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A B S T R A C T

There is a growing need to optimize mobility in medium to large-size cities. The use of a car for one-person
trips is widely established as a common trend, which combined with the age of the vehicle fleet from many
countries leads to high levels of pollution. Besides, the time wasted on commuting is more than significant
for many people. Under these premises, it is paramount to understand the dynamics of mobility in every
city. In this work, the problem of modeling and predicting transport demand in large cities with high spatio-
temporal resolution is tackled. The city studied and its metropolitan area are subdivided into a new mobility
mesh-grid, and transport demand is binned into short time intervals. The proposed Spatio-Temporal Mobility
Demand Forecaster (ST-MDF) model is trained with real mobility demand data (such as taxi and bicycle rental),
historical weather data (e.g., temperature, precipitation, and wind speed), and temporal information (e.g.,
weekday, time, and holiday) to predict mobility demand in every region of the mesh, for several forecast
horizons.

The experiments show that the ST-MDF model exhibits flexibility and robustness, while at the same time
it outperforms the baseline models, such as a Long Short-Term Memory (LSTM) network, or the persistence
and naive models.
. Introduction

Commuting is one of the most time-consuming tasks of modern life,
oathed by most people. Traffic jams have become part of many people’s
outines, and the environment has long begging for a change. Analysis
nd modeling of global public transport demand are key to improve
obility and therefore for the sustainable development of any city.

To this end, the first step is to learn about the commuting habits
f citizens. Fiorello et al. [1] report that the car is the most widely
sed transport mode for frequent trips in the EU. This fact, combined
ith the low occupancy rate reported in their work (1.7 persons per

ar), brings into the second key element of mobility: traffic congestion.
lahogianni et al. [2] touch upon a second challenge when forecasting
hort-term traffic, which is the choice of data resolution and the iden-
ification of spatial and temporal flow patterns. In their comprehensive
eview, they also emphasize the role of Artificial Intelligence (AI) as a
lexible tool for the development of many transportation applications
e.g., [3–5]). However, there is a third question that can help capture
he full picture: how to meet global mobility demand? Collecting and
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fusing urban data from individuals to analyze and model it can be
beneficial. However, Liu et al. [6] discuss that this is not an easy task.
One way to bridge this gap is by harnessing datasets that collect taxi,
for-hire vehicle (FHV), or public bike trip records.

The problem under study in this work can be stated as a multiple
time series forecasting one, i.e., given a time-dependent sequence of
historical mobility demand data, predict the future demand for certain
horizons. To this end, as a first step, an analysis of real-world taxi
trips and bike rides datasets from the city of Chicago was performed.
Afterward, a mobility demand mesh-grid is formally defined based on
the most relevant aspects (trip counts, time, spatial distribution, etc.)
obtained from the analysis. The mobility mesh-grid captures the spatial
correlations that occur between different city zones. It can be seen as
a snapshot of mobility demand as time evolves, similar to the frames
that constitute a video. Thereafter, the time-dependent mobility mesh-
grid dataset is used to train the Spatio-Temporal Mobility Demand
Forecaster (ST-MDF) model in order to predict mobility demand in
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several future horizons. It is based on the Convolutional Long Short-
Term Memory (LSTM) layers, which are known to seize both spatial
and temporal aspects. Besides them, the model incorporates two addi-
tional modules that extract features from weather data and temporal
information (such as the time of the days or whether that day was
a public holiday). Thereupon, a comparison is presented between the
proposed network and different baselines, including the persistence and
naive average models, or an LSTM network. Furthermore, an analysis is
conducted to show how the different components of the ST-MDF model
contribute towards the final prediction. Finally, experiments show that
the proposed framework is flexible (i.e., it can cope with changes in the
number or distribution of the city taxi zones and bike racks), and robust
(i.e., missing data can be filled thanks to the mobility mesh-grid).

The main contributions of this work are summarized as follows:

1. Definition of a global mobility mesh-grid of a city or region,
which integrates heterogeneous data (taxi trips, bike rides, etc.)
thanks to the use of spatial information. Furthermore, it is pos-
sible to expand the mobility mesh-grid with other data sources
(scooters, metro, bus, etc.), as will be discussed.

2. Development and training of the ST-MDF model, which harness
spatio-temporal mobility demand data as the input, alongside
additional relevant features like weather or temporal data. More-
over, the forecasts are obtained for several horizons with that
single model at once.

3. Flexibility and robustness in the number and location of data
sources (bike racks, taxi zones, etc.). This aspect is fundamental
when designing models that deal with many components that
may vary over time, which is usually the case in smart city
applications.

4. Forecasting error that beats the baselines, such as the persistence
and naive models, or an LSTM network.

The structure of this article is as follows: Section 1 introduces the
roblem and presents the main contributions. Section 2 summarizes
he main related works currently being studied in the field. Section 3
resents the developed methodology and model, including background
nd notation 3.1, the temporal aspect of the problem 3.2, the spatial di-
ension 3.3, and the presented ST-MDF model 3.4. Section 4 describes

he case of study 4.1, and the experiments and evaluation, including
rror 4.2.2, flexibility 4.2.3 and robustness 4.2.4. Section 5 discusses
he main results of the experiments and their implications. Finally,
ection 6 outlines the main conclusions and future research lines.

. Related work

There is a clear growing interest in understanding mobility dy-
amics in cities, proven by the numerous and diverse approaches
eing developed in the last decade (see Table 1). Usually, these works
ocus on flow prediction from one of three different categories [7]:
rowd flow (human mobility) [4,8,9], traffic flow (vehicle congestion)
10–12], and public transport flow (taxi, bicycle, bus, metro, etc.)
13–15]. As for the methods used to tackle such tasks, they can be
rouped as statistics-based, machine learning-based, deep learning-
ased, and reinforcement learning-based methods. Specifically, the
urrent work lies within the category of forecasting public transit flow
sing deep learning-based methods.
Statistics-based methods. Early works on the topic treat mobility

emand as a time series forecasting task [17–19]. Li et al. [18] forecast
axi pick-ups using ARIMA in individual hotspots from GPS trajectories.
oreira-Matias et al. [19] also make use of ARIMA, although they use

t in combination with time-varying Poisson averaged models, as an
nsemble. Seasonal ARIMA (SARIMA) is an extension to traditional
RIMA, which is employed by Zhang et al. [17] to predict short-

erm traffic flow. Other approaches simply base the future mobility
emand on a probability distribution [20]. For instance, Ma et al.
20] propose a taxi scheduling system to respond to real-time requests
2

Table 1
Summary of related works, classified by target and method.

Crowd
flow

Traffic
flow

Public transit flow

Statistics-based [16] [10,17] [18–20]
Machine learning-based [8] [11,21] [22–25]
Deep learning-based [4,26] [12] Taxi: [3,27–29]

Bike: [14,30–32]
Reinforcement learning-based [9] [33,34] [15]

sent by pedestrians simulated with a Poisson distribution. Miao et al.
[35] propose a taxi dispatching system as well, although they also
study the problem of imbalance (taxis tend to concentrate in certain
zones, neglecting other areas). They proposed a framework that com-
bines historical and real-time GPS and occupancy data, along with a
receding horizon control approach. Taxi dispatching and imbalance are
difficult problems related to crowd flow. Ma et al. [16] designed a
set of crowd flow visualization techniques, providing also a temporal
correlation analysis in their work. Despite the fact that these methods
have proven successful for many time series forecasting problems, they
cannot capture spatial dependencies inherent to urban mobility flow.

