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Abstract: Sparse arrays based on the concept of a sum-difference coarray (SDCA) have increased
degrees of freedom and enlarged effective array aperture compared to those only considering a
difference coarray. Nevertheless, there still exist a number of overlapping virtual sensors between
the difference coarray and the sum coarray, yielding high coarray redundancy. In this paper, we
propose a k-level extended sparse array configuration consisting of one sparse subarray with k-level
expansion and one uniform linear subarray. By systematically analyzing the inherent structure of the
k-level extended sparse array, the closed-form expressions for sensor locations, uniform DOF and
coarray redundancy ratio (CARR) are derived. Moreover, with the utilization of a k-level extended
strategy, the proposed array remains a hole-free property and achieves low coarray redundancy.
According to the proposed sparse array, the spatial and temporal information of the incident sources
are jointly exploited for underdetermined direction-of-arrival estimation. The theoretical propositions
are proven and numerical simulations are performed to demonstrate the superior performance of the
proposed array.

Keywords: sparse array; sum-difference coarray; degrees of freedom; coarray redundancy ratio;
direction-of-arrival estimation

1. Introduction

Direction-of-arrival (DOA) estimation has been a core topic in various array signal
processing applications, such as radar, sonar, wireless communications and electronic
surveillance [1–6], where the sensor array plays a vital role in collecting the spatial sam-
pling of impinging sources [7]. In contrast to the widely utilized uniform linear arrays
(ULAs) [8,9], the emerging sparse arrays [10–12] have broken the limit of spatial sampling
and exhibit remarkable properties in array flexibility, effective array aperture, and degrees
of freedom (DOF) [13,14], and can thus handle the underdetermined scenarios wherein the
number of incident sources exceeds that of physical sensors.

Benefiting from these advantages, a number of sparse array geometry designs have
been investigated. The minimum redundancy array (MRA) [15] and the minimum hole
array (MHA) [16] are the two typical ones, which, however, have no closed-form expres-
sions for the array configurations. In contrast, the nested array (NA) [17] and coprime array
(CPA) [18] can be systematically designed and the sensor locations can be expressed ana-
lytically. Typically, a two-level NA comprises two concatenated uniform linear subarrays
with different spacings, which have a hole-free difference coarray (DCA) and can provide
O
(

N2) DOF with O(N) physical sensors. Based on the prototype of NA, several modified
versions have been developed by rearranging the sensor locations, such as super NA [19],
augmented NA [20], enhanced NA [21], and coprime NA [22], so as to further increase
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the number of available DOF and alleviate the mutual coupling effects. Alternatively, a
CPA is constructed with two coprime uniform linear subarrays and can provide O(MN)
available DOF with O(M + N) physical sensors, whereas there exist holes in the DCA. To
counter this, several variants including a coprime array with compressed inter-element
spacing (CACIS) [23], coprime array with displaced subarrays (CADiS) [23] and thinned
CPA [24] were developed. Nevertheless, all the aforementioned sparse array configurations
accomplish DOA estimates using only the spatial information of impinging sources from
the perspective of DCA equivalence, neglecting the corresponding temporal information.

Recently, several array designs based on sum-difference coarray (SDCA) have attracted
considerable interest [25–28], wherein the spatial and temporal information of the received
data can be fully utilized for DOA estimation. The SDCA is defined as the combination of
sum co-array (SCA) and DCA, which has the potential to increase the number of DOF and
resolve more sources. The prototype CPA [25] is improved based on SDCA, where more
DOF than twice of the array aperture can be achieved. However, there exist several holes in
the coarray and only the consecutive ones (also named as uniform DOF) are available for
DOA estimation. In [26], a diff-sum coprime array with multiperiod subarrays (DsCAMpS)
is designed to further enlarging the number of consecutive DOF. Similarly, two improved
NAs [27] (i.e., INAwSDCA-I and INAwSDCA-II) have been presented by translating and
flipping the subarrays of NA. However, for the aforementioned array configurations based
on SDCA, lots of overlapping virtual sensors between their difference sets and sum sets
lead to heavy coarray redundancy. Although some works, for example, the transformed
nested arrays [28] (including TNA-I and TNA-II), were performed to reduce the number of
redundant sensors, their coarrays still suffer from the existence of holes.

