compared with StemGNN, our model showed
these figures were 15.059%, 21.48%, and 7.791%. Compared with LSTM, our model showed
these figures were 5.712%, 2.472%, and 0.1515%.

Part of the prediction results as shown in Figure 5:

Appl. Sci. 2022, 12, 11912 9 of 12Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 12

Figure 5. Part of the test set prediction results for sensors 100~500. The curves are the prediction
results of each sensor. The “Input”, “GT”, and “Prediction” below each curve correspond to the
frequency domain representation of the input time series, the ground truth series, and the model
prediction result. The core frequency components are accurately captured by our model, especially
the low-frequency components with large amplitude.

4.3. Ablation Experiments
In this section, we probe the contribution of each model component experimentally

by setting up three ablation models, which we then compare with the intact model termed
multiscale backcast convolution neural network (MBCNN). The none-backcast variant of
the model involved removal of the feedback branch. The none-dilation model was de-
signed to test the role of the multiscale convolution module. This variant of MBCNN only
implemented standard convolution instead of multiscale convolution. Finally, the none-
dilation-backcast variant lacks both the backcast branch and the multiscale convolutional
layer. We introduced this variant to study the combined effect of these two model com-
ponents. Table 3 shows results from the ablation experiments, averaged over three exper-
iments.

Table 3. Results of Ablation Experiments.

Model MSE MAE CORR
MBCNN 0.6272 0.3629 0.8592

none-backcast 0.6398 0.3722 0.8542
none-dilation 0.6376 0.3763 0.8537

none-dilation-backcast 0.6461 0.3781 0.8511

It is clear that removing the feedback branch reduced performance: MSE, MAE, and
CORR decreased by 2.0%, 2.5%, and 0.58%, respectively. After removing the multiscale
convolution, performance decreased by 1.66%, 3.69%, and 0.64%, respectively. Removing
both components caused the most obvious degradation in performance with losses of
3.01%, 4.19%, and 0.94% for the three metrics, respectively. However, thanks to the ad-
vantages brought by frequency domain angle analysis, the residual performance obtained

Figure 5. Part of the test set prediction results for sensors 100~500. The curves are the prediction
results of each sensor. The “Input”, “GT”, and “Prediction” below each curve correspond to the
frequency domain representation of the input time series, the ground truth series, and the model
prediction result. The core frequency components are accurately captured by our model, especially
the low-frequency components with large amplitude.

4.3. Ablation Experiments

In this section, we probe the contribution of each model component experimentally by
setting up three ablation models, which we then compare with the intact model termed
multiscale backcast convolution neural network (MBCNN). The none-backcast variant
of the model involved removal of the feedback branch. The none-dilation model was
designed to test the role of the multiscale convolution module. This variant of MBCNN
only implemented standard convolution instead of multiscale convolution. Finally, the
none-dilation-backcast variant lacks both the backcast branch and the multiscale convolu-
tional layer. We introduced this variant to study the combined effect of these two model
components. Table 3 shows results from the ablation experiments, averaged over three
experiments.

Table 3. Results of Ablation Experiments.

Model MSE MAE CORR

MBCNN 0.6272 0.3629 0.8592
none-backcast 0.6398 0.3722 0.8542
none-dilation 0.6376 0.3763 0.8537

none-dilation-backcast 0.6461 0.3781 0.8511

It is clear that removing the feedback branch reduced performance: MSE, MAE, and
CORR decreased by 2.0%, 2.5%, and 0.58%, respectively. After removing the multiscale
convolution, performance decreased by 1.66%, 3.69%, and 0.64%, respectively. Removing
both components caused the most obvious degradation in performance with losses of 3.01%,
4.19%, and 0.94% for the three metrics, respectively. However, thanks to the advantages
brought by frequency domain angle analysis, the residual performance obtained after

Appl. Sci. 2022, 12, 11912 10 of 12

removing the two components is still better than most baseline model indicators, and only
MAE and CORR indicators are worse than those associated with LSTM.

5. Conclusions and Future Research

With the goal of exploiting the strong periodicity of traffic flow data, this paper
proposes a MBCNN to predict traffic flow. We implement multiscale convolution with
fewer parameters through different dilation sizes of cavity convolution, and we achieve
efficient use of feature maps via two layers of multiscale convolution. At the same time,
we enhance features within the hidden layers of multiscale convolutional extraction via
co-optimization of the feedback branch and prediction branch; these two branches use the
same set of feature maps in the frequency domain to achieve efficient reconstruction and
prediction. We validate the effectiveness of this architecture through ablation experiments.
Comparative experiments with the latest results from other models show that our model
achieves the best performance indicators for the traffic road occupancy dataset. Notably,
the worst ablated variant of our model, nevertheless, outperforms most baseline models,
further emphasizing the effectiveness of extracting features from traffic flow data in the
frequency domain.