Machine learning-based methods. Similar to statistical methods,
many Machine Learning (ML)-based algorithms have been employed
in the field [8,11,21,22]. The early work of Li et al. [18] already uses
a simple Bayesian Network (BN) for the prediction of taxi demand.
More recently, Roos et al. [22] also employs Bayesian Networks, albeit
for metro passenger flow forecasting. They manage to beat the histor-
ical average while being able to work with missing data thanks to a
structural expectation–maximization (EM) algorithm. Markov random
fields can capture some dependencies that BNs may not, see for instance
the work by Hoang et al. [8]. Differently, Habtemichael and Cetin
[21] train a k-nearest neighbors algorithm (k-NN) for the problem of
traffic flow forecasting. They conducted thorough experiments on 36
datasets from UK and USA, obtaining better results when compared
to parametric models. Lippi et al. [11] compare a SARIMA model that
includes a Kalman filter with a Support Vector Machine (SVM) with a
Radial Basis Function (RBF) kernel for traffic flow prediction, obtaining
similar results. Despite the fact that the former scores better results on
average, it is discussed that the SVR-based approach may be a better
compromise between accuracy and computational cost. Nevertheless,
the availability of huge amounts of heterogeneous data coming from
different sources and sensors restricts the use of standard ML-based
methods, which are lately being pushed aside primarily as baselines
for more advanced methods.

Deep learning-based methods for taxi demand prediction. More
recent work on the topic has tended to shift towards Deep Learning
(DL)-based methods, for instance for taxi demand prediction [3,27–
29]. Xu et al. [27] develop LSTM networks alongside Mixture Density
Networks (MDNs) for predicting taxi demand in New York City (USA)
zones using previous demand data and other information (weather,
time, taxi drop-offs, etc.). The city is divided into many small re-
gions, all of them serving as input to a single model that predicts
the probability distribution of taxi demand, which binds the model
to a certain number of areas. Their results are compared with the
proposed framework in Section 4.2.2. One of the two architectures
proposed by Rodrigues et al. [28] also makes use of LSTMs for taxi
demand prediction, with the particularity that they introduce textual
information that is fused with the LSTM output. Yao et al. [3] go
one step beyond, capturing spatial dependencies among nearby regions
with convolutional layers in several timesteps, which are later fed
to LSTM network and concatenated with the output of a so-called
semantic view. The recent work by Liu et al. [29] employs a context-
aware attention mechanism to integrate three different predictions:
an instant spatio-temporal module (using 1-dimensional convolutions

and GRU cells), a short-term (4 days) module, and a long-term (2
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weeks) periodic module. Their work includes experiments showing how
precision improves when progressively combining those modules. Their
results are further studied in Section 4.2.2.

Deep learning-based methods for bicycle demand prediction.
Bicycle demand modeling is also shifting towards DL [14,30–32]. In
his survey, Jiang [30] gathers many works on the topic that employ
DL. He distinguishes different prediction problems on the basis of
whether the data are treated as time series, graph, or grid formats.
Furthermore, the evaluated works are classified according to the use
of exogenous data (e.g., weather, points of interest, and calendar),
the software framework employed, and the availability of the data.
Chai et al. [31] transform the problem into a bike-sharing system
graph, and implement it for Divvy bikes in Chicago and New York
City. They employ multi-graph convolutions with an input window
comprising the last 6 h to predict the bike flow in the next subsequent
hour. Their results are discussed in further detail in Section 4.2.2. Lin
et al. [14] also predict station-level hourly bike demand by means
of Graph Neural Networks (GNNs), in this case in New York City. In
addition to incorporating recurrent information, they explored how to
capture pairwise correlations between stations to improve predictions.
Differently, Li et al. [32] tackle the problem with a grid-based data
structure and study four use cases (including Chicago). The temporal
aspects are captured by three independent modules (closeness, period,
and trend), which are later fused. Similarly to this work, they employ a
Conv-LSTM-based model. However, weather or calendar information is
not incorporated into the model, and temporal and spatial granularity
are coarser (2 km × 2 km and 1 h, respectively). Furthermore, none of
hese works integrates different mobility services into a single model.
Deep learning-based methods. Additionally, the DL field has ob-

ained promising results using the technique known as transfer learning
see for instance the works by Wang et al. [26] and Tian et al. [36]).
urthermore, recently developed Deep Neural Networks (DNNs) archi-
ectures are already being used for related tasks. One of them is the
onvolutional LSTM, which combines the LSTM ability to remember

ong-term dependencies with the capability of convolutional networks
o find spatial correlations. Some examples of their application are
recipitation nowcasting [37,38], and solar irradiance forecasting [39].
he current work leverages this kind of network by translating mobility
emand forecasting from an individual time series prediction task into
n image-to-image transformation problem.
Reinforcement learning-based methods. Jiang et al. [15] make

se of such techniques to optimize the number of passengers taking the
etro at rush hours. They simulated its effect on the Shanghai metro

ine, reducing the number of passengers stranded on the platform. The
ork of Khaidem et al. [9] is another example, where reinforcement

earning is used to predict human mobility in three real cities and a
ynthesized one. Similar methods are employed by Walraven et al. [33]
n order to reduce traffic congestion while taking into account future
raffic predictions. Q-learning is used to achieve this, which establishes
he maximum driving speed allowed on highways. This work [33] is
lso a good example of how reinforcement learning-based methods
an take advantage of Artificial Neural Networks (ANNs), and more
enerally of DL. Another such example is the work of Wei et al. [34],
here the authors build a deep reinforcement learning-based model

or the operation of traffic lights, with the aim of reducing waiting
imes. Furthermore, they raise an interesting question for these kinds of
ethods: how can a reward function be designed to be fair for all the

ctors that are involved in mobility (pedestrians, bikes, scooters, cars,
tc.)?

The presented families of methods provide an extensive overview
f works that aim at improving mobility in cities. Nevertheless, few of
hem propose a framework for integrating heterogeneous data sources
nto a single structure for mobility forecasting. Additionally, none of
hose works investigate flexibility or robustness features from their
odels, but rather focus just on error metrics. The current work aims
3

t contributing to these two lines, beyond exceeding baseline metrics.
3. ST-MDF approach

In this section, the developed ST-MDF approach is detailed. Ini-
tially, Section 3.1 sets the concepts and terminology that will be used
thereupon. Afterward, the temporal and spatial aspects when modeling
transport demand are discussed in Sections 3.2 and 3.3 respectively, to
later present the proposed model and its components in Section 3.4.

3.1. Background and definitions

The temporal granularity/resolution is the length of the intervals
in which time is binned. For instance, the temporal granularity used in
this work is 15 min (as suggested in [40]), e.g. 𝑡 = [18:00, 18:15).
The left endpoint will be used as a tag when referring to a certain
time interval for the sake of clarity (for instance, 18:00 in the previous
example). The temporal coverage is the period of time in which
certain data were recorded. In this work, the temporal coverage of the
mobility data goes from January 2013 to December 2020. The size of
the input window when dealing with time series modeling is known as
timestep, and it is denoted by 𝑛𝑥. Similarly, the number of horizons
(size of the output window) is denoted by 𝑛𝑦 throughout this work.
The shift 𝑠 is the leap (number of time intervals) between the input
and output windows. When needed, the parameters 𝑛𝑥, 𝑛𝑦, and 𝑠 will be
displayed as a subscript of the model name to simplify the reading. For
instance, ST-MDF*

12,8,4 refers to the ST-MDF* model with 𝑛𝑥 = 12, 𝑛𝑦 = 8,
and 𝑠 = 4.

