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Advances in Bayesian Machine Learning:
From Uncertainty to Decision Making

Chao Ma

Bayesian uncertainty quantification is the key element to many machine learning ap-
plications. To this end, approximate inference algorithms [176] are developed to perform
inference at a relatively low cost. Despite the recent advancements of scaling approximate
inference to “big model × big data” regimes, many open challenges remain. For instance,
how to properly quantify the parameter uncertainties for complicated, non-identifiable mod-
els (such as neural networks)? How to properly handle the uncertainties caused by missing
data, and perform learning/inference in a scalable way? Furthermore, how to optimally
collect new information, so that missing data uncertainties can be further reduced, and better
decisions can be made?

In this work, we propose new research directions and new technical contributions
towards these research questions. This thesis is organized in two parts (theme A and theme
B). In theme A, we consider quantifying model uncertainty under the supervised learning
setting. To step aside some of the difficulties of parameter-space inference, we propose a
new research direction called function space approximate inference. That is, by treating
supervised probabilistic models as stochastic processes (measures over functions), we can
now approximate the true posterior of the predictive functions by another class of (simpler)
stochastic processes. We provide two different methodologies for function space inference
and demonstrate that they return better uncertainty estimates, as well as improved empirical
performances on complicated models.

In theme B, we consider the quantification of missing data uncertainty under the unsuper-
vised learning setting. We propose a new approach for quantifying missing data uncertainty,
based on deep generative models. It allows us to step aside from the computational bur-
den of traditional methods, and perform accurate and scalable missing data imputation.
Furthermore, by utilizing the uncertainty estimates returned by the generative models, we
propose an information-theoretic framework for efficient, scalable, and personalized active
information acquisition. This allows us to maximally reduce missing data uncertainty, and
make improved decisions with new information.
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Chapter 1

Introduction

“ Fear comes from uncertainty; we can eliminate the fear within us when
we know ourselves better. ”

Bruce Lee,

UNCERTAINTIES are everywhere in the world. What is the weather like tomorrow?
What are the chances of an earthquake in Japan? What is the valuation of a company?

Is a bitcoin crash coming? Which movies will people watch? Which restaurant will people
go to? All these questions involve processing uncertainties and making decisions given
imperfect data or knowledge of the world.

In this chapter, we motivate the importance of performing inference under uncertainty
in machine learning, which is the main focus of the thesis. Specifically, we first review the
modern axiomatization systems of rational behaviors (i.e., von Neumann-Morgenstern [347]
and Savage’s decision theory [296]) (Section 1.1), and show that (Bayesian) uncertainty
is the only way that can mathematically induce rational decision-making behaviors [102].
Therefore, we argue that if rationality is the common principle behind both natural and
machine intelligence systems, then the key to replicating human decision-making behavior
relies on algorithms that can perform Bayesian inference efficiently and accurately (Section
1.2). Finally, we describe the challenges of Bayesian inference under model uncertainties
and missing data uncertainties (Section 1.3), and summarize the contributions of this thesis
towards addressing those challenges (1.4).
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1.1 Uncertainty: the only consequence of rationality

One of the central tasks of machine learning research is to understand the theoretical and
practical foundations of intelligent behaviors, such as learning, reasoning, and decision
making. This allows us to replicate and automate the decision-making process of experts and
thus helps us to understand massive datasets, even when we do not possess the governing
theories that could have generated them.

Rationality However, it is often not clear what are the implications of “creating machines
like humans”. Over the decades, researchers have considered the connections/resemblances
between natural and artificial intelligent systems from different perspectives, including
neuroscience, cognitive science, psychology, engineering, etc. In this thesis, we instead
begin with the mathematical characterizations of rationality (and rational decision making),
as the common denominator among natural and artificial intelligent systems.

von Neumann-Morgenstern theory The modern axiomatization system for rational
behaviors, known as the von Neumann-Morgenstern (VNM) expected utility theory, was
formulated by von Neumann and Morgenstern back in 1944 [347]. VNM theory states that,
when facing risky choices, a rational decision-maker (i.e., having VNM rational preferences
over actions, see [83] e.g. for details), will act as if he/she is maximizing the expectation
of some utility function under uncertainty (i.e., expected utility maximization, EUM). The
beauty of VMN theory is that we do not need to know the psychological and biological
details of how decision-makers feel and process uncertainties per se, to make predictions on
who they would behave. The VMN theory implies that (rational) humans are nothing but
animals of uncertainties. Conscious or not, when making decisions in a risky environment,
we are taking account of the uncertainties of possible outcomes.

Savege’s utility theory The VMN theory was later extended by Savage’s axiomatic
system [296] to the case where decision-makers do not know the ground truth probability
measure of possible events. In this case, a rational decision-maker will behave as if he/she is
maximizing the expected utility under his/her subjective (Bayesian) assignment of uncer-
tainties. In other words, as argued by J. Harsanyi, “Bayesian criterion of EUM is the only
decision criterion consistent with rationality" [102, 101]. In modern machine learning, such
utility maximization problem is often formulated as Bayesian expected utility maximization
(Bayesian EUM).

The theories of VNM and Savage (along with [349, 8], etc.) become the foundation of
modern Bayesian decision theory [24]: if we agree that rationality shall be the common
principle behind intelligent systems, then the results of axiomatizations of rationalities would
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strongly favor the Bayesian treatment of uncertainties and decision making in intelligent
systems, i.e., the Bayesian EUM formulation. Next, we will describe Bayesian EUM, and
how uncertainties play a role in Bayesian EUM in the context of machine learning.

1.2 Bayesian expected-ultility maximization

To understand how uncertainties and Bayesian statistics play a role in the context of machine
learning, let us describe the Bayesian EUM problem in the notation of modern Bayesian
decision theory. In this section, we follow the formulation of [235, 254]. The general
idea of Bayesian EUM is, a decision maker will choose his/her actions among a set of
available actions, which will cause certain consequences depending on the random state of
the world. The decision maker will have certain utility over different consequences, which
assigns preferences over different actions and forms the basis for decision making. Using a
mathematical language, any Bayesian decision-theoretic problem can be specified by the
following quantities:

• The space of the states, ΘΘΘ, with θθθ ∈ΘΘΘ being the state of the world that is usually un-
observable to the decision maker. We assume θθθ follows some probability distribution
(called prior) p(θθθ) over (ΘΘΘ,E). Here, E is a σ -algebra on ΘΘΘ, usually referred as the
space of events.

• The space of observable variables, V , the elements of which are denoted by v. These
represent the information available for decision making. We assume v is generated
according to the conditional probability function p(v|θθθ) of v given the state θθθ .

• The set of available actions A, each element of which a(·) ∈ A is a function from
ΘΘΘ to C, where C is the space of consequences. That is, depending on the state of the
world, an action will cause different consequences.

• The loss function L(c), which assigns a real number for different consequences c ∈ C.
Since c is fully determined by both the state θθθ ∈ΘΘΘ and the action a(·) ∈ A, we can
also view the loss L as a function of θθθ and a. That is, we can rewrite the loss function
as L(θθθ ,a(θ)) (since a is a function of θ ), or simply L(θθθ ,a)

Then, the rational decision making solution is obtained by the solving the following
(conditional) Bayesian EUM problem:

a⋆ = argmax
a∈A

Ep(θθθ |v)L(θθθ ,a(θθθ)), (1.1)
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where the conditional distribution p(θθθ |v) represents the decision maker’s belief on the state
of nature conditioned on observable information v. p(θθθ |v) is given by Bayes rule,

p(θθθ |v) = p(θθθ)p(v|θθθ)∫
θθθ∈ΘΘΘ

p(θθθ)p(v|θθθ)dθθθ
, (1.2)

which quantifies the uncertainty/risks of the state θθθ , given the currently observed information.
Common sources of uncertainty may include [74]:

• Noisy data: for example uncertainty from measurement noise; many real-world
datasets are inevitably corrupted by noise due to imperfection of measurement. In this
case, the observable information v in the Bayesian EUM problem corresponds to the
noisy version of θθθ . That is, v = θ̃θθ , and the measurement noise is given by p(θ̃θθ |θθθ),
which is usually irreducible.

• Model uncertainty: given a certain set of observations, there may exist many models
with different configurations of structures/parameters that give similar performance
over training datasets, but behave differently in out-sample prediction. This typically
corresponds to ill-posed tasks where the given dataset does not determine the unique-
ness of the solution. This is also known as model non-identifiability in engineering
problems.

• Missing data: uncertainty due to absence of certain entries in observable data records
v. This is common in data from responses to questionnaires, where participants may
refuse to answer certain questions.

Remark (parameter uncertainty). A special case of model uncertainty is parameter uncer-
tainty, which is common in prediction problems. In such roblems, we have a predictive
model parameterized by pθθθ (y|x), where θθθ ∈ ΘΘΘ is the parameter space, x ∈ X is the input
location (features), and y ∈ Y is the predictive output (response). The parameter uncertainty
is usually quantified by the posterior, p(θθθ |v = D), where D = {(xi,yi)}i=1:N is the set of
training data.

Remark (example of missing data uncertainty). Consider a medical diagnosis scenario.
Given a patient experiencing a lip sore, we are uncertain of the cause of such a symptom. We
might think of several possible diseases such as erythema multiforme, cold sores, syphilis,
or even skin cancer, but certainly not a heart attack. However, at the beginning, most
information regarding other symptoms and/or medical tests is missing and we may not be
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able to distinguish different diseases. This means that we have to (equally) consider multiple
plausible explanations at the same time. To reduce such uncertainty, doctors will commonly
ask to conduct more medical tests and/or ask more questions regarding symptoms.

aleatoric and epistemic uncertainty The noisy data example above is a case of aleatoric
uncertainty, which accounts for variability in the outcome due to inherent randomness. The
other two examples (model uncertainty and missing data) are cases of epistemic uncertainty,
also known as systematic uncertainty, which accounts for uncertainties due to ignorance, i.e.,
lack of knowledge. In this thesis, we will focus on quantifying and reducing both epistemic
and aleatoric uncertainty.

Remark (Generality of Bayesian EUM). Note that the setting of the Bayesian EUM problem
(1.1) is quite general: common machine learning problems such as prediction, classifi-
cation, statistical hypothesis testing, statistical parameter estimation, Bayesian inference,
experimental design, etc. can all be described as special cases of Equation (1.1):

• Point estimation. In this case θθθ ∈ ΘΘΘ would describe the unknown parameter of
interest and A= ΘΘΘ. For convenience, L(θθθ ,a) can be the square loss (θθθ −a)2, and the
optimal action corresponds to the mean of the posterior, p(θθθ |v). Other commonly
used loss function include absolute error |θθθ − a|, which induces the median of the
posterior.

• Bayes interval. In statistical inference, it is standard to obtain an estimation on θθθ , but
instead of a point estimate, we would like to estimate an interval (a1,a2) in ΘΘΘ. One
example of framing interval estimation as a Bayesian EUM problem is illustrated by
[254], where the loss is given by

L(θθθ ,a1,a2) = L1
a2−a1

2
+L2

(
θθθ − a2 +a1

2

)
2

a2−a1
.

The optimal interval in this case is given by E[θθθ |v]±
√

L1
L2
V[θθθ |v].

• Prediction problem. Given a predictive model parameterized by pθθθ (y|x), our goal
is to determine the best prediction y∗ given a test input x∗ and a training dataset,
D = {(xi,yi)}i=1:N . The action space is A = Y , the action is defined by ay(θθθ) = y
and the observable information is given by v = (D). At location x∗, the loss can be
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described by Lx∗(θθθ ,ay) = pθθθ (y|x∗). The Bayesian EUM problem is given by

y⋆ = argmax
a∈A

Ep(θθθ |D)pθθθ (a|x∗),

which corresponds to the mode of the posterior predictive distribution p(y|x∗,D).

• Approximate inference. In this case, the action a(·) is a distribution that assigns a
probability density value to each θθθ and represented by the approximate distribution
q(θθθ). The loss can be defined as L(θθθ ,a) = logq(θθθ), and the Bayesian EUM problem
can be given by

q⋆ = argmax
q

Ep(θθθ |v) logq(θθθ).

The optimal solution of which is the exact posterior p(θθθ |v).

See [254] for more details and more examples of Bayesian EUM problem.

Takeaway So far, we have seen the following: 1), the theoretical results mentioned in
Section 1.1 show that Bayesian EUM is the consequence of rationality, which could be
the common principle behind natural and machine intelligent systems. 2), being able to
compute p(θθθ |v) is key in the Bayesian EUM problem, which includes many important tasks
in machine learning and statistical inference as special cases. Therefore, this motivates
us to develop effective techniques to: 1), quantify model uncertainty and missing data
uncertainty (i.e., evaluating p(θθθ |v)) efficiently; and 2), use the information of uncertainty to
correctly guide our decision-making process. My thesis will be focusing addressing these
two questions in specific scenarios.

1.3 Challenges: model uncertainty and missing data
uncertainty

From the unifying view of Bayesian EUM, uncertainty is captured in the decision maker’s
belief about the state of the system when conditioning on observed information. This is
given by the posterior distribution p(θθθ |v). The key limitation of this is that it often leads to
computationally intractable solutions. This is due to the fact that calculating the posterior
p(θθθ |v) = p(θθθ)p(v|θθθ)∫

θθθ∈ΘΘΘ
p(θθθ)p(v|θθθ)dθθθ

requires solving the integration problem
∫

θθθ∈ΘΘΘ
p(θθθ)p(v|θθθ)dθθθ



1.3 Challenges: model uncertainty and missing data
uncertainty 7

which is generally analytically and computationally intractable [176] except for a few
special cases.

Approximate inference techniques [176] are often used to address this issue. This is
done by finding another distribution, q(θθθ), that is easy to evaluate, while being able to
approximate the ground truth posterior p(θθθ |v) with low approximation error (subject to
certain error criterion). The area of approximate inference has witnessed extraordinary
advances in the past decade. However, highly challenging problems still remain, especially
when dealing with model uncertainties and missing data.

1.3.1 Challenge I: accurate and scalable approximate inference for
supervised learning models

With the rise of modern deep learning methods in the past ten years [22, 115, 288, 162, 162,
314, 62, 105, 58, 35], it becomes a daily routine to train and deploy huge deep neural net-
works with up to billions of parameters [35] and trained on billions of high-dimensional data
points. While there has been tremendous recent advances of scaling Bayesian approximate
inference to “big model × big data" regimes [75, 74, 111, 29, 178, 180, 177], inference
in parameter space p(θθθ |D) is still difficult [198, 330, 357, 127, 95] and often pathological
[70]. Specifically, the following is a list with some challenging problems in this area:

• i) over-parameterized models like neural networks are often unidentifiable, meaning
that there exists different parameter settings that leads to similar predictive functions.
For example, there are symmetric modes in the posterior distribution of neural network
weights that gives identical predictive distributions [206, 198]. These issues makes
the distribution p(θθθ |D) highly complicated and cannot be easily captured by simple
approximations such as the mean-field approximation [357].

• ii) Some models involve the usage of so-called “implicit distributions” [179, 198],
which are probability measures assigned implicitly by the specification of a process
that generates samples from them. One of the most well-known implicit distributions
is the generator in a generative adversarial net (GAN) [88], which transforms isotropic
noise into high dimensional data and which can then be used to specify flexible
distributions for p(θθθ). For such models, the evaluation of p(θθθ) is intractable, which
adds additional difficulties when doing Bayesian inference.

• iii) In many models such as those defined by using neural networks as components,
it is hard to interpret the implication of the choice of prior. That is, it is unclear
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what effect the prior p(θθθ) over the weights θθθ will have in the resulting predictive
distribution.

All those challenging problem listed above present unignorable difficulties for perform-
ing inference in the parameter space. This motivates us to propose new methodologies
to address these issues. We will provide a more in-depth analysis of those challenges in
Chapter 3.

1.3.2 Challenge II: Unsupervised learning and inference under the
presence of missing data

Missing data is an obstacle in many data analysis problems, which may seriously compromise
the performance of machine learning models. Being able to successfully handle missing
data is the key to understanding the structure of real-world data. Suppose we have a system
comprising a set of observable variables, x = (x1,x2, ...,xD) (also referred as complete data).
Due to the presence of missing mechanisms, for each data point, we may only be able to
observe a subset of variables (denoted by xO⊂ x) each time. The rest of the variables (denote
by xU = x\xO) remain unknown. This induces uncertainty due to missing data, represented
by the posterior distribution p(xU |xO), which presents two challenging questions:

• i) Unsupervised learning under missing data. That is, how to specify/learn the dis-
tribution of the complete data p(x), given only partially observed data points with
missing values? Furthermore, can this be done in the large data/large model regime?
This problem is often referred to as unsupervised learning under missing values.

• ii) Efficient missing data imputation. There are many possible partitions of the
complete data into missing/observed subsets, U,O. For D observable variables, there
exists 2D different combinations for the observed subset O. Therefore, there are 2D

different posterior distributions of the form p(xU |xO) that may need to be computed,
with each of them requiring exact/approximate Bayesian inference. How can we
efficiently address this significant computational challenge?

We will provide a more detailed analysis of challenges for missing data uncertainty
quantification in Chapter 6.
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1.3.3 Challenge III: Replicating human expert’s ability to collect
high-value information

Human experts are not only good at evaluating the level of uncertainty in certain decision-
making problems [157, 158] but also at actively collecting the additional information that
is most useful for reducing those uncertainties [245, 246]. Consider again the medical
diagnosis example that we described in Section 1.2:

Remark (example of missing data uncertainty, cont.) When a patient experiencing a lip
sore shows up at the hospital, a doctor usually knows little about the patient’s current status.
Therefore, he/she is uncertain of the cause of such symptoms. However, an experienced
doctor might actively acquire information to reduce such uncertainty. He/she would first
evaluate the current situation, investigate what are the possible scenarios, and then he/she
will ask questions accordingly. He/she might ask whether the patient has a mouth ulcer and
whether he/she is experiencing a high temperature. Based on the answers, the doctor can
evaluate again the possibilities of each possible outcome. For example, if the answers are
positive and negative, respectively, then the doctor might conclude that the patient is most
likely having a cold sore. Meanwhile, it is also equally important to acknowledge other
high-risk possibilities such as skin cancers are not excluded, at least not without further
medical tests.

The above scenario highlights one of the most important applications of Bayesian
approaches, i.e., how to answer what does our model know? or equivalently, how can we
know if the model does not know? Bayesian approaches provide a principled answer: when
there is not enough information to make predictions/decisions, the estimated uncertainty
level (either model uncertainty p(θθθ |v) and/or missing data uncertainty p(xU |xO)) should be
quite high. This will indicate that the model does not quite know what it is doing. Then, we
must either refuse to make decisions (hand over to human experts), or proceed to collect
more information (acquire and add more variables to xO), until we feel significantly more
certain. This inspires us to use Bayesian approaches for automating the human expert’s
ability to collect high-value information.

1.4 Outline of this thesis

The thesis begins with a introductory Chapter (Chapter2) that provides basic foundations for
Bayesian machine learning and approximate inference. The rest of the thesis focuses on two
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themes: theme A addresses Challenge I and theme B addresses Challenge II and III, which
explores topics in supervised learning and unsupervised learning, respectively.

1. Theme A (supervised learning): proposing a new research direction—variational
inference in function space. In this theme, we try to address Challenge I, i.e.,
obtaining efficient and accurate model uncertainty in supervised learning problems.
We follow a recently fresh idea in approximate inference: performing Bayesian
inference in the space of functions as opposed to the space of parameters. We treat
supervised probabilistic models as stochastic processes (i.e., measures over functions);
then, we can apply the idea of variational inference, by approximating the true posterior
stochastic processes by another class of (simpler) stochastic processes. This theme
begins with Chapter 3, a short chapter that discusses the limitations of parameter-space
inference, and motivates the necessity of function-space inference. Then, the main
technical contributions of Theme A are presented in the following chapters:

• Chapter 4: Variational implicit processes.

Contributions This chapter is one of the first works that demonstrates the idea
of performing approximate inference for modern probabilistic models in function
space. Our key contribution is twofold. First, we introduced a flexible class
of stochastic process priors, namely the variational implicit processes, for the
sake of Bayesian modelling. Secondly, we proposed a new inference method for
this type of priors, based on Gaussian process (GP) approximations in function
space.

Outline In this chapter, we first review the basics of Gaussian processes (GPs)
in Bayesian machine learning. We argue that one of the key ideas of GPs is
that they directly specify prior and posterior distributions over functions, which
could be useful to address some of the aforementioned challenges in model un-
certainty estimation. We address the key question of how to extend such function
space inference ideas to Bayesian parametric models such as Bayesian neural
networks. Then, we show how to perform efficient function-space inference
using approximate Bayesian inference techniques. We develop the variational
implicit process (VIP) as a solution. Similar to Gaussian processes (GPs), in
implicit processes (IPs) an implicit multivariate prior is placed over any finite
collections of random variables. Based on Gaussian process approximations,
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a novel and efficient approximate inference algorithm for IPs is then derived
based on a generalized version of the wake-sleep algorithm. We finally perform
experiments to demonstrate the effectiveness of VIPs on a number of tasks on
which VIPs return better uncertainty estimates and superior performance than
other existing inference methods.

• Chapter 5: Functional variational inference.

Contributions The method proposed in Chapter 4 is limited in the sense that it
only performs Gaussian approximations in function space, and it uses wake-sleep
updates which does not correspond to a coherent optimization objective. In this
chapter, we further generalize the idea proposed in Chapter 4, to a more general
method that performs non-Gaussian approximations under the framework of vari-
ational inference. This Chapter has three main contributions: first, we propose a
new functional divergence measure between stochastic processes, which can be
used for variational inference in function space. We also show that it is able to
avoid some of the pathologies found in the original KL divergence. Second, we
propose a new class of flexible variational family for posterior approximation
in function space, namely the stochastic process generators (SPGs). SPGs are
non-Gaussian generalizations of the GP approximations used in Chapter 4, and
can serve as a very flexible variational family in VI. Finally, we propose that our
proposed functional divergence can be estimated efficiently using SPG approxi-
mations, which achieves a significant speed-up against the gradient estimators
commonly used in variational inference.

Outline In this chapter, we propose a new functional-space inference method,
called Functional Variational Inference (FVI). We first present the general frame-
work of performing variational inference in function space [330], which is solely
based on the idea of functional Kullback-Leibler divergence. We also review the
recent work [39] that analyzed the pathologies of Kullback-Leibler divergence in
function space. To partially address this issue, we propose to minimize a new di-
vergence measure between the variational distribution and the posterior process,
namely the gird-functional divergence, which will be more well-behaved than
the functional KL-divergence typically used in the literature. We further derive
the evidence lower bound (ELBO) in function space, based on the proposed
grid-functional divergence. Based on this framework, we proposed to parame-
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terize the variational approximation by stochastic process generators (SPGS),
which is a class of flexible, non-Gaussian stochastic process based on variational
autoencoders (VAEs). We further show how the proposed divergence measure
can be estimated using analytic solutions and mini-batch sampling. Finally, we
provide empirical examples to showcase the effectiveness of our approach.

2. Theme B (unsupervised learning): potential solutions to Challenges II and III, i.e.,
learning, inference, and high-value information acquisition under the presence of
missing data. Our contributions regarding this topic are presented in chapters 7 and
8 of this thesis. The theme begins with Chapter 6, which introduces basic concepts
regarding missing data in machine learning, and proposes to apply deep generative
models to quantify missing data uncertainty, perform missing value imputation, and
actively acquire information that maximally reduces missing data uncertainty. The
main contributions of Theme B are presented in the following chapters:

• Chapter 7: Efficient dynamic discovery of high-value information with
partial VAE.

Contributions In this Chapter, we propose a principled framework, named
EDDI (Efficient Dynamic Discovery of high-value Information), for learning,
inference, and high-value information acquisition with missing data. We have
two major contributions: i), we develop a new probabilistic model, namely, the
partial variational autoencoder (Partial VAE), to capture missing data uncertainty
[260, 374]. The Partial VAE, as a probabilistic framework in the presence of
missing data, is highly scalable, and serves as the base for the EDDI framework;
and ii), we propose an information-theoretic framework for efficient, scalable,
and personalized active information acquisition. By harnessing the missing data
uncertainties modeled by the partial VAEs, we come up with an acquisition
function that is implemented in practice using novel efficient approximations.
This allows us to actively select the unobserved variable which contributes most
to a prediction task. This function is particularly useful in customer surveys and
health assessments.

Outline In this chapter, we begin by reviewing the necessity of proposing
a framework for learning, inference, and active information acquisition under
missing data uncertainties. We argue that this task boils down to two components:
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an unsupervised learning model that captures missing data uncertainties, and a
key mechanism to make decisions of what information to collect next. To this
end, we review related works in the literature, and propose to create a modern
solution based on recent advances in deep learning and Bayesian approximate
inference. We first introduce a new partial amortized inference method for
generative models under partially observed data. This allows us to extend the
variational autoencoder (VAE) [150, 272] to account for partial observations.
The resulting method, which we call the Partial VAE, is inspired by the set
formulation of the observed data [260, 374], which can be used to perform
learning and inference efficiently under missing data. Then, we proceed to
describe an information-theoretic acquisition function which yields a novel
variable-wise active information collection method. Based on the Partial VAE,
we actively select the unobserved variable which contributes the most to the
prediction task. This acquisition function does not have an analytical solution.
Therefore, we derive a novel estimator based on Monte Carlo sampling and
latent-space approximations. We demonstrate the performance of our framework
in various settings and apply it in real-life healthcare scenarios.

• Chapter 8: Identifiable generative models under missing not at random
data.

Contributions The framework proposed in Chapter 7 implicitly assumes that
the missing data follows a missing at random (MAR) assumption. That is,
the probability of a variable being missing only depends on the observed data,
which is quite restrictive. In this Chapter, we further extend the work in Chapter
7 to general missing not at random (MNAR) assumptions (the causes of a
variable being missing is unobserved). Unfortunately, under MNAR, most
commonly used deep generative models lack model identifiability guarantees,
which will introduce biases when performing missing data imputation. Our main
contribution of this chapter is filling in this gap by systematically analyzing the
identifiability of generative models under MNAR. Furthermore, we propose a
practical deep generative model which can provide identifiability guarantees
under mild assumptions for a wide range of MNAR mechanisms.

Outline In this chapter, we begin by reviewing three basic types of missing data
mechanism: missing completely at random (MCAR), missing at random (MAR),
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and missing not at random (MNAR). We argue that model identifiability is a main
obstacle for unsupervised learning under MNAR, and is overlooked by many
modern deep generative models. To this end, we provide a theoretical analysis
of identifiability for generative models under different MNAR assumptions.
More specifically, we propose a set of sufficient conditions, under which the
ground truth parameters can be uniquely identified via optimizing the partial
ELBO proposed in Chapter 7. We also demonstrate how the assumptions can
be slightly relaxed under model mis-specification. Based on our theoretical
result, we propose a practical algorithm model based on identifiable variational
auto-encoders, which enables us to apply flexible deep generative models in a
principled way, even in the presence of MNAR data. This Chapter ends with an
empirical evaluation of the proposed model across different tasks.

To summarize, the outline of the thesis is as follows:

• Chapter 2: introduces the basic ideas of Bayesian machine learning, reviews prior work
in approximate inference, and provides introductions to Bayesian neural networks,
Gaussian processes, and generative models.

• Chapter 3: discusses the limitations of parameter space inference, and motivates
function space inference from the perspective of model identifiability and posterior
consistency.

• Chapter 4: presents the variational implicit process (VIP), a function-space inference
method based on GP approximations and the wake-sleep method.

• Chapter 5: presents functional variational inference (FVI), an extension to the VIP
method that uses non-GP approximations together with a newly proposed functions-
space inference objective.

• Chapter 6: discusses the backgrounds of missing data uncertainty and the challenges
of performing unsupervised learning under missing data using generative models.

• Chapter 7: presents EDDI (Efficient Dynamic Discovery of high-value Information),
which performs learning, inference, and high-value information acquisition under
MAR (missing at random) missing values.

• Chapter 8: extends the work in Chapter 7 to more general missing not at random
(MNAR) assumptions and studies the model identifiability of deep generative models
under MNAR.
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• Chapter 9: summarizes the thesis and suggests directions for future directions.

1.5 List of publications
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papers published/submitted during my PhD, which are classified into two categories. In the
category of direct publications, I list all the papers (in the order of their appearances in the
thesis) that directly correspond to the research themes described before. In the category of
indirect publications, I list the publications that are related to the thesis but are not described
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processes”, in International Conference on Machine Learning (ICML), 2019.

• Chao Ma, and José Miguel Hernández-Lobato, “Functional Variational Inference
based on Stochastic Process Generators”, in Neural Information Processing Systems
(NeurIPS), 2021.

• Chao Ma, Sebastian Tschiatschek, Konstantina Palla, José Miguel Hernández-Lobato,
Sebastian Nowozin, and Cheng Zhang, “EDDI: Efficient Dynamic Discovery of
High-Value Information with Partial VAE”, in International Conference on Machine
Learning (ICML), 2019

• Chao Ma, and Cheng Zhang, “Identifiable Generative Models for Missing Not at
Random Data Imputation”, in Neural Information Processing Systems (NeurIPS),
2021.

Indirect publications

• Chao Ma, Sebastian Tschiatschek, José Miguel Hernández-Lobato, Richard Turner,
and Cheng Zhang, “VAEM: a Deep Generative Model for Heterogeneous Mixed Type
Data”, in Neural Information Processing Systems (NeurIPS), 2020.

• Ignacio Peis, Chao Ma, and José Miguel Hernández-Lobato. “Missing Data Imputa-
tion and Acquisition with Deep Hierarchical Models and Hamiltonian Monte Carlo.”,
in Neural Information Processing Systems (NeurIPS), 2022.
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• Weijie He, Xiaohao Mao, Chao Ma, Yu Hang, José Miguel Hernández-Lobato,
and Ting Cheng, “BSODA: A Bipartite Scalable Framework for Online Disease
Diagnosis.”, Proceedings of the ACM Web Conference, 2022.

• Chao Ma,Wenbo Gong, José Miguel Hernández-Lobato, Noam Koenigstein, Sebas-
tian Nowozin, and Cheng Zhang, “Partial VAE for hybrid recommender system”, in
NeurIPS Workshop on Bayesian Deep Learning, 2018.

• Chao Ma, Sebastian Tschiatschek, Yingzhen Li, Richard Turner, José Miguel Hernández-
Lobato, and Cheng Zhang, “HM-VAEs: a deep generative model for real-valued data
with heterogeneous marginals”, in Symposium on Advances in Approximate Bayesian
Inference, 2020.

In all of the paper described above, the author (Chao Ma) is responsible for research
question identification, major research contributions, theoretical derivations and proofs,
model designs and experiments, under the supervision of other co-authors, with the following
exceptions:

• The paper titled “EDDI: Efficient Dynamic Discovery of High-Value Information with
Partial VAE”, in which the research question is originally identified by Sebastian
Nowozin and Cheng Zhang, and the main technical details, derivations, designs and
implementations are done by this author (Chao Ma) during the internship at Microsoft
Research.

• The papers titled “BSODA: A Bipartite Scalable Framework for Online Disease
Diagnosis.” and “Missing Data Imputation and Acquisition with Deep Hierarchical
Models and Hamiltonian Monte Carlo”, I was only partly involved in the initial
design of the algorithm, the discussions of the experimental results and a small
fraction of paper writing. Most of the implementation, experiments and paper writing
are conducted by Weijie He and Ignacio Peis.



Chapter 2

Inference and Models in Bayesian
Machine Learning

“ The most important maxim for data analysis to heed, and one which many
statisticians seem to have shunned is this: ‘Far better an approximate
answer to the right question, which is often vague, than an exact answer
to the wrong question, which can always be made precise.’ Data analysis
must progress by approximate answers, at best, since its knowledge of
what the problem is will at best be approximate. ”

John W Tukey, "The Future of Data Analysis", 1962,

IN Chapter 1, we have motivated the importance of uncertainty in machine learning. In
particular, we argued that Bayesian uncertainty quantification (and more generally,

Bayesian decision theory) is crucial for building intelligent systems: it is an inevitable
consequence of the axiomatization of human rationality. To this end, Bayesian probability
theory offers a foundation for the quantitative formulation of uncertainty. We might want
to ask: how is it going to help us in practical machine learning scenarios? In this chapter,
we review the basic conceptual and computational ideas for Bayesian modeling in the
context of machine learning. We will first introduce the key concept of Bayesian machine
learning, and how to perform approximate inference in the large data regime. We will
cover variational inference, expectation propagation, black-box variational inference, alpha-
divergence minimization, and implicit variational inference. Then, we will introduce specific
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models where Bayesian inference will be performed, including Bayesian neural networks,
Gaussian processes, variational autoencoders, and Helmholtz machines.

Remark (Relevant mathematical backgrounds). Certain mathematical concepts and tools
such as real analysis, measure-theoretic probability theory, stochastic processes, and func-
tional analysis will be useful for certain concepts and theoretical results of the thesis. The
introduction of these materials is out of the scope of the thesis. Nevertheless, the thesis has
been written aiming to be as self-contained as possible. For example, throughout the thesis,
we will avoid the use of measure-theoretic presentation of probability theory, and will only
mildly discuss those related concepts in the Remark boxes when necessary (e.g., when
introducing the general definition of KL divergence). For more concrete introductions to
those mathematical backgrounds, readers may refer to resources such as [283, 129, 92].

2.1 Bayesian machine learning principles

Probability theory, or more specifically Bayesian probability theory, is the scientific lan-
guage of uncertainty quantification. It tells us how to describe uncertainty in mathematical
languages, and how to infer the uncertainty of unknown variables. To begin with, we work
with a set of assumptions (or, in the language of machine learning, a model) that explicitly
describes how observations are generated from the underlying system.

Using the notation from Chapter 1, this is described by the joint probability distribution
p(v,θθθ) of some observable vector v, and the (latent, unknown) “state of nature" θθθ . This joint
distribution can always be factorized into the product of the data-generating distribution,
p(v|θθθ), and the prior distribution, p(θθθ). These quantities can be either objective (i.e, when
the actual data-generation process is known, or can be estimated from data and experiments),
or subjective (i.e., the decision-maker’s belief, which only reflects how strongly he believes
a particular event/proposition). In most cases, the use of probabilities are more or less
subjective, since models are merely mathematical simplifications of the world that rely on
idealized assumptions.

Remark (Why probability: a brief review). The discussion of philosophy of statistics, i.e.,
how we justify and interpret the probabilities, is out of the scope of this thesis. However,
we do like to point out that justifications for using probabilities to represent uncertainties
have been extensively discussed in the literature. Here, we briefly review some of those
important theoretical results. These results, while having their technical limitations, still
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provide invaluable insights and greatly strengthen the argument regarding the inevitability
of probabilities.

One of the first justifications can be found in the theory of subjective probability of
Ramsey [265] and De Finetti [53], namely the principle of coherence (of bets), which
also relates to decision making. The principle of coherence states that, unless the bettor’s
assignment of beliefs to random events satisfies the rules of probabilities, he/she will take
bets that return a definite loss. Such bets are also called the Dutch book, or in the terminology
of economics, an arbitrage.

Alternatively, as described in Chapter 1, Savage [296] independently took an axiomatic
approach to inference under uncertainty, firmly based on the context of decision making.
Under certain axioms of an idealized rational agent (i.e, if the decision-maker has rational
preferences among all possible decisions), then his assignment of uncertainty must satisfy
the rules of probability.

Finally, another important axiomatic approach owes to Cox [45] and Jaynes [137], which
extends logical reasoning under Boolean algebra to logical inference under uncertainty.
Cox’s theorem states that any system representing the strengths of belief (plausibility)
of propositions will be inconsistent with true-false logic unless they satisfy the rules of
probability. That is, logical reasoning under uncertainty must be implemented by statistical
inference using probability.

supervised learning In the context of (supervised) machine learning, we will be given
a training set v = D := {(xi,yi)}i=1:N , where X = {x1,x2, ...,xN} is the set of inputs, and
y = {y1,y2, ...,yN} is the set of corresponding outputs. We would like to fit a regression
model parameterized by pθθθ (y|x), where the “state of the nature” θθθ ∈ΘΘΘ is now defined as
the unknown parameters of the regression model. The term pθθθ (y|x) is often referred to as
likelihood, which is a function of θθθ given fixed y; and the prior term p(θθθ) reflects our belief
of what the parameters θθθ might look like.

Given the model p(D,θθθ), we can perform Bayesian inference regarding the latent vari-
able θθθ . That is, conditioning on training data D, we may calculate the posterior distribution
for θθθ , p(θθθ |D), using Bayes’ rule:

p(θθθ |D) = p(θθθ)p(D|θθθ)∫
θθθ∈θθθ

p(θθθ)p(D|θθθ)dθθθ
. (2.1)

Similarly, we can perform inference on an unknown observable variable. Given a test input
x∗, the Bayesian posterior predictive distribution for the corresponding output, y∗, is given
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by

p(y∗|x∗,D) =
∫

θθθ∈θθθ

p(y∗|x∗,θθθ)p(θθθ |D)dθθθ , (2.2)

which quantifies the uncertainty on the test output y∗, after observing the data D. Note that
both Equation (2.1) and Equation (2.2) require the marginalization of θθθ , which produces the
so called marginal likelihood (or model evidence), given by

p(D) =
∫

θθθ∈θθθ

p(θθθ)p(D|θθθ)dθθθ .

Intuitively, p(D) quantifies the average probability of a parameter randomly sampled from
p(θθθ) generating D. Since the parameters are integrated out, a model selection crite-
rion based on p(D) would naturally guard against over-fitting, and control the model
complexity. To understand such effect, factorize p(D) in a sequential way, p(D) =
p(y1)p(y2|y1)p(y3|y1,y2)...p(yN |y1:N−1) (with inputs omitted). If the model is too sim-
ple, it will fit each of those distributions poorly. If it is too complex, then it would over-fit the
“early samples", and predict the other samples poorly [235]. This is referred as the Bayesian
Occam’s Razor effect [205]. Therefore, the quantity p(D) is often used to perform model
comparison and model selection across different models.

Unfortunately, in the setting of many modern machine learning problems, the integration
problem

∫
θθθ∈θθθ

p(θθθ)p(D|θθθ)dθθθ is often computationally intractable [176] except for a few
special cases. This is often due to: 1), the integration problem often involves a high-
dimensionality parameter space that is impractical for numerical integration methods; and
2), the functional form of the likelihood function, p(y|x,θθθ), can often be very complicated.
To confront such challenges, we often resort to Approximate inference techniques [176],
which will be introduced in the next section.

2.2 Approximate inference algorithms

2.2.1 Vanilla variational inference

Consider the problem of approximating the posterior distribution, p(θθθ |D). In the supervised
learning setting, given the model likelihood function p(y|x,θθθ) and the prior distribution
p(θθθ), p(θθθ |D) can be computed as

p(θθθ |D) ∝ p(θθθ)∏
n

p(yn|xn,θθθ). (2.3)
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Variational inference (VI) [140] converts the above inference problem into an optimization
problem by first proposing a class of approximate posterior distributions qλλλ (θθθ) parameter-
ized by variational parameters λλλ , and then minimizing with respect to λλλ a certain divergence
measure between the approximate posterior qλλλ (θθθ) and p(θθθ |D). One common parameter-
ization method is the so-called mean-field approximation [294]. For example, qλλλ (θθθ) can
be parameterized by a full-factorized Gaussian, qλλλ (θθθ) = ∏1≤d≤|θθθ |N (θd;md,σ

2
d ), where

|θθθ | denotes the dimensionality of θθθ , θd is the d-th component of θθθ , and N (θd;md,σ
2
d )

is the Gaussian density function of θd with mean md and variance σ2
d . The variational

parameters λλλ are now given by a collection of mean and standard deviation parameters
λλλ = {(md,σd)|1≤ d ≤ |θθθ |}.

Variational inference usually minimizes the (exclusive) Kullback–Leibler divergence
[163] DKL[·||·] between the approximate posterior qλλλ (θθθ) and the true posterior p(θθθ |D). It
is defined as

DKL[qλλλ (θθθ)||p(θθθ |D)] =
∫

θθθ

log
qλλλ (θθθ)

p(θθθ |D)
qλλλ (θθθ)dθθθ . (2.4)

DKL[qλλλ (θθθ)||p(θθθ |D)] has two nice properties that makes it a suitable objective function for
VI. First, DKL[qλλλ (θθθ)||p(θθθ |D)] is always non-negative; and second, DKL[qλλλ (θθθ)||p(θθθ |D)] =
0 if and only if qλλλ (θθθ) = p(θθθ |D), that is, when the variational distribution is the perfect
approximation to the ground truth.

Remark (Measure-theoretic definition of KL-divergence [92, 213]). Here we briefly in-
troduce the measure-theoretic definition of KL-divergence, which will be useful for later
chapters.