In this paper, a k-level extended sparse array configuration is designed with the union
of one sparse subarray related to the extended coefficient k and one uniform linear subarray.
It has simple closed-form expressions for array geometry and can achieve hole-free SDCA
for any value of k. Moreover, the k-level extended strategy can further reduce the number of
overlapping virtual sensors. Based on the proposed sparse array, the spatial and temporal
information of incident sources are jointly exploited for DOA estimation. To be more
specific, the main contributions of this work are summarized as follows:

(1) We propose a novel sparse array configuration based on the concept of SDCA, termed
as a k-level extended sparse array, which has an increased uniform DOF and reduced
coarray redundancy simultaneously.

(2) The closed-form expressions for the array configuration and uniform DOF are derived,
and the hole-free property of the SDCA is analyzed and proven.

(3) The coarray redundancy ratio of the k-level extended sparse array is derived for
evaluating the coarray redundancy between DCA and SCA quantitatively.

Notations: we use lower-case letters, bold letters and upper-case bold letters to char-
acterize scalars, vectors and matrices, respectively. (·)T, (·)H, and (·)∗ and E[·] represent
the transpose, conjugate transpose, conjugate, and the statistical expectations, respectively.
IN is an N × N identity matrix and Z+ is the positive integer set. Additionally,vec(·),
diag(·) and card(·) are, respectively, the vectorization operator, diagonalization operator
and cardinality operator. The symbol ⊗ denotes the Kronecker product, and � denotes the
Khatri–Rao product.∂ f (n)/∂n denotes the partial derivative of function f (n) to n.

2. Preliminaries
2.1. Signal Model

Consider a sparse array with N sensors located at the positions P = P × d =
{pi|pi ∈ Z, i = 1, 2, · · · , N } × d, where d = λ/2 is the fundamental spacing with λ be-
ing the signal wavelength that can be normalized hereinafter. Without loss of generality,
the sensor locations in P are arranged in ascending order, such that pi < pi+1 holds
for i = 1, 2, · · · , N − 1. Assume that K far-field narrowband sources from directions
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{θ1, θ2, · · · , θK|θk ∈ [−π/2 , π/2], k = 1, 2, · · · , K }with respective powers
{

σ2
1 , σ2

2 , · · · , σ2
K
}

impinge on the sparse array. Then, the received data at time t can be modeled as

x(t) = As(t) + n(t) =
K

∑
k=1

a(θk)sk(t) + n(t), (1)

where A = [a(θ1), a(θ2), · · · , a(θK)] is the array manifold matrix with
a(θk) =

[
ejπp1 sin θk , ejπp2 sin θk , · · · , ejπpN sin θk

]T being the steering vector corresponding to
angle θk. s(t) = [s1(t), s2(t), · · · , sK(t)]

T denotes the source vector whose kth (k = 1, 2, · · · , K)
column can be expressed as sk(t) = Gkejwkt with Gk and wk being the deterministic complex
amplitude and frequency offset, respectively. n(t) = [n1(t), n2(t), · · · , nN(t)] is assumed
to be the temporally and spatially Gaussian white noise vector that follows N-dimensional
complex Gaussian distribution CN

(
0, σ2

nIN
)

and is independent from the source vector.
For convenience, several operations and terminologies used throughout this paper are

defined as follows.

Definition 1: For two given integer sets Sm and Sn, four basic operations can be defined as:
Self-difference operation: Dsd = Sm − Sm, m = 1, 2.
Cross-difference operation: Dcd = Sm − Sn, m, n = 1, 2 and m 6= n.
Self-sum operation: Dss = Sm + Sm, m = 1, 2.
Cross-sum operation: Dcs = Sm + Sn, m, n = 1, 2 and m 6= n.

Definition 2 (Sum-Difference Coarray): According to Definition 1, denoteP = {p1, p2, · · · , pN}
as the set of sensor indexes, the corresponding sum-difference coarray is defined as Dsdca =
{pm − pn} ∪ {pm + pn} ∪ {−pm − pn} ∀pm, pn ∈ P.

Definition 3 (Degrees of Freedom, DOF): The number of degrees of freedom for a given sparse ar-
ray configuration P is defined as the cardinality of its sum-difference coarray Dsdca, i.e., DOF(P) =
card(Dsdca).

Definition 4 (Uniform DOF): Denote Usdca as the maximum consecutive segment of sum-
difference coarray Dsdca, then the uniform DOF of a sparse array configuration P is defined as
the cardinality of Usdca, i.e., uDOF(P) = card(Usdca), which is also known as the number of
consecutive and unique lags in the sum-difference coarray.

Definition 5 (Hole-free property/Restricted array): If the DOF of a given sparse array P is
equivalent to its uniform DOF, i.e., uDOF(P) = DOF(P), then the corresponding sum-difference
coarray is said to be hole-free. As such, the sparse array P is called a restricted array.