The spatial granularity/resolution is the length of the intervals
into which the considered area is divided. For instance, the spatial
resolution used in this work is ∼500 × 500 m. The spatial coverage is
the area covered by the mobility mesh. For the current use case, the
spatial coverage comprises the city of Chicago and its metropolitan
area, which is approximately 47 by 31 km (see Fig. 1). A mobility
mesh-grid𝑡 is a 2-dimensional array that collects mobility data for a
certain time interval 𝑡. The shape of the mesh-grid is its number of rows
𝑟 by its number of columns 𝑐 (90 × 60 in this work). It is based on a
regular partition of the studied area, and the selected spatial resolution
determines 𝑟 and 𝑐. Each element of 𝑡 collects a numerical value that
expresses the demand for a certain mobility service in its corresponding
region of the mesh-grid during the period 𝑡. For instance, it may express
the number of bikes rented in each region of the mesh-grid between
18:00 and 18:15.

3.2. Temporal modeling of transport demand

The mobility forecasting problem can be posed as a time series
forecasting one (for each mobility service), i.e. given a time-dependent
sequence of historical measurements {𝑥𝑡, 𝑡 ∈ 𝑇 } recorded at one fixed
location 𝑙, predict 𝑥𝑡+ℎ for a certain forecast horizon ℎ at 𝑙. Here 𝑡
represents a time interval from the ones considered 𝑇 , and 𝑥𝑡 records
istorical demand data for a certain mobility service and interval 𝑡. This

scenario restricts to forecasts in a single location 𝑙, which is insufficient
to obtain a general perspective of mobility demand in a certain region.
Several time series can be considered for multiple locations as {𝑥𝑙𝑡 , 𝑡 ∈
, 𝑙 ∈ 𝐿}, where 𝑙 is a tag from the considered ones 𝐿 that represents a

certain geolocation. Therefore, these time series {𝑥𝑙𝑡} can be arranged
in a tabular form of shape |𝑇 | × |𝐿|, in which the rows index the time
interval 𝑡 and the columns the location 𝑙. However, this 2-dimensional
representation of the mobility demand problem still disregards spatial
correlations between locations.

Once the data are arranged this way, it can be used to train an
AI model by presenting samples one at a time and minimizing a loss
function. Usually, several consecutive samples are presented to the
model at once to provide more information by means of a sliding
window. For instance, if ℎ > 0: given {𝑥𝑙𝑡0 , 𝑥

𝑙
𝑡1
, 𝑥𝑙𝑡2 , 𝑙 ∈ 𝐿} predict

{𝑥𝑙𝑡2+ℎ, 𝑙 ∈ 𝐿}, then given {𝑥𝑙𝑡1 , 𝑥
𝑙
𝑡2
, 𝑥𝑙𝑡3 , 𝑙 ∈ 𝐿} predict {𝑥𝑙𝑡3+ℎ, 𝑙 ∈ 𝐿},
etc. In the previous example 𝑛𝑥 was 3, so if the temporal granularity
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Fig. 1. Representation of Chicago (gray area) with an overlayed mesh-grid of 90 × 60
elements. On top of it, the location of the 684 bicycle racks, 801 taxi zone centroids
and weather point are scattered. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

is 15 min then the last 45 min of data are fed to the model at every
step. As an extension to this setup, several forecast horizons can be
forecasted each time using a certain shift (e.g. 𝑛𝑦 = 2 and 𝑠 = 4).
Following the previous example: given {𝑥𝑙𝑡0 , 𝑥

𝑙
𝑡1
, 𝑥𝑙𝑡2 , 𝑙 ∈ 𝐿} predict

{𝑥𝑙𝑡6 , 𝑥
𝑙
𝑡7
, 𝑙 ∈ 𝐿}, then given {𝑥𝑙𝑡1 , 𝑥

𝑙
𝑡2
, 𝑥𝑙𝑡3 , 𝑙 ∈ 𝐿} predict {𝑥𝑙𝑡7 , 𝑥

𝑙
𝑡8
, 𝑙 ∈ 𝐿},

etc.

3.3. Spatio-temporal modeling of transport demand

Clearly, transport demand is strongly influenced by temporal fac-
tors, like the time of the day or the day of the week [41]. Section 3.2
presents a general methodology for arranging the data when devel-
oping a model for multiple time series forecasting, using a sliding
window. While the described setup can suffice when the correlation
between time series is merely temporal, some problems also present
spatial correlations. Such an example is mobility demand forecasting,
e.g. transport demand differs greatly from the airport to a residential
area, but demands in neighboring regions of the city center relate to
each other.

As in Section 3.2, consider multiple time series that record transport
demand arranged in a tabular form of shape |𝑇 |×|𝐿|: {𝑥𝑙𝑡 , 𝑡 ∈ 𝑇 , 𝑙 ∈ 𝐿}.
Then, thanks to the geolocations of 𝐿 the table {𝑥𝑙𝑡} can be unfolded
into an additional dimension, provided that the elements of 𝐿 are
arranged as a regular mesh-grid of shape 𝑟 × 𝑐. Therefore, a set of
mobility mesh-grids {𝑡, 𝑡 ∈ 𝑇 } is obtained, which can be seen as
an array of shape |𝑇 | × 𝑟 × 𝑐. When several mobility services 𝑆 are
onsidered (e.g. taxi and bike), the mobility mesh-grids can be stacked
s {𝑠

𝑡 , 𝑡 ∈ 𝑇 , 𝑠 ∈ 𝑆}, which can be seen as an array of shape
𝑇 | × 𝑟 × 𝑐 × |𝑆|. For the sake of simplicity, 𝑆 will be omitted from
he set of mobility mesh-grids {𝑡}, and it is assumed that |𝑆| > 0
hroughout the work.
4

Fig. 2. Spatio-temporal modeling problem. In this framework, 𝑡 represents time, 𝑐 the
number of columns, 𝑟 the number of rows, 𝑛𝑥 the number of instants taken as input,
𝑛𝑦 the number of forecast horizons, 𝑠 the shift, and 𝑓 represents the function inferred
by the network. In short, 𝑓 () approximates  , i.e., 𝑓 () ≈  .

Now, the problem of mobility demand forecasting can be stated
s follows: Given 𝑛𝑥 consecutive mobility mesh-grids for time inter-
als 𝑡1,… , 𝑡𝑛𝑥 , forecast the mobility mesh-grids for 𝑡𝑛𝑥+𝑠,… , 𝑡𝑛𝑥+𝑠+𝑛𝑦−1,
here 𝑠, 𝑛𝑦 > 0, i.e.:

𝑡1 , … , 𝑡𝑛𝑥
} ⟼ {𝑡𝑛𝑥+𝑠

, … , 𝑡𝑛𝑥+𝑠+𝑛𝑦−1
}.

If we denote the left part of this expression as  and the right part
s  , the studied forecasting task can be visually understood as seen
n Fig. 2. Section 3.4 will exploit this definition of the problem and
resent the Conv-LSTM based model that works with mobility mesh-
rids. Afterward, Section 4 will evaluate how the use of mesh-grids
llows heterogeneous data to be combined and how this improves the
orecasts while it equips the model with flexibility and robustness.

.4. Proposed ST-MDF model

Once the problem is stated in Section 3.3, the proposed Conv-LSTM
ased model can be described. The ST-MDF* is composed of three
odules (see Fig. 3):

(1) Mobility module: This module aims at extracting spatio-
temporal mobility patterns. It takes {𝑡1 , … , 𝑡𝑛𝑥

} as an input
and passes them through a series of Conv-LSTM and max-
pooling layers. The resulting 3D tensor is then flattened into a
mobility feature vector. Note that different transport services are
incorporated into a single data structure thanks to the mobility
mesh-grids.