Definition 2.1 (KL-divergence). Consider two probability measures Q and P on some
common measurable space (Ω,B). In other words, Q and P are two real-valued (measurable)
functions on (Ω,B), that satisfy the Kolmogorov’s axioms [155]. Then, the KL-divergence
between Q and P is defined by

DKL[Q||P] = sup
G

∑
i

Q(Gi) log
Q(Gi)

P(Gi)
, (2.5)

where G =
⋃

iGi is a finite measurable partition of Ω, Q and P are the probability measures of
Q and P on (Ω,B), respectively. In other words, the KL-divergence between two probability
measures is the supreme of the relative entropies obtained on all possible (finite measurable)
partitions of Ω.

One could further show that [92]:
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Proposition 2.1. The KL-divergence defined in Definition 2.1 satisfies the following proper-
ties:

1. DKL[Q||P]≥ 0, and DKL[Q||P] = 0 if and only if Q = P;

2. If Q is not absolutely continuous w.r.t. P, then DKL[Q||P] = ∞;

3. If Q is absolutely continuous w.r.t. P (i.e, Q≪ P), then the Radon-Nikodym derivative
of Q w.r.t. P exists, and DKL[Q||P] can be expressed as

DKL[Q||P] =
∫

Ω

log
[

dQ
dP

]
dQ, (2.6)

where dQ
dP denotes the Radon-Nikodym derivative of Q w.r.t. P. This gives the alterna-

tive measure-theoretic definition of KL-divergence used in the literature [213].

However, we cannot directly compute DKL[qλλλ (θθθ)||p(θθθ |D)] since the true posterior
p(θθθ |D) is unknown. To get around this, notice that the marginal likelihood log p(D) can be
rewritten in terms of DKL[qλλλ (θθθ)||p(θθθ |D)]:

log p(D) = log p(D,θθθ)− log p(θθθ |D)

=
∫

θθθ

qλλλ (θθθ)[log p(D,θθθ)− log p(θθθ |D)]dθθθ

=
∫

θθθ

qλλλ (θθθ)[log
p(D,θθθ)
qλλλ (θθθ)

− log
p(θθθ |D)
qλλλ (θθθ)

]dθθθ

= DKL[qλλλ (θθθ)||p(θθθ |D)]︸ ︷︷ ︸
VI objective

+Eqλλλ (θθθ)

[
log

p(D,θθθ)
qλλλ (θθθ)

]
︸ ︷︷ ︸

free energy

.

(2.7)

We call Eqλλλ (θθθ)

[
log p(D,θθθ)

qλλλ (θθθ)

]
the variational free energy. Since DKL[qλλλ (θθθ)||p(θθθ |D)] is al-

ways non-negative, the term Eqλλλ (θθθ)

[
log p(D,θθθ)

qλλλ (θθθ)

]
forms a lower bound of the model evidence,

log p(D). Therefore, Eqλλλ (θθθ)

[
log p(D,θθθ)

qλλλ (θθθ)

]
is also called the evidence lower bound (ELBO),

often denoted by L(q). The relationships among log p(D), L(q), and DKL[qλλλ (θθθ)||p(θθθ |D)]
are depicted in Figure 2.1: the VI objective, DKL[qλλλ (θθθ)||p(θθθ |D)] is essentially the gap
between log p(D) and L(q). Therefore, in order to minimize DKL[qλλλ (θθθ)||p(θθθ |D)], we can
equivalently maximize the variational free energy, L(q).

In order to compute L(q), we often rewrite it into the following form:
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Figure 2.1 The relationships among log p(D), L(q), and DKL[qλλλ (θθθ)||p(θθθ |D)] in variational
inference.

L(q) = Eqλλλ (θθθ)

[
log

p(D,θθθ)
qλλλ (θθθ)

]
= Eqλλλ (θθθ)

[log p(D|θθθ)]︸ ︷︷ ︸
likelihood/predictive loss

−DKL[qλλλ (θθθ)||p(θθθ)]︸ ︷︷ ︸
Regularization

. (2.8)

Intuitively, the first term Eqλλλ (θθθ)
[log p(D|θθθ)], known as the likelihood term of the ELBO,

quantifies the model’s expected predictive performance on training data D. The second term
DKL[qλλλ (θθθ)||p(θθθ)] serves as the regularization term, which encourages qλλλ (θθθ) to be close
to the prior, p(θθθ). Finally, we can optimize L(q) by performing gradient ascent using the
gradient ∇λλλL(q).

2.2.2 Scalable variational inference

While optimizing the evidence lower bound (2.8) is usually easier than directly computing
the high-dimensional integral in Equation (2.1), it does not tell us how to compute the
expectation Eqλλλ (θθθ)

[log p(D|θθθ)]. In fact, two major difficulties arise when applying vanilla
VI: 1), in many machine learning applications, evaluating Eqλλλ (θθθ)

[log p(D|θθθ)] requires
computing the likelihood log p(D|θθθ) over the entire dataset, which is computationally
infeasible; 2), for many complicated models, Eqλλλ (θθθ)

[log p(D|θθθ)] does not have an analytic
form. Therefore, in the early history of variational inference, its application was often
limited to specific models, specific variational distributions, and specific data volumes.

Consequently, scalable variational inference methods [266, 118] were developed to
counter those difficulties. Consider again the following joint model:

p(D,θθθ) = p(θθθ) ∏
1≤n≤N

p(yn|xn,θθθ). (2.9)



24 Inference and Models in Bayesian Machine Learning

To perform VI, its ELBO can be written as

L(q) =
N

∑
n=1

Eqλλλ (θθθ)
[log p(yn|xn,θθθ)]−DKL[qλλλ (θθθ)||p(θθθ)]. (2.10)

When N is large, stochastic optimization techniques [33] can be applied. Specifically, we
sample a mini-batch K ⊂ {1, ...,N} of size K, and obtain a noisy estimate of the ELBO:

L̂(q) = N
K ∑

k∈K
Eqλλλ (θθθ)

[log p(yk|xk,θθθ)]−DKL[qλλλ (θθθ)||p(θθθ)], (2.11)

which can then be used to perform stochastic gradient descent:

λλλ
(t) = λλλ

(t−1)+ rt∇
λλλ
(t−1)L̂(q). (2.12)

This will converge to a local optimum λλλ
⋆ of L(q) if the learning rate schedule {rt} satisfies

the Robbins-Monro conditions [276]:

∞

∑
t=1

rt = ∞,
∞

∑
t=1

r2
t < ∞. (2.13)

Finally, to deal with the analytical intractability of Eqλλλ (θθθ)
[log p(yk|xk,θθθ)], the following

Monte Carlo approximation is often used:

Eqλλλ (θθθ)
[log p(yk|xk,θθθ)]≈

1
M

M

∑
m=1

log p(yk|xk,θθθ
m), θθθ

m ∼ qλλλ (θθθ), (2.14)

which forms a unbiased estimator:

E
θθθ

1∼q(θθθ 1),...,θθθ M∼q(θθθ M)

[
1
M

M

∑
m=1

log p(yk|xk,θθθ
m)

]
= Eqλλλ (θθθ)

[log p(yk|xk,θθθ)] . (2.15)

This allows us to estimate the expectations Eqλλλ (θθθ)
[log p(yk|xk,θθθ)] without the need to obtain

analytic solutions. By combining the noisy ELBO (2.11) and the MC approximation (2.14),
variational inference can be easily applied to complicated models and large datasets, which
forms an algorithmic foundation for modern Bayesian deep learning.

Remark (Monte Carlo gradient estimators). Although obtaining the MC approximation of
Eqλλλ (θθθ)

[log p(yk|xk,θθθ)] is straightforward, in practice we are more interested in estimating
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the gradient, ∇λλλEqλλλ (θθθ)
[log p(yk|xk,θθθ)]. However, note that the gradient is taken regarding

the parameters λλλ of the probabilistic measure qλλλ (θθθ) in the expectation operator, Eqλλλ (θθθ)
[·].

Therefore, we cannot naively exchange the order of the derivative operator ∇λλλ and the
expectation operator Eqλλλ (θθθ)

[·]. To properly compute ∇λλλEqλλλ (θθθ)
[log p(yk|xk,θθθ)], several

techniques can be adopted:

1. The REINFORCE gradient estimator [366, 73], also known as the score function
estimator, is derived as follows:

∇λλλEqλλλ (θθθ)
[log p(yk|xk,θθθ)] =

∫
θθθ∈θθθ

∇λλλ [qλλλ (θθθ) log p(yk|xk,θθθ)]dθθθ

=
∫

θθθ∈θθθ

qλλλ (θθθ)∇λλλ logqλλλ (θθθ) log p(yk|xk,θθθ)dθθθ

= Eqλλλ (θθθ)
[∇λλλ logqλλλ (θθθ)︸ ︷︷ ︸

score function

log p(yk|xk,θθθ)]

≈ 1
M

M

∑
m=1

∇λλλ logqλλλ (θθθ
m) log p(yk|xk,θθθ

m), θθθ
m ∼ qλλλ (θθθ).

Note that the above derivation does not require the gradient information of
log p(yk|xk,θθθ). Therefore, the REINFORCE estimator can even be applied to the case
where log p(yk|xk,θθθ) is not differentiable w.r.t. θθθ .

2. The path-wise estimator, and the reparameterization trick [231, 149]. Suppose qλλλ (θθθ)

can be reparameterized into the following sampling procedure:

θθθ = hλλλ (ε), ε ∼ p(ε),

where p(ε) is some noise distribution, hλλλ (·) is a deterministic transformation. For
example, if qλλλ (θθθ) =N (θθθ ; µ,σ2), then it can be reparameterized as

θθθ = µ +σε, ε ∼N (ε;0,1).
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Then, the path-wise gradient estimator is derived as follows:

∇λλλEqλλλ (θθθ)
[log p(yk|xk,θθθ)] = ∇λλλEp(ε) [log p(yk|xk,hλλλ (ε))]

= Ep(ε) [∇λλλ log p(yk|xk,hλλλ (ε))]

≈ 1
M

M

∑
m=1

∇λλλ log p(yk|xk,hλλλ (ε
m)), ε

m ∼ p(ε).

The path-wise estimator does require to compute the gradient, ∇λλλ log p(yk|xk,hλλλ (ε
m)).

However, when the path-wise gradient estimator can be applied, it tends to have lower
variance than the REINFORCE estimator [74, 73, 272], especially when 1), θθθ is high-
dimensional; and 2), log p(yk|xk,θθθ) is smooth with small magnitude of derivatives. Regard-
ing the variance of the two estimators, [74] has shown the following result:

Proposition 2.2 (Variance analysis). Let qλλλ (θθθ) = N (µ,σ2), λλλ = {µ,σ}, and f (θθθ)
be a real-valued function. Assume Varqλλλ (θθθ)

((θθθ − µ) f (θθθ)) < ∞, Varqλλλ (θθθ)
( f ′(θθθ)) < ∞,

Eqλλλ (θθθ)
(|(θθθ −µ) f ′(θθθ)+ f (θθθ)|)< ∞ and Eqλλλ (θθθ)

(| f ′′(θθθ)|)< ∞. If

Eqλλλ (θθθ)
((θθθ −µ) f ′(θθθ)+ f (θθθ))2−σ

4Eqλλλ (θθθ)
( f ′′(θθθ)2)≥ 0

then path-wise derivative estimator of

∂µEqλλλ (θθθ)
( f (θθθ)

has lower variance of score function estimator.

The intuition of this result is that path-wise estimators will exhibit lower variance than
REINFORCE as long as the score function is better behaved (in the sense of expected
change) than the original joint likelihood. As argued in [74], many functions f (θθθ) in VI
satisfy such condition, hence the path-wise gradient estimator is often preferred. However,
when the gradient information ∇λλλ log p(yk|xk,hλλλ (ε

m)) is unavailable, one often need to
resort to REINFORCE. In this scenario, various variance reduction methods can be applied,
such as Rao-Blackwellization [266], the baseline approach [226], and more generally the
control variates approach [266, 252], etc. There also exits a number of other VI variance
reduction techniques for specific types of problems, for example Gumbel-Softmax [135]
and VIMCO [227] for discrete variables.

In this thesis, unless specified, we will always use the path-wise gradient estimator for
variational objectives.
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2.2.3 Power expectation propagation, and α-divergence minimization

In certain cases, VI may suffer from certain pathologies such as under-estimating the
uncertainties and introducing additional unwanted biases [344]. In this section, we introduce
an extension of variational inference, namely the black-box alpha divergence minimization
(BB-α) [113], that addresses some of the drawbacks of VI. Built upon ideas similar to VI,
BB-α performs scalable approximate inference by working with the following α-divergence
[380] Dα [p||q]:

q⋆ = argmin
q

Dα [p||q] = argmin
q

1
α(1−α)

(
1−

∫
θθθ∈θθθ

p(θθθ)αq(θθθ)1−αdθθθ

)
. (2.16)

The α-divergence is a generic class of divergences that includes as special cases the (ex-
clusive) KL-divergence (α = 0, corresponds to VI) , the inclusive KL-divergence (α=1,
corresponds to the EP objetive), and Hellinger distance (α=0.5), etc. Thus, BB-α naturally
unifies VI [140] and expectation propagation (EP) [223, 178]. As α →+∞, Dα [p||q] tends
to encourage mode-covering behaviour (i.e., q will tend to cover all local modes of p; on the
contrary, as α →−∞, Dα [p||q] encourages mode-seeking behavior, and q will tend to place
more mass on the area where p has the largest probability [225].

Before introducing further details regarding BB-α , we first briefly discuss the power
expectation propagation (power EP) algorithm [224], since BB-α is largely inspired from
the power EP. Unlike VI (which optimizes KL divergence globally), power EP parameterizes
qλλλ (θθθ) via a set of local approximations qλλλ (θθθ) ∝

1
Z p(θθθ)∏n f̃n(θθθ), where each f̃n(θθθ) ∝

exp
[
λλλ

T
n φφφ(θθθ)

]
is an exponential family that captures the individual effect of p(yn|xn,θθθ).

Moreover, power EP optimizes the α-divergence Dα [p||q] locally using message passing. If
convergent, it converges to a fixed point of the following energy function, LPEP(λλλ 0,{λλλ n}):

LPEP(λλλ 0,{λλλ n}) = logZ(λλλ 0)+(
N
α
−1) logZ(λλλ q)

− 1
α

N

∑
n=1

log
∫

p(yn|xn,θθθ)
α exp

[
(λλλ q−αλλλ n)

T
φφφ(θθθ)

]
dθθθ , (2.17)

where λλλ q = λλλ 0 +∑
N
n=1 λλλ n is the natural parameter of qλλλ (θθθ).

Remark (Local approximations via power EP). We breifly describe here how iterative local
message passing is done in power EP. For each iteration, power EP will pick a factor (say f̃n)
to refine. This is done by minimizing the α-divergence Dα [qλλλ (θθθ)

p(yn|xn,θθθ)

f̃n(θθθ)
||qλλλ (θθθ)], whose
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gradient with respect to λλλ q is as follows:

∇λλλ q
Dα [qλλλ (θθθ)

p(yn|xn,θθθ)

f̃n(θθθ)
||q] =

∇λλλ q

1
α(1−α)

[
1−

∫
θθθ∈θθθ

(
qλλλ (θθθ)

p(yn|xn,θθθ)

f̃n(θθθ)

)α

qλλλ (θθθ)
1−αdθθθ

]
=

− 1
α

∫
θθθ∈θθθ

(
qλλλ (θθθ)

p(yn|xn,θθθ)

f̃n(θθθ)

)α

qλλλ (θθθ)
1−α

∇λλλ q
logqλλλ (θθθ)dθθθ ∝

Eqλλλ (θθθ)
[φφφ(θθθ)]−E

qλλλ (θθθ)
p(yn|xn,θθθ)α

f̃n(θθθ)α︸ ︷︷ ︸
tilted distribution

[φφφ(θθθ)]

By setting ∇λλλ q
Dα [qλλλ (θθθ)

p(yn|xn,θθθ)

f̃n(θθθ)
||q] to zero, this gives us the fixed-point updates via

moment matching:

Eqλλλ (θθθ)
[φφφ(θθθ)]← E

qλλλ (θθθ)
p(yn|xn,θθθ)α

f̃n(θθθ)α
[φφφ(θθθ)].

Note that power EP in general does not have any convergence guarantees. However,
when convergent, it converges to a fixed point of LPEP.

Now we are ready to describe BB-α . BB-α is hugely inspired by power EP, but took a
different approach towards energy optimization. BB-α directly optimizes LPEP with tied
factors f̃n = f̃ to avoid prohibitive local factor updates and storage on the whole dataset.
This means λλλ n = λλλ for all n and λλλ q = λλλ 0 +Nλλλ . Therefore instead of parameterizing each
factors, we can directly parameterize qλλλ (θθθ) and replace all the local factors in the power-EP
energy function by f̃ (θθθ) ∝ (qλλλ (θθθ)/p(θθθ))1/N . After re-arranging terms, this gives the BB-α
energy:

Lα(q) =−
1
α

∑
n

logEq

[(
fn(θθθ)p(θθθ)

1
N

qλλλ (θθθ)
1
N

)α]
, (2.18)

which can be further approximated by the following if the dataset is large [177]:

Lα(q) = DKL[q||p]−
1
α

∑
n

logEq [p(yn|xn,θθθ)
α ] . (2.19)

The optimization of Lα(q) could be performed in a black-box manner with mini-
batch stochastic optimization and path-wise gradient estimator, as introduced in Section
2.2.2. Empirically, it has been shown that BB-α with α ̸= 0 can return significantly better
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uncertainty estimation than VI, and has been applied successfully in different scenarios
[177, Depeweg et al.]. Moreover, from the perspective of model evidence approximation,
it has been suggested [180] that the BB-α energy Lα(q) forms a better estimation of log
marginal likelihood, log p(D) when compared with the evidence lower bound, L(q). There-
fore, in Chapter 3 of this thesis, BB-α energy is used for both Bayesian inference and model
evidence approximation.

2.2.4 Implicit variational inference: beyond prescribed approximations

Due to the need for tractability and scalability are, many VI/EP methods rely on sim-
ple approximations such as mean-field approximations. However, mean-field approxi-
mations explicitly ignore correlations among different components of θθθ , which tends to
under-estimate uncertainties [344], introduce multiple local minima and bring additional
nonconvexity to the optimization problem [348]. These drawbacks of mean-field VI be-
come more significant when applied to complicated models such as Bayesian neural net-
works [71, 127, 284, 251, 68]. Therefore, one promising direction for improving VI is
to specify flexible approximations q(θθθ), which has received enormous attention from the
community. Relevant approaches could be roughly categorized into structured mean field
[348, 295, 364, 363], auxiliary/hierarchical VI [2, 291, 268], mixture VI [81, 96, 222, 10],
copula VI [338, 100], normalizing flows [271], and implicit VI [125, 339, 191].

Among these approaches, we introduce recent works that consider implicit models/distri-
butions as approximate posteriors [339, 191, 176, 182, 179] for more flexible VI. In contrast
to prescribed probabilistic models [61] that assign explicit densities to possible outcomes,
implicit distributions implicitly assign probability measures by the specification of the data
generating process, also known as the black-box simulator. This means that we are only
able to obtain Monte Carlo samples from such implicit distributions, but their probability
density function might not be available for evaluation. In its most common example, an
implicit distribution qλλλ (θθθ) can be defined by the following sampling process:

θθθ = gλλλ (ε), ε ∼ p(ε), (2.20)

where gλλλ (·) : R|ε| 7→ R|θθθ | is a multi-variate function parameterized by λλλ , and ε is some
simple noise variable (e.g., factorized standard normal distribution). The probability density
function of θθθ is implicitly defined as

qλλλ (θθθ) =
∫
{ε|g(ε)=θθθ}

p(ε)dε (2.21)
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Implicit models provide exceptionally powerful tools for parameterizing and learning
probabilistic distributions. One of the most well known implicit distributions in machine
learning is the generative adversarial nets (GANs) [88, 11], where gλλλ (·) : R|ε| 7→ R|θθθ | is
defined by as a neural network (namely the generator) that maps the noise ε to higher
dimensional observations. GANs have demonstrated their expressiveness and flexibility in
complicated tasks such as image generation [262], protein modeling [270], lattice simulation
in high-energy physics [256], weak lensing convergence map in cosmology [238], and
Fermi-Hubbard model simulation in high-temperature superconductivity [40].

Remark (implicit distributions as pushforward measure). Defining implicit distributions
as “distributions that allow sampling but not the evaluation of probabilities” is somewhat
vague and unrigorous. With the help of measure-theoretic probability, we can define implicit
distribution as a probabilistic measure defined via push-forward measure:

Definition 2.2 (Pushforward measure). Given a probability space (Ω,B,P), then a mea-
surable mapping G from (Ω,B,P) to another measurable space (S,M) will induce a
probability measure G∗, called the pushforward of P, defined by

G∗(M) := P(G−1(M)), ∀M ∈M. (2.22)

The GAN example abve is a special of case of Equation (2.22) by considering Ω = R|ε|,
S = R|θθθ |, and G as a measurable function defined by a neural network.

Although implicit distributions are very powerful, variational inference using such
posterior approximators is quite difficult. This is due to that the KL-divergence term
DKL[q||p] of the ELBO (2.8, 2.29) requires evaluation of the probability density function of
q, which is unfortunately intractable if they are defined by implicit distributions. Therefore,
several implicit variational inference methods have been proposed based on additional
approximations to evaluate DKL[q||p]. One common technique is called the density ratio
estimator [328, 125, 339, 179]. To derive this technique, notice that DKL[q||p] can be written
as

DKL[q||p] = Eqλλλ (θθθ)

[
log

qλλλ (θθθ)

p(θθθ)

]
= Eqλλλ (θθθ)

[logU(θθθ)], (2.23)

where U(θθθ) =
qλλλ (θθθ)
p(θθθ) is the density ratio between qλλλ (θθθ) and p(θθθ). U(θθθ) can be estimated

via a GAN-based idea by training the following binary classifier D(θθθ) that distinguish
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between samples from q and p

D(θθθ) := P(θθθ is sampled from q|θθθ) = 1
1+ exp{− logU(θθθ)}

. (2.24)

The scoring objective can be defined by the following loss function,

max
U

Eqλλλ (θθθ)
[logD(θθθ)]+Ep(θθθ)[log(1−D(θθθ))]. (2.25)

Minimizing the above objective gives the optimal solution,

U⋆ =
qλλλ (θθθ)

p(θθθ)
. (2.26)

Once U⋆ has been obtained, the implicit VI ELBO can be estimated via

L(q) =
N

∑
n=1

Eqλλλ (θθθ)
[log p(yn|xn,θθθ)]−Eqλλλ (θθθ)

[U⋆(θθθ)] . (2.27)

Remark (Other implicit VI approaches). Despite these successful applications in training
generative adversarial networks, density ratio estimators have also been criticized for being
an extremely challenging problem in high-dimensional settings [328], and introducing
additional optimization complexities. They require a large number of Monte Carlo samples
[176], often exhibiting high variances for high-dimensional θθθ due to overfitting [328, 218],
and lack of capabilities to process high-dimensional inputs such as neural network weights
[308]. Apart from GAN-like density ratio estimators, there also exists a number of alternative
estimators of (the gradients of) DKL[q||p]. For instance, kernel estimators [308], Stein
gradient estimators [181, 309], spectral approaches [309, 264], and nonparametric score
estimators [379]. However, many of these methods still suffer from less efficiency for such
high dimensional inputs to a certain extend [308, 379, 85].

Another closely related approach puts additional constraints on q, and assumes that q can
be represented as mixtures of tractable distributions. These ideas originate from auxiliary
variational inference [2], and has recently seen a revival in the context of semi-implicit VI
[2, 291, 268, 371, 234, 336, 317, 229], which provides a nice balance between posterior
flexibility and optimization simplicity.
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2.3 Models

Many recent advances in Bayesian machine learning started from the developments of tools
and techniques of approximate Bayesian inference, which have enabled the application of
Bayesian principles to complicated models. In this section, we introduce some of these
important models in Bayesian machine learning. Specifically, we will introduce Bayesian
neural networks, Gaussian processes, and deep generative models, where elements of modern
deep learning are combined with Bayesian modeling (i.e., Bayesian deep learning). We will
also discuss the advantages and disadvantages behind those ideas, and thus motivate some
new fresh ideas that will be developed later in the thesis.

2.3.1 Deep neural networks, and their Bayesianization

Deep neural networks There has been an explosion of deep machine learning models in
the past decade [22, 115, 288, 162, 314, 62, 167, 230, 142, 43, 331], which have achieved
state-of-the-art results on many large scale tasks. More recently, larger neural models such
as ResNet [105], DenseNet [123], BERT [58], and GPT-3 [35] has been the driven force
behind many real-world applications. Behind those successes, neural networks/multi-layer
perceptions have been the core components of almost every deep learning model. Essentially,
deep neural networks (DNNs) are collections of trainable units, organized in different layers
of abstractions. They can learn features from raw, high-dimensional, noisy, ambiguous data
at a large scale. The most common way to train a (L-layer) deep neural network is via the
frequentist approach, namely the (regularized) empirical risk minimization (ERM):

min
w

l(w,D) = ∑
1≤n≤N

||yn−g(xn,w)||2 +βR(w),

s.t. hl
n = ςl−1(hl−1

n wl +bl), l = 1, ...,L−1,

h0
n = xn, g(xn,w) = hL

n ,

where w = {(w1,b1), ...,(wL,bL)} is the set of neural network weights (and biases), R(w)

is the regularization term weighted by β (a common choice would be the Frobenius norm
r(w) = ||w||2F ), ςl−1(·) is the non-linear activation function for the lth layer. The optimization
problem minw l(w,D) is often solved by stochastic optimization methods.

Bayesian neural networks (BNNs) To apply the principles of Bayesian modeling to
deep neural networks, one of the major ways is to introduce probability distributions to
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neural network weights, which will “Bayesianize” the DNNs and give us the Bayesian
neural networks [205, 243]. This combines the best from both worlds: on one hand, modern
approximate inference methods enable deep learning models to take advantage of Bayesian
methods, and represent uncertainties in their predictions; on the other hand, the introduction
of deep learning elements also harmonizes well with Bayesian approaches, since this allows
one to use much more flexible probabilistic models.

Definition 2.3 (Bayesian neural neworks (BNN)). Let y = g(x,w) be a neural network
where x is the input, y is the output, and w denotes the weights. To build a Bayesian neural
network (BNN), we place a prior p(w) over w. This prior models the epistemic uncertainty
responsible for parameter uncertainties and can be explained away by observing more data.
Furthermore, we add an observational noise ε ∼N (ε;0,σ2) to the output. This models the
aleatoric uncertainty, which accounts for the intrinsic noise in the observation (i.e., data
uncertainty). Then, a BNN is given by

log p(y|x) = logEp(w)p(y|x,w) = log
∫

w
N (y;g(x,w),σ2)p(w)dw, (2.28)

where N (y;g(x,w),σ2) is likelihood/data-generating distribution, p(y|x,θθθ), as mentioned
in Section 2.1.

Then, we can perform Bayesian inference with the BNN model: given a dataset
D = {xi,yi}n

i=1, the goal of Bayesian inference is to compute the posterior p(w|D) ∝

p(D|w)p(w). Since this is intractable, we often resort to approximate inference methods. In
principle, all scalable approximate inference algorithms such as scalable VI, α-divergence
minimization, (stochastic) expectation propagation can be applied. In particular, we may
apply scalable variational inference by introducing a variational distribution q(w) that ap-
proximates the posterior p(w|D). q(w) is trained by maximizing (an noisy estimation of)
the evidence lower bound (ELBO):

L(q) := Eq log p(D|w)−DKL[q(w)||p(w)]. (2.29)

Once an optimal q⋆ has been found, we can approximate the Bayesian posterior predictive
distribution on a test input x∗ as follows:

p(y∗|x∗,D)≈ 1
M ∑

1≤m≤M
N (y∗;g(x∗,wm),σ2), wm ∼ q⋆(θθθ), 1≤ m≤M. (2.30)
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In Equation (2.30), the approximation is twofold: 1), we have used q⋆ as an approx-
imation to p(w|D); and 2), we have used MC samples to approximate the integration in
Equation (2.2). It is now straightforward to see that Equation (2.30) performs (approximate)
Bayesian model averaging (BMA) [138]: rather than working with a single point estimate of
the weights ŵ and predicting usingN (y∗;g(x∗, ŵ)), BNNs with BMA considers all possible
configurations of the weights (approximately represented by {wm}1≤m≤M) simultaneously,
and marginalises out the weights over q⋆(θθθ)≈ p(w|D).

Note that the objective in Equation (2.29) only provides a vague and general framework
for variational inference in BNNs. Depending on how q(w) is chosen, and how L(q) is
estimated and optimized, we will arrive at different specific BNN algorithms. For the sake
of scalability, many of these VI methods for BNNs rely on mean-field assumptions for
q(w) [117] as well as path-wise derivative estimators, which results in Bayes by Backprop
(BBB) [29] and variational dropout [75]. Since the posterior p(w|D) is usually high multi-
modal and complicated, the performance of VI is often sub-optimal, and suffers from
over-confidence [344], variational over-pruning [341], over-parameterization [206], the
cold-posterior effect [361], and other pathologies [70].

Remark (A brief history of VI for BNNs). Here we give a brief review of how VI meth-
ods for BNNs are developed in the literature. Variational inference for Bayesian neural
network weights is first introduced by [117], which considered variational inference from
an information-theoretic perspective (minimum description length). This idea is further
developed by [17] in the case of non-factorial proxy in variational inference. More recently,
[91] proposed the stochastic version of variational inference and derived one of the first
scalable learning algorithms for Bayesian neural networks. This is later refined and extended
by Bayes-by-Backprop (BBB) [29], which applied the reparameterization trick (path-wise
gradient estimator) of [150] to obtain an unbiased estimate of the ELBO (and its gradients).
This also allows the specification of non-Gaussian priors, which further boosted the per-
formance of BNNs to a level comparable to other practical deep learning methods (such
as dropout) at that time. Variational Bernoulli dropout (VDO) [75, 122] instead interprets
dropout [323] as performing variational inference for BNNs. They also apply path-wise
gradient estimator) of [150], but instead uses a mixture of Gaussians as q(w), such that
the columns of the weight matrices are randomly pruned to zero. This also introduces
weight-correlations to q(w), and halved the number of variational parameters. BBB and
VDO are still among the most popular BNN algorithms to date.
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2.3.2 Alternative BNN inference methods

The history of Bayesian neural networks is nothing but the history of the development of
sophisticated approximate inference techniques. Apart from variational inference, several
different approximate inference methods are proposed or applied to BNNs. We now give a
brief review of some alternative Bayesian neural network inference methods developed prior
to this thesis, including some recent advances in the past few years. Some of those methods
will also be used as baselines in later chapters.

Modern Laplace approximations. The Laplace approximation [56, 204] is perhaps one
of the first approximate inference methods in Bayesian neural networks, which approx-
imates the BNN posterior by a multivariate Gaussian centered around its MAP mode.
However, the need for calculating second-order derivatives (i.e., the Hessian matrix) made
this vanilla approach computationally infeasible. Later, generalized Gauss-Newton (GGN)
methods [301, 210] as well as its scalable block-diagonal/Kronecker-factored approxima-
tions [211, 32] have been introduced for the practical second-order optimization of deep
neural networks. These approximation techniques have resulted in modern Laplace approxi-
mations for Bayesian neural networks [275, 71]. More recently, it has been argued that GGN
approximation can be viewed as a linearized version of Bayesian neural networks, which
popularized another branch of works that approximate the Bayesian posterior predictive
distribution by that of the linearized model [71, 145, 127].

Expectation propagation, and other bounds/divergences. Probabilistic backpropagation
(PBP) [111] is an approximate inference algorithm for Bayesian neural networks, that
performs assumed density filtering (ADF) on training sets. Similar implementations of PBP
based on expectation propagation and stochastic expectation propagation (SEP) were also
proposed in [178]. In general, PBP has demonstrated superior performances over VI [91]
in both accuracy and speed. Another EP-based method is the BB-α [113] introduced in
Section 2.2.3, which directly minimizes the energy function Lα of BNNs, instead of doing
iterative message passing. In the context of variational Bernoulli dropout, an alternative
reparameterization of the α-divergence objectives is also proposed and studied, which
enables simple implementations for BNNs. Following this line of work, more variational
bounds/divergences have been introduced for approximate inference. Well-known examples
include Renyi’s α-divergence [180], f -divergence [351], χ-divergence [60], and operator
variational inference [267]. More recently, meta-learning strategies that directly learn to
select the divergence metrics suitable for specific tasks have also been explored [377].
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Flexible approximations for BNN posteriors. Most approximate inference methods
(based on VI and EP) that we mentioned before rely on mean-field approximations to
increase scalability. As observed both theoretically [71, 68] and empirically [127, 284,
251], mean-field approximations have limited expressiveness and tend to under-estimate
uncertainties in regions where observations are sparse. Therefore, a promising line of
research considers more expressive posterior approximations such as structured weight-
matrix posterior approximations [195, 329, 275], normalizing flows [196, 271], or even
variational dropouts that implicitly consider weight-space correlations [75, 77]. Another
possibility is the application of implicit VI methods to BNNs. As reviewed in Section 2.2.4,
implicit VI is a powerful tool for complicated approximate inference tasks. However, when
applied to BNNs, implicit VI becomes computational infeasible: for any non-trivial BNNs,
it is challenging to design implicit distributions for high-dimensional neural network weights
[308, 218, 319]. More importantly, most existing gradient estimators for DKL[q||p] are less
efficient for such high dimensional distributions [308, 379, 85]. In this regard, implicit VI is
mainly applied to BNNs when jointly used with mean-field assumptions [234, 181, 330];
only a handful of implicit VI based methods have been applied to BNNs with non-mean-field
variational families [308].

Dimension reduction for BNN Since expressive VI with non-mean-field approximations
is difficult for high-dimensional models like BNNs, various of methods are developed
to perform inference in a lower-dimensional subspace of the neural network weights. A
straightforward method is to perform inference only for the last layer of BNNs [274, 251,
248, 160, 34]. This idea was further extended to sub-network inference methods [51],
which provide Bayesian inference over a subset of weights using certain selection strategies.
Another similar idea is based on performing inference over a low-dimensional subspace of
neural network weights, e.g. either two-stage procedure (via stochastic weight averaging +

principal component projection [131]), or end-to-end optimization (low-rank assumptions
on weight matrices [64]).

2.3.3 Gaussian Processes

Gaussian Processes [269], as a popular example of Bayesian nonparametrics, provide a
principled probabilistic framework for non-parametric Bayesian inference over functions.
This is achieved by imposing rich and flexible nonparametric priors over functions of interest.
As flexible and interpretable function approximators, their Bayesian nature also enables
GPs to provide valuable information of uncertainties regarding predictions for intelligence
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systems, all wrapped up in a single, exact closed-form solution to the posterior inference
problem.

We briefly introduce GPs for regression. Consider again the scenario of having a
training set v = D := {(xn,yn)}n=1:N , where X = {x1,x2, ...,xN} is the set of inputs, and
y= {y1,y2, ...,yN}. A Gaussian Process model assumes that yn is generated according the fol-
lowing procedure: firstly a function f (·) is drawn from a Gaussian Process GP(M(·),K(·, ·))
(to be defined later). Then for each input data xn, the corresponding yn is then drawn accord-
ing to

yn = f (xn)+ εn, ε ∼N (0,σ2), n = 1, · · · ,N.

A Gaussian Process is then a nonparametric distribution defined over the space of functions,
as defined next.

Definition 2.4 (Gaussian Processes). A Gaussian process (GP) is a collection of random
variables, any finite number of which have a joint Gaussian distributions. A Gaussian
Process is fully specified by its mean function M(·) : RD → R and covariance function
K(·, ·) : RD×RD→ R, such that any finite collection of function values f are distributed as
Gaussian distribution N (f;m,Kff), where (m)n =M(xn), (Kff)n,n′ = K(xn,xn′).

Now, given a set of observational data {(xn,yn)}N
n=1, we can perform probabilistic

inference and assign posterior probabilities over all plausible functions that might have
generated the data. Under the setting of regression, given a new test point input data x∗, we
are interested in posterior distributions over f∗. Fortunately, this posterior distribution of
interest admits a closed-form solution f∗ ∼N (µ∗,Σ∗):

µ∗ = m+Kx∗f(Kff +σ
2I)−1(y−m), (2.31)

Σ∗ = Kx∗x∗−Kx∗f(Kff +σ
2I)−1Kfx∗, (2.32)

In our notation, (y)n = yn, (Kx∗f)n = K(x∗,xn), and Kx∗x∗ = K(x∗,x∗). Although the Gaus-
sian Process regression framework is theoretically very elegant, in practice its computational
burden is prohibitive for large datasets since the matrix inversion (Kff+σ2I)−1 takesO(N3)

time due to Cholesky decomposition. Once this matrix inversion is done, predictions at
test time can be made with a cost of O(N) to compute the posterior mean µ∗ and a cost of
O(N2) to compute the posterior variance Σ∗, respectively.
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Despite the success and popularity of GPs (and other Bayesian non-parametric methods)
in the past decades, their O(N3) computation and O(N2) storage complexities makes their
application to large-scale datasets impractical. Therefore, people often resort to complicated
approximate methods, e.g. see [304, 261, 315, 335, 109, 38, 37, 287, 46, 343].

Another critical issue to be addressed is the representational power of GP kernels. It has
been argued that local kernels commonly used for nonlinear regressions are not able to obtain
hierarchical representations for high dimensional data [23], which limits the usefulness of
Bayesian nonparametric models in complicated tasks. A number of solutions were proposed,
including deep GPs [49, 47, 36], the design of expressive kernels [346, 65, 337], and the
hybrid model with features from deep neural nets as the input to a GP [116, 367]. However,
the first two approaches still struggle to model complex high dimensional data such as text
and images; and in the third approach, the advantages of fully Bayesian approaches are not
fully exploited.

2.3.4 Generative models and variational EM

So far we have been discussing Bayesian machine learning in the context of supervised
learning, which requires labeled data D = {xn,yn}1≤n≤N to perform Bayesian inference
and prediction. However, most data generated from the real world comes with no labels. It
is therefore, very crucial for us to be able to make sense of those data in an unsupervised
way. Generative models, also known as the latent variable models, provide a probabilistic
approach to perform unsupervised learning with such unlabelled data.

Definition 2.5 (Generative models). A generative model is a probabilistic distribution
pθθθ (xn) parameterized by learnable model parameters θθθ , that specifies the likelihood of
observing a particular data sample, xn.

Definition 2.6 (Latent variable models). A latent variable model is a generative model,
where pθθθ (xn) is defined by assigning local latent variables zn for each data instance xn. In
other words, given a non-labelled dataset D = {xn}1≤n≤N , we have that

log pθθθ (D) = ∑
n

log
∫

zn

pθθθ (xn,zn)dzn. (2.33)

Without loss of generality, in this thesis we assume all generative models are latent variable
models.
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Remark (Examples). In this thesis we constrain our discussions to a class of generative
models defined by the following factorization:

log p(D) = ∑
n

log
∫

zn

p(xn|zn)p(zn)dzn. (2.34)

An example of such model is probabilistic principle component analysis (PPCA), which is
defined by the following linear model:

p(zn) =N (z;0,I),

p(xn|z) =N (Λz,σI),

n = 1, ...,N,

where Λ is a linear transformation matrix, σ is the standard deviation of the Gaussian noise,
and the learnable model parameters are given by θθθ = {Λ,σ}.

Alternatively, another useful way to specify p(xn,zn) is to use the so-called energy-based
models

pθθθ (x,z) =
e−Eθθθ (x,z)

Zθθθ

.

One famous example are Restricted Boltzmann machines (RBMs) [115], where Eθθθ (x,z) is
given by

Eθθθ (x,z) = xTWz+bT
x x+bT

z z.

One central task for unsupervised learning with generative models is learning, which is
to perform maximum likelihood learning over θθθ :

θθθ
⋆ = argmax

θθθ
∑
n

log pθθθ (xn). (2.35)

Note that since we only have access to {xn}1≤n≤N , and the latent variables {zn}1≤n≤N are
unobserved, they need to be marginalized out during maximum likelihood learning:

θθθ
⋆ = argmax

θθθ
∑
n

log pθθθ (xn) = ∑
i

log
∫

zn

pθθθ (xn|zn)pθθθ (zn)dzn. (2.36)

The above optimization problem requires to solve N integration problems∫
zn

pθθθ (xn|zn)pθθθ (zn)dzn, which are usually analytically intractable except for certain
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special cases. To address this, a variational Expectation-Maximization (VEM) algorithm
[19] can be applied, which combines the idea of variational inference (over zn) with
maximum likelihood learning (over z). Similar to VI, in VEM, a set of approximate
posteriors {qλλλ n

(zn)}1≤n≤N are used to approximate each of the true posterior distributions,
{pθθθ (zn|xn)}1≤n≤N , respectively. Then, variational EM optimizes the below evidence lower
bound L:

∑
n

log pθθθ (xn)≥ L({λλλ n}1≤n≤N ,θθθ) = ∑
n
Eqλλλn(zn)

[
log

pθθθ (xn,zn)

qλλλ n
(zn)

]
. (2.37)

Remark (Global vs. local latent variables). Note that the ELBO in Equation (2.37) is
different from that of a BNN in Equation (2.29). In a BNN, all data instances share the same
latent variable, i.e. the neural network weights w. We call w the global latent variables.
Hence, for datasets of N data instances, the BNN bound in Equation (2.29) only has exactly
one approximate factor (i.e., qλλλ (w)) and one KL-term. However, in a generative model,
each data instance xn in the dataset is assigned with different latent variables zn. This creates
N different approximate factors qλλλ n

(zn) as well as N KL terms in the ELBO 2.37.

