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Adaptive Stochastic Gradient Descent: motivations
• in statistical / machine learning, neural networks (NN) (e.g.,
classification, generation, reinforcement learning, ...) boils down to the
minimization of a loss function : f (X ) := 1

N
∑N

i=1 f (ωi ,X ), ωi = available
samples.

• Equivalent writing: f (X ) = Eωf (ω,X ). X ∈ Rd = parameters of the
NN, ω the training examples (or ”states” in RL)

• optimization by gradient descent (classical) : Xn+1 = Xn − h∇f (Xn),
h > 0 is the learning rate (=”step size”).

• PROBLEM : computing ∇f (Xn) = Eω∇f (ω,Xn) is too costly because
of the average (many samples).

• ∇f (Xn) is replaced by an unbiased estimate to get the Stochastic
Gradient Descent (SGD): Xn+1 = Xn − h∇f (ωγn ,Xn)
(γn)n≥1 = i.i.d uniform random variables in {1, 2, ..,N}.
Note: other unbiased estimates can be used beyond ∇f (ωγn ,Xn) (e.g., in
RL)
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Adaptive Stochastic Gradient Descent

• Stochastic Gradient Descent Xn+1 = Xn − h∇f (ωγn ,Xn)
(γn)n≥1 are i.i.d uniform in {1, 2, ..,N}.
Problem: small h converge slowly, large h : stochastically unstable.

• MAIN QUESTION: how to (optimally) choose the learning rate (l.r.) h ?

• Flow interpretation : in the limit h→ 0 the minimization of f (X ) is
some approximation of the ’continuous time’ evolution equation
X ′(t) = ∇X f (X (t)). SGD: Xn ' X (tn), tn = n · h.

• MAIN HIGH ORDER + ADAPTATIVITY IDEA:
1/ construct a better approximation Yn+1 of X (tn+1) such that
Yn+1 − Xn+1 is an estimation of the error Xn+1 − X (tn+1).
2/ Using Yn+1 compute the largest l.r. h such that stability still holds
• Question 1: find a high order scheme consistent for the flow dynamics
• Question 2: is the procedure performing well in practice..
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The second order Stochastic Runge Kutta ”SRK” scheme
Stochastic Runge Kutta (SRK)

Ỹn+1 = Yn − h∇fγn (Yn), Yn+1 = Yn −
h
2
[
∇fγn (Yn) +∇fγn (Ỹn+1)

]
. (1)

Rq: same γn in ∇fγn (Yn) and ∇fγn (Ỹn+1) !

Theorem (Convergence of SGD and SRK schemes, I.A., G.T. 2021)
Suppose ∀k, ∇fk is a Lipschitz function, ∇fk and its partial derivatives up
to order 6 have at most polynomial increase at ∞ and ∇fk increases at
most linearly at infinity. Then the SGD scheme converges at (weak) order
1 (in h) while the SRK scheme (1) converges at (weak) order 2.

Proof idea: it is known (Q. Li, C. Tai W. E. 2017) that SGD weakly
converges (h→ 0, match : Yn ' Znh) to the solution of the SDE
dZt = −∇f (z)dt +

√
hV (Zt)dWt , Z (0) = X (0), Wt = Brownian motion,

V (z) = cov(f (ω, z)) = 1
N
∑N

k=1(∇f (ωk , z)−∇f (z))·(∇f (ωk , z)−∇f (z))T
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Adaptive step SGD: the SGD-G2 algorithm

Algorithm 1 SGD-G2
Set hyper-parameter: β, mini-batch size M, choose stopping criterion
Input: initial learning rate h0, initial guess X0
Initialize iteration counter: n = 0
while stopping criterion not met do

select next mini-batch γm
n , m = 1, ...,M

Compute gn = 1
M
∑M

m=1∇fγm
n (Xn)

Compute g̃n = 1
M
∑M

m=1∇fγm
n (Xn − hngn)

Compute hopt
n =

{
3
2

hn〈gn−g̃n,gn〉
‖gn−g̃n‖2 if 〈gn − g̃n, gn〉 > 0

hn otherwise.
if hopt

n > hn then
hn+1 = βhn + (1− β)hopt

n
else

hn+1 = hopt
n

end if
Update Xn+1 = Xn − hn+1gn
Update n→ n + 1

end while

Remark: ”stable + consistent thus convergent” algorithm
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Empirical validation (MNIST / FMNIST / CIFAR10)
Results on standard datasets are performing well, start with h small then
let it adapt itself.

Figure: Left: SGD vs. SGD-G2 on FMNIST . Right: SGD vs. SGD-G2 on
CIFAR10 (10 epochs).
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Empirical validation on CIFAR100

Figure: Left: Numerical results (over the first 5 epochs) for the SGD-G2
algorithm on the FMNIST dataset with several choices of the initial learning rate
h0; right: SGD , SGD-G2 and Adam (100 epochs) on CIFAR100.
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Conclusion
• We presented a new adaptive learning rate procedure that performs well
on standard datasets (MNIST, FMNIST, CIFAR10, CIFAR100)
• procedure robust with respect to the initial learning rate h0

• in the process we came up with a proof for the convergence of the
Stochastic Runge-Kutta second order scheme
• future work : to prove that h→ 0 and thus convergence to optimal X is
reached (if possible general hypothesis) ; compare with other adaptive
stochastic optimization algorithms.
Want to know more:
• these slides: https://doi.org/10.5281/zenodo.7257154
(DOI=10.5281/zenodo.7257154) ; also on https://turinici.com
• algorithm details paper (Arxiv ID= arXiv:2002.09304) :
https://arxiv.org/abs/2002.09304
• self-contained SGD convergence proof (Arxiv ID=arXiv:2103.14350) :
https://arxiv.org/abs/2103.14350
• related video: https://youtu.be/z V2OIM0UmI

Gabriel Turinici (CEREMADE) Adaptive stochastic descent algorithms NANMAT 2022, Cluj-Napoca 27/10/21 8 / 8