(2) Temporal module: It provides the temporal aspects that affect
transport demand at the last time interval of the input window.
The input tensor is obtained from the time interval 𝑡𝑛𝑥 , and it
contains the time of the day, the time of the week, the time of
the year, whether 𝑡𝑛𝑥 is on a week or a weekend, and whether
it is a holiday or not. The module passes the temporal tensor
by several fully-connected layers, and yields a temporal feature
vector.

(3) Weather module: It extracts weather information, since mo-
bility choices are strongly influenced by current and future
meteorological conditions. To this end, it takes eight weather
variables (such as temperature, precipitation, and cloud cover)
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Fig. 3. ST-MDF* model. The top-left depicts the mobility module, below the temporal module is shown, and the bottom-left of the figure captures the weather module. After the
concatenation of their feature vectors, they are passed by a dense layer and deconvoluted into 𝑛𝑦 mobility demand mesh-grids for taxi and bike rides.
for the same periods as those of the mobility module 𝑡1, … , 𝑡𝑛𝑥
and passes that tensor through several LSTM layers that extract
a weather feature vector.

Once the three modules have produced their feature vectors, they
are concatenated and passed by fully-connected layers, yielding a 1-
dimensional vector. This vector is then reshaped into a 4D tensor so
that it matches the four output dimensions: forecast horizons, latitude,
longitude, and mobility service. Furthermore, the reshape operation
allows to perform the last step, which is a deconvolution [42,43] (also
known as a transposed convolution). This transformation goes in the
opposite direction of a conventional convolution while keeping the
same connectivity pattern. Finally, the predicted mobility mesh-grids
are: {𝑡𝑛𝑥+𝑠

, … , 𝑡𝑛𝑥+𝑠+𝑛𝑦−1
}.

4. Evaluation

Initially, several real-world datasets from the city of Chicago are
presented in Section 4.1 as a case of study. Thereafter, the experiments
with which the model was trained and its flexibility and robustness
evaluated are described in Sections 4.2.2, 4.2.3, and 4.2.4, respectively.

4.1. Case of study: Chicago

Several heterogeneous Chicago datasets were collected and com-
bined to train and evaluate the model described in 3.4. In this section,
these datasets and the transformations applied to them are described.
Each of the subsequent subsections corresponds to the input data for
the three modules of the model. It should be noted that this method
could be replicated for a different city (for instance, for New York City,
since similar data are available online).

4.1.1. Taxi and bike trips as a grid
Many datasets are collected in the Chicago council data portal.1 One

of them gathers all taxi pick-up and drop-off zones and times from 2013
onward, which has been used in the present work. The data can be
downloaded as individual CSV files, one per year. In them, every row
represents a taxi trip, including:

1 https://data.cityofchicago.org/.
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• Pick-up zone. These are based on the census tracts of the city of
Chicago, which have changed little during the past century. Based
on the data, 801 taxi zones are considered (see the red dots in
Fig. 1, which represent their centroids).

• Pick-up time, with a temporal resolution of 15 min. The temporal
coverage is 8 years (from 2013 until 2020). Therefore, |𝑇 | = 4 ∗
24 ∗ (365 ∗ 8+2) = 280 512 for the taxi dataset, i.e. the number of
15 min intervals in 1 h, times the number of hours in a day, times
the number of days in a year, times the number of years (plus 2
days accounting for leap years).

• Other fields that were not needed are trip duration (in seconds),
trip length (in miles), drop-off zone and time, etc.

From the original 195M trips, approximately 11.9% had to be
removed since the pick-up zone was missing for them. This leaves
almost 172M taxi trips, which were processed and incorporated into
the final dataset. Firstly, taxi trip records were binned for every zone
and time interval, obtaining a dataset 𝑋taxi = {𝑥𝑙𝑡 , 𝑡 ∈ 𝑇 , 𝑙 ∈ 𝐿} that
records the number of trips that began during each time interval 𝑡 ∈ 𝑇
for every zone 𝑙 ∈ 𝐿. Afterward, all taxi trip counts 𝑥𝑙𝑡 were normalized
following Eq. (1):

𝑥′ =
𝑥 − min(𝑋)

max(𝑋) − min(𝑋)
, (1)

where 𝑥 ∈ 𝑋, and 𝑥′ represents the normalized value of 𝑥. The next step
is to build the mobility mesh-grid 𝑡 from 𝑋taxi. A regular mesh-grid
that covers the entire city of Chicago was defined to achieve a spatial
granularity of ∼500 × 500 m, obtaining 𝑟 = 90 and 𝑐 = 60. In addition,
the centroid of each taxi zone was computed to obtain 𝐿. From there,
the mobility mesh-grids {taxi

𝑡 , 𝑡 ∈ 𝑇 } were linearly interpolated on
the 90 × 60 mesh-grid, using 𝑋taxi as input to the interpolator along
with the geolocations specified by 𝐿. In this way, the taxi mesh-grid
was built, which has shape |𝑇 | × 90 × 60.

Divvy2 is a Lyft-owned bicycle rental company that operates many
bike sharing systems in the United States. They offer anonymized trip
data for public use [44], eliminating the first trips that are less than
1 min, and the trips taken by their staff. Data can be downloaded from

2 https://www.divvybikes.com/.

https://data.cityofchicago.org/
https://www.divvybikes.com/
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their website as individual CSV files, which correspond to periods of
variable length. On them, every row represents a bike ride, including
(among other fields):

• Start bike station. Here, it should be noted that some periods
included bike station identifiers alongside lookup files for the
stations’ location, others were missing the lookup files (so the
geolocation was assigned based on the information from the other
periods), and others included the exact geolocation where the trip
started. Depending on the period, around 684 bike stations were
operational (see the blue dots in Fig. 1, which represent their
location).

• Start timestamp, using a temporal granularity of seconds. Time
was binned into 15 min intervals to match the temporal granu-
larity of the taxi data. The same as for the taxi data, the temporal
coverage is 8 years (from 2013 until 2020). Therefore, |𝑇 | = 4 ∗
24 ∗ (365 ∗ 8 + 2) = 280 512 as before.

• Other fields that were not needed, such as end bike station, end
time, rider type, etc.

Approximately 0.35% of the trips had to be removed because their
ongitude or latitude was missing, leaving over 24M of bike rides that
ere processed. Bike rental mesh-grids were produced for each 𝑡 ∈ 𝑇 ,

imilarly to the case of taxis. However, this dataset has a different
ature than the taxi one, since the start location is recorded exactly
nstead of providing a disjoint set of zones. Initially, the bike rides
ere temporally and spatially binned, obtaining the dataset 𝑋bike =
𝑥𝑙𝑡 , 𝑡 ∈ 𝑇 , 𝑙 ∈ 𝐿}, where 𝐿 corresponds to the same 90 × 60 mesh-
rid as before. Thus, 𝑋bike collects the number of bicycle rides that
egan during each time interval 𝑡 ∈ 𝑇 for every zone of the grid
∈ 𝐿. Now, 𝑋bike can be unfolded into an additional dimension, which
ields a set of bike mesh-grids {bike

𝑡 , 𝑡 ∈ 𝑇 }. These mesh-grids were
ormalized using Eq. (1) as before. Finally, the taxi and bike mesh-grids
ere stacked together (as explained in Section 3.3), obtaining the final
obility mesh-grid dataset {𝑡, 𝑡 ∈ 𝑇 } of shape |𝑇 | × 90 × 60 × 2. As
entioned in Section 3.3, the mesh-grid dataset can be expanded with
ore mobility data sources, obtaining a shape of |𝑇 | × 90 × 60 × |𝑆|.
his will be further discussed in Section 5.