The optimization is often done by recursively alternating between the following two
steps:

• E step (VI step): λλλ
new
n = argmaxλλλ n

L({λλλ n}1≤n≤N ,θθθ) =

argmaxλλλ n
Eqλλλn(zn)

[
log pθθθ (xn,zn)

qλλλn(zn)

]
, for all 1 ≤ n ≤ N. It is then trivial to verify

that equality in (2.37) holds if and only if qλλλ (zn) = pθθθ (zn|xn) for all 1≤ n≤ N.

• M step (learning step): θθθ
new = argmaxθθθ L({λλλ n}1≤n≤N ,θθθ).

When exact inference is possible, i.e. qλλλ (zn) = pθθθ (zn|xn) for all 1≤ n≤ N, the above VEM
procedure never decreases the likelihood since

L({λλλ old
n }1≤n≤N ,θθθ

old)≤ L({λλλ new
n }1≤n≤N ,θθθ

old) = ∑
n

log p
θθθ

old(xn)

≤L({λλλ new
n }1≤n≤N ,θθθ

new)≤∑
n

log pθθθ
new(xn).

Unfortunately, exact inference is intractable in most cases, and the approximate inference
used in the E step will break the condition qλλλ (zn) = pθθθ (zn|xn). Therefore, in practice, the
likelihood of VEM is not guaranteed to always have non-negative increments. However,
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under mild conditions, the VEM procedure is still convergent and will converge to a local
optimum of L.

Note that variational inference is not the only candidate for E-step. An alternative
inference method is Monte Carlo inference : we can draw MC samples from p(zn|xn) using
MCMC methods [7, 236, 244], and perform gradient estimation:

∇θθθ ∑
n

log p(xn) = ∑
n
Ep(z|xn)(∇θθθ log p(xn,z))

≈∑
n,m

∇θθθ log p(xn,zn,m), zn,m ∼ p(zn|xn), m = 1, ...,M.

2.3.5 Deep generative models and amortized variational inference

The central challenge of generative modeling is how to learn flexible and accurate generative
models, that can describe complicated patterns in the data. Following the recent advantages
of deep learning, one promising approach is to combine generative models with deep learning
models, which enables us to take advantage of the representation power of deep learning
models. This is usually done by using deep neural networks to transform the latent variables
zn into the observables, xn:

p(zn) =N (zn;0,I), (2.38)

pθθθ (xn|zn) =N (xn;gθθθ (zn),σI), (2.39)

n = 1, ...,N,

where gθθθ (·) is a deep neural network parameterized by θθθ that transforms zn into the mean
parameter of the Gaussian distribution pθθθ (xn|zn). The above deep generative model can
also be written in terms of the following sampling process:

xn = gθθθ (zn)+ εn, zn ∼ p(zn), εn ∼N (εn;0,σI), (2.40)

which takes the form of implicit distributions, introduced in Section 2.2.4, and that are known
to excel at designing highly expressive probabilistic distributions. The distribution pθθθ (xn|zn)

is often referred as the decoder in the context of autoencoders [150], or the generator in the
context of GANs [88].

Just like any generative models, learning and inference for deep generative models, as
defined in Equation (2.39) and (2.40), can also be performed by optimizing the evidence
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lower bound defined in Equation (2.37):

∑
n

log pθθθ (xn)≥ L({λλλ n}1≤n≤N ,θθθ) = ∑
n
Eqλλλn(zn)

[
log

pθθθ (xn,zn)

qλλλ n
(zn)

]
(2.41)

In the context of deep generative models, variational EM is computationally infeasible.
To begin with, it requires to store and optimize O(N) variational parameters, {λλλ n}1≤n≤N ,
which clearly does not scale to big data. Moreover, it does not scale to new unseen data
examples. Imagine that we have learned a deep generative model for images and, given a
new image x∗, we wish to infer its latent structure, p(z∗|x∗). In this scenario, variational EM
will create a new approximate distribution q

λλλ
∗(z∗), and optimize λλλ

∗ with gradient descent
iterations. This procedure is slow in practice and does not handle a large number of new
images.

The amortized inference method was proposed [150, 52] to address these practical
challenges. In amortized inference, we can directly tie all local variational parameters
λλλ n to be the same, λλλ . To compensate for this parameter-tying, the observables xn are
used as additional input to the approximate posteriors. This gives the following amortized
approximation

qλλλ
n(zn)≈ qλλλ (zn|xn).

In other words, qλλλ (zn|xn) tries to predict (the sufficient statistics of) the approximate
posterior distribution qλλλ

n(zn) by taking as input the observable xn. qλλλ (zn|xn) is often
referred as the encoder, or recognition net/inference net. An important way to parameterize
qλλλ (zn|xn) is via neural networks:

qλλλ (zn|xn) =N (zn; µλλλ (xn),diag(σλλλ (xn))), (2.42)

where both µλλλ (·) and σλλλ (·) are deep neural nets that maps the observables xn to the mean
and standard deviations of the distribution qλλλ (zn|xn).

Now, with the amortized approximation qλλλ
n(zn)≈ qλλλ (zn|xn), the amortized variational

lower bound becomes:

∑
n

log pθθθ (xn)≥ L(λλλ ,θθθ) = ∑
n
Eqλλλ (zn|xn)

[
log

pθθθ (xn,zn)

qλλλ (zn|xn)

]
. (2.43)

Finally, instead of the two-step recursive procedure in variational EM, we can now apply
the advanced techniques of scalable variational inference (Section 2.2.2) to the amortized
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objective (2.43), and perform gradient descent on both θθθ and λλλ simultaneously. This
reproduces the variational auto-encoder model of [150].

Amortized inference certainly sacrifices representation power due to the parameter
tying approximations λλλ n ≈ λλλ . However, it brings several major advantages for generative
modeling. The most direct impact is the drastically reduced memory cost, making this new
formulation highly scalable to large datasets. Also, it allows for fast down-top inference on
new data, without worrying about the mixing problem of MCMC or the additional cost of
optimization steps in variational EM. Moreover, the parameterization qλλλ (zn|xn) decouples
the local structures (represented by xn) and the global structure (represented by λλλ shared
across all data instances) of q [176]. This potentially helps the optimization of the variational
parameters λλλ as well as the model parameters θθθ .

2.3.6 Helmholtz machines and the wake-sleep algorithm

The idea of amortized inference is not a new invention of deep generative models/variational
autoencoders. It originally appeared in the wake-sleep algorithm of the Helmholtz machine
[52, 114], which has modeling assumptions very similar to those of modern variational
auto-encoders. The wake-sleep algorithm in the Helmholtz machine is an alternative method
for learning deep generative models. Similar to variational EM, it recursively alternates
between two phases called the wake phase and the sleep phase:

• The wake phase: in this phase we optimize the model parameters θθθ , by maximizing
the amortized ELBO of Equation (2.43) w.r.t. θθθ only.

• The sleep phase: Recall that in normal VI/variational EM, we train the recognition
network qλλλ by optimizing

Epdata(x)DKL[qλλλ (z|x)||pθθθ (z|x)]≈

∑
n

DKL[qλλλ (zn|xn)||pθθθ (zn|xn)], xn ∼ pdata(x), (2.44)

where pdata(x) is the ground truth data distribution that generated the training set, D.
On the contrary, the sleep phase of the wake-sleep algorithm optimizes the following
reverse KL-divergence:

Epθθθ (x)DKL[pθθθ (z|x)||qλλλ (z|x)]. (2.45)
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Note that the outer expectation is taken using the model distribution pθθθ (x) instead of
the data distribution pdata(x). This quantity can be optimized using gradient descent,
which computes the gradients as below:

∇λλλEpθθθ (x)DKL[pθθθ (z|x)||qλλλ (z|x)] = ∇λλλEpθθθ (x,z) [log pθθθ (z|x)− logqλλλ (z|x)] (2.46)

= Epθθθ (x,z) [−∇λλλ logqλλλ (z|x)] . (2.47)

Therefore, the intuition behind the sleep phase is to perform maximum likelihood
learning of the recognition model qλλλ (z|x), using “dreamed” samples obtained from
the model, pθθθ (x,z). This avoids taking a derivative w.r.t. the probability measure of
the expectation operator Epθθθ (x,z), which makes the gradient estimation become more
well-behaved. However, it comes with a cost of breaking a unified single objective,
i.e. the evidence lower bound L.

Remark (Sleep phase λλλ updates and wake phase λλλ updates). The sleep phase update
described above is usually referred to as the sleep phase λλλ update [31]. An alternative
update rule is the so called wake phase λλλ updates, which optimizes

Epdata(x)DKL[pθθθ (z|x)||qλλλ (z|x)] = Epdata(x)pθθθ (z|x) [log pθθθ (z|x)− logqλλλ (z|x)] (2.48)

≈ Epdata(x)qλλλ (z|x) [log pθθθ (z|x)− logqλλλ (z|x)] . (2.49)

That is, it performs maximum likelihood learning of the recognition model qλλλ (z|x) using
samples from the data distribution. This approach is sometimes more advantageous than
the sleep phase λλλ update. Since pθθθ (z|x) is unknown, it is often replaced by the biased
approximation qλλλ (z|x) (which needs further bias-reduction techniques such as importance
sampling).

2.4 Conclusion

In this chapter, we gave a systematic review of the basic techniques for uncertainty quan-
tification in machine learning, including Bayesian modeling, approximate inference, and
important models for both supervised and unsupervised learning. Some of these techniques
will be further applied, developed, and compared in the next chapters (3, 4, and 5). During
this process, we hope to give the readers a better idea of existing advancements and chal-
lenges in Bayesian machine learning and Bayesian deep learning, with most of them usually
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centered around the scalability, flexibility, and accuracy of approximate inference methods.
In the rest of the thesis, we will present new contributions along those dimensions.





Part A

Approximate Inference in Function Space





Chapter 3

Why Function Space Inference?

IN Part A (Chapter 3, 4 and 5) of the thesis, we will first focus on supervised learning
problems, and try to address Challenge I identified Chapter 1, i.e., obtaining efficient and

accurate model uncertainty in supervised learning problems. Estimating model uncertainty
in a proper way is a crucial task, as given a set of observations, there might exist a number
of potential models that could fit the data equally well. Therefore, we are uncertain about
which predictive model to choose in the end, which will effect the decisions that we will be
making based on such models. As introduced in Chapter 2, this type of uncertainty can in
principle be quantified by performing Bayesian inference over model parameters.

In this chapter, we will first take Bayesian neural networks as an example, and review
some of the difficulties of performing Bayesian inference in parameter space. Undoubtedly,
model unidentifiability/overparameterization is one of the major obstacles to improving the
quality of approximate inference. Thus, we will argue that we may consider performing
inference in function space, as it is equivalent to performing inference on minimal suffi-
cient parameters, hence resolving the problem of model non-identifiability and posterior
inconsistency (see Figure 3.1 for preview).

3.1 Challenges in parameter-space inference

As introduced in Chapter 2, approximate inference for high dimensional, complicated models
is still very challenging and problematic. To kickstart the discussion, let us consider Bayesian
neural networks as a motivating example, where a number of pathologies/challenges have
been observed when performing scalable approximate inference. Below we only list a few
of them:
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KL KL

Figure 3.1 Chapter 3 preview: parameter space inference versus function space inference.
Left: parameter space VI minimizes KL divergence over the parameters θθθ = {θ1,θ2},
which suffers from overparameterization and model unidentifiability. Right: on the contrary,
function space inference directly performs Bayesian inference in the space of functions, and
minimizes KL divergence over functions. This is equivalent to perform inference on minimal
sufficient parameters, which forms an identifiable reparameterization of the regression
model, and resolves the pathologies of posterior inconsistency of parameter space inference.

• Overparameterization and unidentifiability. Deep neural networks are over-
parameterized models with up to billions of parameters [35]. This often leads to
model unidentifiability, meaning that there exist multiple modes that will give rise
to similar predictive distributions. A special case of neural network unidentifiability
is the so-called weight symmetries in neural networks [258, 206]. One example is
the discrete symmetries: permuting two hidden units of the same layer will leave
the neural network output invariant. Another example is continuous symmetries: in
ReLU networks, the output of a hidden unit will be invariant if the input weights
are scaled by a factor α while the output is scaled by 1/α simultaneously. These
symmetries (especially continuous symmetries) will create a desperate situation for
Bayesian inference: they generate an exponentially large number of modes in the
BNN posterior distribution, which makes it very difficult to perform approximate
inference accurately.

• Expressiveness of variational family. When performing VI, it has been observed that
mean-field BNNs have limited expressiveness, and tend to underestimate in-between
uncertainty [70, 68]. While it is generally possible to introduce non-factored or non-
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Gaussian approximations (see Section 2.3.2), it is much more difficult to design such
posterior approximations for BNNs due to their high volume of parameters.

• Specification of priors. Neural network weights usually do not have scientific implica-
tions, which makes it difficult to specify meaningful priors that will induce certain
favorable predictive behaviors [69]. What makes it even worse is, the choice of priors
has a substantial impact on Bayesian neural networks [313, 361, 72], especially for
out-of-distribution detection [313].

• Cold posterior effect. It has been empirically observed that BNN posteriors tend to
achieve better performance when the posterior over weights are sharpened/tempered
by a temperature T < 1 [361, 359, 94]:

log p(w|D)
1
T ∝

1
T

log p(D|w)+
1
T

log p(w). (3.1)

The cold posterior could be caused by a number of issues, for instance inaccurate
inference [132], model mis-specification (especially priors [72, 361]), data curation
[3], data augmentation [132], etc. We point out that a similar effect has been discovered
not only in BNNs, but also for other model classes as well [94].

Although the challenges listed above are quite prevalent in Bayesian neural network
applications, we note that they are not tied to BNNs only. Many of these problems are in part
caused by more general properties of probabilistic models, namely, model non-identifiability
[156, 278], which is quite commonly observed for both parametric and non-parametric
models. We will discuss identifiability and related theoretical results in the next sections
and will show that performing inference in function space will resolve the problem of
identifiability and posterior consistency.

3.2 Interlude: indentifiability, minimal sufficiency, and
inference consistency

Roughly speaking, the identifiability of a probabilistic model Pθ (x) characterizes the property
that the correspondence between parameters θ ∈ Θ and corresponding distributions Pθ is
one-to-one. Its formal definition is given in the following remark:
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Remark (Identifiability) The formal definition of identifiability has been presented and
generalized in different contexts, such as [278, 255, 6]. Here, we stick to the widely used
definition based on observational equivalence [278]:

Definition 3.1 (Observational equivalence). Assume P = {Pθ |θ ∈ Θ} is a collection of
probability measures defined on some well behaved measurable space (X ,B) a, and indexed
by elements in some (possibly infinite dimensional) measurable parameter space θ ∈ Θ

b c. Then, two parameter values θ1 and θ2 are said to be observational equivalent, if
Pθ1(x) = Pθ1(x) a.s. in x ∈ X .

Definition 3.2 (Identifiability). The model P is said to be identifiable (on Θ), if all observa-
tionally equivalent parameter pairs have the same value.

aFor instance, in Bayesian analysis we often assume X to be polish space, with B to be a Borel σ -algebra,
which ensures that Pθ (·) is well defined, i.e., a regular conditional probability distribution.

bSimilarly, we will also assume Θ to be a polish space with some Borel σ -algebra. This will ensure the
regularity on the posterior, P(θ |x).

cIn probability theory, both P and Θ are referred as the model.

The reason that we bring up the concept of identifiability is that model identifiability
relates to one of the most important asymptotic properties of statistical inference: the
posterior consistency. That is, whether the posterior distribution will robustly contract to the
true parameter of data distribution under perfect information, regardless of the choice of
prior belief. In the language of probability theory, it can be formally described as follows:

Definition 3.3 (Posterior consistency/convergence). 1 Assume Dn = {x1,x2, ...,xn} is a
collection of n i.i.d. random observational variables distributed according to a probability
measure (called the data distribution) Pθ⋆ , parameterized by a ground truth parameter θ ⋆.
Additionally, assume that P is equipped with a metric, d. 2 Then, the posterior P(θ |Dn)

is said to be consistent if P(θ |Dn) weakly converges to Dirac measure δθ⋆ when n→ ∞,
Pθ⋆-almost surely.

In other words, Definition 3.3 formalizes the idea that “perfect knowledge should be
able to override prior beliefs asymptotically” [153]. This property provides an important
theoretical justification for Bayesian approaches to practical problems, such as regression
and classification. Due to the crucial importance of the posterior consistency of P(θ |Dn), its

1Depending on the context, there are different definitions of posterior consistency [345, 168]. Here we
only present one of the mostly adopted ones.

2This assumption can be further removed. If we do so, the definition of consistency becomes: P(θ |Dn) is
consistent, if for all neighbourhood U of Pθ⋆ in P , P(θ ∈U |Dn)→ 1,, Pθ⋆ -a.s. as n→ ∞.
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sufficient conditions have been studied broadly in the statistics literature, and a wide spec-
trum of posterior consistency theorems have been derived. Informally speaking, posterior
consistency theorems usually take the following form:

Theorem 3.1 (Consistency theorems (informal statement)). Under suitable settings, we
have

model identifiability + regularity conditions⇒ posterior consistency.

A number of consistency theorems in this form have been derived under different scenar-
ios, for example the Bernstein-Von Mises (BvM) theorems [164, 345] for parametric models,
Doob’s theorem [63] and Schwartz theorem [302] for nonparametric models and consistency
results under misspecification (i.e., Pθ⋆ /∈ P) [25, 152, 151]. The formal statements of those
theorems are quite technical and out of the scope of this thesis. However, we note that model
identifiability assumptions often appear as a core part of the sufficient conditions. In Doob’s
theorem, identifiability is directly assumed; in Schwartz theorem and BvM theorems, the
identifiability condition is replaced by stronger conditions called testability [302].

When the identifiability assumption is violated, the corresponding posterior consistency
no longer holds. In other words, the posterior distribution will be substantially affected by the
prior distribution, which makes Bayesian inference in this case problematic. An interesting
observation is, even when the model parameter is non-identifiable, the corresponding
posterior consistency may still be achieved on a reparameterized version of the original
parameters, called the minimal sufficient parameters [16]. The concept of minimal sufficient
parameter is defined in a similar way as sufficient statistics:

Definition 3.4 (Minimal sufficient parameters [249]). Given a model pθ (x), a quantity
φ is called a sufficient parameter, if i), φ = Λ(θ) for some function Λ, and ii), x ⊥ θ |φ .
Furthermore, φ is said to be a minimal sufficient parameter, if it is a sufficient parameter
and can be expressed as a function of any sufficient parameter.

Remark (Non-uniqueness and existence). Note that the minimal sufficient parameter of
a model is not unique: they can be only determined up to a one-to-one transformation.
Moreover, minimal sufficient parameters always exist, since the likelihood function itself
constitutes a minimal sufficient parameter of the model.

One can show that both the likelihood function Pθ (x) and the posterior P(θ |x) depend
on θ only through its minimal sufficient parameters, and these minimal sufficient parameters
are always identifiable [16, 13, 249]. Therefore, a more intuitive way to think about minimal



54 Why Function Space Inference?

sufficient parameters is as an “identifiable version” of the original θ , which ensures posterior
convergence:

Theorem 3.2 (Posterior consistency on minimal sufficient parameters). Let φ be a minimal
sufficient parameter of Pθ . Then under the regularity conditions of [25], the posterior
distribution P(φ |Dn) of φ will weakly converge to the true value φ⋆, almost surely in P.

The effectiveness of minimal sufficient parameters raises a new direction for approximate
Bayesian inference: when the regression model is non-identifiable in the original parameter
space Θ, can we find its minimal sufficient parameter φ = Λ(θ), and perform inference on
the space of Φ = {Λθ |θ ∈Θ} instead (Figure 3.1)? In fact, for regression problems, this is
equivalent to performing inference in function space, which will be discussed in the next
section.

Remark (Posterior correlations on θ ). Apart from posterior consistency, Theorem 3.2 also
provides another perspective on the challenges of performing approximate inference on
θ ∈Θ. Since the posterior on φ = λ (θ) asymptotically approaches the point mass, it implies
that the constraint of λ (θ)≈ φ⋆ will approximately hold, which might potentially introduce
stronger pairwise correlations between different components of θ as n increases. This might
cause mean-field VI to under-estimate the posterior variance on θ [344].

Remark (Bayesian or frequentist?). The setting of Definition 3.3 and Theorems 3.1 and 3.2
is different from the usual Bayesian inference problem that we have seen. On one hand, we
have assumed the existence of a ground truth parameter value θ ⋆, and treat each data sample
xn as i.i.d. random variables, which corresponds to a frequentist setting. On the other hand,
we perform parameter estimation using a Bayesian approach, i.e., via the posterior P(θ |Dn).
Therefore, the setting of posterior consistency in Definition 3.3 is in fact a mixture of both
frequentist and Bayesian paradigms.

3.3 Function space inference: performing inference over
minimal sufficient parameters

To finally motivate performing inference in function space, let us consider the Bayesian
neural network example mentioned earlier. Given a dataset D := {(xi,yi)}i=1:N , the BNN
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regression log-likelihood is defined as (Section 2.3.1)

log p(Dn|w) = ∑
n

logN (yn;g(xn,w),σ2). (3.2)

This is unfortunately non-identifiable except for few special cases[258] according to Def-
inition 3.2, which may cause a number of issues. However, we may reparameterize the
likelihood function, using the predictive mean function f (·) := g(·,w):

log p(Dn|w) = ∑
n

log p(Dn| f ). (3.3)

Now, according to Definition 3.4, the predictive function f (·) is a minimal sufficient
parameter of the BNN (this can be seen by noticing that the likelihood function p(Dn| f ) is
itself a minimum sufficient parameter, and it corresponds to f (·) one-to-one). Therefore, we
can imagine that the resulting function space posterior,

p( f |Dn) =
p(Dn| f )p( f )

p(Dn)
, (3.4)

will converge to the true function asymptotically under certain conditions. Indeed, in the
context of Bayesian neural networks for example, such function-space posterior convergence
has been proved [172] under certain priors. 3 This motivates us to perform inference directly
in function space, which gives us a number of advantages. In particular:

• Function space inference directly performs Bayesian inference in the space of minimal
sufficient parameters, which forms an identifiable reparameterization of the regression
model. Therefore, if done properly, this theory will help us bypass the problems of
parameter space inference mentioned in Section 3.1. In particular, unidentifiability,
over-parameterization, symmetries, and (asymptotic) sensitivity to weigh-space prior
beliefs.

• In the case where the model parameters do not have specific scientific implications
(such as in BNNs), we may directly design flexible and/or meaningful variational
families for q( f ), without needing to derive first variational distributions on weight-
space. This also helps us bypass the challenge of expressiveness of MFVI, which was
described in Section 3.1.

3Technically speaking, these BNN posterior convergence results are proved in the sense of Hellinger
neighbourhood (over P) on the predictive joint density functions p(yn| f (xn))p(xn) (with p(xn) fixed as
p(xn) ∝ 1), which is also a minimum sufficient parameter (therefore equivalent to the predictive function f ).
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• As it will be shown in Chapter 4, when performing VI in function space, the corre-
sponding ELBO will be tighter than the ELBO in weight space;

• It potentially allows us to deal with non-parametric structured priors on p( f ) that may
not have any convenient weigh-space expressions in the first place.

Of course, the idea of introducing function space inference will also introduce new chal-
lenges, which will be discussed in further detail in Chapter 4 and 5. In one word, the research
presented in Part A are all about:

• How to specify/learn an appropriate p( f )?

• How to practically perform approximate inference for p( f |Dn).

Part A addresses these issues in a progressive manner:

• In Chapter 4, we will first propose a method called variational implicit process, which
approximates p( f |Dn) via Gaussian process (GP) approximations and learns p( f ) via
a wake-sleep procedure;

• Then, in Chapter 5, we will propose a more sophisticated variational inference frame-
work that approximates p( f |Dn) via more flexible non-Gaussian processes.



Chapter 4

Variational Implicit Processes

IN Chapter 3, we have motivated the advantages of performing inference in function space.
The concept of function space inference itself is not a newly invented method — it is an

old problem that is deeply rooted in the world of Bayesian nonparametrics. As introduced in
Section 2.3.3 of Chapter 2, one of the most important example for Bayesian nonparametric is
Gaussian processes for regression. In short, recall that GP performs function space inference
in two steps:

1. Construction of p( f ), i.e., a prior p( f ) over the space of functions. In GPs, this is
done by assuming that any finite collection of function values f follows a multivariate
Gaussian distribution.

2. Inference. Given a collection of training data D, the exact posterior p( f |D) is then
given by closed-form expressions.

To a certain extent, the concept of function space inference considered in this paper can
be seen as the algorithmic abstraction of the above procedure of GP inference. Instead of
constructing a specific infinite-dimensional p( f ), in function space inference we are given a
predictive model fθ (x) parameterized by some parameter, θθθ (could be finite dimensional).
We will treat them as if they are infinite-dimensional objects, and computes the posterior
in function space, p( f |D). There is no doubt that Gaussian processes themselves do not
immediately lead to such algorithmic abstractions. This is due to the fact that Gaussian
processes assume a specific form of function space prior (which is Gaussian), and its
inference method (based on closed form expression) can not be directly applied to other
priors. Therefore, to find such algorithmic abstractions, we may have two potential options:

I The first option is model-driven. That is, we extend the existing Bayesian nonparametric
priors such as GPs, to some class of more general and more flexible priors. Ideally, this
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should be able to cover many interesting Bayesian models as special cases. Then, we
need to develop a specific method for optimizing variational approximations under this
new prior.

II The other option is algorithm-driven, which is much more difficult. Instead of con-
sidering a specific class of functional priors, we will take an existing approximate
inference method of parameter space, for example variational inference, and extend it
to its function space counterpart. This should give us a general purpose function space
approximate inference method.

In this chapter, we will first explore the first route (and leave the second one to Chapter
5). Our key idea is to draw inspirations from recent advancements of implicit models. As
introduced in Section 2.2.4 of Chapter 2), probabilistic models with implicit distributions
as core components have recently attracted enormous interest in both deep learning and
the approximate Bayesian inference communities. In contrast to prescribed probabilistic
models [61] that assign explicit densities to possible outcomes of the model, implicit models
implicitly assign probability measures by the specification of the data generating process.
One of the most well-known implicit distributions is the generator of generative adversarial
nets (GANs) [88, 11] that transforms isotropic noise into high dimensional data, using neural
networks. In approximate inference context, implicit distributions have also been used as
flexible approximate posterior distributions [271, 191, 340, 182].

This chapter explores the extension of implicit models to Bayesian modeling of random
functions. Similar to the construction of Gaussian processes (GPs), we develop implicit
process (IP), which assigns implicit distributions over any finite collections of random
variables. Therefore, IPs can be much more flexible than GPs when complicated models like
neural networks are used for implicit distributions. With an IP as the prior, we can directly
perform (variational) posterior inference over functions in a non-parametric fashion. This
is beneficial for better-calibrated uncertainty estimates like GPs [36]. It also avoids typical
issues of inference in parameter space, that is, symmetric modes in the posterior distribution
of Bayesian neural network weights. The function-space inference for IPs is achieved by our
proposed variational implicit process (VIP) algorithm, which addresses the intractability
issues of implicit distributions.

Concretely, the contributions of this Chapter are threefold:

• We formalize implicit stochastic process priors over functions, and prove its well-
definedness in both finite and infinite-dimensional cases. By allowing the usage of
IPs with rich structures as priors ( e.g., data simulators and Bayesian LSTMs), our
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approach provides a unified and powerful Bayesian inference framework for these
important but challenging deep models.

• We derive a novel and efficient variational inference framework that gives a closed-
form approximation to the IP posterior. It does not rely on e.g. density ratio/gradient
estimators in implicit variational inference literature which can be inaccurate in high
dimensions. Our inference method is computationally cheap, and it allows scalable
hyperparameter learning in IPs.

• We conduct extensive comparisons between IPs trained with the proposed inference
method, and GPs/BNNs/Bayesian LSTMs trained with existing variational approaches.
Our method consistently outperforms other methods and achieves state-of-the-art
results on a large-scale Bayesian LSTM inference task.

This chapter is arranged as follows. In Section 4.1, we will first introduce the notion
of stochastic processes (i.e., distributions over functions), and how to construct them via
Kolmogorov extension theorem. Then, in Section 4.2, we will utilize such tools to generalize
Gaussian processes to implicit processes. We will provide concrete examples, and derive
theoretical results regarding its well-definedness. In Section 4.3, we will introduce an
approximate inference method for implicit processes. In Section 4.3.3, we will discuss
computational complexities and scalable methods for predictive inference. Then, we perform
experimental evaluations of the proposed method in Section 4.4, and finally, in Section 4.5,
we review the related works from different areas.

4.1 Stochastic processes

We first introduce the notion of stochastic processes, and why it relates to function space
inference. A stochastic process is nothing more than a collection of random variables, the
formal definition of which is given as the following:

Definition 4.1 (Stochastic processes). Suppose that we are given a probability space
(Ω,F ,P), and an non-empty set, T . Then, any collection of random variables {vx : ω ∈
Ω 7→ vx(ω) ∈ Y|x ∈ T } is called a stochastic process, and T is called the index set.

Remark (Random variables and induced measure). Here we take this chance to briefly
review the measure theoretic definition of random variables. A random variable v on a
probability space (Ω,F ,P) is a measurable function that maps Ω to another measurable



60 Variational Implicit Processes

space, (Y,B). therefore, it defines a induced probability measure on Y , denote by Pv, given
by:

Pv(B ∈ B) := P(v−1(B)). (4.1)

Therefore, whenever we talk about a random variable on (Ω,F ,P), we can also interpret it
as a (induced) measure on (Y,B).

In most applications in machine learning, we would consider the special case of T =Rd ,
Y = R, and B being a Borel σ -algebra. A closely related concept is the sample paths of a
stochastic processes:

Definition 4.2 (Sample path). The Y-valued function defined on T :

x ∈ T 7→ vx(ω) ∈ Y (4.2)

is called a sample path of the stochastic process {vx|x ∈ T } on T .

Therefore, for each possible outcome ω ∈ Ω, it is mapped to a sample path x ∈ T 7→
vxω ∈Y . Hence, we may also interpret a stochastic process as a YT -valued random variable,
where YT := { f : T → Y} is the set of Y-valued functions (here, we have used f in its
scalar form to denote a scalar function, f (·) : T → Y). In other words, a stochastic process
defines a (induced) distribution of random functions. For this reason, we denote a stochastic
process on (Ω,F ,P) by p( f ), and will use it to specify priors over function space.

Remark (Three interpretations of stochastic processes). To summarize, we have three
equivalent interpretations of stochastic processes:

1. Stochastic process as a collection of random variables, {vx : ω ∈Ω 7→ vx(ω) ∈ Y|x ∈
T };

2. Stochastic process as a YT -valued random variable, i.e., as a mapping from an
outcome ω ∈Ω to a sample path, x ∈ T 7→ vx(ω) ∈ Y;

3. and finally, we can also interpret a stochastic process as the induced probability
measure (by the YT -valued random variable) on the measurable space YT , i.e., a
distribution over random functions.

The second and third interpretations gives us two alternative definitions of stochastic pro-
cesses:
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Definition 4.3 (Stochastic processes, ii). Suppose we are given a measurable space (Ω,F ,P),
and an non-empty set, T . Then, a stochastic process is a measurable function from Ω to
some measurable space, YT with some suitable σ -algebra denoted by BT a.

Definition 4.4 (Stochastic processes, iii). Suppose we are given a measurable space (Y,B)
(usually we assume Y = R, B is the corresponding Borel algebra), and an non-empty set, T .
Then, a stochastic process is a probability measure over YT , with some suitable σ -algebra,
denoted by BT .

aTechnically, this is in fact the cylinder σ -algebra of Y , given in Theorem 4.1 [129].

Given the definition of stochastic processes, how do we specify a useful stochastic
process? As conceptually simple as they are, we cannot directly specify the exact probability
for each possible sample paths on T . It would be much more convenient if we could
work with a finite subset {x1,x2, ...,xn} ⊂ T . Fortunately, Kolmogorov extension theorem
guarantees that if we can consistently define a set of self-consistent probability distributions
px1,x2,...,xn on any finite subset {x1,x2, ...,xn} ⊂ T , then there exist a unique stochastic
process that shares the same marginal distributions as px1,x2,...,xn .

Theorem 4.1 (Kolmogorov extension theorem). Without loss of generality, suppose for any
finite subset {x1,x2, ...,xn} ⊂ T , we have a corresponding finite dimensional probability
measure px1,x2,...,xn (called marginal distributions) on the measurable space Yn := Rn. If
they satisfies the following consistency condition for all finite subset {x1,x2, ...,xn} ⊂ T and
integer n:

1. for any permutation π : {1, ...,n}→ {1, ...,n}, we have

px1,x2,...,xn(B1×B2×...×Bn)= pxπ(1),xπ(2),...,xπ(n)(Bπ(1)×Bπ(2)...×Bπ(n)), ∀B1, ...,Bn⊂B(R);
(4.3)

2. for all integer n and all {x1, ...,xn,xn+1} ∈ T , we have

px1,x2,...,xn(B1× ...×Bn) = px1,x2,...,xn,xn+1(B1× ...×Bn×R). (4.4)

Then, there exists a unique stochastic process p⋆( f ) on RT (under the so called cylinder
algebra, denoted by BT ), such that

p⋆( fx1 ∈ B1, fx2 ∈ B2, ..., fxn ∈ Bn) = px1,x2,...,xn(B1×B2× ...×Bn) (4.5)
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for all integer n, all finite subsets x1,x2, ...,xn ⊂ T , and all measurable sets B1, ...,Bn ⊂
B(R).

Being able to define a stochastic processes through marginal distributions px1,x2,...,xn

allows us to define flexible function space priors p( f ), by combining the ideas of implicit
distributions discussed in Section 2.2.4.

4.2 Implicit Stochastic Processes

In this section, we generalize GPs to implicit stochastic processes. Readers are referred to
Section 2.3.3 for a detailed introduction, but briefly speaking, a GP defines the distribution
of a random function f by placing a multivariate Gaussian distribution N (f;m,Kff) over
any finite collection of function values f = ( f (x1), ..., f (xN))

⊤ evaluated at any given finite
collection of input locations X = {xn}N

n=1. Here (m)n =M(xn) and (Kff)n,n′ = K(xn,xn′),
and following Kolmogorov consistency theorem [129], the mean and covariance functions
M(·), K(·, ·) are shared across all such finite collections. An alternative parameterization
of GPs defines the sampling process as f ∼ N (f;m,Kff)⇔ z ∼ N (z;0,I), f = Bz+m,
with Kff = BB⊤ the Cholesky decomposition of the covariance matrix. Observing this, we
propose a generalization of the generative process by replacing the linear transform of the
latent variable z with a nonlinear one. This gives the following formal definition of implicit
stochastic process. Note that it is not just to non-linearise the mapping B (in that case it
would only be a GP with a different kernel), but also the change of dependencies to induce
non-Gaussian distributions.

Definition 4.5 (noiseless implicit stochastic processes). An implicit stochastic process (IP) is
a collection of random variables f (·), such that any finite collection f = ( f (x1), ..., f (xN))

⊤

has joint distribution implicitly defined by the following generative process:

z∼ p(z), f (xn) = gθθθ (xn,z), ∀ xn ∈ X. (4.6)

A function distributed according to the above IP is denoted as f (·)∼ IP(gθθθ (·, ·), pz).

Note that z ∼ p(z) could be infinite dimensional (such as samples from a Gaussian
Process). Definition 4.5 is validated by the following propositions.

Proposition 4.1 (Finite dimension case). Let z be a finite dimensional vector. Then there
exists a unique stochastic process on index set T = X, such that any finite collection of
random variables has distribution implicitly defined by (4.6).



4.2 Implicit Stochastic Processes 63

y

θθθ
x

z

N

(a)

y

f (·)x

N

(b)

y

wx

N

(c)

... ...ht ht+1 hT

w

xt xt+1 xT

yT

N

(d)

Figure 4.1 Examples of IPs: (a) Neural samplers; (b) Warped GPs (c) Bayesian neural
networks; (d) Bayesian RNNs.

Proposition 4.2 (Infinite dimension case). Let z(·)∼ SP(0,C) be a centered continuous
stochastic process on L2(Rd) with covariance function C(·, ·). Then the operator g(x,z) =
OK(z)(x) := h(

∫
x ∑

M
l=0Kl(x,x′)z(x′)dx′), 0 < M <+∞ defines a stochastic process if Kl ∈

L2(Rd×Rd) , h is a Borel measurable, bijective function in R and there exist 0≤ A <+∞

such that |h(x)| ≤ A|x| for ∀x ∈ R.

Proposition 4.1 is proved in appendix 4.A.1 using the Kolmogorov extension theorem.
Proposition 4.2 considers random functions as the latent input z(·), and introduces a specific
form of the transformation/operator g, so that the resulting collection of variables f (·) is
still a valid stochastic process (see appendix 4.A.2 for a proof). Note this operator can be
recursively applied to build highly non-linear operators over functions [97, 365, 327, 169, 84].
These two propositions indicate that IPs form a rich class of priors over functions. Indeed,
we visualize some examples of IPs in Figure 4.1 with discussions as follows:

Remark (Examples of implicit processes).

Example 4.1 (Data simulators). Simulators, e.g. physics engines and climate models, are
omnipresent in science and engineering. These models encode laws of physics in gθθθ (·, ·),
use z ∼ p(z) to explain the remaining randomness, and evaluate the function at input
locations x: f (x) = gθθθ (x,z). We define the neural sampler as a specific instance of this
class. In this case gθθθ (·, ·) is a neural network with weights θθθ , i.e., gθθθ (·, ·) = NNθθθ (·, ·), and
p(z) = Uniform([−a,a]d).
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Example 4.2 (Warped Gaussian Processes). Warped Gaussian Processes [316] is also an
interesting example of IPs. Let z(·) ∼ p(z) be a sample from a GP prior, and gθθθ (x,z) is
defined as gθθθ (x,z) = h(z(x)), where h(·) is a one dimensional monotonic function.

Example 4.3 (Bayesian neural network). In a Bayesian neural network, the synaptic weights
W with prior p(W ) play the role of z in (4.6). A function is sampled by W ∼ p(W ) and
then setting f (x) = gθθθ (x,W ) = NNW(x) for all x ∈ X. In this case θθθ could be the hyper-
parameters of the prior p(W ) to be tuned.

Example 4.4 (Bayesian RNN). Similar to Example 4.3, a Bayesian recurrent neural network
(RNN) can be defined by considering its weights as random variables, and taking as function
evaluation an output value generated by the RNN after processing the last symbol of an
input sequence.

4.3 Variational Implicit Processes

Consider the following regression model with an IP prior over the regression function:

f (·)∼ IP(gθθθ (·, ·), pz), y = f (x)+ ε, ε ∼N (0,σ2). (4.7)

Equation (4.7) defines an implicit model p(y, f|x), which is intractable in most cases. Note
that it is common to add Gaussian noise ε to an implicit model, e.g. see the noise smoothing
trick used in GANs [318, 290]. Given an observed datasetD= {X,y} and a set of test inputs
X∗, Bayesian predictive inference computes the predictive distribution p(y∗|X∗,X,y,θθθ),
which itself requires interpolating over posterior p( f |X,y,θθθ). Besides prediction, we
also want to learn the model parameters θθθ and σ by maximizing the marginal likelihood:
log p(y|X,θθθ) = log

∫
f p(y|f)p(f|X,θθθ)df , with f = f (X) being the evaluation of f on the

points in X. Unfortunately, both the prior p(f|X,θθθ) and the posterior p( f |X,y,θθθ) are
intractable as the implicit process does not allow point-wise density evaluation, let alone the
marginalization tasks. Therefore, to address these, we must resort to approximate inference.

We propose a generalization of the wake-sleep algorithm [114] to handle both intractabil-
ities. This method returns (i) an approximate posterior distribution q( f |X,y) which is later
used for predictive inference, and (ii) an approximation to the marginal likelihood p(y|X,θθθ)

for hyper-parameter optimization. We use the posterior of a GP to approximate the pos-
terior of the IP, i.e. q( f |X,y) = qGP( f |X,y), since GP is one of the few existing tractable
distributions over functions. A high-level summary of our algorithm is the following:
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• Sleep phase: sample function values f and noisy outputs y as indicated in (4.7). This
dreamed data is then used as the maximum-likelihood (ML) target to fit a GP. This is
equivalent to minimizing DKL[p(y, f|X,θθθ)||qGP(y, f|X)] for any possible X.