The traffic flow prediction problem, as an essential part of the intelligent transportation
systems (ITS), is still facing a lot of challenges. Based on neural network and supervised
learning, this study proposes a new solution for traffic flow prediction. In addition, with the
rapid development of other methods in the field of artificial intelligence, many advanced
algorithms have the potential to solve the traffic flow prediction problem and be used for
building ITS, such as heuristics optimization algorithm. For example, a learning-based evo-
lutionary many-objective algorithm (RVEMA/OL) with better generalization ability [35],
or a Mixed-integer Linear Programming (MILP) model used for finding the best ambu-
lance dispatching strategy [36]. Beyond that, the Adaptive Polyploid Memetic Algorithm
(APMA) [37] proposed to solve the problem of scheduling cross-docking terminal (CDT)
trucks. Pasha et al. proposed a novel multi-objective optimization model for the vehicle
routing problem [38], which aimed to minimize the total cost associated with traversing the
edges of the network and the total cost associated with visiting the nodes of the network.
Kavoosi et al. developed a mixed-integer linear programming mathematical model to
minimize the summation of waiting costs, handling costs, and late departure costs of the
vessels that are to be served at a marine container terminal [39]. The above methods provide
different ideas for ITS construction from varying perspectives, which can be referred as the
direction of future research.

Author Contributions: Conceptualization, S.W.; Methodology, S.W.; Software, S.W.; Validation,
E.F.; Investigation, E.F.; Data curation, S.W.; Writing—original draft, S.W.; Project administration,
S.T.; Funding acquisition, Y.Z. All authors have read and agreed to the published version of the
manuscript.

Funding: This research was funded by [National Key R&D Program for Young Scientists] grant
number [2021YFB1715700] And [Science and Technology Program Project of Beijing Education
Committee] grant number [KM202111417003].

Data Availability Statement: https://pems.dot.ca.gov/.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Tan, H.; Wu, Y.; Shen, B.; Jin, P.J.; Ran, B. Short-term traffic prediction based on dynamic tensor completion. IEEE Trans. Intell.

Transp. Syst. 2016, 17, 2123–2133. [CrossRef]
2. Zhang, J.; Wang, F.-Y.; Wang, K.; Lin, W.-H.; Xu, X.; Chen, C. Data-Driven Intelligent Transportation Systems: A survey. IEEE

Trans. Intell. Transp. Syst. 2011, 12, 1624–1639. [CrossRef]
3. Zhao, Z.; Chen, W.; Wu, X.; Chen, P.C.; Liu, J. LSTM network: A deep learning approach for short-term Traffic forecast. IET Intell.

Transp. Syst. 2017, 11, 68–75. [CrossRef]

https://pems.dot.ca.gov/
http://doi.org/10.1109/TITS.2015.2513411
http://doi.org/10.1109/TITS.2011.2158001
http://doi.org/10.1049/iet-its.2016.0208

Appl. Sci. 2022, 12, 11912 11 of 12

4. Do, L.N.; Taherifar, N.; Vu, H.L. Survey of neural network-based models for short-term Traffic state prediction. WIREs Data Min.
Knowl. Discov. 2018, 9, e1285. [CrossRef]

5. Chen, C.; Hu, J.; Meng, Q.; Zhang, Y. Short-time traffic flow prediction with Arima-GARCH model. In Proceedings of the 2011
IEEE Intelligent Vehicles Symposium (IV), Baden-Baden, Germany, 5–9 June 2011. [CrossRef]

6. Smith, B.L.; Williams, B.M.; Keith Oswald, R. Comparison of parametric and nonparametric models for traffic flow forecasting.
Transp. Res. Part C Emerg. Technol. 2002, 10, 303–321. [CrossRef]

7. Gavirangaswamy, V.B.; Gupta, G.; Gupta, A.; Agrawal, R. Assessment of Arima-based prediction techniques for road-traffic
volume. In Proceedings of the 5th International Conference on Management of Emergent Digital EcoSystems—MEDES ’13,
Luxembourg, 28–31 October 2013. [CrossRef]

8. Dong, H.; Jia, L.; Sun, X.; Li, C.; Qin, Y. Road traffic flow prediction with a time-oriented Arima model. In Proceedings of the 2009
5th International Joint Conference on INC, IMS and IDC, Seoul, Republic of Korea, 25–27 August 2009. [CrossRef]