During the data analysis process, it was noticed that some bike
tations changed their location over time, likely due to construction
orks or relocations. Under this scenario, working with mesh-grids is
eneficial due to their flexibility, as will be discussed in Section 4.2.3.
n the same vein, note that other bike-sharing systems are not dock-
ased, but instead the user can leave the bicycle anywhere in the city
within some defined boundaries). Again, due to the flexibility of the
esh-grid, such a system can also be integrated into the ST-MDF model.

.1.2. Temporal data
As discussed in Section 3.4, temporal information regarding 𝑡𝑛𝑥 is

ed to the temporal module of the ST-MDF model, encoded in a vector:

• time of the day converted with the sine and the cosine to [−1, 1],
• time of the week converted with the sine and the cosine to [−1, 1],
• time of the year converted with the sine and the cosine to [−1, 1],
• weekday or weekend in {0, 1},
• holiday3 in {0, 1}.

.1.3. Meteorological data
Similarly to Section 4.1.2, weather information is fed to the weather

odule of the ST-MDF model. Meteorological data were collected for
he entire time period with a temporal resolution of 1 h (data from
ttp://www.meteoblue.com). The weather location was chosen to be
n the centroid of the set of points made up of taxi zones and bicycle
tations (see the green dot of Fig. 1). The variables included are as
ollows:

3 Obtained from https://www.officeholidays.com/countries/usa/illinois/.
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• temperature [◦ C],
• precipitation amount [mm],
• snowfall amount [cm],
• relative humidity [%],
• wind speed [km/h],
• wind direction [deg],
• cloud cover [%], and
• solar irradiance [W/m2].

In this case, no empty records were found. In order to account for
the different temporal resolution when compared to the mobility grids
(Section 4.1.1), nearest neighbors interpolation was used to fill the
missing time intervals. Lastly, these data were normalized using Eq. (1)
on each weather variable independently.

4.2. Experiments

Several aspects are key when building spatio-temporal models that
work with many sensors. In this section, the experiments that analyze
some of them are explained, i.e. the error, flexibility, and robustness
of the ST-MDF* model. Initially, Section 4.2.1 depicts the parameter
choice and model training, and it explains the experimental setup.
Afterward, Section 4.2.2 presents the error scored by the model under
different scenarios and compares them with those of the baselines.
Finally, flexibility and robustness are studied in Sections 4.2.3 and
4.2.4, respectively.

4.2.1. Experimental setup and model training
The models presented were developed using the Keras library [45]

with the Tensorflow backend [46]. Additionally, NumPy, Pandas, and
PyTables Python libraries were used for data manipulation and stor-
age. The experiments were carried out using a Ubuntu machine with
12 cores and 24 logical processors. Additionally, the machine was
equipped with an NVIDIA GeForce GTX TITAN X graphic card. As a
reference, training times ranged from 9 to 34 min per epoch, depending
on the parameters 𝑛𝑥 and 𝑛𝑦.

As explained in Section 4.1.1, the data used for training cover
the period between 2013 and 2020. Here, it should be noted that
mobility patterns from 2020 deviate from the usual due to the COVID-
19 pandemics. Therefore, data were considered only until mid-March
2020. Specifically, the years 2013 to 2017 were used for training
(∼70%), 2018 for validation (∼14%), and 2019 and from January to
mid-March 2020 for testing (∼16%). An analysis between eight opti-
mizers (Adadelta, Nadam, SGD, RMSprop, Adagrad, Adamax, Adam,
Ftrl) and 3 loss functions (Mean Squared Error (MSE), Mean Absolute
Error (MAE) and Mean Squared Logarithmic Error (MSLE)) was carried
out for the ST-MDF*

4,4,4 during 10 epochs to choose the best possible
combination. The training times were all very similar (around 9 min per
epoch). Regarding the error, the best results were obtained for MSE loss
with Adam, Adamax, RMSprop, and Nadam optimizers, with a slight
preference for the latter. Therefore, the Nadam algorithm was used to
optimize the MSE loss function in the training phase for 50 epochs in
all trained models.

The parameters of the ST-MDF* model (described in Section 3.4)
re explained hereafter. The mobility module takes a 𝑛𝑥 × 90 × 60 × 2
nput, and it is composed of one convolutional LSTM layer with 3
ilters and kernel size 8 × 8, and a max-pool layer of size 4 × 4. The
emporal module consists of a fully connected layer with 16 neurons,
nd the weather module also uses an LSTM layer with 16 neurons.
he input tensors to the temporal and weather modules have shapes
and 𝑛𝑥 × 8, respectively. The outputs of the three modules are then

oncatenated into a single tensor, which is passed by a dense layer with
204 neurons and reshaped into a 4D tensor. The final step involves a
D deconvolution with 2 filters, kernel size 3×6, and strides 2 × 2 × 2,

which produces the output tensor of shape 𝑛 × 90 × 60 × 2.
𝑦

http://www.meteoblue.com
https://www.officeholidays.com/countries/usa/illinois/
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Table 2
Error comparison between models that work with separated or combined mobility services. Forecast horizons: h0 = 1 h, h1 = 1 h 15 min h2
= 1 h 30 min, h3 = 1 h 45 min (for 50 epochs in all cases).
# Model Evaluated service Combined services 𝑛𝑥, 𝑛𝑦, 𝑠 RMSE [–]

h0 h1 h2 h3

1 ST-MDF* Taxi rides Yes 4, 4, 4 0.146 0.147 0.150 0.153
2 No 0.150 0.153 0.156 0.160

3 ST-MDF* Bike trips Yes 4, 4, 4 0.085 0.086 0.086 0.086
4 No 0.091 0.091 0.091 0.091
Table 3
Error assessment of the developed models and baselines for the taxi trips task. Given 𝑠, the forecast horizon is obtained as: ℎ𝑖 = 15 ⋅ (𝑖 +
𝑠)min, with , 𝑖 ∈ {0,… , 7}. Training time is displayed in days hh:mm format.

# Model 𝑛𝑥, 𝑛𝑦, 𝑠 Training time RMSE [–]

h0 h1 h2 h3 h4 h5 h6 h7

1 ST-MDF*

4, 4, 4

07:35 0.146 0.147 0.150 0.153

– – – –
2 LSTM 04:24 0.225 0.219 0.222 0.219
3 BiLSTM 05:29 0.194 0.191 0.190 0.190
4 Persistence – 0.143 0.151 0.158 0.165
5 Naive – 0.151 0.158 0.165 0.172

6 ST-MDF*

4, 8, 4

09:40 0.154 0.153 0.153 0.154 0.156 0.158 0.162 0.166
7 LSTM 05:44 0.196 0.195 0.195 0.195 0.196 0.193 0.194 0.193
8 BiLSTM 07:50 0.175 0.175 0.174 0.173 0.173 0.173 0.174 0.174
9 Persistence – 0.143 0.151 0.158 0.165 0.171 0.178 0.184 0.190
10 Naive – 0.151 0.158 0.165 0.172 0.178 0.184 0.189 0.195

11 ST-MDF*

8, 4, 4

13:05 0.145 0.145 0.147 0.150

– – – –
12 LSTM 06:42 0.186 0.188 0.191 0.196
13 BiLSTM 08:18 0.192 0.193 0.192 0.193
14 Persistence – 0.143 0.151 0.158 0.165
15 Naive – 0.163 0.169 0.175 0.181