In view of the existing sparse array configurations, the self-difference operation and
cross-difference operation are widely utilized in constructing the vectorized covariance
matrix of received data, yielding a number of virtual sensors in the DCA domain. Based
on this, the introduced sum coarray in the sum-difference coarray can further enlarge the
number of virtual sensors from the perspective of coarray domain extension instead of array
configuration design, which provide a new perspective for improving array performance
and angle accuracy.

2.2. DOA Estimation

By collecting Ts samples from the outputs of the mth sensor and nth sensor ∀m, n ∈
[1, N], m 6= n, denoted as xm(t) and xn(t), the time average function can be defined as

Rx∗mxn(τ) =
1
Ts

Ts

∑
t=1

x∗m(t)xn(t + τ) ≈
K

∑
k=1

ejπ(pn−pm) sinθk Rs∗k sk
(τ) + Rn∗mnn(τ), (2)
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where τ 6= 0 denotes the time lag. Notice that Rs∗k sk
(τ) = |Gk|2ejwkt has the same form as

sk(t) = Gkejwkt, which can thus be treated as an equivalent signal with enlarged amplitude
|Gk|2 and invariant frequency offset wk. Accordingly, Rx∗mxn(τ) can be seen as the equivalent
received data of a generated virtual sensor whose location is pn − pm. In addition, the noise
term of (2) can be removed according to Rn∗mnn(τ) = σ2

nδ(n−m)δ(τ) = 0, which implies
that the noise component in this model can be suppressed. Without loss of generality, we
chose the mth sensor for the reference, i.e., m = 1, then one can construct the time average
vectors with lag τ and its mirrored version −τ, as

γx(τ) = Aγs(τ),γx(−τ) = Aγs(−τ), (3)

where γx(τ) =
[
Rx∗1x1(τ), Rx∗1x2(τ), · · · , Rx∗1xN(τ)

]T
, γx(−τ) =

[
Rx∗1x1(−τ), Rx∗1x2(−τ), · · · ,

Rx∗1xN(−τ)
]T

,γs(τ) =
[
Rs∗1s1(τ),Rs∗2s2(τ), · · · , Rs∗KsK(τ)

]T
, andγs(−τ) =

[
Rs∗1s1(−τ), Rs∗2s2(−τ),

, · · · , Rs∗KsK(−τ)
]T

. Combining γx(τ) and γx(−τ) yields a conjugate augmented vector

γ(τ) =
[
γH

x (−τ), γT
x (τ)

]T
=
[
AH, AT

]T
γs(τ), (4)

By collecting Tp pseudo snapshots, the pseudo-data matrix can be calculated by

~
γ =

[
γ(Ps),γ(2Ps), · · · ,γ

(
TpPs

)]
=
[
AH, AT

]T
GΘ, (5)

where Tp is the number of pseudo snapshots and Ps is the pseudo sampling period sat-

isfying the Nyguist sampling theorem. G = diag
(
|G1|2, |G2|2, · · · , |GK|2

)
, and Θ =[

ϕ1,ϕ2, · · · ,ϕTp

]
with the np th column being ϕnp =

[
ejw1npPs , ejw2npPs , · · · , ejwKnpPs

]T
.

Then, the covariance matrix of
~
γ can be calculated as

Zγγ = E
[

~
γ

~
γ

H
]
=
[
AH, AT

]T
Zss

[
AT, AH

]
≈ 1

Tp

Tp

∑
np=1

γ
(
npPs

)
γH(npPs

)
, (6)

where Zss = G2 = diag
(
|G1|4, |G2|4, · · · , |GK|4

)
. By vectorizing Zγγ, we have

zγγ = vec(Zγγ) =

([
AH, AT

]H
�
[
AH, AT

]T
)

zss, (7)

where zss = diag(Zss) =
[
|G1|4, |G2|4, · · · , |GK|4

]
and the term

([
AH, AT

]H
�
[
AH, AT

]T
)

behaves like a virtual array manifold matrix whose kth column can be expressed as

ã(θk) =


a(θk)⊗ a∗(θk)
a(θk)⊗ a(θk)

a∗(θk)⊗ a∗(θk)
a∗(θk)⊗ a(θk)