9. Duan, P.; Mao, G.; Zhang, C.; Wang, S. Starima-based traffic prediction with time-varying lags. In Proceedings of the 2016 IEEE
19th International Conference on Intelligent Transportation Systems (ITSC), Rio de Janeiro, Brazil, 1–4 November 2016. [CrossRef]

10. Han, C.; Song, S.; Wang, C.H. A real-time short- term traffic flow adaptive forecasting method based on arima model. Acta
Simulata Syst. Sin. 2004, 16, 1530–1535. [CrossRef]

11. Wang, Y.; Li, L.; Xu, X. A piecewise hybrid of arima and svms for short-term traffic flow prediction. In Proceedings of the 2017
International Conference on Neural Information Processing, Guangzhou, China, 14–18 November 2017.

12. Castro-Neto, M.; Jeong, Y.-S.; Jeong, M.-K.; Han, L.D. Online-SVR for short-term traffic flow prediction under typical and atypical
traffic conditions. Expert Syst. Appl. 2009, 36, 6164–6173. [CrossRef]

13. Zeng, D.; Xu, J.; Gu, J.; Liu, L.; Xu, G. Short term traffic flow prediction based on online learning SVR. In Proceedings of the 2008
Workshop on Power Electronics and Intelligent Transportation System, Guangzhou, China, 2–3 August 2008. [CrossRef]

14. Park, D.; Rillet, L.R. Forecasting freeway link travel times with a multilayer feedforward neural Network. Comput. Aided Civ.
Infrastruct. Eng. 1999, 14, 357–367. [CrossRef]

15. Zhang, H.M. Recursive prediction of traffic conditions with neural network models. J. Transp. Eng. 2000, 126, 472–481. [CrossRef]
16. Ma, X.; Dai, Z.; He, Z.; Ma, J.; Wang, Y.; Wang, Y. Learning traffic as images: A deep convolutional neural network for large-scale

transportation network speed prediction. Sensors 2017, 17, 818. [CrossRef]
17. Ma, C.; Dai, G.; Zhou, J. Short-term traffic flow prediction for Urban Road sections based on time series analysis and

LSTM_BILSTM method. IEEE Trans. Intell. Transp. Syst. 2022, 23, 5615–5624. [CrossRef]
18. Cao, D.; Wang, Y.; Duan, J.; Zhang, C.; Zhu, X.; Huang, C.; Tong, Y.; Xu, B.; Bai, J.; Tong, J.; et al. Spectral temporal graph neural

network for multivariate time-series forecasting. Adv. Neural Inf. Process. Syst. 2020, 33, 17766–17778.
19. Wu, H.; Xu, J.; Wang, J.; Long, M. Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting.

Adv. Neural Inf. Process. Syst. 2021, 34, 22419–22430.
20. Oreshkin, B.N.; Carpov, D.; Chapados, N.; Bengio, Y. N-BEATS: Neural basis expansion analysis for interpretable time series

forecasting. In Proceedings of the 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,
26–30 April 2020.

21. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
22. Cho, K.; van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations

using RNN encoder–decoder for statistical machine translation. In Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; pp. 1724–1734.

23. Wu, Z.; Pan, S.; Long, G.; Jiang, J.; Chang, X.; Zhang, C. Connecting the dots: Multivariate time series forecasting with Graph
Neural Networks. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery Data Mining,
Virtual Event, 6–10 July 2020. [CrossRef]

24. Do, L.N.N.; Vu, H.L.; Vo, B.Q.; Liu, Z.; Phung, D. An effective spatial-temporal attention based neural network for traffic flow
prediction. Transp. Res. Part C Emerg. Technol. 2019, 108, 12–28. [CrossRef]

25. Cheng, X.; Zhang, R.; Zhou, J.; Xu, W. DeepTransport: Learning spatial-temporal dependency for traffic condition forecasting.
In Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil, 8–13 July 2018.
[CrossRef]

26. Xiao, Y.; Yin, H.; Zhang, Y.; Qi, H.; Zhang, Y.; Liu, Z. A dual-stage attention-based Conv-LSTM network for spatio-temporal
correlation and multivariate time series prediction. Int. J. Intell. Syst. 2021, 36, 2036–2057. [CrossRef]

27. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need. In
Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Volume 30.