• Wake phase: The optimal GP posterior approximation qGP(f|X,y) obtained in the
sleep phase is used to construct a variational approximation to log p(y|X,θθθ), which is
then optimized with respect to θθθ .

Our approach has two key advantages. First, the algorithm has no explicit sleep phase
computation, since the sleep phase optimization has an analytic solution that can be directly
plugged into the wake-phase objective. Second, the proposed wake phase update is highly
scalable, as it is equivalent to a Bayesian linear regression task with random features sampled
from the implicit process. With our wake-sleep algorithm, the evaluation of the implicit
prior density is no longer an obstacle for approximate inference. We call this inference
framework the variational implicit process (VIP). In the following sections we give specific
details on both the wake and sleep phases.

4.3.1 Sleep phase: GP posterior as variational distribution

This section proposes an approximation to the IP posterior p(f|X,y,θθθ). The naive varia-
tional inference [140] would require computing the joint distribution p(y, f|X,θθθ) which is
intractable. However, sampling from this joint distribution is straightforward. We leverage
this idea in the sleep phase of our wake-sleep algorithm to approximate the joint distribution
p(y, f|X,θθθ) instead.

Precisely, for any finite collection of variables f with their input locations X, we approxi-
mate p(y, f|X,θθθ) with a simpler distribution q(y, f|X) = q(y|f)q(f|X) instead. We choose
q(f|X) to be a GP with mean and covariance functions M(·) and K(·, ·), respectively, and
write the prior as q(f|X) = qGP(f|X,M,K). The sleep-phase update minimizes the following
KL divergence:

q⋆GP = argmin
M,K
U(M,K), (4.8)

with U(M,K) = DKL[p(y, f|X,θθθ)||qGP(y, f|X,M,K)].

We further assume q(y|f) = p(y|f), which reduces U(M,K) to
DKL[p(f|X,θθθ)||qGP(f|X,M,K)]. In this case the optimal M(·) and K(·, ·) are equal
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to the mean and covariance functions of the IP, respectively:

M⋆(x) = E[ f (x)], (4.9)

K⋆(x1,x2) = E[( f (x1)−M⋆(x1))( f (x2)−M⋆(x2))].

Below we also write the optimal solution as q⋆GP(f|X,θθθ) = qGP(f|X,M⋆,K⋆) to explicitly
specify the dependency on prior parameters θθθ 1. In practice, the mean and covariance
functions are estimated by by Monte Carlo, which leads to maximum likelihood training
(MLE) for the GP with dreamed data from the IP. Assume S functions are drawn from the
IP: f θθθ

s (·)∼ IP(gθθθ (·, ·), pz),s = 1, . . . ,S. The optimum of U(M,K) is then estimated by the
MLE solution:

M⋆
MLE(x) =

1
S ∑

s
f θθθ
s (x), (4.10)

K⋆
MLE(x1,x2) =

1
S ∑

s
∆s(x1)∆s(x2), (4.11)

∆s(x) = f θθθ
s (x)−M⋆

MLE(x).

To reduce computational costs, the number of dreamed samples S is often small. Therefore,
we perform maximum a posteriori instead of MLE, by putting an inverse Wishart process
prior [306] IWP(ν ,Ψ) over the GP covariance function K (Appendix 4.A.3).

The original sleep phase algorithm in [114] also finds a posterior approximation by
minimizing (4.9). However, the original approach would define the q distribution as
q(y, f|X) = p(y|X,θθθ)qGP(f|y,X), which builds a recognition model that can be directly
transfered for later inference. By contrast, we define q(y, f|X) = p(y|f)qGP(f|X), which cor-
responds to an approximation of the IP prior. In other words, we approximate an intractable
generative model using another generative model with a GP prior and later, the resulting
GP posterior q⋆GP(f|X,y) is employed as the variational distribution. Importantly, we never
explicitly perform the sleep phase updates, that is, the optimization of U(M,K), as there is
an analytic solution readily available, which can potentially save a significant amount of
computation.

1This allows us to compute gradients w.r.t. θθθ through M⋆ and K⋆ using reparameterization trick (by
definition of IP, f (x) = gθθθ (x,z)), during the wake phase in Section 4.3.2.
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Another interesting observation is that the sleep phase’s objective U(M,K) also provides
an upper-bound to the KL divergence between the posterior distributions,

J = DKL[p(f|X,y,θθθ)||qGP(f|X,y)].

One can show that U is an upper-bound of J according to the non-negativity and chain rule
of the KL divergence:

U(M,K) = J +DKL[p(y|X,θθθ)||qGP(y|X)]≥ J . (4.12)

Therefore, J is also decreased when the mean and covariance functions are optimized
during the sleep phase. This bounding property justifies U(M,K) as a appropriate variational
objective for posterior approximation.

4.3.2 Wake phase: a scalable approach to learning the model parame-
ters θ

In the wake phase of the original wake-sleep algorithm, the IP model parameters θθθ are opti-
mized by maximizing a variational lower-bound on the log marginal likelihood log p(y|X,θθθ).
Unfortunately, this requires evaluating the IP prior p(f|X,θθθ) which is intractable. But re-
call from (4.12) that during the sleep phase DKL[p(y|X,θθθ)||qGP(y|X)] is also minimized.
Therefore we directly approximate the log marginal likelihood using the optimal GP from
the sleep phase, i.e.

log p(y|X,θθθ)≈ logq⋆GP(y|X,θθθ). (4.13)

This again demonstrates the key advantage of the proposed sleep phase update via generative
model matching. Also it is a sensible objective for predictive inference as the GP returned
by wake-sleep will be used for making predictions.

Similar to GP regression, optimizing logq⋆GP(y|X,θθθ) can be computationally expensive
for large datasets. Therefore sparse GP approximation techniques [315, 335, 109, 38] are
applicable, but we leave them to future work and consider an alternative approach that is
related to random feature approximations of GPs [263, 78, 75, 15, 166].

Note that logq⋆GP(y|X,θθθ) can be approximated by the log marginal likelihood of a
Bayesian linear regression model with S randomly sampled dreamed functions, and a
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Algorithm 1 Variational Implicit Processes (VIP)
Require: data D = (X,y); IP IP(gθ (·, ·), pz); variational distribution qλ (a); hyper-
parameter α

1: while not converged do
2: sample a mini-batch K ⊂ {1, ...,N} of size K
3: sample S function values:

zs ∼ p(z), f θ
s (xm) = gθ (xm,zs)

4: solutions of sleep phase:
m⋆(xm) =

1
S ∑

S
s=1 f θ

s (xm),
∆s(xm) = f θ

s (xm)−m⋆(xm)
5: compute the wake phase energy Lα

GP(θ ,λ ) in (4.16) using (4.15)
6: gradient descent on Lα

GP(θ ,λ ) w.r.t θ ,λ , via reparameterization tricks
7: end while

coefficient vector a = (a1, ...,aS):

logq⋆GP(y|X,θθθ)≈ log
∫

∏
n

q⋆(yn|xn,a,θθθ)p(a)da, (4.14)

q⋆(yn|xn,a,θθθ) =N
(
yn; µ(xn,a,θθθ),σ2) ,

µ(xn,a,θθθ) =M⋆(xn)+
1√
S ∑

s
∆s(xn)as,

∆s(xn) = f θθθ
s (xn)−M⋆(xn), p(a) =N (a;0,I).

(4.15)

For scalable inference, we follow Li and Gal [177] to approximate (4.14) by the α-energy
(see Section 2.2.3), with qλλλ (a) = N (a; µµµ,ΣΣΣ) and sample a mini-batch K ⊂ {1, ...,N} of
size K:

logq⋆GP(y|X,θθθ)≈ Lα
GP(θθθ ,λλλ )

=
N

αK ∑
k∈K

logEqλλλ (a) [q
⋆(yk|xk,a,θθθ)α ]

−DKL[qλλλ (a)||p(a)].

(4.16)

See Algorithm 1 for the full algorithm. When α→ 0 the α-energy reduces to the variational
lower-bound, and empirically the α-energy returns better approximations when α > 0. For
Bayesian linear regression (4.15) the exact posterior of a is a multivariate Gaussian, which
justifies our choice of qλλλ (a). Stochastic optimization is applied to optimize θθθ and λλλ jointly,
making our method highly scalable.
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4.3.3 Computational complexity and scalable predictive inference

Assume the evaluation of a sampled function value f (x) = gθθθ (x,z) for a given input x
takes O(C) time. The VIP has time complexity O(CKS+KS2 + S3) in training, where
K is the size of a mini-batch, and S is the number of random functions sampled from
IP(gθθθ (·, ·), pz). Note that approximate inference techniques in z space, e.g. mean-field
Gaussian approximations to the posterior of Bayesian neural network weights [29, 113, 177],
also take O(CKS) time. Therefore when C is large (typically the case for neural networks)
the additional cost is often negligible, as S is usually significantly smaller than the typical
number of inducing points in sparse GP (S = 20 in the experiments).

Predictive inference follows the standard GP equations to compute q⋆GP(f∗|X∗,X,y,θθθ ⋆)

on the test set X∗ with L datapoints: f∗|X∗,X,y∼N (f∗;m∗,ΣΣΣ∗),

m∗ =M⋆(X∗)+K∗f(Kff +σ
2I)−1(y−M⋆(X)),

ΣΣΣ∗ = K∗∗−K∗f(Kff +σ
2I)−1Kf∗.

(4.17)

Recall that the optimal variational GP approximation has mean and covariance functions
defined as (4.10) and (4.11), respectively, which means that Kff has rank S. Therefore
predictive inference requires both function evaluations and matrix inversion, which costs
O(C(L+N)S+NS2 + S3) time. This complexity can be further reduced: note that the
computational cost is dominated by (Kff +σ2I)−1. Denote the Cholesky decomposition
of the kernel matrix Kff = BB⊤. It is straightforward to show that in the Bayesian lin-
ear regression problem (4.15) the exact posterior of a is q(a|X,y) = N (a; µµµ,ΣΣΣ), with
µµµ = 1

σ2 ΣΣΣB⊤(y−m),σ2ΣΣΣ
−1 = B⊤B+σ2I. Therefore the parameters of the GP predictive

distribution in (4.17) are reduced to:

m∗ =M⋆(X∗)+φφφ
⊤
∗ µµµ, ΣΣΣ∗ = φφφ

⊤
∗ ΣΣΣφφφ∗, (4.18)

with the elements in φφφ∗ as (φφφ∗)s = ∆s(x∗)/
√

S. This reduces the prediction cost toO(CLS+
S3), which is on par with e.g. conventional predictive inference techniques for Bayesian
neural networks that also cost O(CLS). In practice we use the mean and covariance matrix
from q(a) to compute the predictive distribution. Alternatively one can directly sample a∼
q(a) and compute f∗ = ∑

S
s=1 as f θθθ

s (X∗), which is also an O(CKS+S3) inference approach
but would have higher variance.
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4.4 Experiments

In this section, we test the capability of VIPs with various tasks, including time series
interpolation, Bayesian NN/LSTM inference, and Approximate Bayesian Computation
(ABC) with simulators,etc. When the VIP is applied to Bayesian NN/LSTM (Example
4.3-4.4), the prior parameters over each weight are tuned individually. We use S = 20 for
VIP unless noted otherwise. We focus on comparing VIPs as an inference method to other
Bayesian approaches, with detailed experimental settings presented in Appendix 4.D.

4.4.1 Synthetic example

We first assess the behaviours of VIPs, including its quality of uncertainty estimation and
the ability to discover structures under uncertainty. The synthetic training set is generated by
first sampling 300 inputs x fromN (0,1). Then, for each x obtained, the corresponding target
y is simulated as y = cos5x

|x|+1 + ε, ε ∼N (0,0.1). The test set consists of 103 evenly spaced
points on [−3,3]. We use an IP with a Bayesian neural network (1-10-10-1 architecture) as
the prior. We use α = 0 for the wake-step training. We also compare VIP with the exact full
GP with optimized compositional kernel (RBF+Periodic), and another BNN with identical
architecture but trained using variational dropout (VDO) with dropout rate p = 0.99 and
length scale l = 0.001. The (hyper-)parameters are optimized using 500 epochs (batch
training) with Adam optimizer (learning rate = 0.01).

Figure 4.2 visualizes the results. Compared with VDO and the full GP, the VIP predictive
mean recovers the ground truth function better. Moreover, VIP provides the best predictive
uncertainty, especially when compared with VDO: it increases smoothly when |x| → 3,
where training data is sparse around there. Although the composition of periodic kernel
helps the full GP to return a better predictive mean than VDO (but worse than VIP), it still
over-fits to the data and returns a poor uncertainty estimate around |x| ≈ 2.5.

Test Negative Log-likelihood (NLL) and RMSE results reveal similar conclusions (see
the left two plots in Figure 4.3), where VIP significantly outperforms VDO and GP.

4.4.2 Solar irradiance interpolation under missingness

Time series interpolation is an ideal task to evaluate the quality of uncertainty estimate.
We compare the VIP (α = 0) with a variationally sparse GP (SVGP, 100 inducing points),
an exact GP and VDO on the solar irradiance dataset [170]. The dataset is constructed
following [78], where 5 segments of length 20 are removed for interpolation. All the inputs
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Figure 4.2 First row: Predictions returned from VIP (left), VDO (middle) and exact GP with RBF
+ Periodic kernel (right), respectively. Dark grey dots: noisy observations; dark line: clean ground
truth function; dark gray line: predictive means; Gray shaded area: confidence intervals with 2
standard deviations. Second row: Corresponding predictive uncertainties.

are then centered, and the targets are standardized. We use the same settings as in Section
4.4.1, except that we run Adam with learning rate = 0.001 for 5000 iterations. Note that
GP/SVGP predictions are reproduced directly from [78].

Predictive interpolations are shown in Figure 4.5. We see that VIP and VDO give similar
interpolation behaviors. However, VDO overall under-estimates uncertainty when compared
with VIP, especially in the interval [−100,200]. VDO also incorrectly estimates the mean
function around x =−150 where the ground truth there is a constant. On the contrary, VIP
is able to recover the correct mean estimation around this interval with high confidence. GP
methods recover the exact mean of the training data with high confidence, but they return
poor estimates of predictive means for interpolation. Quantitatively, the right two plots in
Figure 4.3 show that VIP achieves the best NLL/RMSE performance, again indicating that
its returns high-quality uncertainties and accurate mean predictions.

4.4.3 Predictive Performance: Multivariate regression

We apply the VIP inference to a Bayesian neural network (VIP-BNN, example 4.3) and a
neural sampler (VIP-NS, example 4.1) , using real-world multivariate regression datasets
from the UCI data repository [185]. We mainly compare with the following BNNs baselines:
variational Gaussian inference with reparameterization tricks [VI, 29], variational dropout
[VDO, 75], and variational alpha dropout [177]. We also include the variational GP (SVGP,
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Figure 4.3 Test performance on synthetic ex-
ample (left two) and solar irradiance interpo-
lation (right two)

Figure 4.4 Test performance on clean energy
dataset

[335]), exact GP and the functional BNNs (fBNN)2, and the results for fBNN is quoted
from Sun et al. [330]. All neural networks have two hidden layers of size 10, and are trained
for 1,000 (except for fBNNs where the results cited use 2,000 epochs). The observational
noise variance for VIP and VDO is tuned over a validation set, as detailed in Appendix 4.D.
The α value for both VIP and alpha-variational inference are fixed to 0.5, as suggested in
[113]. The experiments are repeated for 10 times on all datasets except Protein, on which
we report an averaged results across 5 repetitive runs.

Results are shown in Table 4.1 and 4.2 with the best performances boldfaced. Note
that our method is not directly comparable to exact (full) GP and fBNN in the last two
columns. They are only trained on small datasets since they require the computation of
the exact GP likelihood, and fBNNs are trained for longer epochs. Therefore they are not
included for the overall ranking shown in the last row of the tables. VIP methods consistently
outperform other methods, obtaining the best test-NLL in 7 datasets, and the best test RMSE
in 8 out of the 9 datasets. In addition, VIP-BNN obtains the best ranking among 6 methods.
Note also that VIP marginally outperforms exact GPs and fBNNs (4 of 5 in NLLs), despite
the comparison is not even fair. Finally, it is encouraging to see that, despite its general
form, the VIP-NS achieves the second best average ranking in RMSE, outperforming many
specifically designed BNN algorithms.

2fBNN is a recent inference method designed for BNNs, where functional priors (GPs) are used to regularize
BNN training. See related work for further discussions.
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Figure 4.5 Interpolations returned by VIP (top), variational dropout (middle), and exact GP
(bottom), respectively. SVGP visualization is omitted as it looks nearly the same. Here
grey dots: training data, red dots: test data, dark dots: predictive means, light grey and
dark grey areas: Confidence intervals with 2 standard deviations of the training and test set,
respectively. Note that our GP/SVGP predictions reproduces [78].

4.4.4 Bayesian LSTM for predicting power conversion efficiency of
organic photovoltaics molecules

To demonstrate the scalability and flexibility of VIP, we perform experiments with the
Harvard Clean Energy Project Data, the world’s largest materials high-throughput virtual
screening effort [98]. A large number of molecules of organic photovoltaics are scanned to
find those with high power conversion efficiency (PCE) using quantum-chemical techniques.
The target value of the dataset is the PCE of each molecule, and the input is the variable-
length character sequence of the molecule structures. Previous studies have handcrafted
[259, 36, 113] or learned fingerprint features [66] that transforms the raw string data into
fixed-size features for prediction.
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Table 4.1 Regression experiment: Average test negative log likelihood
Dataset N D VIP-BNN VIP-NS VI VDO α = 0.5 SVGP exact GP fBNN
boston 506 13 2.45±0.04 2.45±0.03 2.76±0.04 2.63±0.10 2.45±0.02 2.63±0.04 2.46±0.04 2.30±0.10
concrete 1030 8 3.02±0.02 3.13±0.02 3.28±0.01 3.23±0.01 3.06±0.03 3.4±0.01 3.05±0.02 3.09±0.01
energy 768 8 0.60±0.03 0.59±0.04 2.17±0.02 1.13±0.02 0.95±0.09 2.31±0.02 0.57±0.02 0.68±0.02
kin8nm 8192 8 -1.12±0.01 -1.05±0.00 -0.81±0.01 -0.83±0.01 -0.92±0.02 -0.76±0.00 N/A±0.00 N/A±0.00
power 9568 4 2.92±0.00 2.90±0.00 2.83±0.01 2.88±0.00 2.81±0.00 2.82±0.00 N/A±0.00 N/A±0.00
protein 45730 9 2.87±0.00 2.96±0.02 3.00±0.00 2.99±0.00 2.90±0.00 3.01±0.00 N/A±0.00 N/A±0.00
red wine 1588 11 0.97±0.02 1.20±0.04 1.01±0.02 0.97±0.02 1.01±0.02 0.98±0.02 0.26±0.03 1.04±0.01
yacht 308 6 -0.02±0.07 0.59±0.13 1.11±0.04 1.22±0.18 0.79±0.11 2.29±0.03 0.10±0.05 1.03±0.03
naval 11934 16 -5.62±0.04 -4.11±0.00 -2.80±0.00 -2.80±0.00 -2.97±0.14 -7.81±0.00 N/A±0.00 N/A±0.00
Avg.Rank 1.77±0.54 2.77±0.57 4.66±0.28 3.88±0.38 2.55±0.37 4.44±0.66 N/A±0.00 N/A±0.00

Table 4.2 Regression experiment: Average test RMSE
Dataset N D VIP-BNN VIP-NS VI VDO α = 0.5 SVGP exact GP fBNN
boston 506 13 2.88±0.14 2.78±0.12 3.85±0.22 3.15±0.11 3.06±0.09 3.30±0.21 2.95±0.12 2.37±0.101
concrete 1030 8 4.81±0.13 5.54±0.09 6.51±0.10 6.11±0.10 5.18±0.16 7.25±0.15 5.31±0.15 4.93±0.18
energy 768 8 0.45±0.01 0.45±0.05 2.07±0.05 0.74±0.04 0.51±0.03 2.39±0.06 0.45±0.01 0.41±0.01
kin8nm 8192 8 0.07±0.00 0.08±0.00 0.10±0.00 0.10±0.00 0.09±0.00 0.11±0.01 N/A±0.00 N/A±0.00
power 9568 4 4.11±0.05 4.11±0.04 4.11±0.04 4.38±0.03 4.08±0.00 4.06±0.04 N/A±0.00 N/A±0.00
protein 45730 9 4.25±0.07 4.54±0.03 4.88±0.04 4.79±0.01 4.46±0.00 4.90±0.01 N/A±0.00 N/A±0.00
red wine 1588 11 0.64±0.01 0.66±0.01 0.66±0.01 0.64±0.01 0.69±0.01 0.65±0.01 0.62±0.01 0.67±0.01
yacht 308 6 0.32±0.06 0.54±0.09 0.79±0.05 1.03±0.06 0.49±0.04 2.25±0.13 0.35±0.04 0.60±0.06
naval 11934 16 0.00±0.00 0.00±0.00 0.38±0.00 0.01±0.00 0.01±0.00 0.00±0.00 N/A±0.00 N/A±0.00
Avg.Rank 1.33±0.23 2.22±0.36 4.66±0.33 4.00±0.44 3.11±0.42 4.44±0.72 N/A±0.00 N/A±0.00

We use a VIP with a prior defined by a Bayesian LSTM (200 hidden units) and α = 0.5.
We replicate the experimental settings in Bui et al. [36], Hernández-Lobato et al. [113],
except that our method directly takes raw sequential molecule structure data as input. We
compare our approach with a deep GP trained with expectation propagation [DGP, 36],
variational dropout for LSTM [VDO-LSTM, 76], alpha-variational inference LSTM [α-
LSTM, 177], BB-α on BNN [113], VI on BNN [29], and FITC GP [315]. Results for the
latter 4 methods are quoted from Hernández-Lobato et al. [113], Bui et al. [36]. Results in
Figure 4.4 show that VIP significantly outperforms other baselines and hits a state-of-the-art
result in test likelihood and RMSE.

4.4.5 ABC example: the Lotka–Volterra model

Finally, we apply the VIP on an Approximate Bayesian Computation (ABC) example with
the Lotka–Volterra (L-V) model that models the continuous dynamics of stochastic popula-
tion of a predator-prey system. An L-V model consists of 4 parameters θ = {θ1,θ2,θ3,θ4}
that controls the rate of four possible random events in the model:

ẏ = θ1xy−θ2y, ẋ = θ3x−θ4xy,
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Table 4.3 ABC with the Lotka–Volterra model
Method VIP-

BNN
VDO-
BNN

SVGP MCMC-
ABC

SMC-
ABC

Test NLL 0.485 1.25 1.266 0.717 0.588
Test RMSE 0.094 0.80 0.950 0.307 0.357

where x is the population of the predator, and y is the population of the prey. Therefore the
L-V model is an implicit model, which allows the simulation of data but not the evaluation
of model density. We follow the setup of [253] to select the ground truth parameter of the
L-V model, so that the model exhibit a oscillatory behavior which makes posterior inference
difficult. Then the L-V model is simulated for 25 time units with a step size of 0.05, resulting
in 500 training observations. The prediction task is to extrapolate the simulation to the
[25,30] time interval.

We consider (approximate) posterior inference using two types of approaches: regression-
based methods (VIP-BNN, VDO-BNN and SVGP), and ABC methods (MCMC-ABC [207]
and SMC-ABC [20, 30]). ABC methods first perform posterior inference in the parameter
space, then use the L-V simulator with posterior parameter samples for prediction. By
contrast, regression-based methods treat this task as an ordinary regression problem, where
VDO-BNN fits an approximate posterior to the NN weights, and VIP-BNN/SVGP perform
predictive inference directly in function space. Results are shown in Table 4.3, where VIP-
BNN outperforms others by a large margin in both test NLL and RMSE. More importantly,
VIP is the only regression-based method that outperforms ABC methods, demonstrating its
flexibility in modeling implicit systems.

4.5 Related works

In the world of nonparametric models, Gaussian Processes [GPs, 269] provide accurate
uncertainty estimates on unseen data, making them popular choices for Bayesian modelling
in the past decades. Unfortunately, the O(N3) time and O(N2) space complexities make
GPs impractical for large-scale datasets, therefore people often resort to approximations
[261, 315, 335, 109, 38, 287]. Another intrinsic issue is the limited representational power
of GPs with stationary kernels, limiting the applications of GP methods to high dimensional
data [23].

In the world of parametric modeling, deep neural networks are extremely flexible
function approximators that enable learning from very high-dimensional and structured
data [22, 115, 288, 162, 314]. As people starts to apply deep learning techniques to critical
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applications such as health care, uncertainty quantification of neural networks has become
increasingly important. Although decent progress has been made for Bayesian neural
networks (BNNs) [56, 117, 17, 243, 91, 29, 111, 177], uncertainty in deep learning still
remains an open challenge.

Research in the GP-BNN correspondance has been extensively explored in order to
improve the understandings of both worlds [242, 243, 365, 104, 75, 173, 214]. Notably,
in Neal [242], Gal and Ghahramani [75] a one-layer BNN with non-linearity σ(·) and
mean-field Gaussian prior is approximately equivalent to a GP with kernel function

KVDO(x1,x2) = Ep(w)p(b)[σ(w⊤x1 +b)σ(w⊤x2 +b)].

Later Lee et al. [173] and Matthews et al. [214] showed that a deep BNN is approximately
equivalent to a GP with a compositional kernel [42, 108, 50, 257] that mimic the deep net.
These approaches allow us to construct expressive kernels for GPs [159], or conversely,
exploit the exact Bayesian inference on GPs to perform exact Bayesian prediction for BNNs
[173]. The above kernel is compared with equation (4.11) in Appendix 4.C.

Alternative schemes have also been investigated to exploit deep structures for GP model
design. These include: (1) deep GPs [49, 36], where compositions of GP priors are proposed
to represent prior over compositional functions; (2) the search and design of kernels for
accurate and efficient learning [346, 65, 337, 21, 293], and (3) deep kernel learning that
uses deep neural net features as the inputs to GPs [116, 367, 4, 34, 130]. Frustratingly, the
first two approaches still struggle to model high-dimensional structured data such as texts
and images; and the third approach is only Bayesian w.r.t. the last output layer.

The intention of our work is not to understand BNNs as GPs, nor to use deep learning
to help GP design. Instead we directly treat a BNN as an instance of implicit processes
(IPs), and the GP is used as a variational distribution to assist predictive inference. This
approximation does not require previous assumptions in the GP-BNN correspondence
literature [173, 214] nor the conditions in compositional kernel literature. Therefore the
VIP approach also retains some of the benefits of Bayesian nonparametric approaches, and
avoids issues of weight-space inference such as symmetric posterior modes.

To certain extent, the approach in Flam-Shepherd et al. [69] resembles an inverse of VIP
by encoding properties of GP priors into BNN weight priors, which is then used to regularize
BNN inference. This idea is further investigated by a concurrent work on functional BNNs
[330], where GP priors are directly used to regularize BNN training through gradient
estimators [309].
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Concurrent work of neural process [80] resembles the neural sampler, a special case of
IPs. However, it performs inference in z space using the variational auto-encoder approach
[149, 273], which is not applicable to other IPs such as BNNs. By contrast, the proposed VIP
approach applies to any IPs, and performs inference in function space. In the experiments we
also show improved accuracies of the VIP approach on neural samplers over many existing
Bayesian approaches.

4.6 Conclusions

We presented a variational approach for learning and Bayesian inference over function
space based on implicit process priors. It provides a powerful framework that combines
the rich flexibilities of implicit models with the well-calibrated uncertainty estimates from
(parametric/nonparametric) Bayesian models. As an example, with BNNs as the implicit
process prior, our approach outperformed many existing GP/BNN methods and achieved
significantly improved results on molecule regression data. Many directions remain to be
explored. Better posterior approximation methods beyond GP prior matching in function
space will be designed. Classification models with implicit process priors will be developed.
Implicit process latent variable models will also be derived in a similar fashion as Gaussian
process latent variable models. A promising direction of application would be investigating
novel inference methods for models equipped with other implicit process priors, e.g. data
simulators in astrophysics, ecology and climate science.
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Appendix for Chapter 4

Appendix 4.A Derivations

4.A.1 Proof of Proposition 1 (finite dimensional case)

Proposition 1. If z is a finite dimensional random variable, then there exists a unique
stochastic process, with finite marginals that are distributed exactly according to Definition
4.5.

Proof Generally, consider the following noisy IP model:

f (·)∼ IP(gθθθ (·, ·), pz), yn = f (xn)+ εn, εn ∼N (0,σ2).

For any finite collection of random variables y1:n = {y1, ...,yn}, ∀n we denote
the induced distribution as p1:n(y1:n). Note that p1:n(y1:n) can be represented as
Ep(z)[∏

n
i=1N (yi;g(xi;z),σ2)]. Therefore for any m < n, we have

∫
p1:n(y1:n)dym+1:n

=
∫ ∫ n

∏
i=1
N (yi;g(xi,z),σ2)p(z)dzdym+1:n

=
∫ ∫ n

∏
i=1
N (yi;g(xi,z),σ2)p(z)dym+1:ndz

=
∫ m

∏
i=1
N (yi;g(xi,z),σ2)p(z)dz = p1:m(y1:m).

Note that the swap of the order of integration relies on that the integral is finite, which is true
when the prior p(z) is proper. Therefore, the marginal consistency condition of Kolmogorov
extension theorem is satisfied. Similarly, the permutation consistency condition of Kol-
mogorov extension theorem can be proved as follows: assume π(1 : n) = {π(1), ...,π(n)}
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is a permutation of the indices 1 : n, then

pπ(1:n)(yπ(1:n))

=
∫ n

∏
i=1
N (yπ(i);g(xπ(i),z),σ2)p(z)dz

=
∫ n

∏
i=1
N (yi;g(xi,z),σ2)p(z)dz = p1:n(y1:n).

Therefore, by Kolmogorov extension theorem, there exists a unique stochastic process, with
finite marginals that are distributed exactly according to Definition 4.5.

4.A.2 Proof of Proposition 2 (infinite dimensional case)

Proposition 2. Let z(·) ∼ SP(0,C) be a centered continuous stochastic process
on L2(Rd) with covariance function C(·, ·). Then the operator g(x,z) = O(z)(x) :=
h(
∫

∑
M
l=0Kl(x,x′)z(x′)dx′), 0 < M <+∞ defines a stochastic process if Kl ∈ L2(Rd×Rd)

, h is a Borel measurable, bijective function in R and there exist 0 ≤ A < +∞ such that
|h(x)| ≤ A|x| for ∀x ∈ R.

Proof Since L2(Rd) is closed under finite summation, without loss of generality, we
consider the case of M = 1 where O(z)(x) = h(

∫
K(x,x′)z(x′)dx′). According to Karhunen-

Loeve expansion (K-L expansion) theorem [194], the stochastic process z can be expanded
as the stochastic infinite series,

z(x) =
∞

∑
i

Ziφi(x),
∞

∑
i

λi <+∞.

Where Zi are zero-mean, uncorrelated random variables with variance λi. Here {φi}∞
i=1 is

an orthonormal basis of L2(Rd) that are also eigen functions of the operator OC(z) defined
by OC(z)(x) =

∫
C(x,x′)z(x′)dx′. The variance λi of Zi is the corresponding eigen value of

φi(x).
Apply the linear operator

OK(z)(x) =
∫

K(x,x′)z(x′)dx′
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on this K-L expansion of z, we have:

OK(z)(x) =
∫

K(x,x′)z(x′)dx′

=
∫

K(x,x′)
∞

∑
i

Ziφi(x′)dx′

=
∞

∑
i

Zi

∫
K(x,x′)φi(x′)dx′,

(4.A.1)

where the exchange of summation and integral is guaranteed by Fubini’s theorem. Therefore,
the functions {

∫
xK(x,x′)φi(x′)dx′}∞

i=1 forms a new basis of L2(Rd). To show that the
stochastic series 4.A.1 converge:

||
∞

∑
i

Zi

∫
K(x,x′)φi(x′)dx||2L2

≤ ||OK||2||
∞

∑
i

Ziφi(x′)||2L2

= ||OK||2
∞

∑
i
||Zi||22,

where the operator norm is defined by

||OK|| := inf{c≥ 0 : ||OK( f )||L2 ≤ c|| f ||L2, ∀ f ∈ L2(Rd)}.

This is a well defined norm since OK is a bounded operator (K ∈ L2(Rd ×Rd)). The
last equality follows from the orthonormality of {φi}. The condition ∑

∞
i λi < ∞ further

guarantees that ∑
∞
i ||Zi||2 converges almost surely. Therefore, the random series (4.A.1)

converges in L2(Rd) a.s..
Finally we consider the nonlinear mapping h(·). With h(·) a Borel measurable function

satisfying the condition that there exist 0≤ A <+∞ such that |h(x)| ≤ A|x| for ∀x ∈ R, it
follows that h◦OK(z) ∈ L2(Rd). In summary, g = OK(z) = h◦OK(z) defines a well-defined
stochastic process on L2(Rd).

Despite of its simple form, the operator g = h◦OK(z) is in fact the building blocks for
many flexible transformations over functions [97, 365, 327, 169, 84] . Recently Guss [97]
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proposed the so called Deep Function Machines (DFMs) that possess universal approxima-
tion ability to nonlinear operators:

Definition 4.6 (Deep Function Machines [97]). A deep function machine g = ODFM(z,S) is
a computational skeleton S indexed by I with the following properties:

• Every vertex in S is a Hilbert space Hl where l ∈ I.

• If nodes l ∈ A⊂ I feed into l′ then the activation on l′ is denoted yl ∈Hl and is defined
as

yl′ = h◦ (∑
l∈A

OKl(y
l))

Therefore, by Proposition 2, we have proved:
Corollary 2 Let z(·)∼SP(0,C) be a centered continuous stochastic process on H=L2(Rd).
Then the Deep function machine operator g = ODFM(z,S) defines a well-defined stochastic
process on H.

4.A.3 Inverse Wishart process as a prior for kernel functions

Definition 4.7 (Inverse Wishart processes [306]). Let Σ be random function Σ(·, ·) :X ×X →
R. A stochastic process defined on such functions is called the inverse Wishart process
on X with parameter ν and base function Ψ : X ×X → R, if for any finite collection of
input data X = {xs}1≤s≤Ns , the corresponding matrix-valued evaluation Σ(X,X) ∈Π(Ns)

is distributed according to an inverse Wishart distribution Σ(X,X)∼ IWS(ν ,Ψ(X,X)). We
denote Σ∼ IWP(v,Ψ(·, ·)).

Consider the problem in Section 4.3.1 of minimizing the objective

U(M,K) =DKL[p(f,y|X,θθθ)||qGP(f,y|X,M(·),K(·, ·))]

Since we use q(y|f) = p(y|f), this reduces U(M,K) to DKL[p(f|X,θθθ)||qGP(f|X,M,K)]. In
order to obtain optimal solution wrt. U(M,K), it sufficies to draw S fantasy functions (each
sample is a random function fs(·)) from the prior distribution p(f|X,θθθ), and perform moment
matching, which gives exactly the MLE solution, i.e., empirical mean and covariance



82 Variational Implicit Processes

functions

M⋆
MLE(x) = ∑

s

1
S

fs(x), (4.A.2)

K⋆
MLE(x1,x2) =

1
S ∑

s
∆s(x1)∆s(x2), (4.A.3)

∆s(x) = fs(x)−M⋆
MLE(x). (4.A.4)

In practice, in order to gain computational advantage, the number of fantasy functions S is
often small, therefore we further put an inverse wishart process prior over the GP covariance
function, i.e. K(·, ·) ∼ IWP(ν ,Ψ). By doing so, we are able to give MAP estimation
instead of MLE estimation. Since inverse Wishart distribution is conjugate to multivariate
Gaussian distribution, the maximum a posteriori (MAP) solution is given by

K⋆
MAP(x1,x2)

=
1

ν +S+N +1
{∑

s
∆s(x1)∆s(x2)+Ψ(x1,x2)}. (4.A.5)

Where N is the number of data points in the training set X where m(·) and K(·, ·) are evaluated.
Alternatively, one could also use the posterior mean Estimator (PM) that minimizes posterior
expected squared loss:

K⋆
PM(x1,x2)

=
1

ν +S−N−1
{∑

s
∆s(x1)∆s(x2)+Ψ(x1,x2)}. (4.A.6)

In the implementation of this paper, we choose KPM estimator with ν = N and Ψ(x1,x2) =

ψδ (x1,x2). The hyper parameter ψ is trained using fast grid search using the same procedure
for the noise variance parameter, as detailed in Appendix 4.D.
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4.A.4 Derivation of the upper bound U(m,K) for sleep phase

Applying the chaine rule of KL-divregence, we have

J (M,K) =DKL[p(f|X,y,θθθ)||qGP(f|X,y,M(·),K(·, ·))]
=DKL[p(f,y|X,θθθ)||qGP(f,y|X,M(·),K(·, ·))]
−DKL[p(y|X,θθθ)||qGP(y|X,M(·),K(·, ·))]

=U(M,K)−DKL[p(y|X,θθθ)||qGP(y|X,M(·),K(·, ·))].

Therefore, by the non-negative property of KL divergence, we have J (M,K)< U(M,K).
Since we select q(y|f) = p(y|f), the optimal solution of U(M,K) also minimizes

DKL(p(y|X,θθθ)||qGP(y|X,M(·),K(·, ·)))

. Therefore not only the upper bound U is optimized in sleep phase, the gap

−DKL(p(y|X,θθθ)||qGP(y|X,M(·),K(·, ·)))

is also decreased when the mean and covariance functions are optimized.

4.A.5 Empirical Bayes approximation for VIP with a hierarchical prior
on θ

The implicit processes (such as Bayesian neural networks and GPs) could be sensitive
to the choice of the model parameters (that is, parameters θθθ of the prior). To make our
variational implicit process more robust we further present an empirical Bayesian treatment,
by introducing an extra hierarchical prior distribution p(θθθ) on the prior parameters θθθ , and
fitting a variational approximation q(θθθ) to the posterior. Sleep phase updates remain the
same when conditioned on a given configuration of θθθ . The α-energy term in wake phase
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learning becomes

logqGP(y|X)

= log
∫

θθθ

qGP(y|X,θθθ)p(θθθ)dθθθ ≈ Lα
GP(q(a),q(θθθ)),

Lα
GP(q(a),q(θθθ))

=
1
α

N

∑
n

logEq(a)q(θθθ) [q
⋆(yn|xn,a,θθθ)α ]

−DKL[q(a)||p(a)]−DKL[q(θθθ)||p(θθθ)].

(4.A.7)

Compared with the approximate MLE method, the only extra term needs to be estimated
is −DKL[q(θθθ)||p(θθθ)]. Note that, introducing q(θθθ) will double the number of parameters.
In the case of Bayesian NN as an IP, where θθθ contains means and variances for weight
priors, then a simple Gaussian q(θθθ) will need two sets of means and variances variational
parameters (i.e., posterior means of means, posterior variances of means,posterior means of
variances, posterior variances of variances). Therefore, to make the representation compact,
we choose q(θθθ) to be a Dirac-delta function δ (θθθ q), which results in an empirical Bayesian
solution.

Another possible alternative approach is, instead of explicitly specifying the form and
hyperparameters for p(θθθ),we can notice that from standard variational lower bound

logqGP(y|X)≈ Eq(θθθ)[logqGP(y|X,θθθ)]−DKL[q(θθθ)||p(θθθ)].

Then DKL[q(θθθ)||p(θθθ)] can be approximated by

−DKL[q(θθθ)||p(θθθ)]≈−Eq(θθθ)[logqGP(y|X,θθθ)]+ constant

=− logqGP(y|X,θθθ q)+ constant

Therefore, we can use− logqGP(y|X,θθθ q) as the regularization term instead, which penalizes
the parameter configurations that returns a full marginal log likelihood (as opposed to the
diagonal likelihood in the original BB-α energy 1

α ∑
N
n logEq(z)q(θθθ)qGP(yn|xn,z,θθθ)α ) that

is too high, especially the contribution from non-diagonal covariances. We refer this as
likelihood regularization. In practice, − logqGP(y|X,θθθ q) is estimated on each mini-batch.
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Appendix 4.B KL divergence on function space v.s. KL
divergence on weight space

We briefly discuss KL divergence on function space in finite dimensional case. In the sleep
phase of VIP, we have proposed minimizing the following KL divergence in function space:

U(M,K) = DKL[p(y, f|X,θθθ)||qGP(y, f|X,M,K)]. (4.B.1)

This is an example of KL divergence in function space (i.e., the output f). Generally
speaking, we may assume that p(f) =

∫
W p(f|W)p(W)dW, and q(f) =

∫
W p(f|W)q(W),

where q(W) is weight-space variational approximation. That is to say, both stochastic
processes p and q can be generated by finite dimensional weight space representation W.
This can be seen as a one-step Markov chain with preivious state st = W, new state st+1 = f,
and probability transition function r(st+1|st) = p(f|W). Then, by applying the second law
of thermodynamics of Markov chains(Cover and Thomas [44]), we have:

DKL[p(f)||q(f)]≤ DKL[p(W)||q(W)] (4.B.2)

This shows that the KL divergence in function space forms a tighter bound than the KL
divergence on weight space, which is one of the merits of function space inference.