, (8)

where the union of the virtual subarrays corresponding to a(θk) ⊗ a∗(θk) =

∪
∀pv1,pv1∈P

{
ejπ(pv1−pv2) sin θk

}
and a∗(θk)⊗ a(θk) = ∪

∀pv1,pv1∈P

{
ejπ(−pv1+pv2) sin θk

}
is referred

to as DCA, while the union of virtual subarrays corresponding to a(θk) ⊗ a(θk) =

∪
∀pv1,pv1∈P

{
ejπ(pv1+pv2) sin θk

}
and a∗(θk)⊗ a∗(θk) = ∪

∀pv1,pv1∈P

{
e−jπ(pv1+pv2) sin θk

}
is named

as SCA. Following that, the whole virtual array corresponding to ã(θk) is named as SDCA,
which has been defined in Definition 2. As compared to the concept of DCA, SDCA is
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defined as the combination of DCA and SCA, which has the potential to provide more
DOF and larger array aperture, and more sources can be resolved accordingly. By deleting
the repeated data and extracting the maximum continuous segment of the SDCA, spatial
smoothing methods [29,30] or CS approaches [31,32] are employed for DOA estimation.

3. k-Level Extended Array Design
3.1. Motivations

Recently, the emerging sparse array configuration designs based on the concept of
SDCA have attracted great attention [23–26], benefiting from the increasing DOF and the
enlarged array aperture. Nevertheless, for most existing sparse arrays, such as NA (and
its modified versions) [25,26] and CPA (and its modified versions) [23,24], lots of existing
overlapping virtual sensors between their DCAs and SCAs lead to high coarray redundancy.
Despite several works, such as TNA-I and TNA-II, have proposed to reduce the coarray
redundancy, they have holes in their SDCAs.As an example, the DCAs, SCAs, and SDCAs
of NA, CPA, DsCAMps, TNA-I, and TNA-II with six sensors are compared in Figure 1 with
the sensor locations being PNA = {1, 2, 3, 4, 8, 12}, PCPA = {0, 3, 4, 6, 8, 9}, PDsCAMps =
{0, 2, 3, 4, 6, 9}, PTNA−I = {0, 4, 8, 9, 10, 11}, and PTNA−I I = {0, 4, 8, 10, 11, 13}, where black
circles, white circles, and grey circles, respectively, denote DCA, consecutive parts of SCA,
and the overlapping sensors. For illustrating clearly, the overlapping virtual sensors
are marked by a red dashed circle box. The results from Figure 1 show that NA has
20 overlapping virtual sensors, CPA has 6 overlapping virtual sensors, DsCAMps has
14 overlapping virtual sensors, TNA-I has 8 overlapping virtual sensors, and TNA-II has
6 overlapping virtual sensors.
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Motivated by this, a novel array configuration is designed to further reduce the number
of overlapping virtual sensors between their DCAs and SCAs, and the corresponding
SDCAs maintain the hole-free property. As such, more uniform DOF can be utilized to
improve DOA estimation accuracy and angular resolution. We name this sparse array
configuration as the k-level extended sparse array and formally study it as follows.

3.2. Array Design Rules and Properties

Definition 6: Assume that 2 < N1 ≤ N2 with N1 ∈ Z+ and N2 ∈ Z+, the k-level extended
sparse array is defined as a union of one generated sparse subarray PK

o by k-level expansion and one
uniform linear subarray Ps with N = kN1 + N2 sensors, whose sensor locations are denoted as
P = PK

o ∪ Ps, where 
Pk

o = Klevel(Po)
Po = {1 + (p− 1)N1|p ∈ [1,N1]},
Ps =

{
k, N2

1 ,+, p, |p ∈ [1,N1]
} (9)
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where Po is called a sparse base-subarray, Klevel(·) is the k-level extended operator and k is the
extended coefficient that can be any positive integer regardless of the values of N1 and N2. It is
noted that the proposed k-level extended array configuration generally contains two subarrays: one
subarray with kN1 sensors generating from the k-level expansion of the sparse base-subarray and a
uniform linear subarray with N2 sensors. Accordingly, the array aperture of the proposed k-level
extended sparse array is kN2

1 + N2. Based on the above array design rules, the proportion of larger
interelement spacings would increase with the increase in k, such that the mutual effects among
sensors can be alleviated.