28. Zhang, L.; Wu, J.; Shen, J.; Chen, M.; Wang, R.; Zhou, X.; Xu, C.; Yao, Q.; Wu, Q. SATP-Gan: Self-attention based generative
adversarial network for traffic flow prediction. Transp. B Transp. Dyn. 2021, 9, 552–568. [CrossRef]

29. Yan, H.; Ma, X.; Pu, Z. Learning dynamic and hierarchical traffic spatiotemporal features with Transformer. IEEE Trans. Intell.
Transp. Syst. 2021, 23, 22386–22399. [CrossRef]

30. Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; Yu, P.S. A comprehensive survey on Graph Neural Networks. IEEE Trans. Neural
Netw. Learn. Syst. 2021, 32, 4–24. [CrossRef]

31. Seo, Y.; Defferrard, M.; Vandergheynst, P.; Bresson, X. Structured sequence modeling with graph convolutional recurrent networks.
In Neural Information Processing; Springer: Cham, Switzerland, 2018; pp. 362–373. [CrossRef]

http://doi.org/10.1002/widm.1285
http://doi.org/10.1109/ivs.2011.5940418
http://doi.org/10.1016/S0968-090X(02)00009-8
http://doi.org/10.1145/2536146.2536176
http://doi.org/10.1109/ncm.2009.224
http://doi.org/10.1109/itsc.2016.7795773
http://doi.org/10.1007/BF02911033
http://doi.org/10.1016/j.eswa.2008.07.069
http://doi.org/10.1109/peits.2008.134
http://doi.org/10.1111/0885-9507.00154
http://doi.org/10.1061/(ASCE)0733-947X(2000)126:6(472)
http://doi.org/10.3390/s17040818
http://doi.org/10.1109/TITS.2021.3055258
http://doi.org/10.1162/neco.1997.9.8.1735
http://doi.org/10.1145/3394486.3403118
http://doi.org/10.1016/j.trc.2019.09.008
http://doi.org/10.1109/ijcnn.2018.8489600
http://doi.org/10.1002/int.22370
http://doi.org/10.1080/21680566.2021.1916646
http://doi.org/10.1109/TITS.2021.3102983
http://doi.org/10.1109/TNNLS.2020.2978386
http://doi.org/10.1007/978-3-030-04167-0_33

Appl. Sci. 2022, 12, 11912 12 of 12

32. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with
convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June
2015; pp. 1–9.

33. Yu, F.; Koltun, V.; Funkhouser, T. Dilated Residual Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [CrossRef]

34. Kingma, D.P.; Adam, B.J.L. A method for stochastic optimization. In Proceedings of the 3rd International Conference on Learning
Representations ICLR 2015, San Diego, CA, USA, 7–9 May 2015; pp. 1–15.

35. Zhao, H.; Zhang, C. An online-learning-based evolutionary many-objective algorithm. Inf. Sci. 2020, 509, 1–21. [CrossRef]
36. Rabbani, M.; Oladzad-Abbasabady, N.; Akbarian-Saravi, N. Ambulance routing in disaster response considering variable patient

condition: NSGA-II and MOPSO algorithms. J. Ind. Manag. Optim. 2022, 18, 1035. [CrossRef]
37. Dulebenets, M.A. An adaptive polyploid memetic algorithm for scheduling trucks at a cross-docking terminal. Inf. Sci. 2021, 565,

390–421. [CrossRef]
38. Pasha, J.; Nwodu, A.L.; Fathollahi-Fard, A.M.; Tian, G.; Li, Z.; Wang, H.; Dulebenets, M.A. Exact and metaheuristic algorithms for

the vehicle routing problem with a factory-in-a-box in multi-objective settings. Adv. Eng. Inform. 2022, 52, 101623. [CrossRef]
39. Kavoosi, M.; Dulebenets, M.A.; Abioye, O.F.; Pasha, J.; Wang, H.; Chi, H. An augmented self-adaptive parameter control in

evolutionary computation: A case study for the berth scheduling problem. Adv. Eng. Inform. 2019, 42, 100972. [CrossRef]

http://doi.org/10.1109/cvpr.2017.75
http://doi.org/10.1016/j.ins.2019.08.069
http://doi.org/10.3934/jimo.2021007
http://doi.org/10.1016/j.ins.2021.02.039
http://doi.org/10.1016/j.aei.2022.101623
http://doi.org/10.1016/j.aei.2019.100972

	Introduction
	Related Works
	Model Architecture
	Problem Definition and Preprocessing
	Multiscale Backcast Convolution Neural Network
	Dilated Multi-Scale Convolutional Layer
	Overall Architecture

	Experiments and Analysis
	Dataset and Evaluation Metrics
	Compare Experiments
	Ablation Experiments

	Conclusions and Future Research
	References