Appendix 4.C Further discussions on Bayesian neural net-
works

We provide a comparison between our kernel in equation (4.11), and the kernel proposed in
Gal and Ghahramani [75]. Notably, consider the following Gaussian process:

y(·)∼ GP(0,KVDO(·, ·)),
KVDO(x1,x2) =∫

p(w)p(b)σ(w⊤x1 +b)σ(w⊤x2 +b)dwdb. (4.C.1)

Here σ(·) is a non-linear activation function, w is a vector of length D, b is the bias scaler,
and p(w), p(b) the corresponding prior distributions. Gal and Ghahramani [75] considered
approximating this GP with a one-hidden layer BNN ŷ(·) = BNN(·,θθθ) with θθθ collecting
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the weights and bias vectors of the network. Denote the weight matrix of the first layer as
WWW ∈ RD×K , i.e. the network has K hidden units, and the kth column of WWW as wk. Similarly
the bias vector is bbb = (b1, ...,bK). We further assume the prior distributions of the first-layer
parameters are p(WWW ) = ∏

K
k=1 p(wk) and p(bbb) = ∏

K
k=1 p(bk), and use mean-field Gaussian

prior for the output layer. Then this BNN constructs an approximation to the GP kernel as:

K̃VDO(x1,x2) =
1
K ∑

k
σ(w⊤k x1 +bk)σ(w⊤k x2 +bk),

wk ∼ p(w), bk ∼ p(b).

This approximation is equivalent to the empirical estimation (4.11), if S = K and the IP is
defined by

gθθθ (x,z) = σ(w⊤x+b),z = {w,b}, p(z) = p(w)p(b),

p(z), σ(·) satisfy Ep(z)[σ(w⊤x+b)] = 0.
(4.C.2)

In such case, the output layer of that one-hidden layer BNN corresponds to the Bayesian
linear regression “layer” in our final approximation. However, the two methods are motivated
in different ways. Gal and Ghahramani [75] used this interpretation to approximate a GP
with kernel (4.C.1) using a one-hidden layer BNN, while our goal is to approximate the IP
4.C.2 by a GP (note that the IP is defined as the output of the hidden layer, not the output of
the BNN). Also this coincidence only applies when the IP is defined by a Bayesian logistic
regression model, and our approximation is applicable to BNN and beyond.

Appendix 4.D Further experimental details

We provide further experimental details in this section. We opensource the code of VIP for
UCI experiments at https://github.com/LaurantChao/VIP.

4.D.1 General settings for VIP

For small datasets we use the posterior GP equations for prediction, otherwise we use the
O(S3) approximation. We use S = 20 for VIP unless noted otherwise. When the VIP is
equipped with a Bayesian NN/LSTM as prior over functions (Example 4.3-4.4), the prior
parameters over each weight are untied, thus can be individually tuned. Empirical Bayesian
estimates of the prior parameters are used in 4.4.3 and 4.4.4.

https://github.com/LaurantChao/VIP
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4.D.2 Further experimental details of synthetic example

The compositional kernel for GP is the summation of RBF and Periodic kernels. In this toy
experiment, both VDO and VIP use a BNN as the underlying model. Note that it appears
that the GP slightly overfits. It is possible to hand-pick the kernel parameters for a smoother
fit of GP. However, we have found that quantitatively this will result in a decrease in test
predictive likelihood and an increase of RMSE. Therefore, we chose to optimize the kernel
parameters by maximizing the marginal likelihood.

4.D.3 Further implementation details for multivariate regression ex-
periments

• Variational Gaussian inference for BNN (VI-BNN): we implement VI for BNN using
the Bayesian deep learning library, ZhuSuan [307]. VI-BNN employs a mean-field
Gaussian variational approximation but evaluates the variational free energy using
the reparameterisation trick [149]. We use a diagonal Gaussian prior for the weights
and fix the prior variance to 1. The noise variance of the Gaussian noise model is
optimized together with the means and variances of the variational approximation
using the variational free energy.

• Variational implicit process-Neural Sampler regressor (VIP-NS): we use neural sam-
pler with two hidden layers of 10 hidden units. The input noise dimension is 10 or 50,
which is determined using validation set.

• Variational dropout (VDO) for BNN: similar to Gal and Ghahramani [75], we fix the
length scale parameter 0.5 ∗ l2 = 10e−6. Since the network size is relatively small,
dropout probability is set as 0.005 or 0.0005. We use 2000 forward passes to evaluate
posterior likelihood.

• α-dropout inference for BNN: suggested by Li and Gal [177], we fix α = 0.5 which
often gives high quality uncertainty estimations, possibility due to it is able to achieve
a balance between reducing training error and improving predictive likelihood. We
use K = 10 for MC sampling.

• Variational sparse GPs and exact GPs: we implement the GP-related algorithms using
GPflow [215]. variational sparse GPs uses 50 inducing points. Both GP models use
the RBF kernel.
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• About noise variance parameter grid search for VIPs (VIP-BNN and VIP-NS), VDOs
and α-dropout: we start with random noise variance parameter, run optimization on
the model parameters, and then perform a (thick) grid search over noise variance
parameter on validation set. Then, we train the model on the entire training set using
this noise variance parameter value. This coordinate ascent like procedure does not
require training the model for multiple times as in Bayesian optimization, therefore
can speed up the learning process. The same procedure is used to search for optimal
hyperparameter ψ of the inverse-Wishart process of VIPs.

4.D.4 Additional implementation details for ABC experiment

Following the experimental setting of Papamakarios and Murray [253], we set the ground
truth L-V model parameter to be θθθ 1 = 0.01,θθθ 2 = 0.5,θθθ 3 = 1.0,θθθ 4 = 0.01. We simulate
population data in the range of [0,30] with step size 0.05, which result in 600 gathered
measurements. We use the first 500 measurements as training data, and the remaining as
test set. For MCMC-ABC and SMC-ABC setup, we also follow the implementation of
Papamakarios and Murray [253].3 MCMC-ABC is ran for 10000 samples with tolerance ε

set to be 2.0 which is manually tuned to give the best performance. In MCMC-ABC, last
100 samples are taken as samples. Likewise SMC-ABC uses 100 particles. Model likelihood
is calculated based on Gaussian fit. VIP (α = 0) is trained for 10000 iterations with Adam
optimizer using 0.001 learning rate.

4.D.5 Additional implementation details for predicting power conver-
sion efficiency of organic photovoltaics molecules

For Bayesian LSTMs, we put Gaussian prior distributions over LSTM weights. The output
prediction is defined as the final output at the last time step of the input sequence. We
use S = 10 for VIP. All methods use Adam with a learning rate of 0.001 for stochastic
optimization. Noise variance parameter are not optimized, but set to suggested value
according to Hernández-Lobato et al. [113].To match the run time of the fingerprint-based
methods, all LSTM methods are trained for only 100 epochs with a batch size of 250.
Among different models in the last few iterations of optimization, we choose the one with
the best training likelihood for testing. Note that in the original paper of variational dropout
and α-dropout inference, K sample paths (K = 1 for VDO and K = 10 for α-dropout) are

3https://github.com/gpapamak/epsilon_free_inference

https://github.com/gpapamak/epsilon_free_inference
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created for each training data, which is too prohibitive for memory storage. Therefore, in our
implementation, we enforce all training data to share K sample paths. This approximation is
accurate since we use a small dropout rate, which is 0.005.

4.D.6 Additional Tables

Table 4.4 Interpolation performance on toy dataset.
Method VIP VDO GP

Test NLL -0.60±0.01 −0.07 ±
0.01

−0.27 ±
0.00

Test RMSE 0.140±0.00 0.161±0.00 0.152±0.00

Table 4.5 Interpolation performance on solar irradiance.
Method VIP VDO SVGP GP

Test NLL 0.08±0.02 0.21 ±
0.04

0.56 ±
0.23

0.832 ±
0.00

Test RMSE 0.28±0.00 0.29±0.01 0.55±0.08 0.650±0.0

Table 4.6 Performance on clean energy dataset
Metric VIP VDO-LSTM α-LSTM BB-α VI-BNN FITC-GP EP-DGP
Test NLL 0.65±0.01 1.24±0.01 2.06±0.02 0.74±0.01 1.37±0.02 1.25±0.00 0.98±0.00
Test RMSE 0.88±0.02 0.93±0.01 1.38±0.02 1.08±0.01 1.07±0.01 1.35±0.00 1.17±0.00





Chapter 5

Functional Variational Inference

IN Chapter 4, we have described two different approaches to function space inference: the
model-driven approach and the algorithm-driven approach. The model-driven approach

starts from an existing example of Bayesian nonparametric priors (in our case, the Gaussian
process), extends it to a more flexible class of priors, and then develops the corresponding
approximate inference algorithms. On the other hand, the algorithm-driven approach starts
from an existing inference method for parameter-space, and develops its function-space
counterpart.

So far we have presented our first approach to function space inference (VIP), which
is based on GP posterior approximations using implicit process priors. Roughly speaking,
in the VIP method the true posterior of a IP p( f |D) is approximated by an approximate
posterior of following form (denoted by qVIP( f |D)):

qVIP( f |D) = ∑
s

asφs,a∼N (a; µµµ,ΣΣΣ), (5.0.1)

where the basis functions {φs}S
s=1 are random samples drawn directly from p( f ).

Despite having demonstrated empirical advantage over weight space inference methods,
VIPs still suffer from a number of issues, detailed in the following remarks.

Remark (Limitations of VIPs). VIP clearly has a few limitations that need to be addressed.
To start with, its approximate posterior, qVIP( f |D) resembles a GP approximation to p( f |D),
whereas the true posterior in function space might be arbitrarily complex. Therefore, GP
approximations might not be able to capture non-GP behaviors.
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Also, VIP requires the implicit prior p( f ) to be reparameterizable, that is: 1), p( f ) should
take the form of f (x) = gθ (x,z),z∼ p(z); 2), the function gθ (·, ·) must be differentiable;
and 3), the functional form of gθ (·, ·) must be fully known in advance. These assumptions
may limit its applicability to more complicated priors such as structured implicit priors
[330]. Lastly, the wake-sleep procedure of VIP does not optimize a coherent function-space
objective function (such as ELBO usually used in parameter-space VI).

Therefore, it is an open challenge how to improve and justify (variational) inference
in the space of functions using priors given by stochastic processes. In this chapter, we
investigate this old but important problem and propose a new solution called Functional
Variational Inference (FVI). Our contributions are as follows:

• We propose a new objective function for variational inference in function space, as an
alternative to functional KL divergence between stochastic processes [330]. We show
that this new objective is a valid divergence, and can avoid some of the problems that
the functional KL divergence has.

• We propose a new class of flexible variational distributions in function space, called
stochastic process generators (SPGs). SPGs are non-Gaussian generalizations of
the VIP family [198], and can help avoid the fundamental limitation of mean-field
Gaussians [70] used in BNNs and functional BNNs. A theorem regarding the expres-
siveness of SPGs is proved (Proposition 5.4).

• Based on SPGs, our proposed functional divergence between stochastic processes
can be estimated efficiently using mini-batch sampling (Proposition 5.5, 5.6 and 5.7),
which achieves a significant speed-up against the gradient estimator approach in [330].

• We compare our methods against existing weight-space and function-space inference
methods in several tasks. Our method consistently outperforms the baselines, and is
much faster than f-BNN, which validates the effectiveness of our approach.

This chapter is organized as follows. In Section 5.1, we will formalize the framework of
functional variational inference, and explain basic concepts for functional KL-divergences
between stochastic processes, functional ELBO, as well as functional Bayesian neural
networks. We will also introduce the theoretical pathologies of functional KL divergence
minimization. In Section 5.2, we propose a more well-behaved functional divergence
called grid-functional KL divergence, and use it as the objective function for function space
inference. We derive a number of theoretical results and showcase how the corresponding
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ELBO can be calculated. In Section 5.3, we introduce the definition of Stochastic Process
Generators (SPGs), and derive efficient estimations of functional ELBO based on SPGs
(Section 5.4). Finally, in Section 5.7, we apply FVI to several tasks and showcase their
experimental performances.

5.1 Problem setting, and the functional KL divergence

In this chapter, we consider Bayesian inference problem in function space. Let p( f ) be
a stochastic process defined on the probability space (Ω,B). Note that we use f in its
scalar form to denote a scalar function f (·) : T 7→ R. Here T is the index set of p( f )
(assumed to be a compact subset of Rd). For example, p( f ) could be a Gaussian process
p( f ) = GP(M(·),K(·, ·)), a Bayesian neural network, or any other suitable stochastic
process. We use p( f ) to model the uncertainty in function space. Then, a likelihood function
pπ(y| f (·)) is defined on top of f to generated observable data y.

Given observed data D = {xi,yi}N
i=1, our goal is to infer the posterior process p( f |D)

conditioned on the observations D. If p( f ) is a GP, then p( f |D) can be computed analyti-
cally. However, in most cases this is intractable. Therefore, following [213, 330], we define
another stochastic process q( f ) on (Ω,B) as our variational family to approximate p( f |D).
q( f ) can be optimized by minimizing the variational objective

DKL[q( f )||p( f |D)], (5.1.1)

Note that DKL[q( f )||p( f |D)] is the functional KL-divergence between stochastic processes,
q( f ) and p( f |D). Unfortunately, both measures q( f ) and p( f |D) does not have a convenient
density form1. Therefore, DKL[q( f )||p( f |D)] can only be defined by following measure-
theoretic definition.

Remark (Formal definition of functional KL divergence between stochastic processes). The
concept of functional KL is nothing but the special case of the measure-theoretic definition
of KL divergence DKL[Q||P] (Definition 2.1), by noticing that both Q = q( f ) and P = p( f )
are just measures over ΩT , defined by

Ω
T = { f (·)| f (x) ∈Ω,x ∈ T }. (5.1.2)

1Since there does not exist “useful” infinite dimensional Lebesgue measures [213].
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Proposition 2.1 shows that when Q is absolutely continuous w.r.t. P (i.e, Q≪ P), DKL[Q||P]
can be expressed as

DKL[Q||P] =
∫

Ω

log
[

dQ
dP

]
dQ, (5.1.3)

where dQ
dP denotes the Radon-Nikodym derivative of Q w.r.t. P.

In practice, the definition given by Equation (5.1.3) is not very convenient to work with.
Fortunately, as shown by [330], DKL[q( f )||p( f )] can be expressed in the form of finite
dimensional densities:

DKL[q( f )||p( f )] = sup
n,Xn

DKL[q(fXn)||p(fXn|D)], (5.1.4)

where Xn denote a set of n measure points {xk}1≤k≤n in the domain/index set of f (·),
which can be treated as an element of the product space T n; and fXn denotes the vector
of function values evaluated on Xn. Since fXn is a finite dimensional vector, the densities
functions q(fXn) and p(fXn|D) exist under mild conditions, and DKL[q(fXn)||p(fXn |D)] can
be computed using those densities. Here, we have slightly abused the notations, and use p(·)
to denote both the probability measure p( f ) itself, and the corresponding density functions
q(fXn) over its finite dimensional function values fXn . In other words, the KL-divergence
between stochastic processes is the supreme of the relative entropies obtained on all possible
measure points in T Z+

(Figure 5.1).
Functional ELBO Similar to the parameter space VI, minimizing the functional KL-

divergence (5.1.4) is equivalent to maximizing the evidence lower bound (ELBO) in function
space:

L f unctional
q := Eq( f )[log pπ(D| f )]−DKL[q( f )||p( f )] (5.1.5)

where DKL[q( f )||p( f )] is the functional KL divergence between q( f ) and p( f ). We call
L f unctional

q the functional ELBO. In the context of machine learning, the above formulation
of functional ELBO maximization is first used in the concurrent work of functional Bayesian
neural networks (f-BNNs) [330]. To a certain extend, f-BNNs is the reverse of our VIP
method: instead of using GPs as posterior approximations, they use GPs as priors in function
space, and performs VI using BNNs as approximate posterior. That is, f-BNNs optimizes

L f unctional
q := EqBNN( f )[log pπ(D| f )]−DKL[qBNN( f )||pGP( f )] (5.1.6)
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Figure 5.1 Illustration of functional KL divergence. The KL-divergence between stochastic
processes is the supremum of the relative entropies obtained on all possible measure points
locations (Xn) and sizes (n). As notice by [39], such supremum value may be infinite.

where pGP( f ) is a GP and qBNN( f ) is a BNN. The gradients of DKL[qBNN( f )||pGP( f )] is
estimated via Stein gradient estimator [181].

Remark (Gradient estimation of functional BNNs). F-BNNs proposes to estimate the
gradient of DKL[qBNN( f )||pGP( f )] via spectral Stein gradient estimator (SSGEs) [309].
First, assuming that q( f ) can be reparameterized as f (·) = g(·,z), z∼ p(z). Then, given a
fixed measure points Xn, the gradient of DKL[qλλλ (fXn)||p(fXn)] w.r.t. λλλ can be rewritten as:

∇λλλ DKL[qλλλ (f
Xn)||p(fXn)] = Ez

{
∇λλλ fXn[∇fXn logqλλλ (f

Xn)−∇fXn log p(fXn)]
}
. (5.1.7)

For implicit processes, both ∇fXn logqλλλ (fXn) and ∇fXn log p(fXn)] can be intractable. To solve
this problem, Spectral stein gradient estimators SSGE is able to estimate ∇fXn logqλλλ (fXn)

(or ∇fXn log p(fXn)]) using only samples from qλλλ (fXn (or p(fXn)). Given a kernel function
K(fXn, f′Xn) satisfying∫

fXn∈Rn
∇fXn [K(fXn, f

′Xn)p(fXn)]dfXn, ∀f
′Xn ∈ Rn, (5.1.8)
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[309] shows that

∇fXn log p(fXn)] =−
∞

∑
j=1

[EfXn∼q(fXn)∇fXn ψ j(fXn)]ψ j(fXn), (5.1.9)

where {ψ j(·)}1≤ j are the eigenfunctions of K, estimated by Nyström method [247]. In
practice, Equation 5.1.9 is estimated by finite truncation of the infinite sumation, and MC
estimation of the expectation operator EfXn∼q(fXn)[·].

While f-BNNs is one of the first methods that highlight the importance of function space
inference, it suffers from the limitations of the SSGE approach to functional ELBOs.

• As introduced before, f-BNNs optimizes the functional KL divergence between BNNs
and GPs. Unfortunately, functional KL divergence not always well-defined . As
shown by [39], the functional KL divergence between a BNN and a GP is infinite.
Also, the functional KL divergence between two parameteric models could also be
infinite. Therefore, if the original objective function is ill-defined, it does not make
sense to apply SSGEs for gradient estimations in the first place.

• Second, even we assume that the functional KL divergence is finite, it still brings
up another computational issue. In Equation (5.1.4), computing the functional KL
divergence requires to find the maximum over all possible measure point locations
and sizes. This process is unfortunately very difficult, and has found to be prone to
overfitting [330].

• Another issue is, it has been shown that (spectral) stein gradient estimators are less ef-
ficient for high dimensional distributions [379, 85]. When estimating ∇fXn logqλλλ (fXn),
the dimensionality of fXn could be very large (depending on the optimal n and Xn

that maximizes Equation 5.1.4). Technically, the size of optimal Xn should be larger
than the size of D, which makes SSGE not scalable to large data setting (as the
computational cost of SSGE scales linearly to the dimensionality of fXn).

• Finally, the q distributions of f-BNNs rely on a mean-field paramaterization of BNNs,
which often lacks predictive in-between uncertainty on test data (see Figure 5.2). This
issue was observed both with single layer BNNs [70], and deeper BNNs (able to
represent in-between uncertainty, but more over-confident than HMC empirically for
certain settings [71, 68]).
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Figure 5.2 A regression task on a synthetic dataset (red crosses) from [70]. We plot predictive
mean and uncertainties for each algorithms. This tasks is used to demonstrate the theoretical
pathologies of weight-space VI for single-layer BNNs: there is no setting of the variational
parameters that can model the in-between uncertainty between two data clusters. The
functional BNNs [330] also have this problem, since mean-field BNNs are used as part of
the model. On the contrary, our FVI method can produce sensible uncertainty estimates. See
Appendix 5.C.2 for more details.

Remark (Ad-hoc solutions to f-BNN limitations). In practice, the supremum operator
supn,Xn

[·] is replaced by EXn∼U(Rn)[·], i.e. the expectation over n uniformly distributed
random measure points, with n being fixed. This partially addresses some of the above
listed limitations. However, under such approximation, the resulting objective function is
not a valid functional divergence anymore. More importantly, for each randomly sampled
measure points Xn ∼U(Rn), we need to re-run Nyström procedures in SSGE to estimate the
corresponding ∇fXn logqλλλ (fXn) individually. This creates a loop of SSGE estimators, which
is computationally intensive.

Therefore, those limitations motivates us to propose new objective functions for function-
space VI, as well as more scalable gradient estimation methods, which will be introduced in
the next section.

5.2 The grid-functional KL divergence: a new objective
for functional VI

As pointed out by [39], the functional KL divergence defined in Eq 5.1.4 is not always
well-defined. For example, the functional KL divergence between two BNNs with different
network architectures can be infinite. To address this issue, we propose to optimize a new
divergence measure, called the grid-functional KL divergence. Figure 5.3 illustrates the idea
of grid functional KL divergence, which we now proceed to describe. Instead of taking
the supremum as in the original functional KL divergence, we take an expectation over
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both n and Xn. We specify a probability distribution {pn}1≤n<∞ over n≤ 1 assigning low
probability values pn to larger n. This way, we can trim down the contributions from the
KL terms DKL[q(fXn)||p(fXn|D)] that correspond to large n, and hope fully arrive at a finite
expectation value.

Figure 5.3 Illustration of grid functional KL divergence.

Following this idea, we give the formal definition of grid-functional KL divergence as:

Definition 5.1 (Grid-functional KL divergence). The grid-functional KL divergence between
two stochastic processes q( f ) and p( f |D) is given by

Dgrid[q( f )||p( f |D)] := En,Xn∼cDKL[q(fXn)||p(fXn|D)], (5.2.1)

where Xn is a set of n measurement points {xk}1≤k≤n sampled from T , according to some
sampling distribution c.

Here, c is defined on the product space T Z+
, and the number of sampled measure

points n is also random. One may recognize that [330] proposed a similar objective as
an approximation to 5.1.4, in which the number of measure points n is a fixed constant
instead of a random variable. Note that Dgrid[q( f )||p( f |D)] is not an approximation to
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DKL[q( f )||p( f |D)]: it is a valid functional divergence at its own, and we propose to use it
as a first principle for function space VI. Indeed, we can prove that Dgrid[q( f )||p( f |D)] is a
valid divergence, under mild conditions:

Proposition 5.1. Suppose c has full support on T Z+
. Then, Dgrid[q( f )||p( f |D)] satisfies

the following conditions: i), Dgrid[q( f )||p( f |D)] ≥ 0; ii), Dgrid[q( f )||p( f |D)] = 0 if and
only if q( f ) = p( f |D).

In other words, if c has full support on T Z+
(we will give an example of such c later),

then Dgrid[q( f )||p( f |D)] is a valid divergence in function space. Therefore, we can use
Dgrid as an alternative objective for function space inference. Now, the problem becomes: is
Dgrid[q( f )||p( f |D)] more well behaved than DKL[q( f )||p( f |D)]? Indeed it is. In fact, we
can show that for certain scenarios, Dgrid can avoid some of the issues the original functional
KL divergence has (see Appendix 5.A.2 for details):

Proposition 5.2. Let p( f ) and q( f ) be two distributions for random functions. Assume that
p( f ) is parameterized by the following sampling processes:

f = h+ ε,h(x)∼ p(h|x;Θ),Θ∼ p(Θ),ε ∼N (0,σ2)

, And q( f ) is parameterized by:

f = h+η ,h(x)∼ q(h|x;Γ),Γ∼ q(Γ),η ∼N (0,σ2)

. Here, x ∈ T ⊂ Rd , h is the random latent function, Θ ∈ RI , Γ ∈ RJ are the parameters
of each random function distributions, respectively. Suppose that: 1, q(hx) has a compact
support, denoted by B; 2, q(Γ) has a compact support, denote by V; and 3, p(h|x;Θ)> 0
for ∀h ∈ B,x ∈ T , and Θ ∈ RI . Then, there exist a sampling distribution c such that: 1, c
has full support on T Z+

, and 2, Dgrid[q( f )||p( f )] is finite.

This result shows that the grid-functional KL divergence allows us to perform VI between
p and q even if they have different parametric forms. Moreover, in Appendix 5.A.3 Corollary
5.1, we have shown that if one of the distributions is replaced by a Gaussian process (of
certain kernel function), then under some additional assumptions, the grid-functional KL
is still finite. In those cases, the original functional KL is no longer finite. This validates
our choice of grid-functional KL divergence. To use Dgrid[q( f )||p( f |D)] for VI, we further
derive a new ELBO based on Dgrid (Appendix 5.A.1):
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Proposition 5.3. Let n,Xn ∼ c be a set of random measure points such that XD ⊂ Xn.
Define:

Lgrid
q := log p(D)−Dgrid[q( f )||p( f |D)]. (5.2.2)

Then we have:

Lgrid
q = Eq( f )[log p(D| f )]−Dgrid[q( f )||p( f )] (5.2.3)

and log p(D)≥ Lgrid
q ≥ L f unctional

q .

Proposition 5.3 shows that Lgrid
q is a valid variational objective function: it is a lower

bound for log p(D), and also upper-bounds L f unctional
q . For the rest of the chapter, we will

discuss how to perform functional VI based on Lgrid
q . We will focus on how to propose a

expressive variational family q( f ), and how to efficiently estimate Dgrid[q( f )||p( f )].

Remark (Choice of c). One example of c that satisfies the requirement of Propositions 5.1,
5.2, and 5.3 takes the following form (which will be used throughout the chapter):

(n−|D|)∼Geom(p),xk ∼U(T ), ∀1≤ k≤ n−|D|,Xn := XD
⋃
{xk}1≤k≤n−|D|, (5.2.4)

where we first sample n from a geometric distribution, such that (n−|D|)∼ Geom(p) with
parameter p (see Appendix 5.A.2 for more discussion). Then, (n−|D|) out of distribution
(OOD) measure points are sampled independently from a uniform distribution on T .

5.3 Choosing q( f ): stochastic process generators (SPGs)

In order to obtain good performance in FVI, it is crucial to pick an expressive variational
family for q( f ). Here, we propose a new class of variational distributions called stochastic
process generators (SPGs), which is motivated by the Karhunen-Loeve expansion theorem
[194] for stochastic processes. According to this theorem, the true posterior f ∼ p( f |D)2

can be expanded as the stochastic infinite series (Figure 5.4a),

f =
∞

∑
i

aiφi(x)∼ p( f |D), (5.3.1)

where {ai}1≤i are set of zero-mean random variables (which can be non-Gaussian), {φi}∞
i=1

forms a set of orthonormal basis functions ofL2(Rd). Furthermore, we can show that {φi}∞
i=1

2Assuming it is (L2(Rd)-).
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are exactly the eigen functions of the operator OC( f )(x) =
∫
C(x,x′) f (x′)dx′, where C(·, ·)

is the covariance function of p( f |D).

sub
(a) Illustration of the Karhunen-Loeve expansion theorem.

(b) Illustration of the stochastic process generators.

Figure 5.4 Illustration of stochastic process generators. According to the Karhunen-Loeve
expansion theorem, the true posterior f ∼ p( f |D) can be expanded as the stochastic infinite
series. This motivates us to uses finite truncation approximations, and parameterizes the
non-Gaussian coefficients with powerful implicit models.

Motivated by Karhunen-Loeve expansion theorem, we propose to parameterize our
approximate posterior distribution via the following S-term finite truncation approximation:

f = ∑
s

asφs(·,ws)+ν , ν ∼ GP(ν ;0,δ (·, ·)σ2
ν ), (5.3.2)

where {φs(·,ws)}1≤s≤S are a set of real-valued functions parameterized by some parameters,
{ws}1≤s≤S. ν is a white noise process that models additive aleatoric uncertainty (as well as
the approximation error). For the practical parameterization of φs(·,ws), since the covariance
function of p( f |D) is unknown, we may assume that each φs : Rd 7→ R1 is defined by an
individual flexible deep neural network with weights, ws. In order to compensate for the finite
truncation approximation, we assume that these weights ws are learnable via optimization
(which will be introduced later). The only missing part is the parameterization of the
non-Gaussian variables, a = (a1, ...,aS). This is done by specifying a implicit distribution
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(Section 2.2.4) on a:
q(a) =

∫
h

pθ (a|h)qηηη(h), (5.3.3)

where h is the latent variable of q(a), the conditional distribution pθ (a|h) is parameterized
by θ , and qηηη(h) is some distribution over the latent space. One can immediately recognize
that q(a) is nothing more than the variational auto-encoder (VAE) [150], by noticing that
pθ (a|h) is just the decoder, and q(a) is the prior on the latent space. We can finally give the
definition of our SPG variational family qSPG( f |qηηη(h)) (Figure 5.4b):

f = ∑
s

asφs(·,ws)+ν , a∼
∫

h
pθ (a|h)qηηη(h), ν ∼ GP(ν ;0,δ (·, ·)σ2

ν ). (5.3.4)

Intuitively, qSPG serves as a generator for stochastic processes. qSPG( f |·) maps any given
qηηη(h) to a stochastic process qSPG( f |qηηη(h)), hence the name. Regarding the expressiveness
of SPGs, we have the following result:

Proposition 5.4 (Expressiveness of SPGs). Let p( f ) be a square-integrable stochastic
process on a probability space (X ,B), and its index set T is a compact subset of Rd .
Suppose X is a compact metric space, B is the Borel set on X . Then, for ∀ε > 0, there exists
a SPG qε

SPG( f ), such that:

MMD(p,qε
SPG;F)< ε for ∀x ∈ T , (5.3.5)

where MMD is the maximum mean discrepancy, F is the MMD function class defined to be
a unit ball in a RKHS with a universal kernel [324] k(·, ·) as its reproducing kernel.

Next we will discuss how {ws}, θ and qηηη(h) can be estimated, and how can we use
SPG to estimate the function space KL-divergence in Equation 5.1.4.

Remark (Relations to VIP). SPGs can be seen as the non-Gaussian extension of the vari-
ational approximation used in VIP. Recall that in VIP, the variational family qVIP( f ) is
defined by the following sampling process:

f = ∑
s

asφs(·), a∼N (a; µµµ,ΣΣΣ), (5.3.6)
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where {φs}S
s=1 are random paths sampled from the prior process p( f ). In SPG, we essentially

removed the Gaussian assumption on a, by specifying the non-Gaussian implicit model,
q(a). Furthermore, SPG removed the constraint that {φs}S

s=1 need to be sampled from p( f ).

5.4 Efficient estimation of grid-functional KL divergence

Figure 5.5 Illustration of grid functional KL divergence estimation procedure.

In order to estimate the grid-functional KL-divergence in Equation 5.2.1, we propose
to use a two-step method for a scalable approximation (depicted in Figure 5.5). In the first
step, we distill p( f ) by fitting a stochastic process generator p̃SPG( f ) to p( f ). In the second
step, we calculate the KL-divergence between qSPG( f ) and p̃SPG( f ) as the surrogate for the
KL-divergence between qSPG( f ) and p( f ).
Distilling p( f ) via a stochastic process generator. Assume that we can draw M random
functions [ f1(·), f2(·), ..., fm(·), ..., fM(·)] from the prior process, p( f ). Let p̃SPG( f ) be a
SPG given by

f = ∑
s

asφs(·,ws)+ν , a∼
∫

h
pθ (a|h)p0(h), ν ∼ GP(ν ;0,δ (·, ·)σ2

ν ), (5.4.1)

where p0(h) is a fixed standard normal distribution. We denote the above process by
p̃SPG( f |p0(h)). We can train p̃SPG( f ) on f1, f2, ..., fm, ..., fM, by optimizing the aggregated
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ELBO on p̃SPG( f ):

max
{ws},θ ,λλλ

EXO ∑
m

log p̃SPG(fXO
m )≥ max

{ws},θ ,λλλ
EXOEq̃λλλ (h|f

XO
m )

log
p̃SPG(f

XO
m |h)p0(h)

q̃λλλ (h|f
XO
m )

, (5.4.2)

where fX
m are the function values of fm evaluated on XO, XO are |O| ≤ |D| measure points

independently sampled from the training set XD = {xi}N
i=1. fX

m are the function values of fm

evaluated on XO, and q̃λλλ (h|f
XO
m ) is an encoder network that approximates the true posterior

p̃SPG(h|fXO
m ).

Product of Experts (PoE) encoder. When sampling XO, since its size might vary each
time, we would need to set up 2N inference nets, one for each possible subsets. To overcome
this issue, we adopt the Product of Experts encoder [369], a simple and flexible approach
for such scenario, given by:

q̃λλλ (h|fXO
m ) ∝ p0(h)

|O|

∏
i=1

q̃λλλ (h| fm(xi),xi), (5.4.3)

where q̃λλλ (h| fm(xi),xi) is an inference network representing the expert associated with the
i-th measurement point. Now the we can use a single encoder q̃λλλ (h|f

XO
m ) to handle all the

possible inputs fXO
m . In practice, we let q̃λλλ (h| fm(xi),xi) to be a Gaussian expert that maps

[ fm(xi),xi] to a factorized Gaussian in latent space. Since the product of Gaussian experts
is still Gaussian, q̃λλλ (h|f

XO
m ) is a Gaussian distribution whose statistics can be computed

analytically.
Estimating the grid-functional KL-divergence given Xn. In order to estimate the grid-
functional KL divergence between qSPG( f ) and p( f ), we first discuss how this divergence
can be estimated on measurement points Xn, i.e., DKL[q(fXn)||p(fXn)] where fXn is the vector
of function values evaluated on Xn. We then discuss how this can be used to estimate the
grid-functional divergence in Equation 5.2.1. To begin with, as in Section 5.3, our variational
family is given by

f = ∑
s

asφs(·,ws)+ν , a∼ q(a) =
∫

h
pθ (a|h)qηηη(h), ν ∼ GP(ν ;0,σ2

ν ). (5.4.4)

We denote the above variational family by qSPG( f |qηηη(h)). The key ingredient of our
estimation method is that, we force qSPG( f |qηηη(h)) and p̃SPG( f |p0(h)) to share the same
basis functions (or weights {ws}) and decoder parameters θ . That is, once optimal {ws} and
θ are obtained by fitting p̃SPG( f ) to p( f ), these are frozen and will be reused in qSPG( f ).
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This makes sense, since according to our definition in Section 5.1, qSPG( f ) and p̃SPG( f )
share the same measurable space, (RT ,BTR ).

Therefore, the only difference between qSPG( f ) and p̃SPG( f ) is the choice of the prior
distributions on h, which is qηηη(h) and p0(h), respectively. Given this property, we can
compute the KL divergence between qSPG( f ) and p̃SPG( f ) given measurement points Xn

(Appendix 5.A.5):

Proposition 5.5 (KL divergence on measurement points between SPGs). Let qSPG( f ) and
p̃SPG( f ) be the SPGs defined in Equation 5.4.1 and 5.4.4. Then we have

DKL[qSPG(fXn)||p̃SPG(fXn)] = E f∼qSPG( f ) logZ(fXn), (5.4.5)

where Z(fXn) is the partition function, Z(fXn) =
∫

h p̃SPG(h|fXn)
qηηη (h)
p0(h)

dh.

Note that Z(fXn) is intractable to compute due to the intractability of the posterior
p̃SPG(h|fXn). Fortunately, this is already approximated by the PoE inference net q̃λλλ (h|fXn)

given by Equation 5.4.3:

Z(fXn)≈ Z̃(fXn) :=
∫

h
q̃λλλ (h|fXn)

qηηη(h)
p0(h)

dh. (5.4.6)

Since qηηη(h), p0(h), and q̃λλλ (h|fXn) are all Gaussian distributions, Z̃(fXn) can be computed
using analytic solutions. Note also that thanks to the VAE-like structure in SPGs, all the
calculations are performed in the latent space, whose dimensionality is much lower than
fX. With the additional help of analytic solutions for Z̃(fX), the estimation of (5.4.6) is very
efficient and scalable.

5.5 Functional Variational Inference: the final algorithm

So far, we have introduce a new objective function, a new variational family, and the
corresponding estimation method of the KL-divergence on measurement points, Xn. Finally,
we are able to derive a practical functional variational inference algorithm based on the
grid-functional ELBO Lgrid

q defined in Equation 5.2.3. Applying the approximation (5.4.6)
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to Equation 5.2.3, our final variational objective becomes

log p(D)≥
|D|

∑
i
Eq( f )[log pπ(yi| f (xi))]−En,Xn∼cDKL[q(fXn)||p(fXn)]

≈
|D|

∑
i
Eq( f )[log pπ(yi| f (xi))]−En,Xn∼cE f∼qSPG( f ) log Z̃(fXn).

(5.5.1)

To make Equation 5.5.1 scalable to large data, we can apply mini-batch sampling to the
likelihood term ∑

|D|
i Eq( f )[log p(yi| f (xi))]. Then the only bottleneck of Equation 5.5.1 is

that the input Xn to the inference net q̃λλλ (used in Z̃(fXn)) can be very high dimensional
due to the condition XD ⊂ Xn required by Proposition 5.3. Fortunately, we can derive
the following mini-batch estimators for En,Xn∼cE f∼qSPG( f ) log Z̃(fXn) (Appendix 5.A.6 and
5.A.7):

Proposition 5.6. En,Xn∼cE f∼qSPG( f ) log Z̃(fXn) can be estimated by the mini-batch estimator

JK :=
1
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∑
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(5.5.2)

where H is the dimensionality of h, N (h; µηηη i,σ
2
ηηη i
) = qηηη(hi), N (h; µλλλ i

,σ2
λλλ i
) = q̃λλλ (hi|fX).

σ̂
−2
λλλ i

and µ̂λλλ i
are the mini-batch approximators for µλλλ i

and σ2
λλλ i

, respectively:

σ̂
−2
λλλ i
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|D|
K

σ
−2
hi| f xk + ∑

xl∈Xn\XD

σ
−2
hi| f xl

µ̂λλλ i

σ̂2
λλλ i
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k∈K

|D|
K

σ
−2
hi| f xk µhi| f xb + ∑

xl∈Xn\XD

σ
−2
hi| f xl µhi| f xl ,

where K is a mini-batch of size K sampled from {1, ..., |D|}, xl ∈ Xn \XD is a set of OOD
samples sampled from T using c in Eq. 5.2.4, and µhi| f xk and σ2

hi| f xk are the mean and
variance parameter returned from q̃λλλ (hi| f (xk)).

The estimation in Eq. 5.5.2 is biased (but consistent). To remove the bias, we propose to
debias Eq. 5.5.2 based on the Russian Roulette estimator [141]:

Proposition 5.7 (Russian Roulette estimator). Let R be a random integer from a distribution
P(N) with support over the integers larger than K. x0 is a random location sampled from
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Algorithm 2 Functional Variational Inference (FVI)
Require: data D = {xi,yi}N

i=1; prior p( f ); surrogate p̃SPG( f ), variational process qSPG( f ),
likelihood function pπ(y| f ), mini-batch sizes I and K

1: while not converged do
2: Sample [ f1(·), f2(·), ..., fM(·)] from p( f ).
3: Improve p̃SPG( f ) by optimizing the aggregated ELBO in Equation 5.4.2 w.r.t.

{ws},θ ,λλλ .
4: end while
5: while not converged do
6: sample mini-batch I from {1, ..., |D|}, and a set of measure points Xn via c.
7: Optimize L̂FVI in Equation 5.5.3 w.r.t. ηηη and π , via reparameterization tricks
8: end while

T . Then En,Xn∼cE f∼qSPG( f ) log Z̃(fXn) can be estimated by E
[
JK +∑

R
k=K

∆k
P(N≥k)

]
, where

∆k = Jk+1−Jk, and the expectation is taken over R, n, Xn, and all mini-batches used by
each Jk terms.

This will enable us to also perform mini-batch sampling on the measurement points
when performing FVI. Our final optimization objective function is

L̂FVI :=
|D|
I ∑

i∈I
Eq( f )[log p(yi| f (xi))]−JK−

R

∑
k=B

∆k

P(N ≥ k)
, (5.5.3)

where I is a mini-batch of size I for the likelihood terms, R is an integer sampled from
P(N), which is set to be (R−K) ∼ Geom(0.5). Finally, the full algorithm is sketched in
Algorithm 2. We call this proposed method Functional Variational Inference (FVI).