Then, we illustrate the structure of the proposed k-level extended sparse array by a
specific example. Figure 2 shows the structures of the array configurations with respect to
the values of k under the conditions of N1 = N2 = 3. Figure 2a plots the 1-level extended
sparse array with six sensors whose locations are set to be {1, 4, 7, 10, 11, 12}. By comparison,
two-level extended sparse array and three-level extended sparse array are, respectively,
plotted in Figure 2b,c, where the former consists of a six-sensor sparse subarray and a three-
sensor uniform linear subarray with sensor locations of {1, 4, 7, 10, 13, 16, 19, 20, 21} and the
latter contains a nine-sensor sparse subarray and three-sensor uniform linear subarray with
sensor locations being {1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 29, 30}. In addition, the proportion of
sparse sensor number varies from 0.5 to 0.75 when the values of k ranging from 1 to 3. This
indicates that the mutual effects can be alleviated with the increase in k.
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Figure 2. An example of k-level extended array with N1 = N2 = 3: (a) k = 1; (b) k = 2; (c) k = 3.

Definition 7 (Spatial Efficiency): By extracting the positive parts of uniform DOF and the whole
DOF in the sum-difference coarray, referred to as uDOF+ and DOF+, respectively, the spatial
efficiency of a sparse array is defined as the ratio of uDOF+ to DOF+, i.e., η = uDOF+/DOF+.

Proposition 1. The spatial efficiency of the k-level extended sparse array is 1, which implies that
the sum-difference coarray of the proposed array configuration has hole-free virtual ULAs.

Proof of Proposition 1. For a given k-level extended array with N = kN1 + N2 sensors,
since the SDCA is symmetric 0, the positive part of D+

sdca can be constructed as

D+
sdca = DPk

o−Pk
o
∪DPs−Ps

∪DPs−Pk
o︸ ︷︷ ︸

D+
dca

∪DPk
o+Pk

o
∪DPs+Ps

∪DPk
o+Ps︸ ︷︷ ︸

D+
sca

, (10)
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where DPk
o−Pk

o
,DPs−Ps

and DPs−Pk
o

are the positive difference sets, DPk
o+Pk

o
,DPs+Ps

and
DPk

o+Ps
DPs−Pk

o
are the positive sum sets, as

DPk
o−Pk

o
=
{

pk
o N1

∣∣∣pk
o ∈ Z and pk

o ∈
[
0, kN2

1 − kN1
]}

DPs−Ps = {ps|ps ∈ Z and ps ∈ [0, N2 − 1]}
DPs−Pk

o
=
{

N1, N1 + 1, · · · , kN2
1 + N2 − 2, kN2

1 + N2 − 1
}

DPk
o+Pk

o
=
{

2, N1 + 2, 2N1 + 2, · · · , 2kN2
1 − 2N1 + 2

}
DPs+Ps =

{
2kN2

1 + ps|ps ∈ Z and ps ∈ [2, 2N2]
}

DPk
o+Ps

=
{

kN2
1 + 2, kN2

1 + 3, · · · , kN2
1 + N2 + 1, · · · , 2kN2

1 + N2 − N1 + 1
}

(11)

For the positive difference sets, DPs−Pk
o

is continuous in the range of
[
N1, kN2

1 + N2 − 1
]

and DPs−Ps is continuous in the range of [0, N2 − 1]. Since N2 ≥ N1 with N1 ∈ Z+ and N2 ∈
Z+, DPs−Ps

∪DPs−Pk
o
⊆ D+

dca contains continuous lags in the range of
[
0, kN2

1 + N2 − 1
]
. It

is obvious that DPk
o−Pk

o
⊆ DPs−Ps

∪DPs−Pk
o
, thus the positive difference set D+

dca is contin-

uous in the range of
[
0, kN2

1 + N2 − 1
]
. For the positive sum sets, DPk

o+Ps
is continuous

in the range of
[
kN2

1 + 2, 2kN2
1 + N2 − N1 + 1

]
and DPs+Ps is continuous in the range of[

2kN2
1 + 2, 2kN2

1 + 2N2
]
. Due to N2 ≥ N1, DPk

o+Ps
and DPs+Ps can be connected with no

holes, ranging from kN2
1 + 2 to 2kN2

1 + 2N2. Note that DPk
o+Pk

o
is composed of a series

of scatters, satisfying DPk
o+Pk

o
⊆ DPk

o+Ps
∪ DPs+Ps , and thus the positive sum set D+

dca is
continuous in the range of

[
kN2

1 + 2, 2kN2
1 + 2N2

]
. In terms of 2 < N1 ≤ N2 with N1 ∈ Z+

and N2 ∈ Z+, we have kN2
1 + N2 − 1−

(
kN2

1 + 2
)
≥ 0, which implies that the positive

DCA can fill all the holes in positive SCA and generate a hole-free positive SDCA in the
range of

[
0, 2kN2

1 + 2N2
]
. Therefore, the positive part of the uniform DOF is the same as

that of the whole DOF, such that the spatial efficiency of the k-level extended sparse array
is 1. According to symmetry, the whole SDCA of the proposed array configuration has
hole-free virtual ULAs. �

Corollary 1. From the perspective of SDCA, the uniform DOF of the k-level extended sparse array
is 4kN2

1 + 4N2 + 1.