16 ST-MDF*

8, 8, 4

14:52 0.153 0.151 0.150 0.151 0.152 0.155 0.158 0.162
17 LSTM 07:44 0.199 0.202 0.205 0.201 0.210 0.212 0.210 0.220
18 BiLSTM 11:02 0.683 0.701 0.706 0.710 0.709 0.694 0.675 0.658
19 Persistence – 0.143 0.151 0.158 0.165 0.171 0.178 0.184 0.190
20 Naive – 0.163 0.169 0.175 0.181 0.187 0.193 0.198 0.203

21 ST-MDF*

8, 8, 8

14:44 0.162 0.160 0.158 0.158 0.158 0.160 0.162 0.165
22 LSTM 07:48 0.170 0.166 0.162 0.161 0.160 0.160 0.159 0.160
23 BiLSTM 11:18 0.139 0.141 0.142 0.144 0.145 0.146 0.148 0.150
24 Persistence – 0.171 0.178 0.184 0.190 0.194 0.200 0.205 0.210
25 Naive – 0.187 0.193 0.198 0.203 0.208 0.213 0.218 0.222
t
b
o

4.2.2. Error assessment
In this section, the errors obtained by several variations of the

model during the testing phase are presented. Firstly, the error metrics
are formulated and their implementation is described. Afterward, the
proposed model for multiple mobility services is compared to the same
models for separated services. Then, the model is also compared to
several baselines and models from the literature. Finally, the impact of
two aspects is studied: the size of the input window 𝑛𝑥 and the modules
that constitute the proposed model.

Error metrics. Throughout the experiments, the error is evaluated
using the RMSE for the whole testing period. MAE was also calculated
and made available in a repository (see Appendix), but the insights
extracted from it are similar. The RMSE (2) and MAE (3) metrics are
expressed as follows:

RMSE
(

𝑦, 𝑦∗
)

=

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1

(

𝑦𝑖 − 𝑦∗𝑖
)2, (2)

AE
(

𝑦, 𝑦∗
)

= 1
𝑛

𝑛
∑

𝑖=1
|𝑦𝑖 − 𝑦∗𝑖 |, (3)

here 𝑦 are the predicted values and 𝑦∗ the truth ones. The error is
lways evaluated on the locations of the mesh-grid that contain any
ike station or taxi zone centroid. This provides a more representative
valuation than if the error was considered in the whole mesh-grid,
ince some of the areas fall outside the city of Chicago or on Lake
ichigan (see Fig. 1). Therefore, for each mobility service, the error
7

s calculated as a table with 𝑛𝑦 rows and as many columns as the taxi
or grid zones that the mobility service has. In the interest of reflecting
the performance on the most relevant zones from the point of view of
mobility demand, the error is multiplied by normalized weights that
are obtained as the average number of trips per 15 min on each zone,
during the whole temporal coverage.

Comparison with separated mobility services. Section 4.1.1 de-
ailed how different mobility services (taxi and bike rides) were com-
ined into a single data structure. To investigate whether this strategy
verall benefits the results, two ST-MDF*

4,4,4 models were trained for
separated mobility services: one to predict taxi rides and one for bicycle
trips. In the first case, the model that works with both mobility services
at once obtained 2.7, 3.5, 4, and 4.2% better results on each horizon,
respectively. Similar results were observed for bike rides, where the
improvements of the proposed model were of 5.6, 5.4, 5.1, and 4.8%
per horizon. The RMSE scored by these models can be observed in
Table 2.

Comparison with baselines. The proposed baselines are:

• LSTM network: It has a very similar structure to the ST-MDF*

model that includes 3 modules (see Fig. 3), with the difference
that instead of a convolutional LSTM layer, it has an LSTM layer
with 16 neurons and that instead of a deconvolution it includes
an additional dense layer.

• BiLSTM network: It has the same structure as the baseline LSTM,
but instead of an LSTM with 16 neurons, it has 8 bidirectional
LSTM neurons that return 16 values (8 in the forward pass and 8

more in the backward pass).
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Table 4
Error assessment of the developed models and baselines for the bicycle rides task. Given 𝑠, the forecast horizon is obtained as: ℎ𝑖 =
15 ⋅ (𝑖 + 𝑠)min, with , 𝑖 ∈ {0,… , 7}. Training time is displayed in days hh:mm format.

# Model 𝑛𝑥, 𝑛𝑦, 𝑠 Training time RMSE [–]

h0 h1 h2 h3 h4 h5 h6 h7

1 ST-MDF*

4, 4, 4

07:35 0.085 0.086 0.086 0.086

– – – –
2 LSTM 04:24 0.136 0.135 0.144 0.142
3 BiLSTM 05:29 0.080 0.082 0.082 0.082
4 Persistence – 0.079 0.084 0.088 0.092
5 Naive – 0.075 0.079 0.083 0.086

6 ST-MDF*

4, 8, 4

09:40 0.085 0.085 0.086 0.086 0.086 0.086 0.086 0.087
7 LSTM 05:44 0.080 0.083 0.081 0.080 0.080 0.086 0.084 0.082
8 BiLSTM 07:50 0.082 0.082 0.083 0.084 0.085 0.086 0.087 0.087
9 Persistence – 0.079 0.084 0.088 0.092 0.095 0.097 0.099 0.101
10 Naive – 0.075 0.079 0.083 0.086 0.088 0.09 0.092 0.093

11 ST-MDF*

8, 4, 4

13:05 0.085 0.086 0.086 0.086

– – – –
12 LSTM 06:42 0.091 0.092 0.092 0.092
13 BiLSTM 08:18 0.099 0.096 0.096 0.096
14 Persistence – 0.080 0.084 0.088 0.092
15 Naive – 0.078 0.081 0.083 0.086

16 ST-MDF*

8, 8, 4

14:52 0.085 0.085 0.086 0.086 0.086 0.086 0.086 0.087
17 LSTM 07:44 0.097 0.094 0.099 0.093 0.092 0.092 0.090 0.090
18 BiLSTM 11:02 0.301 0.309 0.306 0.294 0.280 0.261 0.248 0.243
19 Persistence – 0.080 0.084 0.088 0.092 0.095 0.097 0.099 0.101
20 Naive – 0.078 0.081 0.083 0.086 0.088 0.089 0.090 0.092

21 ST-MDF*

8, 8, 8

14:44 0.087 0.087 0.087 0.087 0.087 0.087 0.088 0.088
22 LSTM 07:48 0.087 0.084 0.081 0.080 0.078 0.077 0.078 0.079
23 BiLSTM 11:18 0.062 0.061 0.061 0.062 0.062 0.063 0.064 0.065
24 Persistence – 0.095 0.097 0.099 0.101 0.102 0.103 0.104 0.105
25 Naive – 0.088 0.089 0.090 0.092 0.093 0.094 0.094 0.095
• Persistence: It is based on the assumption that the forecasted
variable will remain unchanged in the future. Hence, it can be
expressed as 𝑓 ({𝑡1 , … , 𝑡𝑛𝑥

}) = 𝑡𝑛𝑥
.