Remark (Scalability). Our method is empirically much faster than f-BNN (Appendix 5.C.3).
When estimating Dgrid[q( f )||p( f )], our method scales as O(Mq), where Mq is the number
of samples sampled from qSPG( f ), that are used in JK . In practice, we use Mq = 1. On
the contrary, the SSGE estimator used in f-BNN scales as O(M3

q +M2
q |fXn|), where |fXn| is

the dimensionality of fXn . Usually in SSGEs, much larger value of Mq needs to used (e.g.,
Mq = 100). Also, as analyzed in Section 5.1, SSGE scales linearly to the dimensionality
of fXn , and does not allow mini-batch estimation. Those factors will limit the applicability
of SSGEs to large scale function space inference. In Appendix 5.C.3, we provide further
results on the run-time performance of these methods.
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5.6 Related works

Since BNNs and VIPs are discussed in Chapter 2 and 4 respectively, here we only address
the rest of the related works, including f-BNNs, functional priors, and Bayesian non-
parameterics.

Functional Bayesian neural networks (F-BNNs) and functional particle optimization
(F-POVI). The functional BNN [330] is proposed to address the issue of specifying
meaningful priors to BNN weights. It matches a BNN to a GP prior, by minimizing the
functional KL divergence estimated by score function estimators [181]. As discussed in
[39], this objective is not well-defined for a wide class of distributions. Also, the score
function estimators used in f-BNNs often perform poorly in high dimensional spaces and
are less efficient. In practice, we found that the f-BNN computational time is prohibitive.
On the contrary, our FVI estimator avoids these issues by making use of the grid-functional
divergence, which can be efficiently estimated using the latent representation of SPGs. More
recently, the concurrent work of [285] proposes a tractable function space VI method for
BNNs, in which the functional KL divergence is approximated via linearization. Similarly,
f-POVI performs inference on BNN priors by performing particle optimization in function
space. One limitation of f-POVI is that it requires the prior to be reparameterizable and
differentiable while our method does not have this issue.

Function space priors. Another line of work directly defines distributions over functions
by combining stochastic processes with neural networks. For example, neural processes
(NPs) [80] and its variants [147, 90] focus on meta-learning scenarios and propose to use set
encoders to model all possible posterior distributions of the form {p(f|C)|C ⊂ D}, where
C is the so-called “context points” in neural processes. This could be inefficient for large
datasets, since it needs to feed all data points to the set encoder, which scales linearly w.r.t.
the dataset size. More importantly, NPs still use for learning and inference an ELBO defined
on parameter space instead of function space. On the contrary, our method focuses on the
functional VI for supervised learning scenarios and does not need to model all possible
conditionals. When computing predictive distribution , we only need to evaluate qη(h),
which is a simple Gaussian distribution (no set encoders involved).

Bayesian non-parametrics. In the field of Bayesian non-parameterics, Gaussian Processes
(GPs) [269] and deep GPs [49] are great examples of using function-space priors to produce
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Figure 5.6 Implicit function prior and posterior samples from ground truth, FVI, VIP, and
f-BNN, respectively. The first row corresponds to a piecewise constant prior, and the
second row corresponds to a piecewise linear prior. The leftmost column shows 5 prior
samples. From the second column to the rightmost column we show posterior samples
generated by ground truth (returned by SIR), FVI, VIP and f-BNN, respectively. Red dots
denote the training data. We plot 10 posterior samples in black lines and show predictive
uncertainty as grey shaded areas.

models that are reliable under uncertainty. To reduce the prohibitive computation cost of
exact/deep GPs, various VI methods [335, 109, 213, 292] have been studied. These methods
share a similar principle with our work, that is, to minimize the functional divergence
between the posterior and variational processes. Nevertheless, the GP components of the
functional prior play a critical role in this line of work, which makes them less applicable to
general non-GP based priors.

5.7 Experiments

In this section, we evaluate the performance of FVI using a number of tasks, including inter-
polation with structured implicit priors, multivariate regression with BNN priors, contextual
bandits, and image classification. We mainly compare FVI with other weight-space and
function-space Bayesian inference methods using the same priors. For more implementation
details, please refer to Appendix 5.B. Additional experiments can be found in Appendix 5.C.

5.7.1 Interpolation with non-Gaussian priors: structured implicit pri-
ors

An advantage of FVI is that it can be applied to implicit (and non-Gaussian) priors over
functions, where typical GPs do not apply. In this experiment, we evaluate the interpolation
task as [330]. We consider two 1-D implicit priors on [0,1]: 1), piecewise constant random
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Table 5.1 Regression experiment: Average test negative log likelihood

DATASET N D FVI VIP-BNN VIP-NP BBB VDO α = 0.5 FBNN EXACT GP
BOSTON 506 13 2.33±0.04 2.45±0.04 2.45±0.03 2.76±0.04 2.63±0.10 2.45±0.02 2.30±0.10 2.46±0.04
CONCRETE 1030 8 2.88±0.06 3.02±0.02 3.13±0.02 3.28±0.01 3.23±0.01 3.06±0.03 3.09±0.01 3.05±0.02
ENERGY 768 8 0.58±0.05 0.56±0.04 0.60±0.03 2.17±0.02 1.13±0.02 0.95±0.09 0.68±0.02 0.54±0.02
KIN8NM 8192 8 -1.15±0.01 -1.12±0.01 -1.05±0.00 -0.81±0.01 -0.83±0.01 -0.92±0.02 N/A±0.00 N/A±0.00
POWER 9568 4 2.69±0.00 2.92±0.00 2.90±0.00 2.83±0.01 2.88±0.00 2.81±0.00 N/A±0.00 N/A±0.00
PROTEIN 45730 9 2.85±0.00 2.87±0.00 2.96±0.02 3.00±0.00 2.99±0.00 2.90±0.00 N/A±0.00 N/A±0.00
RED WINE 1588 11 0.97±0.06 0.97±0.02 1.20±0.04 1.01±0.02 0.97±0.02 1.01±0.02 1.04±0.01 0.26±0.03
YACHT 308 6 0.59±0.11 -0.02±0.07 0.59±0.13 1.11±0.04 1.22±0.18 0.79±0.11 1.03±0.03 0.10±0.05
NAVAL 11934 16 -7.21±0.06 -5.62±0.04 -4.11±0.00 -2.80±0.00 -2.80±0.00 -2.97±0.14 -7.13±0.02 N/A±0.00
MEAN RANK N/A N/A 1.33 2.11 3.56 5.22 4.56 3.33 N/A N/A

functions, and 2), piecewise linear random functions. Please refer to Appendix 5.B.2 for
details. For each prior, we first sample a random function from the prior; then, 100 observed
data points are sampled as D, half of which are sampled from [0,0.2] and the other half are
sampled from [0.8,1]. Finally, we ask the algorithms to perform inference using the prior,
i.e., producing samples from p( f |D).

We compare the performance of FVI with ground truth, f-BNN and VIPs. The ground
truth posterior samples are generated by sampling importance re-sampling. F-BNNs are
based on the code kindly open-sourced by [330]. As we found that the training time required
by f-BNN is prohibitive, we only trained f-BNN for 100 epochs for fairness. For VIPs
(Gaussian approximations), we use an empirical covariance kernel, which is estimated from
random function samples of the implicit priors. For FVI, implementation details can be
found in Appendix 5.B.2.

Results are displayed in Figure 5.6. FVI can successfully generate samples that mimic
the piecewise constant/linear behaviors. The posterior uncertainty returned by FVI is also
close to the ground truth estimates. On the other hand, f-BNNs severely under-fit the data
and provide very poor in-between uncertainties. Note that, although f-BNNs are only trained
for 100 epochs, their running time is still 100x higher than that of FVI (Appendix 5.C.3).
VIP performs better than f-BNNs, but fails to mimic the behaviour of the priors: the posterior
samples from VIP are very noisy. This is due to the prior function samples violating the
Gaussian assumption, with the correlation level between points being lower than expected.
This results in very noisy VIP posterior samples that are hard to interpret.

5.7.2 Multivariate regression with BNNs priors

In this experiment, we test if the proposed FVI can perform accurate posterior inference with
BNNs as functional priors. We consider multivariate regression tasks based on 9 different
UCI datasets. We mainly compare with the following weight-space VI baselines for BNNs:
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Table 5.2 Contextual bandits performance comparison. Results are relative to the cumulative
regret of the worst algorithm on each dataset. Numbers after the algorithm are the network
sizes. The best methods are boldfaced, and the second best methods are highlighted in
brown.

MEAN RANK MUSHROOM STATLOG COVERTYPE JESTER ADULT WHEEL CENSUS
FVI 2×50 2.11 16.46 ± 2.04 7.95 ± 2.92 49.59 ± 1.61 68.59 ± 6.87 90.33 ± 0.86 41.44 ± 9.28 51.77 ± 3.06
UNIFORM 10.45 100.0 ± 0.00 99.85 ± 0.36 99.49 ± 0.62 100.0 ± 0.00 99.60 ± 0.53 94.04 ± 11.9 99.30 ± 0.55
RMS 5.68 17.74 ± 7.65 10.36 ± 2.51 69.72 ± 7.23 75.07 ± 5.50 97.65 ± 1.48 70.39 ± 19.7 94.55 ± 3.60
DROPOUT 2×50 5.54 19.84 ± 6.46 15.53 ± 4.50 67.72 ± 2.32 75.04 ± 4.66 97.44 ± 0.98 59.40 ± 10.8 86.60 ± 0.52
BBB 2×50 4.88 23.18 ± 5.90 30.90 ± 3.29 63.91 ± 1.96 72.93 ± 5.69 95.49 ± 2.03 56.38 ± 11.3 70.68 ± 2.32
BBB 1×50 8.22 15.52 ± 4.40 80.25 ± 18.6 94.80 ± 4.84 83.30 ± 5.26 99.24 ± 0.66 58.12 ± 18.0 99.46 ± 0.37
NEURALLINEAR 6.94 19.04 ± 2.96 21.22 ± 1.98 75.34 ± 1.00 86.86 ± 3.61 97.93 ± 1.37 37.41 ± 8.86 83.75 ± 1.44
BOOTRMS 4.51 17.11 ± 5.99 9.47 ± 2.03 63.27 ± 1.35 74.66 ± 3.87 96.11 ± 1.02 63.15 ± 25.9 90.47 ± 3.40
PARAMNOISE 5.94 17.76 ± 4.14 20.95 ± 3.07 78.08 ± 5.66 76.95 ± 5.84 96.23 ± 1.81 41.26 ± 6.48 96.34 ± 4.56
BBα 2×50 9.45 68.45 ± 6.05 95.22 ± 4.88 98.60 ± 1.45 94.29 ± 2.69 98.72 ± 1.28 80.50 ± 7.96 97.94 ± 2.01
FBNN 2×50 3.17 16.55 ± 2.41 10.01 ± 1.39 50.10 ± 5.70 70.82 ± 3.27 90.72 ± 3.18 77.70 ± 21.2 51.22 ± 2.55

Bayes-by-Backprop [29], variational dropout [75], and variational alpha dropout [177]
(α = 0.5). We also compare with three function-space BNN inference methods: VIP-BNNs,
VIP-Neural processes [198], and f-BNNs. Finally, we include comparisons to function space
particle optimization [357] in Appendix 5.C.7 for reference purpose. All inference methods
are based on the same BNN priors whenever applicable. For experimental settings, we
follow [198]. Each dataset was randomly split into train (90%) and test sets (10%). This
was repeated 10 times and results were averaged.

Results are shown in Table 5.1. Overall, FVI consistently outperforms other VI-based
inference methods for BNNs and achieves the best result in 7 datasets (out of 9). FVI also
outperforms f-BNNs (in 5 datasets out of 6), despite the fact that they are more expensive to
train. Note that exact GPs and f-BNNs are not directly comparable to other methods, since
i), they perform inference over different priors; and ii), they are much more expensive as
they require the evaluation of the exact GP likelihood. Thus, their results are only available
for smaller datasets, and are not included for ranking.

5.7.3 Contextual Bandits

Uncertainty estimates are important for downstream decision-making scenarios, since
exploration-exploitation is a common dilemma that must be addressed. In this section,
we consider a classic task called contextual bandits, where the agent is asked to make
decisions that maximize the reward given some contexts (inputs). For this, Thompson
sampling [334] is an elegant approach to guide exploration, where a model configuration is
first sampled from the posterior, and then an optimal action is choosen based on the sampled
configuration.



112 Functional Variational Inference

Table 5.3 Image classification and OOD detection performance. Accuracy, negative log-
likelihood (NLL) and area-under-the-curve (AUC) of OOD detection are reported. Our
method outperforms all baselines in terms of classification accuracy and OOD-AUC, and
performs competitively on NLL for CIFAR10. Results for MAP, KFAC and Ritter et al. are
obtained from [127].

FMNIST CIFAR10
MODEL ACCURACY NLL OOD-AUC ACCURACY NLL OOD-AUC
FVI 91.60±0.14 0.254±0.05 0.956±0.06 77.69 ±0.64 0.675±0.03 0.883±0.04
MFVI 91.20±0.10 0.343±0.01 0.782±0.02 76.40±0.52 1.372±0.02 0.589±0.01
MAP 91.39±0.11 0.258±0.00 0.864±0.00 77.41±0.06 0.690±0.00 0.809±0.01
KFAC-LAPLACE 84.42±0.12 0.942±0.01 0.945±0.00 72.49±0.20 1.274±0.01 0.548±0.01
RITTER ET AL. 91.20±0.07 0.265±0.00 0.947±0.00 77.38±0.06 0.661±0.00 0.796±0.00

We compare FVI with several NN-related baselines, on datasets benchmarked by [274].
The hyperparameter settings are consistent with [330], except that we used a smaller batch-
size (32). The learning rates for each baseline are tuned from [0.001,0.05]. We report the
cumulative regret, as well as the mean ranks. Experiments are repeated for 10 runs. As
shown in Table 5.2, no single algorithm always outperforms the others in all bandit problems.
However, FVI tends to give better performance than the baselines (ranks the first overall,
performs the best on 4 out of 7 datasets, and ranked top 2 on 6 out of 7 datasets), indicating
that FVI can provide reliable uncertainty estimates for decision making. Moreover, FVI is
much more efficient than f-BNN (nearly 500 times faster, c.f. Appendix 5.C.4).

Figure 5.7 Image classification and OOD detection performance.
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5.7.4 Image classification and out-of-distribution detection

To demonstrate the scalability of our method to higher dimensional data, we consider
image classification tasks on Fashion MINIST [370] and CIFAR10 [161] with BNN priors.
We compare our method to the following baselines: mean field VI (MFVI), maximum a
posteriori (MAP), KFAC Laplace-GNN approximation [211] and its dampened version
[275]. For all models, we use Bayesian CNNs with the same mixed CNN-fully connected
structure as in [127, 300]. Apart from test accuracy and negative log likelihood (NLL), we
also perform out-of-distribution detection using in-distribution (ID) / out-of-distribution
(OOD) pairs including FashionMNIST/MNIST and CIFAR10/SVNH. Following the settings
of [250, 127], we calculate the area under the curve (AUC) of out-of-distribution detection
based on predictive entropies. Results are shown in Table 5.3. On both datasets, our
proposed FVI method consistently outperforms all baselines in terms of (in-distribution)
classification accuracy and OOD detection AUC. Although FVI does not achieve the best
NLL on CIFAR10, it still performs competitively to MAP and dampened KFAC. This
demonstrates that our method is able to scale to high dimensional data, and produce accurate
predictions with well-calibrated uncertainties.

5.8 Conclusion

In this chapter, we took a algorithm-driven approach for function space inference, and
proposed Functional Variational Inference (FVI).. It optimizes a grid-based functional
divergence, which can be estimated based on our proposed SPG model. We demonstrated
that FVI works well with implicit priors, scales well to high dimensional data and provides
reliable uncertainty estimates. Possible directions for future work might include developing
grid-function KL estimation method without surrogate models, and improving the theoretical
understanding of functional space VI.
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Appendix for Chapter 5

Appendix 5.A Proof of Theoretical results

5.A.1 Proof of Proposition 5.1 and 5.3

To prove Proposition 5.1, we first need the following lemma:

Lemma 5.1 (Alternative equivalent definition of functional KL divergence [330]). The
KL-divergence between two stochastic processes can be estimated by the supremum of
marginal KL divergences over all finite subset of inputs:

DKL[q( f )||p( f )] = sup
n,Xn

DKL[q(fXn)||p(fXn)], (5.A.1)

where Xn is the so called measurement points, fXn is the vector of function values evaluated
on Xn, and DKL[q(fXn)||p(fXn)] is the KL-divergence over random vectors typically used in
machine learning community.

Readers may refer to [330] for the proof of this lemma.

Proposition 5.1. Suppose c has full support on T Z+
. Then, Dgrid[q( f )||p( f |D)] Satisfies

the following conditions:

• Dgrid[q( f )||p( f |D)]≥ 0

• Dgrid[q( f )||p( f |D)] = 0 if and only if q( f ) = p( f |D)

Proof: First, according the the definition of

Dgrid[q( f )||p( f |D)] = En,Xn∼cDKL[q(fXn)||p(fXn|D)]

, the positivity property holds since DKL[q(fXn)||p(fXn|D)]≥ 0.
Next, to prove Dgrid[q( f )||p( f |D)] = 0 if and only if q( f ) = p( f |D), we first show that

argmin
q( f )

DKL[q( f )||p( f |D)] = argmin
q( f )

En,Xn∼cDKL[q(fXn)||p(fXn|D)],

Let’s first consider the left handside, argminq( f )DKL[q( f )||p( f |D)]. When it reaches the
optimum, we have a unique solution, q⋆L( f ) = p( f |D). According to Equation 5.A.1, we
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have:

argmin
q( f )

sup
n,Xn

DKL[q(fXn)||p(fXn|D)] = argmin
q( f )

DKL[q( f )||p( f |D)] = q⋆L( f )

Also, notice that

En,Xn∼cDKL[q(fXn)||p(fXn|D)]≤ sup
n,Xn

DKL[q(fXn)||p(fXn|D)]

At q⋆L( f ), we have

0≤ En,Xn∼cDKL[q⋆L(f
Xn)||p(fXn|D)]≤ sup

n,Xn

DKL[q⋆L(f
Xn)||p(fXn|D)] = 0

Therefore, we have

q⋆L( f ) ∈ argmin
q( f )

En,Xn∼cDKL[q(fXn)||p(fXn |D)]

On the other hand, assume that En,Xn∼cDKL[q⋆L(fXn)||p(fXn|D)] reaches its optimum 0 at
some optimal solution q⋆R( f ). Since DKL[q⋆R(fXn)||p(fXn |D)] is non-negative and c has
full support, we have DKL[q⋆R(fXn)||p(fXn|D)] = 0 for all possible Xn ⊂ supp(c) = T Z+

.
Therefore, we have

DKL[q⋆R( f )||p( f |D)] = sup
n,Xn

DKL[q⋆R(f
Xn)||p(fXn|D)] = 0

Therefore, we have
q⋆R( f ) = p( f |D) = q⋆L( f )

That is,

argmin
q( f )

DKL[q( f )||p( f |D)] = argmin
q( f )

En,Xn∼cDKL[q(fXn)||p(fXn|D)] = p( f |D)

In other words, both the functional KL divergence and grid-functional KL divergence
have the same unique global optimal solution, q( f |D). At q( f |D), both divergence achieves
minimum value, 0. Therefore, DKL[q( f )||p( f |D)] = 0 implies that q( f ) must be p( f |D).
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Proposition 5.3. Let n,Xn ∼ c be a set of random measure points such that Xn always
contains XD. Define:

Lgrid
q := log p(D)−Dgrid[q( f )||p( f |D)]. (5.A.2)

Then we have:

Lgrid
q = Eq( f )[log p(D| f )]−Dgrid[q( f )||p( f )] (5.A.3)

and log p(D)≥ Lgrid
q ≥ L f unctional

q .

Proof: Since Dgrid ≥ 0, the the statement log p(D)≥ Lgrid
q obviously holds. Then, notice

that:

Lgrid
q

= log p(D)−En,Xn∼cDKL[q(fXn)||p(fXn|D)]
= En,Xn∼c{log p(D)−DKL[q(fXn)||p(fXn|D)]}

= En,Xn∼c{log p(D)−Eq[log
q(fXn)

p(fXn |D)
]}

= En,Xn∼c{log p(D)−Eq[log
q(fXn)p(D)

p(fXn,D)
]}

= En,Xn∼c{Eq[− logq(fXn)+ log p(fXn ,D)]}
= En,Xn∼c{Eq(fD) log p(D|fD)−DKL[q(fXn)||p(fXn)]}

= Eq( f )[log pπ(D| f )]−En,Xn∼cDKL[q(fXn)||p(fXn)]

This proves the statement that Lgrid
q = Eq( f )[log pπ(D| f )]−Dgrid[q( f )||p( f )].

Finally, since

En,Xn∼cDKL[q(fXn)||p(fXn)]

≤En,Xn∼c sup
n,Xn

DKL[q(fXn)||p(fXn)]

= sup
n,Xn

DKL[q(fXn)||p(fXn)]

=DKL[q( f )||p( f )],
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Therefore we also have:

Eq( f )[log pπ(D| f )]−En,Xn∼cDKL[q(fXn)||p(fXn)]≥ L f unctional
q ,

which concludes the first part of the proposition.

5.A.2 Proof of Proposition 5.2

Proposition 5.2. Let p( f ) and q( f ) be two distributions for random functions. Assume that
p( f ) is parameterized by the following sampling processes:

f = h+ ε,h(x)∼ p(h|x;Θ),Θ∼ p(Θ),ε ∼N (0,σ2)

, And q( f ) is parameterized by:

f = h+η ,h(x)∼ q(h|x;Γ),Γ∼ q(Γ),η ∼N (0,σ2)

. Here,x ∈ T ⊂ Rd , h is the random latent function, Θ ∈ RI , Γ ∈ RJ are the parameters
of each random function distributions, respectively. Suppose that: 1, q(hx) has a compact
support, denoted by B; 2, q(Γ) has a compact support, denote by V; and 3, p(h|x;Θ)> 0
for ∀h ∈ B,x ∈ T , and Θ ∈ RI . Then, there exist a sampling distribution c such that: 1, c
has full support on T Z+

, and 2, Dgrid[q( f )||p( f )] is finite.

Proof : Let Xn denote a set of n measure points {xk}1≤k≤n in T n. Also, let the sampling
distribution c to have the following form:

n∼ p(n),xk ∼ U(T ), ∀1≤ k ≤ n

That is, c first samples a positive integer n from the distribution p(n), and then draw n
samples from T independently and uniformly. Let us consider Dgrid[q( f )||p( f )]. According
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to the definition

Dgrid[q( f )||p( f )]

=En,Xn∼cDKL[q(fXn)||p(fXn |D)]
=En∼p(n)EXn∼U(T n)DKL[q(fXn)||p(fXn)]

=
∞

∑
n=1

p(n)EXn∼U(T n)DKL[q(fXn)||p(fXn)]

Therefore, we only need to show that the series ∑
∞
n=1 p(n)EXn∼U(T n)DKL[q(fXn)||p(fXn)]

converges. Notice that

EXn∼U(T n)DKL[q(fXn)||p(fXn)]

≤EXn∼U(T n)DKL[q(hXn)||p(hXn)]

=EXn∼U(T n)

∫
hXn

q(hXn) log
q(hXn)

p(hXn)
dhXn

≤EXn∼U(T n)

[
log q̄− log p

]
≤ sup

Xn∈T n

[
log q̄− log p

]
(5.A.4)

The first inequality is due to information processing inequality. The q̄ and p in the second
inequality is defined as

q̄ = sup
hXn∈Bn⊂Rn

q(hXn)> 0

p = inf
hXn∈Bn⊂Rn

p(hXn)> 0
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. Note that both q̄ and p are strictly greater than 0, due to the the fact that Bn is the support
of q(hXn), and p(h|x;Θ)> 0 for ∀h ∈ B. Next, notice that

q̄

= sup
hXn∈Bn

q(hXn)

= sup
hXn∈Bn

∫
Γ

∏
1≤k≤n

q(hk|xk;Γ)q(Γ)dΓ

≤ sup
hXn∈Bn

sup
Γ∈V

sup
Xn∈T n

∏
1≤k≤n

q(hk|xk;Γ)

≤ ∏
1≤k≤n

(
sup
hk∈B

sup
Γ∈V

sup
xk∈T

q(hk|xk;Γ)

)
=(q⋆)n > 0

Where we have used (q⋆) to denote
(
suphk∈B supΘ∈V supxk∈T q(hi|xk;Γ)

)
. The second

equality is given by the definition of q(h;Γ); the first inequality is due to that the expectation
is replaced by supΓ∈V supXn∈T n , and the fact that q(Γ) has compact support; and in the
last inequality q⋆ > 0 since otherwise, q(hk|xk;Γ)≡ 0 which contradicts with that fact that
q(hxk) =

∫
Γ

q(hk|xk;Γ)q(Γ)dΓ has compact support. Similarly, we also have:

p

= inf
hXn∈Bn

p(hXn)

= inf
hXn∈Bn

∫
Θ

∏
1≤k≤n

p(hk|xk;Θ)p(Θ)dΘ

≥ inf
hXn∈Bn

inf
Θ

inf
Xn∈T n ∏

1≤k≤n
p(hk|xk;Θ)

≥ ∏
1≤k≤n

(
inf

hk∈B
inf
Θ

inf
xk∈T

p(hk|xk;Θ)

)
=(p⋆)n > 0

, where we have used p⋆ to denote
(
infhk∈B infΘ infxk∈T p(hk|xk;Θ)

)
. Note that the second

inequality is given by our assumption that p(h|x;Θ) > 0 for ∀h ∈ B,x ∈ T , and Θ ∈ RI .
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Now, back to inequality 5.A.4, we have:

EXn∼U(T n)DKL[q(fXn)||p(fXn)]

≤ sup
Xn∈T n

[
log q̄− log p

]
≤n [logq⋆− log p⋆]

Finally, let us consider the series ∑
∞
n=1 p(n)n [logq⋆− log p⋆]. Apparently, based on

d’Alembert’s criterion, this series is absolute convergent if we can choose p(n) such that
limn→∞ p(n+ 1)/p(n) < 1. For example,p(n) could be a geometric distribution with a
success probability that is strictly greater than 0 and smaller than 1. Since geometric distri-
bution has full support in Z+, it satisfies the claim of this proposition. Finally, given such
p(n) distribution, ∑

∞
n=1 p(n)EXn∼U(T n)DKL[q(fXn)||p(fXn)] is also convergent due to direct

comparison test.

Remark (grid-functional KL using BNN as priors). We here note that the proof applies
to BNN priors. Assume p(hi|xi;Θ = w) = N (hi;gw(xi),ς

2), where gw(·) is a Bayesian
neural network parameterized by w, and p(w) is some suitable prior on weights such as
factorized Gaussians. In this case, it is trivial to verify that given any compact set B,
p(h|x;Θ)> 0 for ∀h ∈ B,x ∈ T , and Θ ∈ RI holds, hence the assumptions in Proposition
5.A.2 is satisfied.

5.A.3 Grid-Functional KL between a parametric model and a Gaussian
process

In this section, we discuss the non-parametric counter part of Proposition 5.2, i.e., is the grid
functional KL between a parametric model and a Gaussian process is still finite? Assume
that q( f ) is a parametric model parameterized as in Proposition 1, and p( f ) is a zero mean
Gaussian process with kernel function K(·, ·). Assume that K(·, ·) is a stationary kernel, i.e.,
K(x1,x2) = Φ(∥x1−x2∥) for some function Φ (e.g., radial basis function). In fact, we have
the following Corollary:

Corollary 5.1. Let p( f ) and q( f ) be two distributions for random functions. Assume that
q( f ) is parameterized by the following sampling processes:

f = h+ ε,h(x)∼ q(h|x;Γ),Γ∼ p(Γ),ε ∼N (0,σ2)
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, And p( f ) is parameterized by a zero mean Gaussian process with kernel function K(·, ·).
Assume further that: i), q( f ) satisfies the assumptions in Proposition 5.2; ii), K(·, ·) is

a stationary kernel, i.e., K(x1,x2) = Φ(∥x1−x2∥) for some function Φ (e.g., radial basis
function). and iii), the smallest eigen value of KXn,Xn , denoted by λλλ n, decays in the order
of O(n−γ) for some constant γ > 1 (see the literature of eigen value distribution/lower
bounding smallest eigen value of kernel matrices, and/or norm estimation for inverse
matrices. For example, [358, 14, 360, 18, 297, 239] to name a few).

Then, there exist a sampling distribution c such that: 1, c has full support on T Z+
, and

2, Dgrid[q( f )||p( f )] is finite.

Proof We can basically apply most of the proof of Proposition 5.2. In our case, the key
ingredient is to derive a lower bound for

p = inf
hXn∈An⊂Rn

p(hXn)

. Since p(hXn) is a GP as described before, its likelihood function is given by

log p(hXn) =−
hXnT K−1

Xn,Xn
hXn

2
− n

2
log2π− 1

2
log |KXn,Xn|

Without loss of generality, assume that ∥hXn∥ ≤ A for some constant A. Then, we have

hXn T K−1
Xn,Xn

hXn ≤ 1
λλλ n
∥hXn∥ ≤ A

λλλ n

, where λλλ n denotes the smallest eigen value for KXn,Xn (or equivalently, 1
λλλ n

is the largest
eigen value for K−1

Xn,Xn
).

Notice also that

log |KXn,Xn| ≤ n log
1
n

Tr(KXn,Xn) = n logΦ(0)

.
Therefore, we can write

log p≥−n
2
(log2π + logΦ(0))− A

2λλλ n
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By the same argument used in Proposition 5.2, we have

EXn∼U(T n)DKL[q(fXn)||p(fXn)]

≤n
[

logq⋆+
1
2
(log2π + logΦ(0))

]
+

A
2λλλ n

Since λλλ n decays in the order of O(n−γ) for some constant γ > 1, by running the same
argument as in the proof of Proposition 5.2, ∑

∞
n=1 p(n)EXn∼U(T n)DKL[q(fXn)||p(fXn)] is

absolute convergent if limn→∞ p(n+1)/p(n)< 1.

5.A.4 Proof of Proposition 5.4

Proposition 5.3 (Expressiveness of SPGs). Let p( f ) be a square-integrable stochastic
process defined on probability space (X ,B), and its index set T is a compact subset of Rd .
Here, X is a compact metric space, B is the Borel set on X . Then, for ∀ε > 0, there exists a
SPG qε

SPG( f ) with a Gaussian prior on latent space, such that:

MMD(p,qε
SPG;F)< ε for ∀x ∈ T ,

where MMD is the maximum mean discrepancy between p and q, F is the MMD function
class defined to be a unit ball in a reproducing kernel Hilbert space (RKHS) with a universal
kernel [324] k(·, ·) as its reproducing kernel.

Proof Since p( f ) is a stochastic process defined on L2(T ), we can apply Karhunen–Loeve
expansion to f (x). Specifically, we have:

f (x) = lim
N→∞

LN , LN :=
N

∑
i

Ziφi(x),
∞

∑
i

λλλ i <+∞.

Where the limit is in the sense of (uniform) convergence in L2(T ), Zi are zero-mean,
uncorrelated random variables with variance λλλ i. Here {φi}∞

i=1 is an orthonormal basis
of L2(Rd) that are also eigen functions of the operator OC( f ) defined by OC( f )(x) =∫

C(x,x′)z(x′)dx′, C(x,x′) is the covariance function of f (·). The variance λλλ i of Zi is the
corresponding eigen value of φi(x).

Then, notice that since we have assumed that k is universal and T is a compact metric
space, by Theorem 23 of [322] we have that MMD(·, ·;F) metrizes the weak convergence
of probability measures on P , where P is the set of all Borel measures on (X ,B). Here,
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“metrization” means that for any sequence of measures P1,P2, ...,Pn, ... ∈ P , we have

Pn
w→ P⇔ lim

n→∞
MMD(Pn,P;F) = 0.

Since convergence of LN → f in L2 implies weak convergence, we can apply this theorem
to p( f ), and show that:

lim
n→∞

MMD(pLn, p;F) = 0

holds uniformly in L2(T ). Next, given a SPG qSPG, we have:

MMD(qSPG, p;F)≤MMD(pLn, p;F)+MMD(qSPG, pLn;F), ∀n ∈ Z+

The above triangle inequality holds since k is universal [93]. Hence, to prove our theorem,
it sufficies to show that there exits a sequence of SPGs qSPG,1, ...,qSPG,n′, ... such that
limn′→∞ MMD(qSPG,n′, pLn;F) = 0, ∀n ∈ Z+, x ∈ T . To prove this, let us fix n for now,
and consider the random coefficients {Zi}n

i=1 of Ln. Based on the results from [48], there
exists a sequence of Gaussian VAEs qVAE,1({Zi}n

i=1), ...,qVAE,n′′({Zi}n
i=1), ... of latent size

n, such that
qVAE,n′′({Zi}n

i=1)
w→ p({Zi}n

i=1)

. Then, define our sequence of SPGs to be:

qSPG,n′ =
n

∑
i

Z̃iφi, ,{Z̃i}n
i=1 ∼ qVAE,n′({Zi}n

i=1)

. Based on our definition in Section 5.3, qSPG,n′ is indeed a SPG. Since the linear summation
over φi using linear weights {Zi}n

i=1 is a continuous mapping, we also have:

qSPG,n′
w→ pLn, ∀n ∈ Z+, x ∈ T

due to continuous mapping theorem. Again, from the MMD metrization, we have

lim
n′→∞

MMD(qSPG,n′, pLn;F) = 0, ∀n ∈ Z+, x ∈ T

. To finally prove our theorem, consider an arbitrary error ε . Then, there exists Ln

such that MMD(pLn , p;F) < ε/2. Next, given this particular Ln, there exits n′ such that



124 Functional Variational Inference

MMD(pLn ,qSPG,n′;F)< ε/2. Together, we have:

MMD(qSPG,n′ , p;F)≤MMD(pLn, p;F)+MMD(qSPG,n′, pLn;F)< ε/2+ ε/2 = ε

which completes the proof our theorem.

5.A.5 Proof of Proposition 5.5

Proposition 5.4 (functional KL divergence on measurement points for SPGs). Let qSPG( f )
and p̃SPG( f ) be the SPGs defined in Equation 5.4.1 and 5.4.4. Then we have:

DKL[qSPG(fXn)||p̃SPG(fXn)] = E f∼qSPG( f ) logZ(fXn),

where Z(fXn) is the partition function, Z(fXn) =
∫

h p̃SPG(h|fXn)
qηηη (h)
p0(h)

dh.

Proof First, we have

DKL[qSPG(fXn)||p̃SPG(fXn)]

=DKL[qηηη(h)||p0(h)]−E f∼qSPG( f )DKL[qSPG(h|fXn)||p̃SPG(h|fXn)]

=DKL[qηηη(h)||p0(h)]−E f∼qSPG( f )DKL[p̃SPG(h|fXn)
qηηη(h)

Z(fXn)p0(h)
||p̃SPG(h|fXn)]

=DKL[qηηη(h)||p0(h)]−E f∼qSPG( f ),h∼qSPG(h|fXn) log
qηηη(h)
p0(h)

+E f∼qSPG( f ) logZ(fXn)

=E f∼qSPG( f ) logZ(fXn)

where the first equality directly follows from the chain rule of KL-divergence, and the sec-
ond equality follows from the fact that qSPG(h|fXn)) ∝ qSPG(h)p̃SPG(fXn|h), p̃SPG(h|fXn) ∝

p0(h)p̃SPG(fXn|h).

5.A.6 Proof of Proposition 5.6

Proposition 5.5 (Biased Mini-batch estimation of log-partition function).
En,Xn∼cE f∼qSPG( f ) log Z̃(fXn) can be estimated by the following mini-batch estima-
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tor:

JK :=
1
2

H

∑
i=1

E f∼qSPG( f )

[
logσ

−2
ηηη i

+ log σ̂
−2
λλλ i

− log(σ−2
ηηη i

+ σ̂
−2
λλλ i
−1)− µ̂µµ

2
λλλ i

σ̂
−2
λλλ i
−µµµ

2
ηηη i

σ
−2
ηηη i

+ (σ̂−2
ηηη i

µ̂µµηηη i
+ σ̂

−2
λλλ i

µ̂µµλλλ i
)2(σ−2

ηηη i
+ σ̂

−2
λλλ i
−1)−1

]
,

(5.A.5)

where H is the dimensionality of h, N (h; µµµηηη i
,σ2

ηηη i
) = qηηη(hi), N (h; µµµλλλ i

,σ2
λλλ i
) = q̃λλλ (hi|fXn).

σ̂
−2
λλλ i

and µ̂µµλλλ i
are the mini-batch approximators for µµµλλλ i

and σ2
λλλ i

, respectively:

σ̂
−2
λλλ i

:= ∑
k∈K

|D|
K

σ
−2
hi| f xk + ∑

xl∈Xn\XD

σ
−2
hi| f xl

µ̂µµλλλ i

σ̂2
λλλ i

:= ∑
k∈K

|D|
K

σ
−2
hi| f xk µµµhi| f xb + ∑

xl∈Xn\XD

σ
−2
hi| f xl µµµhi| f xl

where K is a mini-batch of size K sampled from {1, ..., |D|}, xl ∈ Xn \XD is a set of OOD
samples sampled from T using c in Eq. 5.2.4, and µµµhi| f xk and σ2

hi| f xk are the mean and
variance parameter returned from q̃λλλ (hi| f (xk)).

Proof To derive the mini-batch estimator, we first compute the expression for Z̃(fXn).
Since q̃λλλ (h|fXn) is a product of Gaussian encoder, its mean and variance can be computed
by:

ΣΣΣ
−1
λλλ

= ∑
x∈Xn

ΣΣΣ
−1
hi| f x

µµµλλλ = ΣΣΣλλλ ∑
x∈Xn

ΣΣΣ
−1
hi| f x µµµhi| f x

where ΣΣΣhi| f x is a diagonal matrix with component
(
ΣΣΣhi| f x

)
ii = σ2

hi| f x . Let ΣΣΣηηη and µµµηηη be
the covariance and mean of qηηη(h). By our assumptions, ΣΣΣηηη is also a diagonal matrix with
(ΣΣΣηηη)ii = σ2

ηηη i
. Since q̃λλλ (h|fXn)

qηηη (h)
p0(h)

is a product of three Gaussian distributions, its log
normalization constant log Z̃ can be computed using the results from, for example Appendix



126 Functional Variational Inference

A.2 of [110]:

En,Xn∼cE f∼qSPG( f ) log Z̃(fXn)

=En,Xn∼cE f∼qSPG( f )

[
1
2

log |ΣΣΣ−1
ηηη |+

1
2

log |ΣΣΣ−1
λλλ
|− 1

2
log |ΣΣΣ−1

ηηη +ΣΣΣ
−1
λλλ
− I|

− 1
2

µµµ
T
λλλ

ΣΣΣ
−1
λλλ

µµµλλλ −
1
2

µµµ
T
ηηηΣΣΣ
−1
ηηη µµµηηη +

1
2
(ΣΣΣ−1

λλλ
µµµλλλ +ΣΣΣ

−1
λλλ

µµµλλλ )
T (ΣΣΣ−1

ηηη +ΣΣΣ
−1
λλλ
− I)−1(ΣΣΣ−1

λλλ
µµµλλλ +ΣΣΣ

−1
λλλ

µµµλλλ )

]
=

1
2

H

∑
i=1

En,Xn∼cE f∼qSPG( f )

[
logσ

−2
ηηη i

+ logσ
−2
λλλ i
− log(σ−2

ηηη i
+σ

−2
λλλ i
−1)

− µµµ
2
λλλ i

σ
−2
λλλ i
−µµµ

2
ηηη i

σ
−2
ηηη i

+(σ−2
λλλ i

µµµλλλ i
+σ

−2
λλλ i

µµµλλλ i
)2(σ−2

ηηη i
+σ

−2
λλλ i
−1)−1

]
where σ2

ηηη i
,σ2

λλλ i
,µµµηηη i

,µµµλλλ i
are the ith element of diag−1

ΣΣΣηηη , diag−1
ΣΣΣλλλ , µµµηηη , µµµλλλ , respectively. To

effectively estimate σ
−2
λλλ i

= ∑x∈Xn σ
−2
hi| f x and µµµλλλ i

= σ2
λλλ i

∑x∈Xn σ
−2
hi| f x µµµhi| f x , we can uniformly

sample a mini-batch XK of size K from XD, and then compute the following noisy mini-batch
estimation:

σ
−2
λλλ i

= ∑
x∈Xn

σ
−2
hi| f Xn = NEx∈XDσ

−2
hi| f x + ∑

xl∈Xn\XD

σ
−2
hi| f xl

≈ ∑
k∈K

N
K

σ
−2
hi| f xk + ∑

xl∈Xn\XD

σ
−2
hi| f xl ,

µµµλλλ i
σ
−2
λλλ i

= ∑
x∈Xn

σ
−2
hi| f x µµµhi| f x = NEx∈XDσ

−2
hi| f x µµµhi| f x + ∑

xl∈Xn\XD

σ
−2
hi| f xl µµµhi| f xl

≈ ∑
k∈K

N
K

σ
−2
hi| f xk µµµhi| f xk + ∑

xl∈Xn\XD

σ
−2
hi| f xl µµµhi| f xl ,

We denote the estimators for σ
−2
λλλ i

and µµµλλλ i
by σ̂

−2
λλλ i

and µ̂µµλλλ i
, respectively. Then, applying

these noisy estimations to En,Xn∼cE f∼qSPG( f ) log Z̃(fXn), we have

En,Xn∼cE f∼qSPG( f ) log Z̃(fXn)

≈1
2

H

∑
i=1

E f∼qSPG( f )

[
logσ

−2
ηηη i

+ log σ̂
−2
λλλ i
− log(σ−2

ηηη i
+ σ̂

−2
λλλ i
−1)

− µ̂µµ
2
λλλ i

σ̂
−2
λλλ i
−µµµ

2
ηηη i

σ
−2
ηηη i

+(σ̂−2
λλλ i

µ̂µµλλλ i
+ σ̂

−2
λλλ i

µ̂µµλλλ i
)2(σ−2

ηηη i
+ σ̂

−2
λλλ i
−1)−1

]
,Xn ∼ c(T Z+

)
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The symbol ≈ in the last line means that it is a consistent estimator, due to multivariate
continuous mapping theorem.