Proof of Corollary 1. Based on Proposition 1, the k-level extended sparse array has hole-
free DCA in the range of

[
−kN2

1 − N2 + 1, kN2
1 + N2 − 1

]
and the consecutive range of the

corresponding SCA is
[
−2kN2

1 − 2N2,−kN2
1 − 2

]
∪
[
kN2

1 + 2, 2kN2
1 + 2N2

]
. Consequently,

combining with DCA and the consecutive part of SCA, the generative SDCA has virtual
ULAs in the range of

[
−2kN2

1 − 2N2, 2kN2
1 + 2N2

]
, which implies that the uniform DOF of

the k-level extended sparse array is 4kN2
1 + 4N2 + 1. �

Corollary 2. The optimal uniform DOF of the k-level extended sparse array is 4kN2/(k + 1)2 +
4N/(k + 1) + 1 under the condition of N1 = N2 = N/(k + 1).

Proof of Corollary 2. The above optimization problem can be constructed as

max uDOF = 4kN2
1 + 4N2 + 1

s.t.N = kN1 + N2
(12)

By calculating the partial derivative of uDOF with respect to N1, we have
∂uDOF/∂N1 =4k

(
2N1 − 1

)
> 0, which implies that the uniform DOF of the proposed

array configuration would increase monotonically with the increase in N1. Since N1 ≤ N2,
the maximum uDOF can be obtained from N1 = N2 = N/(k + 1), and the corresponding
optimal uniform DOF is calculated as 4kN2/(k + 1)2 + 4N/(k + 1) + 1.

To further illustrate the coarray distribution of the k-level extended sparse array, the
DCAs, consecutive parts of SCAs and generative SDCAs corresponding to the example
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given in Figure 2 are plotted in Figure 3, where black circles, white circles, and grey circles,
respectively, denote DCA, consecutive parts of SCA and the overlapping sensors. Since
these coarrays are symmetric about 0, here the DCAs, consecutive SCAs, and SDCAs in
Figure 3 refer to their non-negative parts. The results from Figure 3 show that there exists
only one overlapping virtual sensor between DCA and SCA, which means almost all the
unique lags contribute to increasing the uniform DOF. �
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Figure 3. The SDCAs of the k-level extended array with N1 = N2 = 3: (a) k = 1; (b) k = 2; (c) k = 3,
where black circles, white circles and grey circles, respectively, denote DCA, consecutive parts of
SCA, and the overlapping sensors, the overlapping virtual sensors are also marked by red dashed
circle boxes.

Definition 8 (Coarray Redundancy Ratio, CARR): For a given sparse array configuration,
denote the maximal continuous segments of its DCA and SCA as (−C1, C1) and (−C3, C2) ∪
(C2, C3), then CARR is the ratio of the overlapping virtual sensors between the DCA and SCA,
which is given by ς = 2(C1 − C2 + 1)/(2C3 + 1).

Proposition 2. When N1 = N2 = 4, the CARR of the k-level extended sparse array reaches the
maximum 4

64k+17 .

Proof of Proposition 2. According to Definition 8, the minimum CARR of the proposed
sparse array can be achieved via

min ς = 2N2−4
4kN2

1+4N2+1
s.t.N = kN1 + N2

(13)

For the proposed k-level extended sparse array, the solution to the above optimal issue
can be carried out by using the arithmetic mean-geometric mean (AM-GM) inequalities.