• Naive: Its prediction is the point-wise average of the input win-
dow, which can be written as: 𝑓 ({𝑡1 , … , 𝑡𝑛𝑥

}) = 1
𝑛𝑥

∑𝑛𝑥
𝑖=1 𝑡𝑖 .

ote that the persistence and naive models do not need to be trained,
ince they calculate the output directly from the input mobility mesh-
rids with a formula. Table 3 presents the RMSE scored by the ST-MDF*

nd the baseline models for different combinations of 𝑛𝑥, 𝑛𝑦 and 𝑠 for
he taxi trips forecasting task. Table 4 also presents the RMSE for the
ame models, but is evaluated for the bike rides forecasting problem.
ence, the 𝑖th row of Table 3 presents the results for the same model
f the 𝑖th row of Table 4, evaluated for different mobility services. The
rror is evaluated on each forecast horizon (based on 𝑛𝑦 and 𝑠), and the
ean values across zones or bike stations are shown in the tables.
Comparison with the literature. Finding works that are compara-

le to the proposed framework is not trivial for several reasons:

• Most works do not disclose the code of the experiments.
• To the best of the authors’ knowledge, no other work had previ-

ously combined taxi and bike trips in a single modeling frame-
work.

• The temporal granularity can differ from 15 min.
• The forecast horizons can be different from the studied ones

(between 1 h and 3 h 45 min).
• The target city, temporal coverage, and train/test separation are

also prone to be different.
• Other relevant aspects that can differ are the error metric, the

usage of weather or temporal variables, mesh-grid shape, data
preprocessing steps, etc.

Table 5 presents the (unweighted) RMSE of the ST-MDF*
4,4,4 model

or taxi rides along with the model and the baselines presented by Liu
t al. [29]. Furthermore, Xu et al. [27] present the RMSE of their LSTM-
ased model per hour for the prediction of taxi demand in New York
ity (figure 11). It can be derived that their average RMSE is above
8

.5, which is consistent with the results of Table 5. Additionally, Yao
Table 5
Error assessment compared to the results and baselines of Liu et al. [29]. In
this case, the error is not weighed (as in Tables 2, 3 and 4) to be compara-
ble with the other works. Context-aware Attention-based Convolutional Recurrent
Neural Network (CACRNN) is the model developed by Liu et al. [29], and
the baselines they present are Spatial–Temporal Graph Convolutional Network
(STGCN), Diffusion Convolution Recurrent Neural Network (DCRNN), LSTM, Au-
toregressive Integrated Moving Average (ARIMA), and Historical Average (HA).
In the comparison, the different forecast horizons and target cities should be
considered.

# Model Evaluated service Forecast horizon City RMSE [–]

1 ST-MDF* Taxi rides 1 h Chicago 2.43

2 CACRNN

Taxi rides 15 min NYC

3.17
3 STGCN 3.48
4 DCRNN 3.50
5 LSTM 3.65
6 ARIMA 9.53
7 HA 5.84

8 CACRNN

Taxi rides 15 min Chengdu

2.73
9 STGCN 2.77
10 DCRNN 3.14
11 LSTM 4.30
12 ARIMA 5.75
13 HA 7.10

et al. [3] present the results of their proposal and several baselines
for the city of Guangzhou, obtaining RMSEs around 10 (Table 1).
As for bicycle rides, Table 6 presents the (unweighted) RMSE of the
ST-MDF*

4,4,4 model along with the model and the baselines presented
by Chai et al. [31]. In their work, bike rides from Chicago are studied
and the forecast horizon is 1 h. Their model is based on multi-graph
Convolutional Neural Networks (CNNs), as discussed in Section 2. The
RMSE is presented as the average between the 5 and 10 stations with
the highest demand, as well as the average between all stations.

Impact of 𝑛𝑥 and the ST-MDF* modules. To understand the impact
of the parameter 𝑛𝑥, several ST-MDF* models were trained with the
same 𝑛𝑦 and 𝑠 parameters, but with increasing 𝑛𝑥. The results are shown
in Fig. 4 for the ST-MDF*

𝑛𝑥 ,4,4
. Furthermore, the impact of the three

different modules that constitute the ST-MDF* model was evaluated
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Fig. 4. Error comparison for ST-MDF*
𝑛𝑥 ,4,4

, where 𝑛𝑥 ∈ {4, 8, 12, 16, 20}, i.e. input windows of 1 h, 2 h, 3 h, 4 h and 5 h, respectively.
Fig. 5. Error comparison between the ST-MDF*, ST-MDFw, ST-MDFt, and ST-MDF models. The experiment was carried out for 𝑛𝑥 = 4, 𝑛𝑦 = 4 and 𝑠 = 4.
Table 6
Error assessment compared to the results and baselines of Chai et al. [31]. ‘‘Top 𝑛
tations’’ means that the RMSE is evaluated on the 𝑛 stations with higher demand.
n this case, the error is not weighed (as in Tables 2, 3 and 4) to be comparable
ith the other works. Multi-graph CNN is the model developed by Chai et al. [31],
nd the baselines they present are LSTM, GBRT (Gradient Boosting Regression Tree),
ARIMA (seasonal ARIMA), ARIMA (Auto-Regressive Integrated Moving Average), and
M (Historical Mean).
# Model Evaluated

service
RMSE [–]

Top 5 stations Top 10 stations Average

1 ST-MDF* Bike trips 5.331 4.646 1.702

2 Multi-graph CNN

Bike trips

5.177 4.930 3.658
3 LSTM 6.231 5.853 4.405
4 GBRT 5.945 5.738 4.410
5 SARIMA 6.797 6.175 4.608
6 ARIMA 9.853 8.535 6.163
7 HM 7.078 6.179 4.347

for 𝑛𝑥 = 4, 𝑛𝑦 = 4 and 𝑠 = 4 (see Fig. 5). ST-MDFt corresponds
to the same model as the ST-MDF* but includes only the mobility
and temporal modules. Similarly, ST-MDFw includes the mobility and
weather modules, and ST-MDF only includes the mobility module.

4.2.3. Flexibility assessment
Earlier in this work, it was discussed that features beyond the

error should be analyzed when modeling spatio-temporary fused data.
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Flexibility is defined as the ability to accept a different number of inputs
and outputs. For the current use case, this implies that any variation
in the number or distribution of taxi zones or bike racks should not
mean that the system needs to be redefined and trained from scratch.
Reviewing how the mobility mesh-grid is built (see Section 4.1.1), it
can be seen that the interpolation step converts the (variable) number
of stations/racks into the fixed-size mesh-grid. In this way, the input to
the model is decoupled from the number of zones, bike stations, and
their location. Therefore, taxi zones and bicycle racks can be added or
removed without modifying the ST-MDF* model.

4.2.4. Robustness assessment
Generally, robustness refers to the properties of a system that allow

it to tolerate disruptions in the external environment without malfunc-
tioning or changing its structure or dynamics [47]. In the context of
this work, it is defined as the ability to recover from sensor failure
and continue producing reliable predictions. If we consider each bike
rack as a sensor, one may expect that some of them may fail for
some periods. In this situation, a robust forecasting framework should
be able to recover an approximation of that missing data. Thanks to
the interpolation method described in Section 4.1.1, the gaps in the
mesh-grid can be filled using neighboring information with a realistic
approximation of their mobility demand, allowing the model to pro-
duce reliable predictions. This situation was simulated for the ST-MDF*

to evaluate its robustness.
Table 7 shows how the error evolves when a percentage of bike
racks or taxi zones stop working. The percentage of failing sensors
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Fig. 6. Robustness assessment for the ST-MDF*
4,8,4, i.e., error worsening when missing an increasing percentage of data.
Table 7
Robustness assessment for the ST-MDF*, both for taxi and bicycle trips. Worsening on
the test set when missing an increasing percentage of data. The test was executed
independently for five models and 20 random repetitions for each percentage. The
results are shown separately for taxis and bicycles.