5.A.7 Proof of Proposition 5.7

Proposition 5.6 (Debiasing). Let R be a random integer from a distribution P(N) that has
support over the integers larger than K, and x0 is a random location sampled from T . Then
En,Xn∼cE f∼qSPG( f ) log Z̃(fXn) can be estimated by:

E

[
JK +

R

∑
k=K

∆k

P(N ≥ k)

]
(5.A.6)

where ∆k = Jk+1−Jk, and the expectation E is taken over R, n, Xn, and all mini-batches
used by each Jk terms.

Proof By definition, we have limk→∞EJK = EJN = En,Xn∼cE f∼qSPG( f ) log Z̃(fXn). Ap-
parently, E∑

R
k=0

∆k
P(N≥n) constructs an Russian Roulette estimator [141]. Based on lemma

3 from [41], in order prove our result we only have to show that E∑
∞
k=0 |∆k|< ∞. In fact,

since the data distribution is assumed to be an empirical distribution, we have

∞

∑
k=0
|∆k|=

∞

∑
k=0
|Jk+1−Jk|

=
N−1

∑
k=0
|Jk+1−Jk|< ∞

holds for all possible mini-batches used by each ∆k. The second equality is based on the fact
that Jk+1 =Jk = log Z̃(fXn) for all k≥N. Therefore, we have E∑

∞
k=0 |∆k|= ∑

N−1
k=0 E|∆k|<

∞.

Appendix 5.B Further details of experiments

5.B.1 General settings

Data split/Cross-validation schemes For UCI experiments, each dataset was randomly
split into train (90%) and test sets (10%). This was repeated 10 times. In contextual bandits,
we used the code open-sourced by [330], therefore the data sampling process described in
[330] was exactly executed. For classification experiment for MNIST and CIFAR 10, since
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the train/test set are predefined, we have only run experiments with 5 different random seeds
(for initialization). For interpolation with implicit prior experiment, see 5.B.2 for details.

Choice of sampling distribution 3 One example of c that satisfies the requirement of
Propositions 5.1, 5.2, and 5.3 takes the following form:

(n−|D|)∼ Geom(p),xk ∼ U(T ), ∀1≤ k ≤ n−|D|,
Xn := XD

⋃
{xk}1≤k≤n−|D| (5.B.1)

where we first sample n from a geometric distribution, such that (n−|D|)∼ Geom(p) with
parameter p. Here, we use the parameter p = 0.5. Then, (n−|D|) out of distribution (OOD)
measure points are sampled independently from a uniform distribution on T .

Construction of the compact space T The construction of T depends on specific tasks.
If we know the range of the input , we can directly set to be such interval. For example, in
synthetic datasets of Experiment 5.7.1, we already know that the input lies in the interval
between 0 and 1, therefore T = [0,1]. If we don’t know the range of the inputs, then we can
simply set T to be a hyperrectangle, with each xi ∈ [xi

min,x
i
max], where xi

min and xi
max are the

empirical min and max of the i-th variable of input dataset.

Choice of prior processes p( f ) Note that since FVI is an inference method instead of a
new model, we will assume that FVI and most of the baselines will be using the same priors,
whenever applicable. For example, in the interpolation structured prior tasks, both FVI and
f-BNN will use the same piecewise implicit prior. In multivariate regression and image
classification tasks, all algorithms will use the same BNN prior with the same structures,
therefore we can isolate the difference caused by inference algorithms.

Structure of SPGs Unless specified otherwise, we use 10 basis functions for our SPGs,
and each basis function is a two-layer neural network that maps from Rd to R1. The structure
of these networks is input-100-100-output. Note that these neural network parameters
are not part of the variational parameters, since they are frozen forever after we have
finished distilling p( f ) using p̃SPG( f ). To further reduce the number of free parameters, the
parameters of the first two layers of all basis functions can be shared (this is applied only to
larger scale experiments such as image classification). The encoder q̃λλλ (h| f ) for p̃SPG( f ) is
also a two-layer neural network (input-500-200-latent statistics), whose parameters are also
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fixed after distilling p( f ). The decoders also have two hidden layers (latent variables-50-
100-output). The latent dimension is different depending on the tasks so that the comparison
between baselines will be fair. This will be detailed later. For the stationary GP white noise
process used in SPGs, we assume that they have isotropic noise level σ2

ν = 0.1.

Optimization Unless otherwise specified, we use Adam optimizer with learning rate
lr = 0.001. We use a slightly larger learning rate in the contextual Bandit experiment since
the learning rates used for each baseline is tuned from [0.001,0.05], as specified in the
experiment section. When training p̃SPG( f ), we use 5k epochs unless otherwise noticed.
For the inference phase where qSPG( f ) is optimized to maximize the functional ELBO, the
number of iterations is determined by the other baselines. For example in contextual Bandits,
all baselines are trained for 100 epochs, so is FVI. In terms of batch size, unless specified
otherwise, we choose the batch size to be 100. This batch size is also used to perform MC
estimation of the likelihood term in Equation 5.5.3, and training p̃SPG in Equation 5.4.2.

Hyperparameters of the likelihood function pπ(y| f ) Regarding the likelihood function
pπ(y| f ), since we only deal with continuous outputs in this chapter, we simply choose
pπ(y| f ) to be a Gaussian likelihood with noise standard deviation σ and mean µµµ = 0 just
like all the other baselines. The value of σ is set to be 0.02 except for multivariate regression
experiments, since we follow the setting of [198], where the noise variance is determined
individually for all BNN baselines, including FVI. For FVI, we found that making the
mean parameter µµµ of pπ(y| f ) to be optimizable will accelerate the convergence (which is
equivalent to adding an additional basis/bias in SPGs).

5.B.2 Individual settings for each experiments

Interpolation with structured implicit priors To sample a random function from piece-
wise constant priors, we first sample the number of change points n from a Poisson distribu-
tion Poisson(3). The exact location of each change point is uniformly sampled from [0,1].
Then, for each interval specified by the change points, we sample n+ 1 function values
uniformly to specify constant function values in each interval. This results in piecewise
constant functions. For the piecewise linear prior, the function values are sampled similarly
and we draw straight lines to connect each function value. In this experiment, for FVI, we
draw 1k samples from the implicit priors that are used to optimize the FVI parameters. The
basis function for FVI are directly obtained by sampling from the implicit prior. We use
200 basis functions, with a latent dimension of 10. To train our p̃SPG( f ), we sample 1k
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random function samples and optimize p̃SPG( f ) for 5k epochs. For inference, the variational
parameters are trained for 1k epochs.

UCI Multivariate regression For this experiment, we follow [198]. The functional prior
is a fully connected ReLU BNN with two hidden layers (input-10-10-output). We train FVI
for 1k epochs. We use 10 basis functions for FVI and a batch size of 100. The latent size is
set to 100.

Gaussian Processes in UCI regression On UCI datasets, variational sparse GPs and exact
GPs are implemented using GPflow. VSGPs uses 50 inducing points. Both variations of GP
models use the RBF kernel.

VIPs, Bayes-by-Backprop, variational dropout, α-dropout for Bayesian neural net-
works on UCI VIP and Weight-space inference methods for BNNs are based on the same
implementations used in Chapter 4. For details of othese, readers may refer to Appendix of
Chapter 4. Results in Table 5.1 are also taken from Chapter 4, as they have used exactly the
same data split scheme and BNN prior structures.

Contextual Bandits We use similar settings to [330], where we use a batchsize = 32,
training epochs = 100, training frequency = 50, and contexual points = 2000. We use ReLU
BNNs as functional priors. It has two hidden layers, each with 50 hidden units. For FVI, we
use 100 basis functions (with shared weights until the last layer), a learning rate of 0.005. For
details of the algorithms mentioned in Table 5.2, readers may refer to [274] for details. Here
we briefly explain the meaning of the abbreviations. FVI: functional variational inference;
FBNN: functional Bayesian neural networks; Uniform: uniform sampling; RMS: trains a
neural network and acts greedily using RMSprop; Boot RMS: Bootsrapped RMS; Neural
Linear: Bayesian linear regression over deep NN features; ParamNoise: just a regular
DNN, but when making decisions, an isotropic Gaussian perturbation is added to the NN
weights; Dropout: variational dropout BNNs; BBB: Bayes-by-Backprop BNNs; BB α:
Black-box alpha divergence minimization.

Image classification and OOD detection For all models in this experiment, the CNN
structures are the same as in [127]. That is, the 3 convolutional layers plus 3 fully connected
layers in the DeepOBS benchmark [300]. Similar to [127], we apply standard isotropic
Gaussian prior on all weight parameters. We use Adam with learning rate of 0.001 and
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Figure 5.8 The posterior samples from VIPs with different number of basis functions. As
more basis functions are used, the posterior samples from VIP become more and more noisy,
and finally converges to GP-like behaviour when 500 basis functions are used. Compared
to the ground truth estimate from Figure 5.6, VIP clearly under-estimates the predictive
uncertainties in-between the training samples.

batch size of 100, and run the training procedure for 100 epochs. For FVI, we use 100
basis functions in the SPGs on both datasets. Note that each basis function is a there-layer
convolutional network that maps from Rd to R10. To significantly reduce the memory usage,
the parameters of the convolutional layers of all basis functions are shared.

Appendix 5.C Additional Experiments

5.C.1 Impact of number of basis functions on SPGs and VIPs

As discussed in Section 5.3, the SPGs used the proposed FVI can be treated as a non-
Gaussian extension of the VIP variational family, by removing the Gaussian assumption on
a. One natural question that arises in this setting will be that, does the advantage of FVI
over VIP vanish as the number of basis function increases? How does the number of basis
functions affect the performance of each method? To provide more intuition for FVI and
VIPs, we consider again the 1-D function interpolation task with piecewise-linear implicit
prior. In Figure 5.8 and Figure 5.9, we show how the posterior samples from FVI and VIPs
evolve when the number of basis functions gradually increase from 5 to 500. Note that for a
fair comparison, the basis functions for both FVI and VIP are obtained by drawing random
function samples from the implicit prior. Since the piecewise-linear implicit functional prior
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Figure 5.9 The posterior samples from FVI with different number of basis functions. FVI
is still able to learn the piecewise linear behaviour from the prior as more basis functions
are used. As the number of basis functions is increased to 500, FVI converges to a solution
that is much closer to the ground truth (compared with VIP), and is still able to exhibit
non-Gaussian behaviours from the prior.

is not reparameterizable, once the basis functions for FVI and VIP are sampled, they will
be frozen forever (in contrast, when the prior is reparameterizable, both FVI and VIP can
optimize the basis functions, therefore the number of basis functions required will be much
smaller than this experiment).

From Figure 5.8 and Figure 5.9, we can first observe that as the number of basis function
increases, the predictive uncertainty of both FVI and VIP also increase, until around when
200 basis functions are reached. However, as more basis functions are used, the posterior
samples from VIP become noisier, and finally converges to GP-like behavior when 500
basis functions are used. Compared to the ground truth estimate from Figure 5.6, VIP
under-estimates the predictive uncertainties in-between the training samples. This is due to
that the piecewise linear behavior of the function samples violates the Gaussian assumption
of VIP, such that the correlation level between points will be lower than expected. On the
other hand, FVI is still able to learn the piecewise linear behavior from the prior as more
basis functions are used. As the number of basis functions is increased to 500, FVI converges
to a solution that is much closer to the ground truth (compared with VIP) and is still able
to exhibit non-Gaussian behaviors from the prior. We can conclude that the advantage of
FVI over VIP does not vanish as the number of basis functions increases. In contrast, the
difference between FVI and VIP becomes even more distinct and recognizable.
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Figure 5.10 A regression task on a synthetic dataset (red crosses) reproduced from [70]. We
plot predictive mean and uncertainties for each algorithms. This tasks is used to demonstrate
the theoretical finding on the pathologies of weight-space VI for single-layer BNNs: there is
no setting of the variational parameters that can model the in-between uncertainty between
two data clusters. The functional BNNs [330] also has this problem, since BNNs are use
as part of the model. On the contrary, our functional VI method can produce sensible
in-between uncertainties for out-of-distribution data. See Appendix 5.C.2 for more details.

5.C.2 On in-between uncertainty pathologies of BNNs

In figure 5.10, we presented a 2-D regression tasks on a synthetic dataset (red crosses),
reproduced from [70]. This tasks is used to demonstrate the pathologies of weight-space
inference for single-layer BNNs (including f-BNNs where BNNs are use as part of the
model): there is no setting of the variational parameters that can model the in-between
uncertainty between two data clusters. To be concrete, we have the following proposition:

Proposition 5.7 (Limitations for single-hidden layer BNNs [70]). Consider any single-
hidden layer fully-connected ReLU NN f : RD→ R. Let xd denote the dth element of the
input vector x. Suppose we have a fully factorised Gaussian distribution over the weights
and biases in the network. Consider any points p,q,r ∈ RD such that r ∈ −→pq and either:

1. −→pq contains 0 and r is closer to 0 than both p and q.

2. −→pq is orthogonal to and intersects the plane xd = 0, and r is closer to the plane xd = 0
than both p and q.

Then Var[ f (r)]≤ Var[ f (p)]+Var[ f (q)].

That is, the weight space inference of a single-hidden layer variational BNNs (using
mean-field VI) fails to represent the in-between uncertainty, and become over-confident
on out-of-distribution data. In this experiment, the training data is sampled as follows: the
2-D input locations of training data are generated by sampling 100 points, 50 each from
two separate clusters that follow Gaussian distributions. The inputs of the cluster on the
left of Figure 5.2 around (−1,−1), and the other cluster is centered around (1,1). Both
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have isotropic Gaussian noise with zero mean and variance 0.01. The outputs (y) are -1
and 1 for the left and right clusters, respectively. We further add a Gaussian observational
noise of variance 0.1 to the outputs. To test whether the baselines can learn the in-between
uncertainties between clusters, we use a fully connected ReLU BNN of a single hidden layer
(50 units). The FVI also uses this prior as functional prior and has 50 basis functions and 50
latent dimensions. The settings of MFVI are determined according to [70]. The settings of
F-BNN are determined similarily.

In figure 1, the λλλ axis is the 1-D parameter that parameterizes the 1-dimensional straight
line embedded in the 2-D plane, that connects (−3,−3) and (3,3). The value of the λλλ -
coordinate implies that its actual 2-D coordinate in the 2-D plane is (λλλ ,λλλ ). The results in
Figure 5.2 show that both Mean-field variational BNN and functional BNN suffers from
the limitations of single hidden layer BNN. On the contrary, FVI can produce a sensible
in-between uncertainty that is similar to GPs and HMC. For GPs, we use infinite-width BNN
kernel following [70]

5.C.3 CPU time comparison, FVI vs f-BNN on implicit priors
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Figure 5.11 CPU time comparison, FVI vs f-BNN on implicit priors. Although f-BNNs are
only trained for 100 epochs, its running time is still 100x slower than FVI.

5.C.4 CPU time comparison, FVI vs f-BNN on Census

In order to compare the efficiency between FVI and f-BNN, we provide the CPU time com-
parison of running contextual bandits on Census dataset [12], one of the largest contextual
bandits dataset that we have tested. It has more than 2 million data points, each with 389
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dimensional features as input (including dummy binary variables for categorical variables).
The output has 9 different classes (actions). The CPU time consumed by each algorithm on
Census is listed as follows:

Table 5.4 CPU time performance comparison of running contextual bandit on Census dataset

FVI f-BNN BBB
Run time (s) 28.14 ± 2.604 9648.19 ± 957.3 19.98 ± 1.238

Based on Table 5.4, we can see that FVI is nearly 500 times faster than f-BNN. The
run time of FVI is similar to Bayes-by-Backprop, indicating that FVI is very efficient and
scalable.

5.C.5 Improved results of f-BNN on implicit priors
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Figure 5.12 F-BNN on structured implicit priors, trained with 10k epochs

In experiment 5.7.1, we have only run f-BNNs for 100 epochs due to its computational
costs. Here, we provide improved results of fully-trained f-BNNs after 10k epochs. Note
that this epoch number is much larger than the FVI setting (5k), since we found that after
5k epochs, the f-BNN posteriors do not seem to improve over the results in experiment
5.7.1. As shown in Figure 5.12, after 10k epochs, the posterior uncertainty estimates of
f-BNNs become much loser to the ground truth in Figure compared with its 100 epochs
version. However, this comes with the cost of significantly increased computational time.
Moreover, f-BNNs seem to provide less convincing posterior samples in terms of mimicking
the piece-wise constant/linear behaviours.
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5.C.6 Large scale experiments on deeper Bayesian neural networks

To demonstrated the scalability and applicability of FVIs to larger datasets and deeper
Bayesian neural networks, in this section we perform regression experiments using a
Bayesian DNN with 5 hidden layers of 100 units. We compare our results to f-BNNs
and BBB with the same DNN structure, which are cited directly from [330]. For fair com-
parison, we increase the size of the basis functions used by SPGs to neural networks with 5
hidden units and 100 units. An additional hidden layer is added to the decoder and encoder
of the VAE used by SPGs. We follow the settings of Section 5.7.2, except that we train
FVI using 30000 iterations using mini-batch stochastic optimization. We report results on
Naval dataset, protein datset, and GPU dataset. We also include results of FVI on shallow
networks used in Section 5.7.2. From Table 5.6, we notice that the performance of FVI
on deeper networks is generally competitive to f-BNNs and BBBs, indicating that FVI is
scalable to larger datasets and deeper neural networks.

5.C.7 Comparison to function space particle optimization (f-SVGD)
and GPs

In this section, we further compare FVI to function space particle optimization (f-SVGD)
and GPs:

Table 5.5 Regression experiment: Average test negative log likelihood

Dataset N FVI f-SVGD GP
boston 506 2.33±0.04 2.30±0.05 2.63±0.04
concrete 1030 2.88±0.06 2.90±0.02 3.4±0.01
energy 768 0.58±0.05 0.69±0.03 2.31±0.02
kin8nm 8192 -1.15±0.01 -1.11±0.01 -0.76±0.00
power 95684 2.69±0.00 2.73±0.00 2.82±0.00
protein 45730 2.85±0.00 2.85±0.00 3.01±0.00
red wine 1588 0.97±0.06 0.89±0.01 0.98±0.02
yacht 308 0.59±0.11 0.75±0.01 2.29±0.03
naval 11934 -7.21±0.06 -4.82±0.10 -7.81±0.00

Note that f-SVGD is not included in our main experiments in Table 5.1, since it is a
particle optimization-based inference method. On the other hand, GP is not included since
it is not a BNN-based model. For GPs, we used variational sparse GP with 50 inducing
points plus an RBF kernel. The additional results in Table 5.5 shows that FVI performs the
best in 6 out of 9 datasets. Moreover, FVI outperforms f-SVGD in 6 out of 9 datasets and
outperforms GP in 8 out of 9 datasets in terms of NLLs.
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Table 5.6 larger scale regression experiment: Average test negative log likelihood

Dataset N FVI f-BNNs BBB FVI shallow
GPU 241600 2.93±0.03 2.97±0.02 2.99±0.01 3.10±0.04
Protein 45730 2.82±0.01 2.72±0.01 2.72±0.01 2.85±0.00
Naval 11934 -7.42±0.01 -7.24±0.01 -6.96±0.01 -7.38±0.04

5.C.8 Out-of-distribution detection visualization on CIFAR10

Figure 5.13 Histograms of predictive entropies on CIFAR10/SVHN OOD detection. Left:
MFVI. Right: FVI.
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Chapter 6

Overview: missing data uncertainty,
decision making, and identifiability

IN Part A, we presented our novel contributions to quantify model uncertainty in supervised
learning problems. However, most data generated from the real world comes with no

labels. Most of the time, we are only able to observe unlabelled datasets, D = {xn}1≤n≤N .
It is therefore, very crucial for us to be able to make sense of such unlabeled data efficiently.

Thus in Part B, we now move into the field of unsupervised learning, and address
the research question of performing (unsupervised) learning, inference, and high-value
information acquisition under the presence of missing data uncertainty (i.e., Challenges II
and III in Chapter 1). Recall that in Chapter 2, Section 2.3.4, we introduced the idea that
unsupervised learning can be naturally performed by (deep) generative models, which take
the following form:

log pθθθ (D) = ∑
n

log
∫

zn

pθθθ (xn|zn)p(zn)dzn. (6.0.1)

From the perspective of uncertainty, the latent variable zn (or more precisely, the posterior
pθθθ (zn|xn)) quantifies the data uncertainty of each data point xn (e.g., if θ is sufficient
statistics and if the model complexity is correct). This type of uncertainty is categorized as
the aleatoric uncertainty, since zn cannot be reduced by collecting more data. This is because
each data instance xn is assigned with different latent variables zn, and pθθθ (zn|xn,xm) =

pθθθ (zn|xn) for all m ̸= n.
Using the methods (variational EM/amortized VI/wake-sleep) introduced in Chapter

2, learning and inference of log pθθθ (D) can be performed efficiently. However, all these
methods are built upon an important assumption: the data set D = {xn}1≤n≤N must be
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fully observed. Unfortunately, in many real-world applications, this assumption does not
hold: when we collect datasets, they often contain missing data. This can be caused by
human errors, physical constraints, non-response, etc. Since we are uncertain regarding the
missing entries in our dataset, the failure to account for this uncertainty may compromise
the performance of machine learning models, as well as downstream tasks based on these
models. Therefore, it is important to be able to perform learning and inference under missing
data and quantify the uncertainties caused by missing data.

6.1 Missing mechanism, and traditional methods for
handling missing data

Suppose that we have a partially observed dataset,DO = {x(n)O }1≤n≤N , where x(n)O denotes the
partially observed subset of features of the n-th data point, and x(n)U denotes the unobserved
variables. Furthermore, let r(n) denote the missing mask indicator. r(n)i = 1 indicates xi is
observed, and r(n)i = 0 indicates xi is missing. The conditional distribution p(r|x) is called
the missing mechanisms. Depending on the dependency structure between X and R, there
are three types of missing mechanisms [279]:

1. If p(r|x) = p(r), the data is missing completely at random (MCAR);

2. If p(r|x) = p(r|xo), the data is missing at random (MAR). That is, the cause of
missingness r is observed;

3. Otherwise, the data is missing not at random (MNAR). That is, the cause of missing-
ness is unobserved.

MCAR and MAR are the most used assumptions in practice due to their technical simplicity:
under MCAR and MAR, we can ignore the missing mechanism and only focus on p(x)
[279]. However, MCAR and MAR do not hold in many real-world applications where, by
contrast, MNAR mechanisms are more common. In MNAR scenarios, we must explicitly
model the joint distribution p(x,r). In Chapter 8, we will discuss these assumptions in more
details.

Methods for handling missing data have been extensively studied in the past few decades.
These methods can be roughly classified into two categories: complete case analysis (CCA)
based methods and imputation based methods. CCA-based methods, such as listwise deletion
[5] and pairwise deletion [209] directly delete data instances that contain missing entries and
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only keep those that are complete for subsequent data analysis. Listwise/pairwise deletion
methods are known to be unbiased under MCAR and will be biased under MAR/MNAR. On
the contrary, imputation-based methods try to replace missing values with imputed/predicted
values. One popular imputation technique is called single imputation, where only one
single set of imputed values for each data instance is produced. Standard techniques of
single imputation include mean/zero imputation, regression-based imputation [5] and non-
parametric methods [143, 325].

Unfortunately, single imputation methods only return point estimates of the missing
values. Hence, they cannot quantify the missing data uncertainty. As opposed to single
imputation, multiple imputation (MI) methods [280, 281, 119, 237] such as MICE [362] are
simulation-based methods that return multiple imputation values for subsequent statistical
analysis. Unlike single imputation, the standard errors of estimated parameters produced
with MI are known to be unbiased [282]. Apart from MI, there exist other methods such as
full information maximum likelihood [9, 67] and inverse probability weighting [277, 120],
which can be directly applied to MAR without introducing additional bias. However, these
methods assume a MAR missing data mechanism, and cannot be directly applied to MNAR
without introducing bias.

6.2 Generative models for missing data uncertainty and
decision making

Deep generative models (Chapter 2 Section 2.3.4) are flexible and scalable probabilistic
models that excel at density estimation tasks. Thus, they are a natural choice for modelling
missing data uncertainties at scale. If we have an accurate generative model pθθθ (x) for
the complete data, then in theory, we can infer the posterior distribution on the rest of the
missing variables, i.e., pθθθ (xU |xO). However, there are several technical difficulties:

1. Learning. How can we efficiently estimate the parameters of the complete data model
log pθθθ (x) (or log pθθθ (x,r) under MNAR), given onlyDO = {x(n)O }1≤n≤N? Furthermore,
can this be done in the large data/large model regime?

2. Inference. How can we quantify the missing data uncertainty? That is, given a
partially observed xO, how can we compute pθθθ (z|xO)? Equivalently, how can we
perform missing data imputation, pθθθ (xU |xO)? There are many possible partitions of
complete data x into xO and xU . For d dimensional observable variables, there exists
2d different combinations of the observed subset, xO. Therefore, there are 2d different
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posterior distributions of the form pθθθ (xU |xO); performing Bayesian inference for each
different combination presents a significant computational challenge. How can we
efficiently address this challenge?

3. Decision making. The aleatoric uncertainty (represented by pθθθ (z|x)) can not be fully
eliminated by collecting more data points. However, the missing data uncertainty
(represented by pθθθ (z|xO)) is still partially reducible in the sense that, if we are able to
actively observe more features from the same data point xO, the posterior pθθθ (z|xO)

will finally approach the complete data posterior pθθθ (z|x). As a matter of fact, in many
applications, it is possible to acquire additional information (sometimes at specific
costs). For example, in assessing the health status of a patient we may decide to take
additional measurements such as diagnostic tests or imaging scans before making a
final assessment.

Therefore, this brings up an interesting decision making problem: suppose that in a
given prediction task we are interested in some task-specific variables xφ ⊂ xU (which
we call the target variables). Then, can we optimally choose which feature xi ∈ xU \xφ

to observe next, so that xi ∈ xU \xφ is provides the most informative knowledge about
the target xφ ? Or equivalently, can the missing data uncertainty of xφ , represented as
pθθθ (xφ |xO), be maximally reduced? 1 If these questions can be answered, we expect
that the decision quality of xφ can be improved (evaluated by certain metrics such as
likelihood and/or accuracy).

As analyzed in Chapter 1 Section 1.3, all these research questions are important not only
for technical advancements of generative models but also for building practical systems to
replicate human expert’s decision-making behaviors. In Chapter 7, we will first work under
the assumptions of MCAR and MAR, and present our original contributions to these research
questions in the context of unsupervised learning and active information acquisition.

6.3 Model non-identifiability in unsupervised learning
under missing data

In Chapter 3, we investigated the notion of model identifiability and its implications for
Bayesian inference under supervised learning settings. We argued that model unidentifi-
ability/ overparameterization is one of the major obstacles for improving the quality of

1When there isn’t a specific target variable xφ , we may still select the most informative feature by reducing
pθθθ (xU |xO).
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ML learning

Figure 6.1 Model non-identifiability under MNAR will introduce additional biases when
performing missing data imputation

approximate inference, hence we propose to perform inference in function space. In Part B,
we ask: will model non-identifiability cause similar problems in deep generative models for
unsupervised learning?

In many scenarios, when learning a generative model in the form of Equation (6.0.1),
we are more interested in quantifying the aleatoric uncertainty modeled by z, and will only
obtain a point estimate of θθθ . Therefore, the pathologies of approximate inference caused
by θθθ -non-identifiability are not as prevalent in generative models. However, when learning
under missing data, θθθ -non-identifiability will cause biases when performing missing data
imputation, pθθθ (xU |xO). We will show this as below.

As shown in Figure 6.1, suppose that our generative model is correctly specified. Then
given a partially observed dataset DO of infinite examples, we can perfectly fit a model
pθθθ (xO,r) to all the observed variables, xO and r. However, since the model pθθθ (x) is not
identifiable w.r.t. θθθ , the same distribution pθθθ (xO,r) can be generated from say, two different
parameter settings, θθθ 1 and θθθ 2. Therefore, there might exist two different (complete data)
distributions pθθθ 1(x,r) ̸= pθθθ 2(x,r), that give the same marginals pθθθ 1(xO,r) = pθθθ 2(xO,r).
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As a result, the imputation based on two parameter settings will be different:

pθθθ 1(xO|xU) ̸= pθθθ 2(xO|xU). (6.3.1)

Apparently, at least one of them must be biased. Thus, when dealing with MNAR missing
mechanisms, we must take into account the model identifiability and investigate sufficient
conditions for identifiability under missing data. This research question will be studied in
Chapter 8.

Remark (Non-identifiability under MCAR). Model non-identifiability will not cause the
aforementioned biases under MCAR assumptions. When the data is MCAR, we can recover
the distribution of the complete data pθθθ (x) by using listwise deletion: we can delete all data
points that contain missing values, and only fit the model to complete data instances. This is
equivalent to estimating the conditional distribution,

pθθθ (xO|r = 1).

Since the missing data is MCAR, we have

pθθθ (x) =
pθθθ (x,r = 1)

p(r = 1)
= pθθθ (xO|r = 1),

which is exactly the same as the listwise deletion estimation, pθθθ (xO|r = 1). Similarly, any
marginal distribution pθθθ (xO) can be estimated by

pθθθ (xO) =
pθθθ (xO,rO = 1,rU = 0)

p(rO = 1,rU = 0)
= pθθθ (xO|rO = 1,rU = 0).

Hence, the imputation distribution can be given by Bayes rule,

pθθθ (xU |xO) =
pθθθ (x)

pθθθ (xO)
,

and no additional biases are introduced.
The above estimation procedure is not always possible under MNAR assumptions. By

definition, we have

pθθθ (x) =
pθθθ (x,r = 1)
p(r = 1|x)

.
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This time, the numerator, pθθθ (x,r = 1) can still be estimated by listwise deletion

pθθθ (x,r = 1) = pθθθ (x|r = 1)p(r = 1) = pθθθ (xO|r = 1)p(r = 1).

However, note that the denominator p(r = 1|x) can not always be estimated from observa-
tional data. It requires additional assumptions, on the recoverability of p(r = 1|x) [233].
Here, recoverability means there exist a functional g, such that p(r = 1|x) = g(p(xO,r)).
Without this guarantee, we can not recover the complete data distribution pθθθ (x).

6.4 Part B highlight

In Part B, we also take a progressive approach to address the question of (unsupervised)
learning, inference and decision making in the presence of missing data uncertainties.

• Chapter 7: built upon deep generative models and probabilistic modeling, Chapter
7 presents a practical framework for learning, inference, and high-value information
acquisition under MAR (missing at random) missing values. This framework is
referred as EDDI (Efficient Dynamic Discovery of high-value Information).

• Chapter 8: this chapter leans towards theoretical aspects more and revisit the assump-
tions of the approach used in Chapter 7. We extends the work of EDDI to more general
missing not at random (MNAR) assumptions, and studies the model identifiability of
deep generative models under MNAR.





Chapter 7

Efficient Dynamic Discovery of
High-Value Information with Partial VAE

Human experts are not only good at evaluating the level of uncertainty in certain decision-
making problems, but also actively collecting new information that is most useful for
reducing those uncertainties. Imagine a person walking into a hospital with a broken arm.
The first question from healthcare personnel would likely be “How did you break your arm?”
instead of “Do you have a cold?”, because the answer reveals the most relevant information
for this patient’s treatment. However, automating this human expertise of information
acquisition is difficult. In applications such as online questionnaires, for example, most
existing online questionnaire systems either present exhaustive questions [174, 310] or use
extremely time-consuming human labeling work to manually build a decision tree to reduce
the number of questions [375]. This wastes the valuable time of experts or users (patients).
An automated solution for the personalized dynamic acquisition of information has great
potential to save much of this time in many real-life applications.

What are the technical challenges to building an intelligent information acquisition
system? If we carefully analyze the previous healthcare example, we can break down the
doctor’s thinking process into three steps. First, he/she would evaluate the current situation
of the patient, with uncertainty in mind; second, given the current situation, he/she will
investigate what are the possible scenarios and outcomes; and finally, based on those possible
scenarios, he/she will ask questions accordingly, that are the most relevant and impactful.
If we translate this thinking process into machine learning terms, we can first identify that
missing data uncertainty is a key issue: at any point in time we only observe a small subset of
the patient’s symptoms or medical test results, yet have to reason about possible causes for
his symptom. We are thus uncertain regarding the missing parts of the dataset and will need
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an accurate probabilistic model that can quantify the missing data uncertainty, and perform
inference given a variable subset of observed answers. Another key problem is deciding what
to ask next: can we optimally choose which variable to observe next, so that we can reduce
the missing data uncertainty, and improve the decision quality of relevant tasks? this requires
assessing the value of each possible question or measurement, the exact computation of
which is intractable. However, compared to traditional active learning methods, here we
need to actively select individual features, not data instances. Therefore, many existing
methods are not applicable. In addition, these traditional methods are often not scalable to
the large volume of data available in many practical cases [305, 174].

In this Chapter, we propose the EDDI (Efficient Dynamic Discovery of high-value
Information) framework as a scalable unsupervised learning and information acquisition
system under missing data. We assume that only a partially observed version of the dataset
is available for analysis, and information acquisition is always associated with some cost.
Given a specific decision task, such as estimating the customers’ experience or assessing
population health status, we can utilize the framework to dynamically decide which piece
of information to acquire next. The EDDI framework is very general, and the information
can be presented in any form such as question-answering tasks, or lab test results in medical
diagnosis. Our contributions are:

• We propose a novel efficient information acquisition framework, EDDI (Section 7.2).
To enable EDDI, we contribute technically:

1. A new partial amortized inference method for generative modeling under par-
tially observed data (Section 7.2.1). We extend the variational autoencoder
(VAE) [150, 272], to account for partial observations. The resulting method,
which we call the Partial VAE, is inspired by the set formulation of the data
[260, 374]. The Partial VAE, as a probabilistic framework in the presence of
missing data, is highly scalable, and serves as the base for the EDDI framework.
Note that Partial VAE itself is widely applicable and can be used on its own as a
non-linear probabilistic framework for missing-data imputation.

2. An information-theoretic acquisition function with a novel efficient approxima-
tion, yielding a novel variable-wise active learning method (Section 7.2.2).
Based on the partial VAE, we actively select the unobserved variable which
contributes most to the decision task, such as customer surveys and health assess-
ments, evaluated using the mutual information. This acquisition function does
not have an analytical solution, and we derive a novel efficient approximation.
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• We demonstrate the performance of EDDI in various settings and apply it in real-life
health-care scenarios (Section 7.3).

1. We first show the superior performance of the Partial VAE framework on an
image inpainting task (Section 7.3.1).

2. We then use 6 different datasets from the Machine Learning Repository of
University of Irvine (UCI) [59] to demonstrate the behavior of EDDI, comparing
with multiple baseline methods (Section 7.3.2).

3. Finally, we evaluate EDDI on two real-life health-care applications: risk as-
sessment in intensive care (Section 7.3.3) and public health assessment using
a national survey (Section 7.3.4), where traditional methods without amortized
inference do not scale. EDDI shows clear improvements in both applications.

7.1 Problem formulation

Before introducing our framework, we first formalize the unsupervised learning and active
variable selection problem under missing data. Let x = (x1, . . . ,x|I|) be a set of random
variables with probability density p(x). We call p(x) the complete data distribution. Fur-
thermore, we assume that the complete data x can only be partially observed. Let a subset
of the variables xO, O⊂ I, be observed while the variables xU , U = I \O, are unobserved.
Under this setting, we are interested in the following problems:

• (Unsupervised learning under missing data). Given a class of generative models
{pθθθ (x)|θθθ ∈ θθθ}, the goal of unsupervised learning is to approximate the ground truth
density pθθθ

⋆(x) ≈ p(x), using only partially observed data as training sets. This
model can be used to perform missing data imputation pθθθ (xU |xO), or help to perform
High-value information acquisition, as detailed below.

• (High-value information acquisition). Assume that given a decision task, we are
interested in certain task-specific quantity of interest f (x), where f (·) can be any
(random) function. Assume also that we can query the value of variables xi for i ∈U .
Then, the goal of active variable selection is to query a sequence of variables in U
in order to predict f (x), as accurately as possible while simultaneously performing
as few queries as possible. This information acquisition problem, in the simplified
myopic setting, can be formalized as that of proposing the next variable xi∗ to be
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queried by maximizing a reward function R at each step:

i∗ = argmax
i∈U

Rpθθθ
(i | xO), (7.1.1)

where Rpθθθ
(i | xO) quantifies the merit of our prediction of f (·) given x0 and xi. In

this thesis, Rpθθθ
(i | xO) usually depend on a generative model pθθθ (x) estimated from

partially observed training set. Furthermore, the reward can quantify other properties
important to the problem, e.g. the cost of acquiring xi.

7.2 Methodology

In this section, we present the Partial VAE to model and perform inference on partial
observations. Finally, we complete the EDDI framework by presenting our new acquisition
function and estimation method.

7.2.1 Partial Amortization of Inference Queries

We first introduce how to establish a generative probabilistic model of random variables
x, that is capable of handling unobserved (missing) variables xU with variable size. Our
approach to this, named the Partial VAE, is based on the variational autoencoder (VAE),
which enables amortized inference to scale to large volumes of data.

VAE and amortized inference. A VAE defines a generative model in which the data x is
generated from latent variables z, pθθθ (x,z) = ∏i pθθθ (xi|z)p(z). The data generation, pθθθ (x|z),
is realized by a deep neural network. To approximate the posterior of the latent variable
pθθθ (z|x), VAEs use amortized variational inference. Specifically, it uses an encoder, which
is another neural network with the data x as input to produce a variational approximation of
the posterior q(z|x;φ). As traditional variational inference, VAE is trained by maximizing
an evidence lower bound (ELBO), which is equivalent to minimizing the KL divergence
between q(z|x;φ) and pθθθ (z|x).

VAEs are not directly applicable when data points have arbitrary subset of data entries
missing. Consider the situation that the variables are divided into observed variables xO

and unobserved variables xU . In this setting, we would like to efficiently and accurately
infer p(z|xO) and p(xU |xO). One main challenge is that there are many possible partitions
{U,O}, where the size of observed variables might vary. Therefore, classic approaches
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to training a VAE with the variational bound and amortized inference networks are not
applicable. We propose to extend amortized inference to handle partial observations.

Partial VAE

Partial VAE. In a VAE, pθθθ (x|z) is factorized, i.e.

pθθθ (x|z) = ∏
i

pi(xi,θθθ |z). (7.2.1)

This implies that given z, the observed variables xO are conditionally independent of xU .
Therefore,

pθθθ (xU |xO,z) = pθθθ (xU |z), (7.2.2)

and inferences about xU can be reduced to inference about z. Hence, the key object of
interest in this setting is p(z|xO), i.e., the posterior over the latent variables z given the
observed variables xO. Once we obtain z, computing xU is straightforward. To approximate
p(z|xO), we introduce a variational inference network q(z|xO) and define a partial variational
lower bound, or the partial ELBO

log p(xO)≥ log p(xO)−DKL(q(z|xO)∥p(z|xO)) (7.2.3)

= Ez∼q(z|xO)[log p(xO|z)+ log p(z)− logq(z|xO)]

≡ Lpartial.

This bound, Lpartial , depends only on the observed variables xO, whose dimensionality may
vary among different data points. We thus call the the inference net, q(z|xO), the partial
inference net. Specifying q(z|xO) requires distributions for any partition {O,U} of I. Given
a set of partially observed data, DO = {x(n)O }1≤n≤N , we can further write the partial ELBO
w.r.t. this particular dataset:

log p(DO)≥∑
n
E

z(n)∼q(z(n)|x(n)O )
[log p(x(n)O |z

(n))]+∑
n
[log p(z(n))− logq(z(n)|x(n)O )]. (7.2.4)

Remark (Assumptions on missing mechanism). Here, we have implicitly assumed that the
missing mechanism is MCAR or MAR. That is, the missing mask r is independent of xU . In
the classic paper by Rubin [279], it is argued that when the missing data is MCAR or MAR,
we can ignore the missing mechanism and just perform maximum likelihood learning by
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Figure 7.1 Illustration of Partial VAE encoder architecture.