Specifically, ∂ς/∂N1 =
−8k2 N2

1−18k−16kN1 N2+32kN1

(4kN2
1−4kN1+4N+1)

2 < 0 holds due to N2 ≥ N1 > 2; thus, the

CARR of the proposed array would decrease monotonically with the increase in N1 and
the minimum ς can be obtained when N1 = N2. Based on the above results, the extremal
CARR with respect to N1 and N2 is calculated by

max ς = 2N1−4
4kN2

1+4N1+1
s.t. N1 = N2

(14)

By calculating the partial derivative of ς to N1, we have ∂ς/∂N1

∣∣N1=3 = 24k+18
(4kN2

1+4N1+1)
2 > 0,

∂ς/∂N1

∣∣N1=4 = 18
(4kN2

1+4N1+1)
2 > 0 and ∂ς/∂N1

∣∣N1=5 = −40k+18
(4kN2

1+4N1+1)
2 < 0. This implies

that the CARR of the proposed array configuration would increase first (when 3 ≤ N1 =
N2 < 5) and then decrease with the increase in N1(when N1 = N2 ≥ 5) and the extremum
is max

(
ς
∣∣N1=4, ς

∣∣N1=5
)
= ς

∣∣N1=4 = 4
64k+17 . �
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4. Simulation Results

In this section, numerical simulations are performed to illustrate the superiority of the
proposed k-level extended sparse array in terms of array property and DOA estimation
performance, where NA, CPA, and DsCAMps are utilized for comparison. It should be
mentioned that the array configurations considered here are based on the SDCA to perform
a fair comparison. Additionally, all the impinging sources are assumed to have equal power
and the corresponding source number is known.

The first simulation compares the CARR of different array configurations and the
results are shown in Figure 4, where k = 2 is set for the k-level extended sparse array. It can
be seen that the CARRs of DsCAMps and k-level extended sparse array tend to decrease,
while that of NA tends to increase with the increase in sensor number. Given the fixed
sensor number, the k-level extended sparse array exhibits the smallest CARR. Additionally,
it should be noted that the maximum consecutive DCA and SCA for the CPA are physically
unconnected, which implies that they share no overlapping virtual sensors, and thus the
concept of CARR is not applicable to CPA. Furthermore, the influence of k on CARR is
investigated in Figure 5, and the results show that the three-level extended sparse array has
less CARRs than those of two-level extended sparse array and one-level extended sparse
array when the sensor number is set to be a certain value.
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In the second simulation, the uniform DOF of four array configurations are compared
in Figure 6, where k = 2 is set for the k-level extended sparse array. The results from
Figure 6 illustrate that the k-level extended sparse array can obtain more uniform DOF than
the other array configurations, and the above advantage becomes more evident with the
increase in the sensor number. The influence of k on uniform DOF is studied in Figure 7,
and the results show that a one-level extended sparse array has more uniform DOF than
two-level extended sparse array, and three-level extended sparse array. From the view of
array arrangement, three-level extended sparse array has less densely distributed sensors
than one-level extended sparse array and two-level extended sparse array, which implies
less mutual coupling effects.

Electronics 2022, 11, x FOR PEER REVIEW 11 of 15 
 

 

 

Figure 5. The CARR versus k. 

In the second simulation, the uniform DOF of four array configurations are compared 

in Figure 6, where 2k   is set for the k-level extended sparse array. The results from 

Figure 6 illustrate that the k-level extended sparse array can obtain more uniform DOF 

than the other array configurations, and the above advantage becomes more evident with 

the increase in the sensor number. The influence of k on uniform DOF is studied in Figure 

7, and the results show that a one-level extended sparse array has more uniform DOF than 

two-level extended sparse array, and three-level extended sparse array. From the view of 

array arrangement, three-level extended sparse array has less densely distributed sensors 

than one-level extended sparse array and two-level extended sparse array, which implies 

less mutual coupling effects. 

 

Figure 6. The comparisons of uniform DOF. 

10 20 30 40 50 60 70 80 90

Sensor Number

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

k=1

k=2

k=3

U
n

if
o

rm
 D

O
F

Figure 6. The comparisons of uniform DOF.

Electronics 2022, 11, x FOR PEER REVIEW 12 of 15 
 

 

 

Figure 7. The uniform DOF versus k. 

Then, the DOA estimations of different array configurations are compared by pre-

senting spatial spectra. The number of sensors for all the sparse arrays is uniformly set to 

12, and the physical sensor locations are, respectively, given in Table 1. Assume that 16 

uncorrelated narrowband sources with uniform distribution between 60°and 60° impinge 

on the antenna arrays with 600
p s

T T   and the SNR being 0 dB. Moreover, the search 

interval for the spatial spectra is set to be 0.5°. Figure 8 depicts the MUSIC spectra of four 

sparse array configurations with k = 1,2,3 for the proposed k-level extended sparse arrays, 

where the red-dashed lines and the black-solid lines, respectively, indicate the impinging 

sources and the estimated spectra. We can observe that although all the sparse arrays can 

detect 16 sources, the proposed k-level extended sparse arrays have more slight bias de-

fined between the peaks and the true DOAs than those of the remaining array configura-

tions, which is mainly attributed to their more uniform DOF and larger effective array 

aperture.  