# Model Target 𝑛𝑥, 𝑛𝑦, 𝑠 Worsening [%] when missing

10% 20% 30% 40% 50%

1

ST-MDF* Taxi trips

4, 4, 4 −11.7 −15.3 −15.1 −25.3 −26.3
2 4, 8, 4 −3.5 −6.9 −9.8 −12.7 −14.7
3 8, 4, 4 −5.6 −13.8 −20.3 −23.7 −29.2
4 8, 8, 4 −5.3 −8.3 −11.6 −13.3 −15.6
5 8, 8, 8 −5.8 −10.3 −8.7 −12.9 −16.7

1

ST-MDF* Bicycle rides

4, 4, 4 −1.3 −1.6 −1.6 −2.2 −2.2
2 4, 8, 4 −0.7 −0.9 −1.2 −1.4 −1.5
3 8, 4, 4 −0.8 −1.3 −1.6 −1.9 −2.2
4 8, 8, 4 −0.5 −0.7 −0.9 −1.2 −1.4
5 8, 8, 8 −0.1 −0.4 −0.2 −0.5 −0.5

ranges from 10% to 50% (with steps of 10%), and for each case 20
independent repetitions were executed removing random racks for
the testing period (from the beginning of 2019 to mid-March 2020).
Additionally, Fig. 6 illustrates the worsening per percentage of excluded
zones on every forecast horizon for the ST-MDF*

4,8,4 model.

5. Discussion

The proposed ST-MDF* model combines heterogeneous spatio-
emporal data and provides robustness and flexibility while obtaining
maller RMSE when compared to several baseline models. Section 4.2.2
resents the error results and explains how it was computed. Tables 3
nd 4 show that the ST-MDF* model beats the proposed baseline
odels, except for a few cases with small forecast horizons. The skill

r relative improvement can be expressed as:

=
(

1 −
errorproposed

errorreference

)

⋅ 100 (4)

Taking the persistence model as reference (which is the best baseline in
most cases, according to the combination of Tables 3 and 4), it can be
seen that the proposed model gets skills of up to 21.1% for taxi trips
and 16.5% for bike rides. Furthermore, Section 4.2.2 shows that the
ST-MDF* model benefits from combining both mobility services into a
single data structure. The RMSE of this model is 3.6% and 5.2% better
on average than the same model for only taxis or bicycles, respectively.
This suggests that the predictions of one mobility service can benefit
from the data of a different one. Intuitively, if the number of bicycle
rides increases for a given period and location, it can mean that the
demand for taxis will decrease in the same area.

Interestingly, the analysis of Fig. 4 shows that depending on whether
the targets are taxi or bike rides, different 𝑛 are optimal. For the
10

𝑥

former, 𝑛𝑥 = 8 provides the smallest error, while for the latter, 𝑛𝑥 = 16
works better (fixing 𝑛𝑦 = 4 and 𝑠 = 4). This may be due to the difference
between the number of taxis and bikes rides, and because of the more
stable dynamics or the taxi ride problem. Additionally, the error per
horizon is rather consistent with the choice of the parameter 𝑛𝑥.

To see the impact of the different modules described in Section 3.4,
Fig. 5 compares ST-MDF* with the ST-MDFt, ST-MDFw and ST-MDF
models, that is, when weather, temporal or both modules are removed,
respectively. Fig. 5(a) shows that the ST-MDFt model consistently out-
performs its three peers for taxi trips. However, the opposite happens
for bike rides (Fig. 5(b)). As for the ST-MDF model, even if it comes first
for this second task, its performance for taxi trips is poorer (especially
for the farthest horizons). A similar situation can be observed for
the ST-MDFw model for the second problem in Fig. 5(b). Therefore,
ST-MDF* seems to provide the most consistent behavior among its
peers when considering both mobility prediction tasks. Furthermore,
its RMSE increase for farther horizons is less pronounced than for the
other three models, in both mobility cases.

Thanks to the mobility mesh-grid, the ST-MDF* model is flexible
enough to work with a different number of input sources (taxi zones
and bicycle racks). Therefore, when such changes occur, the model is
ready to work with the new ones. Furthermore, the ST-MDF* model is
robust so that missing information can be dynamically filled with the
aid of the mobility mesh-grid, as Section 4.2.4 experiments show. For
instance, Fig. 6 (left) reveals that RMSE deteriorates only 11% or less
when randomly removing 30% of taxi data during the testing phase
for ST-MDF*

4,8,4. Similarly, the RMSE worsens less than 1.4% for bike
rides when up to 30% of the testing data is missing (see Fig. 6, right).
The reason for the contrast in robustness between these two mobility
services is likely to be the different volume of trips (the number of
taxi trips is over 7 times higher than that of the bicycles for the whole
studied period).

As mentioned in Section 4.2, the testing period was trimmed when
the COVID-19 pandemics began, since the lockdown greatly changed
the mobility habits of people, and this was evident in the error assess-
ment. In any case, if such situations arise, any of the presented models
could be tuned to adapt to the new mobility dynamics.

6. Conclusions and future work

The proposed mobility demand mesh-grid captures the relevant in-
formation to model transport demand in an intuitive way. The proposed
Spatio-Temporal Mobility Demand Forecaster (ST-MDF) model com-
bines the demand mesh-grid for two mobility services (namely taxi and
bicycle rides), weather, and temporal information, to forecast the future
mobility demand of the same mobility services on several horizons. In

this way, a global mobility model is trained for the whole city with



Information Fusion 91 (2023) 1–12I.-I. Prado-Rujas et al.
fine spatio-temporal resolution. Furthermore, the proposed model can
adjust to the number of data sources that feed it, i.e., the number of
taxi zones and bicycle racks, which shows its flexibility. Besides, when
some of those data sources fail and those data are missing, it can be
filled thanks to the use of the mobility mesh-grid. Lastly, the proposed
model beats the baselines, such as a Long Short-Term Memory (LSTM)
network, naive, and persistence models.

Regarding future work, a deeper study than the one of Section 4.2.2
about the influence of the parameter 𝑛𝑥 could lead to an increase in
the performance of the ST-MDF* model (for example, incorporating 𝑛𝑥
into the temporal module). Furthermore, the model could be expanded
with additional data sources, such as for-hire vehicle (FHV) data, metro
and bus transit data. The integration of additional weather stations
could also benefit the model (potentially as a mesh-grid), since me-
teorological conditions can vary in a large area, such as the studied
one. Also, the use of Graph Neural Networks could be useful, which
is already used in some related tasks, such as traffic forecasting [48],
or just ride-hailing [49,50]. Yet another extension to this work is the
forecasting of drop-off zones in addition to the pick-up ones. This
would provide information about the distribution of taxis once they
finish their current trips, helping to organize the vehicle fleet. Similarly,
the end bike station could be forecasted for the management of its
distribution. Moreover, Points Of Interest (POIs) could be included as
an additional layer of the mobility mesh-grid, or as a separate module
of the ST-MDF*. Their spatio-temporal nature could reduce the error
when particular events take place in the city (e.g. concerts or sports
matches).

Lastly, besides flexibility and robustness, some additional important
features that will be studied in future work include:

• Extensibility: Capability to include new data sources of a differ-
ent nature. For instance, trips by scooter, bus, and metro.

• Scalability: Ability to cope with the computational demands of
an increase in the number of sensors of the same nature. An
example is the addition of FHV trips to the taxi dataset, without
a notable degradation in training and prediction times.

• Portability: Possibility to use the same model architecture for
multiple different locations (e.g. New York). In this case, the
model would be trained from scratch with new data while main-
taining the same structure.

• Transferability: Feasibility of using transfer learning to employ
a model that has been trained for a certain place in a different
one. This would imply tuning the outer layers of the model with
a smaller dataset from the target location, reducing training times
and development effort.
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