(a) (b) (c) 

(d) (e) (f) 

Figure 8. Comparisons of spatial spectra for (a) CPA, (b) NA, (c) DsCAMps, (d) 1-level extended 

sparse array, (e) 2-level extended sparse array, and (f) 3-level extended sparse array. 

The next simulation evaluates DOA estimation performances quantitatively versus 

SNR and snapshot number by employing the average root mean square error (RMSE), 

which is defined as 

10 20 30 40 50 60 70 80 90

Sensor Number

0

1000

2000

3000

4000

5000

6000

7000

8000

k=1

k=2

k=3

Figure 7. The uniform DOF versus k.

Then, the DOA estimations of different array configurations are compared by pre-
senting spatial spectra. The number of sensors for all the sparse arrays is uniformly set to
12, and the physical sensor locations are, respectively, given in Table 1. Assume that 16
uncorrelated narrowband sources with uniform distribution between 60◦ and 60◦ impinge
on the antenna arrays with Tp = Ts = 600 and the SNR being 0 dB. Moreover, the search
interval for the spatial spectra is set to be 0.5◦. Figure 8 depicts the MUSIC spectra of four
sparse array configurations with k = 1,2,3 for the proposed k-level extended sparse arrays,
where the red-dashed lines and the black-solid lines, respectively, indicate the impinging
sources and the estimated spectra. We can observe that although all the sparse arrays can
detect 16 sources, the proposed k-level extended sparse arrays have more slight bias defined
between the peaks and the true DOAs than those of the remaining array configurations,
which is mainly attributed to their more uniform DOF and larger effective array aperture.
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Table 1. Physical sensor locations.

Array Configuration Physical Sensor Locations

PCA {0, 4, 8, 9, 12, 16, 18, 20, 24, 27, 28, 32}
NA {1, 2, 3, 4, 8, 12, 16, 20, 24, 28, 32, 36}

DsCAMps {0, 4, 5, 8, 10, 12, 15, 16, 20, 25, 30, 35}
1-level extended sparse array {1, 7, 13, 19, 25, 31, 37, 38, 39, 40, 41, 42}
2-level extended sparse array {1, 5, 9, 13, 17, 21, 25, 29, 33, 34, 35, 36}
3-level extended sparse array {1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 29, 30}
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The next simulation evaluates DOA estimation performances quantitatively versus
SNR and snapshot number by employing the average root mean square error (RMSE),
which is defined as

RMSE =

√√√√ 1
QK

Q

∑
i=1

K

∑
k=1

(
θ̂k,i − θk

)2
, (15)

where Q denotes the number of Monte Carlo trials, and the θ̂k,i denotes the estimates of θk
for the i-th (1 ≤ i ≤ Q) Monte Carlo trial. The array configurations are the same as those
in Table 1 and 18 narrow band sources uniformly distributed between −60◦and −60◦ are
considered. Figure 9 depicts the RMSE versus SNR with a fixed number of 600 snapshots.
It can be observed that, as the number of SNR increases, the RMSEs reduce rapidly for NA,
CPA, and DsCAMps until SNR reaches −2 dB. In contrast, the RMSEs of k-level extended
sparse arrays for the cases of k = 1,2,3 steadily decreased with the increase in SNR, which
are much lower than those of the other three array configurations. Figure 10 plots the
RMSE versus the number of snapshots with the fixed SNR 0 dB. The results show that
k-level extended sparse arrays exhibit a lower RMSE as compared to the NA, CPA, and
DsCAMps when the number of snapshots varies from 100 to 1000. The estimation results
for k-level extended sparse arrays tend to be stable when the number of snapshots reaches
about 300, and 600 for the remaining arrays. The above results indicate that the k-level
extended sparse arrays provide more accurate and stable DOA estimates than the other
three-array configurations.
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5. Conclusions

This paper presents a k-level extended sparse configuration from the perspective
of sum-difference coarray for DOA estimation, which can provide more uniform DOF
and lower coarray redundancy compared to most of the existing sparse array configura-
tions. Then, the closed-form expressions for array geometry and uniform DOF and the
corresponding CARR are derived. Based on the k-level extended sparse array, the spatial
and temporal information of incident sources are jointly exploited for direction-of-arrival
estimation. The results of the theoretical analysis and the numerical simulations demon-
strate the effectiveness and favorable performance of the proposed ENA in terms of array
properties and DOA estimation performance.
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