Figure 7.2 Partial VAE PNP setting

maximizing log p(xO) = log
∫

xU
p(xO,xU)dxU . The reasoning behind this is as follows:

argmax
θθθ

∑
n

log pθθθ (x
(n)
O )

=argmax
θθθ

∑
n

log pθθθ (x
(n)
O )p(r(n)|x(n)O )

=argmax
θθθ

∑
n

log
∫

x(n)U

pθθθ (x
(n)
O ,x(n)U )p(r(n)|x(n))dx(n)U

=argmax
θθθ

∑
n

log pθθθ (x
(n)
O ,r(n)).

Therefore, we can ignore the missing mask r, as well as the associated missing mechanism,
p(r|x), when performing learning and infernece.

Amortized Inference with partial observations. Inference under partial observations
requires the inference net of VAE to be capable to handle arbitrary set of observed data, and
sharing parameters across these different sized sets of observations for amortization.

Inspired by the Point Net (PN) approach for point cloud classification [260, 374],
we specify the approximate distribution q(z|xO) by a permutation invariant set function
encoding, given by:

c(xO) := g(h(s1),h(s2), ...,h(s|O|)), (7.2.5)

where sd carries the information of the input of the d-th observed variable, and |O| is the
number of observed variables. In particular, sd contains the information about the identity of
the input ed and the corresponding input value xd . There are many ways to define the identity
variable, ed . Naively, it could be the coordinates of observed pixels for images, and one-hot
embedding of the number of questions in a questionnaire. With different problem settings, it
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can be beneficial to learn e as an embedding of the identity of the variable, either with or
without an naive encoding as input. In this work, we treat e as an unknown embedding, to
be optimized during training.

There are also different ways to construct sd . A common choice is concatenation,
sd = [ed,xd], which is often used in computer vision applications [260]. Such architecture
is illustrated in Figure 7.1a. We refer to this setting as the Pointnet (PN) specification of
Partial VAE. However, the construction of sd can be more flexible. We propose to construct
sd = ed ∗ xd using element-wise multiplication as an alternative, shown in Figure 7.1b. We
show that this formulation generalizes naive Zero Imputation (ZI) VAE [240] (cf. Appendix
7.C.1). We refer to the multiplication setting as the Pointnet Plus (PNP) specification of
Partial VAE.

We can then use a neural network h(·) to map the input sd to RK , where and K is the
latent space size. The key to the PNP/PN structure is the permutation invariant aggregation
operation g(·), such as max-pooling or summation. In this way, the mapping c(xO) is
invariant to the permutations of elements of xO, and xO can have arbitrary length. Finally,
the fixed-size code c(xO) is fed into an ordinary neural network, that transforms the code into
the statistics of a multivariate Gaussian distribution to approximate p(z|xO). The procedure
is illustrated in Figure 7.2. As discussed before, given p(z|xO), we can estimate p(xU |z).

7.2.2 Efficient Dynamic Discovery of High-value Information

We now cast the active variable selection problem (7.1.1) as an adaptive Bayesian experimen-
tal design problem, utilizing p(xU |xO) inferred by the Partial VAE. The learning and active
information acquisition procedure of the EDDI framework is summarized in algorithm 3.

Information Reward. We designed a variable selection acquisition function in an infor-
mation theoretic way following Bayesian experimental design [186, 26]. Lindley [186]
provides a generic formulation of Bayesian experimental design by maximizing the expected
Shannon information. Bernardo [26] generalizes the idea, by considering the context of
decision making task.

For a given task, we are interested in statistics of some variables xφ , where xφ ⊂ xU .
Given a new instance (user), assume that we have observed xO so far for this instance, and
we need to select the next variable xi (an element of xU\φ ) to observe. Following Bernardo
[26], we select xi by maximizing the following information reward:

R(i,xO) = Exi∼p(xi|xO)DKL
[
p(xφ |xi,xO)∥ p(xφ |xO)

]
. (7.2.6)
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Algorithm 3 EDDI: algorithm overview
Require: Training dataset X, which is partially observed; Test dataset X∗ with no observa-
tions collected yet; Indices φ of target variables.

1: Train Partial VAE by optimizing partial variational bound with X (cf. Section 7.2.1)
2: Actively acquire feature value xi to estimate x∗

φ
for each test point (cf. Section 7.2.2)

for each test instance do
xO← /0 (no variable value has been observed for
any test point)
repeat

Choose variable xi from U \φ to maximize the
information reward (Equation (7.2.9))
xO← xi∪xO

until Stopping criterion reached (e.g. the time budget)
end for

In this chapter, we mainly consider the case that a subset of interesting observations repre-
sents the statistics of interest xφ . Sampling xi ∼ p(xi|xo) is approximated by xi ∼ p̂(xi|xo),
where p̂(xi|xo) can be obtained by using the Partial VAE. It is implemented by first sampling
z ∼ q(z|xo), and then xi ∼ p(xi|z). The same applies for p(xi,xφ |xo) which appears in
Equation (7.2.8).

Efficient approximation of the Information reward. The Partial VAE allows us to
sample xi ∼ p(xi|xo). However, the KL term in Equation (7.2.6),

DKL
[
p(xφ |xi,xo)||p(xφ |xo)

]
(7.2.7)

=−
∫

xφ

p(xφ |xi,xo) log
p(xφ |xo)

p(xφ |xi,xo)
dxφ ,

is intractable since both p(xφ |xi,xo) and p(xφ |xo) are intractable. For high dimensional xφ ,
entropy estimation could be difficult. The entropy term

∫
xφ

p(xφ |xi,xo) log p(xφ |xi,xo)dxφ

depends on i hence cannot be ignored. In the following, we show how to approximate this
expression.

Note that analytic solutions of KL-divergences are available under specific variational
distribution families of q(z|xO) (such as the Gaussian distribution commonly used in VAEs).
Instead of calculating the information reward in x space, we have shown that one can



7.2 Methodology 157

compute in the z space (cf. Appendix 7.A.1):

R(i,xo) =Exi∼p(xi|xo)DKL [p(z|xi,xo)||p(z|xo)]− (7.2.8)

Exφ ,xi∼p(xφ ,xi|xo)DKL
[
p(z|xφ ,xi,xo)||p(z|xφ ,xo)

]
.

Note that Equation (7.2.8) is exact. Additionally, we use the partial VAE approximation
p(z|xφ ,xi,xo)≈ q(z|xφ ,xi,xo), p(z|xo)≈ q(zi|xo) and p(z|xi,xo)≈ q(zi|xi,xo). This leads
to the final approximation of the information reward:

R̂(i,xo) =Exi∼p̂(xi|xo)DKL [q(z|xi,xo)||q(z|xo)]− (7.2.9)

Exφ ,xi∼p̂(xφ ,xi|xo)DKL
[
q(z|xφ ,xi,xo)||q(z|xφ ,xo)

]
.

With this approximation, the divergence between q(z|xi,xo) and q(z|xo) can often be com-
puted analytically in the Partial VAE setting, for example, under Gaussian parameterization.
The only Monte Carlo sampling required is the one set of samples xφ ,xi ∼ p(xφ ,xi|xo) that
can be shared across different KL terms in Equation (7.2.9).

Remark (Stop criterion based on missing data uncertainty.) When actively acquiring new
variables, it is sometimes useful to apply certain stop criterion that will terminate actions
when certain conditions are met. Throughout this thesis, although we do not explicitly apply
any stop criterion, we would like to point out the fact that the EDDI framework naturally
provide a principled stop criterion. The intuition is that, when there isn’t enough information
to predict xφ , the estimated uncertainty level of missing data uncertainty p(xU |xO) (or p(xφ ))
should be quite high. This indicates that we need to continue to acquire more variables to
xO, until we feel significantly more certain.

This uncertainty-based stop criterion is further developed and investigated in our recent
preliminary work [106], where we have shown that such stop criterion helps to significantly
improve the efficiency of EDDI algorithm in the context of symptom-based self-diagnosis.

Remark (Numerical example). In order to better demonstrate the information acquisition
process of the proposed EDDI framework, we provide a simple numerical example on
Boston Housing dataset. In Figure 7.14, we show the information reward estimated during
the first 4 active variable selection steps on a randomly chosen Boston Housing test data
point. Each row contains two plots regarding the same time step. The bar plots on the left
show the information reward estimation of each variable on the y-axis. All unobserved
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variables start with green bars, and turns purple once selected by the algorithm. The right
plot of each row is the corresponding violin plot of the posterior density estimations of
remaining unobserved variables. The rightmost variable in each violin plot corresponds
to the target variable. At each step, EDDI will estimate the information reward of each
unobserved variable (green) given the observed variables. Then, the variable with highest
information reward will be acquired (becomes purple), and the posterior density of remaining
unobserved variables ( especially the target variable) will shrink. At the end of the fourth
step, partial VAE is already quite confident on its prediction of the target variable.

7.3 Experiments

Here we evaluate the proposed EDDI framework. We first assess the Partial VAE component
of EDDI alone on an image inpainting task both qualitatively and quantitatively (Section
7.3.1). We compare our proposed two PN-based Partial VAE with the zero-imputing (ZI)
VAE [240]. Additionally, we modify the ZI VAE to use the mask matrix indicating which
variables are currently observed as input. We name this method ZI-m VAE. We then
demonstrate the performance of the entire EDDI framework on datasets from the UCI
repository (Section 7.3.2 ), as well as in two real-life application scenarios: Risk assessment
in intensive care (Section 7.3.3) and public health assessment with national health survey
(Section 7.3.4). We compare the performance of EDDI, using four different Partial VAE
settings, with three baseline information acquisition strategies. The first baseline is the
random active feature selection strategy (denoted as RAND) which randomly picks the next
variable to observe. RAND reflects the strategy used in many real-world applications, such
as online surveys. The second baseline method is the single best strategy (denoted as SING)
which finds a single fixed global optimal order of selecting variables. This order is then
applied to all data points. SING uses the objective function as in Equation (7.2.9) to find the
optimal ordering by averaging over all the test data.

7.3.1 Image inpainting with Partial VAE

We evaluate the performance of Partial VAE with the image inpainting task, which is to
fill in the removed pixels. We perform the evaluation in two different settings: in the first
setting, pixels are randomly removed, and in the second setting, a continuous patch of pixels
are removed.
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(a) Input (b) ZI (c) ZI-m (d) PN (e) PNP

Figure 7.3 Image inpainting example with MNIST dataset using Partial VAE with four
settings.
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(a) Step 0, information reward (b) Step 0, violin plot

(c) Step 1, information reward (d) Step 1, violin plot

(e) Step 2, information reward (f) Step 2, violin plot

(g) Step 3, information reward (h) Step 3, violin plot

Figure 7.4 Information reward estimated during the first 4 active variable selection steps on
a randomly chosen Boston Housing test data point. Model: PNP, strategy: EDDI. Each row
contains two plots regarding the same time step. Bar plots on the left show the information
reward estimation of each variable on the y-axis. All unobserved variables start with green
bars, and turns purple once selected by the algorithm. Right: violin plot of the posterior
density estimations of remaining unobserved variables.

.
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Inpainting Random Missing Pixels. We use MNIST dataset [171] and remove pixels
randomly for this task. The same settings are used for all methods (see Appendix 7.B.1 for
details). During training, we remove a random portion (uniformly sampled between 0% and
70%) of pixels. We then impute missing pixels on a partially observed test set (constructed
by removing 70% of the pixels uniform randomly). The performance of pixel imputation is
evaluated by test ELBOs on missing pixels. The first two rows in Table 7.1 show training
and test ELBOs for all algorithms using this partially observed dataset. Additionally, we
show ordinary VAE (VAE-full) trained on the fully observed dataset as an ideal reference.
Among all Partial VAE methods, the PNP approach performs best.

Inpainting Regions. We then consider inpainting large contiguous regions of images. It
aims to evaluate the capability of the Partial VAEs to produce all possible outcomes with
better uncertainty estimates. With the same trained model as before, we remove the region
of the upper 60% pixels of the image in the test set. We then evaluate the average likelihoods
of the models. The last row of Table 7.1 shows the results of the test ELBO in this case. PNP
based Partial VAE performs better than other settings. Note that given only the lower half of
a digit, the number cannot be identified uniquely. ZI (Figure 7.3b) fails to cover the different
possible modes due to its limitation in posterior inference. ZI-m (Figure 7.3c) is capable
of producing multiple modes. However, some of the generated samples are not consistent
with the given part (i.e., some digits of 2 are generated). Our proposed PN (Figure 7.3d)
and PNP (Figure 7.3e) are capable of recovering different modes, and are consistent with
observations.

Table 7.1 Comparing models trained on partially observed MNIST. VAE-full is an ideal
reference.

Method VAE-full ZI ZI-m PN PNP

Train ELBO -95.05 -113.64 -117.29 -121.43 -113.64
Test ELBO (Rnd.) -101.46 -116.01 -118.61 -122.20 -114.01
Test ELBO (Reg.) -101.46 -130.61 -123.87 -116.53 -113.19

7.3.2 EDDI on UCI datasets

Given the effectiveness of our proposed Partial VAE, we now demonstrate the performance
of our proposed EDDI framework in comparison with random selection (RAND) and single
optimal ordering (SING). We first apply EDDI on 6 different UCI datasets (cf. Appendix
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(a) Boston Housing (b) Energy (c) Wine

Figure 7.5 Information curves of active variable selection, demonstrated on three UCI
datasets (based on PNP parameterization of Partial VAE). This displays negative test RMSE
(y axis, the lower the better) during the course of active selection (x-axis). Error bars
represent standard errors over 10 runs.

.

Table 7.2 Average ranking of AUIC over 6 UCI datasets.

Method ZI ZI-m PNP PN

EDDI 5.72 (0.03 ) 5.54 (0.02 ) 5.08 (0.02 ) 5.25 (0.02)
Random 8.03 (0.03 ) 8.10 (0.03 ) 7.77 (0.03 ) 7.79 (0.03 )
Single best 8.68 (0.03 ) 5.50 (0.02 ) 5.20 (0.02 ) 5.28 (0.02 )

7.B.2) [59]. We report the results of EDDI with all these four different specifications of
Partial VAE (ZI, ZI-m, PN, PNP).

All Partial VAE are first trained on partially observed UCI datasets where a random
portion of variables is removed. We actively select variable for each test point starting with
empty observation xo = /0. In all UCI datasets, we randomly sample 10% of the data as the
test set. All experiments are repeated for ten times.

Taking PNP based setting as an example, Figure 7.5 shows the test RMSE on xφ for each
variable selection step with three different datasets, where xφ is defined by the UCI task.
We call this curve the information curve (IC). We see that EDDI can obtain information
efficiently. It archives the same test RMSE with less than half of the variables. Single optimal
ordering also improves upon random ordering. However, it is less efficient compared with
EDDI, since EDDI perform active learning for each data instance which is “personalized”.
Figure 7.6 shows an example of the decision processes using EDDI and SING. The first step
of EDDI overlaps largely with SING. From the second step, EDDI makes “personalized”
decisions.
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We also present the average performance among all datasets with different settings. The
area under the information curve (AUIC), can then be used to compare the performance
across models and strategies. Smaller AUIC value indicates better performance. However,
due to different datasets have different scales of RMSEs and different numbers of variables
(indicated by steps), it is not fair to average the AUIC across datasets to compare overall
performances. We thus define average ranking of AUIC that compares 12 methods (indexed
by i) averaging these datasets as: ri =

1
∑ j N j

∑
6
j=1 ∑

N j
k=1 ri jk, i = 1, ..,12. These 12 methods

are cross combinations of four Partial VAE models with three variable selection strategies.
ri is the final ranking of ith combination, ri jk is the ranking of the ith combination (based on
AUIC value) regarding the kth test data point in the jth UCI dataset, and N j is the size of the
jth UCI dataset. This gives us 6∑ j N j different rankings. Finally, we compute the mean and
standard error statistics based on these rankings. Table 7.2 summarize the average ranking
results. We provide additional statistical significance test (Wilcoxcon signed-rank test for
paired data) in Appendix 7.B.2. Based on these experimental results, we see that EDDI
outperforms other variable selection order in all different Partial VAE settings. Among
different partial VAE settings, PNP/PN-based settings perform better than ZI-based settings.

Comparison with non-amortized method. Additionally, we compare EDDI to DRAL
[174] which is the state-of-the-art method for the same problem setting. As discussed in
Section 7.4, DRAL is linear and requires high computational cost. The DRAL paper only
tested their method on a single test data point due to its limitation on computational efficiency.
We compare DRAL with EDDI on Boston Housing dataset with ten randomly selected test
points here. Results are shown in Figure 7.7, where EDDI significantly outperforms DARL
thanks to more flexible Partial VAE model. Additionally, EDDI is 1000 times more efficient
than DARL as shown in Table 7.3.

7.3.3 Risk assessment with MIMIC-III

We now apply EDDI to risk assessment tasks using the Medical Information Mart for
Intensive Care (MIMIC III) database [139]. MIMIC III is the most extensive publicly
available clinical database, containing real-world records from over 40,000 critical care
patients with 60,000 ICU stays. The risk assessment task is to predict the final mortality.
We preprocess the data for this task following Harutyunyan et al. [103] 1. This results in a
dataset of 21139 patients. We treat the final mortality of a patient as a Bernoulli variable. For

1https://github.com/yerevann/mimic3-benchmarks

https://github.com/yerevann/mimic3-benchmarks
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Figure 7.6 First four decision
steps on Boston Housing test
data. EDDI is “personalized”
comparing SING. Full names of
the variables are listed in the Ap-
pendix 7.B.2.

Figure 7.7 Comparison of
DRAL [174] and EDDI on
Boston Housing dataset. EDDI
out performs DRAL signifi-
cantly regarding test RMSE in
every step.

Method Time

DRAL 2747.16
EDDI 2.64

Table 7.3 Test CPU
time (in seconds)
per test point for ac-
tive variable selec-
tion. EDDI is 103

times more efficient
than DRAL [174]
computationally.

our task, we focus on variable selection, which corresponds to medical instrument selection.
We thus further process the time series variables into static variables based on temporal
averaging.

Figure 7.8 shows the information curve (based on Bernoulli likelihoods) of different
strategies, using PNP based Partial VAE as an example (more results in Appendix 7.B.3).
Table 7.4 shows the average ranking of AUIC with different settings. In this application,
EDDI significantly outperforms other variable selection strategies in all different settings of
Partial VAE, and PNP based setting performs best.

7.3.4 Public Health Assessment with NHANES

Finally, we apply our methods to public health assessment using NHANES 2015-2016
data [1]. NHANES is a program with adaptable components of measurements, to assess
the health and nutritional status of adults and children in the United States. Every year,
thousands individuals of all ages are interviewed and examined in their homes. This 2015-
2016 NHANES data contains three major sections, the questionnaire interview, examinations
and lab tests for 9971 subjects in the publicly available version of this cycle. In our setting,
we consider the whole set of lab test results (139 variables) as the target variable of interest
xφ since they are expensive and reflects the subject’s health status, and we active select the
questions from the extensive questionnaire (665 variables).

The questionnaire of NHANES is divided into 73 different groups. In practice, questions
in the same group are often examined together. Therefore, we perform active variable
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Figure 7.8 Information curves of active vari-
able selection on risk assessment task on
MIMIC III, produced with PNP setting.

Figure 7.9 Information curves of active
(grouped) variable selection on risk assess-
ment task on NHANES, produced with PNP
setting.

Method EDDI Random Single best

ZI 8.83 (0.01) 7.97 (0.02) 9.83 (0.01)
ZI-m 4.91 (0.01) 7.00 (0.01) 5.91 (0.01)
PN 4.96 (0.01) 6.62 (0.01) 5.96 (0.01)

PNP 4.39 (0.01) 6.18 (0.01) 5.39 (0.01)

Table 7.4 Average ranking on AUIC of
MIMIC III

Method EDDI Random Single best

ZI 6.00 (0.10) 8.45 (0.09) 6.51 (0.09)
ZI-m 8.06 (0.09) 8.67 (0.09) 8.68 (0.07)
PN 5.28 (0.10) 5.57 (0.10) 5.46 (0.09)

PNP 4.80 (0.10) 5.30 (0.10) 5.17 (0.10)

Table 7.5 Average ranking on AUIC of
NHANES

selection on the group level: at each step, the algorithm selects one group to observe. This is
more challenging than the experiments in previous sections since it requires the generative
model to simulate a group of unobserved data in Equation (7.2.9) at the same time. When
evaluating test RMSE on the target variable of interest, we treat variables in each group
equally. For a fair comparison, the calculation of the area under the information curve
(AUIC) is weighted by the size of the group chosen by the algorithms. Specifically, AUIC is
calculated after spline interpolation. The information curve plots in Figure 7.9, together with
Table 7.5 of AUIC statistics show that our EDDI outperforms other baselines. In addition,
this experiment shows that EDDI is capable of performing active selection on a large pool
of grouped variables to estimate a high dimensional target.

7.4 Related Work

EDDI is a method that handles partially observed data to enable dynamic variable wise active
learning. We thus review related methods for handling partial observation and performing
active learning.
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7.4.1 Partial Observation

Missing data entries are common in many real-life applications, which has created a long
history of research on the topic of dealing with missing data [279, 54]. We describe existing
methods below with the focus of probabilistic methods:

Traditional methods without amortization. Prediction based methods have shown ad-
vantages for missing value imputation [298]. Efficient matrix factorization based methods
have been recently applied [144, 133, 289], where the observations are assumed to be able
to decompose as the multiplication of low dimensional matrices. In particular, many prob-
abilistic frameworks with various distribution assumptions [289, 28] have been used for
missing value imputation [373, 99] and also recommender systems where unlabeled items
are predicted [326, 350, 89].

The probabilistic matrix factorization method has been used in the active variable selec-
tion framework called the dimensionality reduction active learning model (DRAL),[174].
These traditional methods suffer from limited model capacity since they are typically linear.
Additionally, they do not scale to large volumes of data and thus are usually not applicable
in real-world applications. For example, Lewenberg et al. [174] tested the performance of
their method with a single user due to the heavy computational cost of traditional inference
methods for probabilistic matrix factorization.

Utilizing Amortized Inference. Amortized inference [150, 272, 376] has significantly
improved the scalability of deep generative latent variable models. In the case of partially
observed data, amortized inference is particularly of interest due to the speed requirement
in many real-life applications. Wu et al. [368] use amortized inference during training,
where the training dataset is assumed to be fully observed. During test time, the traditional
non-scalable inference is used to infer missing data entries from the partially observed
dataset using the pre-trained model. This method is restrictive since it is not scalable in the
test time and the fully observed training set assumption does not hold for many applications.

Nazabal et al. [241] use zero imputation (ZI) for amortized inference for both training
and test sets with missing data entries. ZI is a generic and straightforward method that
first fills the missing data with zeros, and then feeds the imputed data as input for the
inference network. The drawback of ZI is that it introduces bias when the data are not
missing completely at random which leads to a poorly fit model. We also observe artifacts
when using it for the image inpainting task. Independent of our work, Garnelo et al. [79]
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explore interpreting variational autoencoder (amortized inference) as stochastic processes,
which also handles partial observation per se.

Note that after the publication of materials of this chapter [200], similar methods and
further extensions have also been advocated in multiple contexts of deep generative models,
such as [212, 201, 199, 372, 175, 128, 82, 87]. See Chapter 8.5 for more detailed review of
these methods.

7.4.2 Active Learning

Traditional Active Learning. Active learning, also referred to as experimental design,
aims to obtain optimal performance with fewer selected data (or experiments) [186, 203, 305].
Traditional active learning aims to select the next data point to label. Many information
theoretical approaches have shown promising results in various settings with different
acquisition functions [203, 216, 121]. These methods commonly assume that the data are
fully observed, and the acquisition decision is instance wise. Little work has dealt with
missing values within instances. Zheng and Padmanabhan [378] deal with missing data
values by imputing with traditional non-probabilistic methods [188] first. It is still an
instance-wise active learning framework.

Different from traditional active learning, our proposed framework performs variable-
wise active learning for each instance. In this setting, information theoretical acquisition
functions need a new design as well as non-trivial approximations. The most closely related
work is the aforementioned DRAL [174], which deals with variable-wise active learning for
each instance.

Active Feartue Acquisition (AFA). Active sequential feature selection is of great need,
especially in cost-sensitive applications. Thus, many methods have also been applied and
resulted in the class of methodologies called Active Feature Acquisition (AFA) [217, 286,
333, 124]. For instance, Melville et al. [217], Saar-Tsechansky et al. [286] have designed
objectives to select any feature from any instance to minimize the cost to achieve high
accuracy. The proposed framework is very general. However, the problem setting of AFA
methods is different from our active variable selection problem.AFA aims to select training
set optimally that would result in the best classifier (model), while assume that the test data
are fully observed. On the contrary, our framework aims to identify and acquire high value
information sequentially for each teat instance.
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7.5 Conclusion

In this chapter, we present EDDI, a novel and efficient framework for unsupervised learning
and dynamic active variable selection under missing data. Within the EDDI framework, we
propose Partial VAE which performs amortized inference to handle missing data. Partial
VAE alone can be used as a non-linear computational efficient probabilistic imputation
method. Based on it, we design a variable wise acquisition function for EDDI and derive
corresponding approximation method. EDDI has demonstrated its effectiveness on active
variable selection tasks across multiple real-world applications. In the future, we would
extend the EDDI framework to handle more complicated scenarios, such as data missing not
at random, time-series, and the cold-start situation.
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Appendix for Chapter 7

Appendix 7.A Additional Derivations

7.A.1 Information reward approximation

In our chapter, given the VAE model p(x|z) and a partial inference network q(z|xo), the
experimental design problem is formulated as maximization of the information reward:

R(i,xo) = Exi∼p(xi|xo)[DKL(p(xφ |xi,xo)||p(xφ |xo))]

Where p(xφ |xi,xo) =
∫

z p(xφ |z)q(z|xi,xo), p(xφ |xo) =
∫

z p(xφ |z)q(z|xo) and q(z|xo) are
approximate condition distributions given by partial VAE models. Now we consider the
problem of directly approximating R(i,xo).

Applying the chain rule of KL-divergence, we have:

DKL(p(xφ |xi,xo)||p(xφ |xo))

= DKL(p(xφ ,z|xi,xo)||p(xφ ,z|xo))

−Exφ∼p(xφ |xi,xo)

[
DKL(p(z|xφ ,xi,xo)||p(z|xφ ,xo))

]
,

Using again the KL-divergence chain rule on DKL(p(xφ ,z|xi,xo)||p(xφ ,z|xo)), we have:

DKL(p(xφ ,z|xi,xo)||p(xφ ,z|xo))

= DKL(p(z|xi,xo)||p(z|xo))+DKL(p(xφ |z,xi,xo)||p(xφ |z,xo))

= DKL(p(z|xi,xo)||p(z|xo))+DKL(p(xφ |z)||p(xφ |z))
= DKL(p(z|xi,xo)||p(z|xo)).

The KL-divergence term in the reward formula is now rewritten as follows,

DKL(p(xφ |xi,xo)||p(xφ |xo))

= DKL(p(z|xi,xo)||p(z|xo))

−Exφ∼p(xφ |xi,xo)

[
DKL(p(z|xφ ,xi,xo)||p(z|xφ ,xo))

]
.

One can then plug in the partial VAE inference approximation:
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p(z|xφ ,xi,xo)≈ q(z|xφ ,xi,xo),

p(z|xi,xo)≈ q(z|xi,xo), p(z|xo)≈ q(z|xo)

Finally, the information reward is now approximated as:

R(i,xo)

≈ Exi∼p(xi|xo) [DKL(q(z|xi,xo)||q(z|xo))]

−Exi∼p(xi|xo)Exφ∼p(xφ |xi,xo)

[
DKL(q(z|xφ ,xi,xo)||q(z|xφ ,xo))

]
= Exi∼p(xi|xo) [DKL(q(z|xi,xo)||q(z|xo))]

−Exφ ,xi∼p(xφ ,xi|xo)

[
DKL(q(z|xφ ,xi,xo)||q(z|xφ ,xo))

]
= R̂(i,xo).

This new objective tries to maximize the shift of belief on latent variables z by introduc-
ing xi, while penalizing the information that cannot be absorbed by xφ (by the penalty
term DKL(q(z|xφ ,xi,xo)||q(z|xφ ,xo))). Moreover, it is more computationally efficient since
one set of samples xφ ,xi ∼ p(xφ ,xi|xo) can be shared across different terms, and the KL-
divergence between common parameterizations of encoder (such as Gaussians and normal-
izing flows) can be computed exactly without the need for approximate integrals. Note also
that under approximation

p(z|xφ ,xi,xo)≈ q(z|xφ ,xi,xo), p(z|xi,xo)≈ q(z|xi,xo), p(z|xo)≈ q(z|xo)

, sampling xi ∼ p(xi|xo) is approximated by xi ∼ p̂(xi|xo), where p̂(xi|xo) is defined by the
following process in Partial VAE. It is implemented by first sampling z∼ q(z|xo), and then
xi ∼ p(xi|z). The same applies for p(xi,xφ |z).

Appendix 7.B Additional Experimental Results

7.B.1 Image inpainting

Preprocessing and model details

For our MNIST experiment, we randomly draw 10% of the whole data to be our test set.
Partial VAE models (ZI, ZI-m, PNP and PNs) share the same size of architecture with 20
dimensional diagonal Gaussian latent variables: the generator (decoder) is a 20-200-500-500
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fully connected neural network with ReLU activations (where D is the data dimension,
D = 784). The inference nets (encoder) share the same structure of D-500-500-200-40 that
maps the observed data into distributional parameters of the latent space. For the PN-based
parameterizations, we use a 500 dimensional feature mapping h parameterized by a single
layer neural network, and 20 dimensional ID vectors ei (see Section 7.2.1) for each variable.
We choose the symmetric operator g to be the basic summation operator.

During training, we apply Adam optimization [148] with default hyperparameter setting,
learning rate of 0.001 and a batch size of 100. We generate partially observed MNIST
dataset by adding artificially missingness at random in the training dataset during training.
We first draw a missing rate parameter from a uniform distribution U(0,0.7) and randomly
choose variables as unobserved. This step is repeated at each iteration. We train our models
for 3K iterations.

Image generation of partial VAEs

(a) (b) (c) (d)

Figure 7.10 Random images generated using (a) naive zero imputing, (b) zero imputing
with mask, (c) PN and (d) PNP, respectively.

7.B.2 UCI datasets

We applied EDDI on 6 UCI datasets; Boston Housing, Concrete compressive strength,
energy efficiency, wine quality, Kin8nm, and Yacht Hydrodynamics. The variables of
interest xφ are chosen to be the target variables of each UCI dataset in the experiment.

Preprocessing and model details

All data are normalized and then scaled between 0 and 1. For each of the 10 - in total-
repetitions, we randomly draw 10% of the data to be our test set. Partial VAE models (ZI,
ZI-m, PNP and PNs) share the same size of architecture with 10 dimensional diagonal
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Gaussian latent variables: the generator (decoder) is a 10-50-100-D neural network with
ReLU activations (where D is the data dimensions). The inference nets (encoder) share
the same structure D-100-50-20 that maps the observed data into distributional parameters
of the latent space. For the PN-based parameterizations, we further use a 20 dimensional
feature mapping h parameterized by a single layer neural network and 10 dimensional ID
vectors ei (please refer to section 7.2.1) for each variable. We choose the symmetric operator
g to be the basic summation operator.

As in the image inpainting experiment, we apply Adam optimization during training
with default hyperparameter setting, and a batch size of 100 and ingest random missingness
as before. We trained our models for 3K iterations.

During active learning, we draw 50 samples in order to estimate the expectation under
xφ ,xi∼ p(xφ ,xi|xo) in Equation (7.2.8). Other than information curves based on test RMSEs,
we will also provide information curves based on test negative log likelihoods. This will be
provided in Appendix 7.B.2. Note that this test nllh of the target variable is also estimated
using 50 samples of xφ ∼ p(xφ |xo). Then, we approximately compute the (expected) log
predictive likelihood through log p(xφ |xo)≈ log 1

M ∑
M
m=1 p(xφ |zm), where zm ∼ q(z|xo).

Statistical signifcant test results

In this section, we perform Wilcoxcon signed-rank significance test on the AUIC (RMSE-
based) performance of different methods, to support our result in Table 7.2. Since Table 7.2
suggests that EDDI-PNP-Partial VAE is the best algorithm overall, we set EDDI-PNP-Partial
VAE as default and perform Wilcoxcon test between EDDI-PNP-Partial VAE and all other
15 different settings, to see whether the improvement is significant. Table 7.6 displays the
corresponding p-value for each test. It is obvious that in all 15 tests, the EDDI-PNP-Partial
VAE results are significant (compared with the standard α = 0.05 cutoff). This provides
strong evidence that confirms our results in Table 7.2.

Table 7.6 p- values of Wilcoxon signed-rank test of EDDI-PNP vs. 11 other settings, on 6
UCI datasets, using AUIC (RMSE-based) as evaluation metric.

Method ZI ZI-m PNP PN

EDDI < 10−48 < 10−23 N/A < 10−2

Random 0 0 0 0
Single best 0 < 10−13 < 10−2 < 10−4
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Additional plots of PN, ZI and ZI-m on UCI datasets

Here we present additional plots of the RMSE information curves during active learning.
Figure 7.11 presents the results for the Boston Housing, the Energy and the Wine datasets
and for the three approaches, i.e. PN, ZI and masked ZI.

Boston Housing Energy Wine
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Figure 7.11 information curves (based on RMSE) of active variable selection for the three
UCI datasets and the three approaches, i.e. (First row) PointNet (PN), (Second row) Zero
Imputing (ZI), and (Third row) Zero Imputing with mask (ZI-m). Green: random strategy;
Black: EDDI; Pink: Single best ordering. This displays RMSE (y axis, the lower the better)
during the course of active selection (x-axis).
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Negative test log Likelihood plots of PN, ZI and ZI-m on UCI datasets

Here we present additional plots of the negative test log likelihood curves during active
variable selection. Figure 7.12 presents the results for the Boston Housing, the Energy and
the Wine datasets and for the three approaches, i.e. PN, ZI and masked ZI.
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Figure 7.12 Information curves (based on test negative log-likelihood) of active variable
selection for the three UCI datasets and the three approaches, i.e. (First row) PointNet
(PN), (Second row) Zero Imputing (ZI), and (Third row) Zero Imputing with mask (ZI-m).
Green: random strategy; Black: EDDI; Pink: Single best ordering. This displays negative
test log likelihood (y axis, the lower the better) during the course of active selection (x-axis).

Comparisons between EDDI and LASSO-based method

Here we present additional results of a new baseline, the LASSO-based feature selection.
This is not presented in the main text since LASSO is designed for a different problem
setting. It requires fully observed data, and only works in regression problems with one
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dimensional outputs. Both MIMIC III and NHANES tasks do not fulfill these requirements.
Additionally, LASSO aims to select a global set of features to obtain the best performance
instead of select the most informative feature given partially observed information, thus
cannot be used in a sequential setting. We thus construct the LASSO feature selection
baseline as follows for comparison: we first apply LASSO regression on training dataset
which is fully observed in these UCI datasets, and select the features (denoted by A) that
correspond to non-zero coefficients. Then, during test time, LASSO strategy will observe the
features one by one from A randomly. When all variables selected by LASSO are already
picked, we stop the feature selection progress. Once LASSO has completed feature selection,
we use we use the corresponding partial-VAE (ZI,ZI-m,PNP,PN) to make predictions for
fairness.

Figure 7.13 presents the results for the Boston Housing, the Energy and the Wine datasets
as examples. Full results of all UCI datasets are presented in Table 7.7. Note that in Table
7.7, Wilcoxon signed-rank test is performed between EDDI and LASSO strategies for each
Partial VAE models, respectively. The results indicates that EDDI significantly outperforms
LASSO in all circumstances. This is despite the fact that EDDI is a greedy sequential
variable selection method that built upon partially observed data, while LASSO-baseline
makes use of the information from fully observed data, and selects the set of variables in a
non-greedy, global manner, which is often unrealistic in many pratical application settings.
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Figure 7.13 Information curves of active variable selection for the three UCI datasets and
PNP-Partial VAE. Black: EDDI; Blue: Single best ordering. This displays test RMSE (y
axis, the lower the better) during the course of active selection (x-axis).
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Table 7.7 Avg. rankings of AUIC (RMSE-based), and p- values of Wilcoxon signed-rank
test that EDDI outperforms LASSO (on 6 UCI datasets).

Method ZI ZI-m PNP PN

EDDI 4.66 (0.02) 4.53(0.02) 4.14(0.02) 4.24(0.02)
LASSO 4.86(0.02) 4.63(0.02) 4.41(0.02) 4.48(0.02)
p-value < 10−4 < 10−6 < 10−24 < 10−19

Illustration of decision process of EDDI (Boston Housing as example)

The decision process facilitated by the active selection of the variables (for the EDDI
framework) is efficiently illustrated in Figure 7.14 and Figure 7.15 for the Boston Housing
dataset and for the PNP and PNP with single best ordering approaches, respectively.

For completeness, we provide details regarding the abbreviations of the variables used in
the Boston dataset and appear both figures.

CR - per capita crime rate by town

PRD - proportion of residential land zoned for lots over 25,000 sq.ft.

PNB - proportion of non-retail business acres per town.

CHR - Charles River dummy variable (1 if tract bounds river; 0 otherwise)

NOC - nitric oxides concentration (parts per 10 million)

ANR - average number of rooms per dwelling

AOUB - proportion of owner-occupied units built prior to 1940

DTB - weighted distances to five Boston employment centres

ARH - index of accessibility to radial highways

TAX - full-value property-tax rate per $10,000

OTR - pupil-teacher ratio by town

PB - proportion of blacks by town

LSP - % lower status of the population
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7.B.3 MIMIC-III

Here we provide additional results of our approach on the MIMIC-III dataset.

Preprocessing and model details

For our active learning experiments on MIMIC III datasets, we chose the variable of interest
xφ to be the binary mortality indicator of the dataset. All data (except the binary mortality
indicator) are normalized and then scaled between 0 and 1. We transformed the categorical
variables into real-valued using the dictionary deduced from [139] that makes use of the
actual medical implications of each possible values. The binary mortality indicator are
treated as Bernoulli variables and Bernoulli likelihood function is applied. For each repetition
(of the 5 in total), we randomly draw 10% of the whole data to be our test set. Partial VAE
models (ZI, ZI-m, PNP and PNs) share the same size of architecture with 10 dimensional
diagonal Gaussian latent variables: the generator (decoder) is a 10-50-100-D neural network
with ReLU activations (where D is the data dimensions). The inference nets (encoder)
share the same structure of D-100-50-20 that maps the observed data into distributional
parameters of the latent space. Additionally, for PN-based parameterizations, we further use
a 20 dimensional feature mapping h parameterized by a single layer neural network, and 10
dimensional ID vectors ei (please refer to section 7.2.1) for each variable. We choose the
symmetric operator g to be the basic summation operator.

Adam optimization and random missingness is applied as in the previous experiments.
We trained our models for 3K iterations. During active learning, we draw 50 samples in order
to estimate the expectation under xφ ,xi ∼ p(xφ ,xi|xo) in Equation (7.2.8). Loss functions
(RMSEs and negative log likelihoods) of the target variable is also estimated using samples
of xφ ∼ p(xφ |xo) through p(xφ |xo)≈ 1

M ∑
M
m=1 p(xφ |zm), where zm ∼ q(z|xo).

Additional plots of ZI, PN and ZI-m on MIMIC III

Figure 7.16 shows the information curves (Bernoulli negative test likelihood-based) of
active variable selection on the risk assessment task for MIMIC-III as produced by the three
approaches, i.e. ZI, PN and masked ZI.
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(a) (b) (c)

Figure 7.16 Information curves of active variable selection on risk assessment task on MIMIC
III, produced from: (a) Zero Imputing (ZI), (b) PointNet (PN) and (c) Zero Imputing with
mask (ZI-m). Green: random strategy; Black: EDDI; Pink: Single best ordering. This
displays negative test log likelihood (y axis, the lower the better) during the course of active
selection (x-axis)

.

7.B.4 NHANES

Preprocessing and model details

For our active learning experiments on NHANES datasets, we chose the variable of interest
xφ to be the lab test result section of the dataset. All data are normalized and scaled between
0 and 1. For categorical variables, these are transformed into real-valued variables using
the code that comes with the dataset, which makes use of the actual ordering of variables in
questionnaire. Then, for each repetition (of the 5 repetitions in total), we randomly draw 8000
data as training set and 100 data to be test set. All partial VAE models (ZI, ZI-m, PNP and
PNs) uses gaussian likelihoods, with an diagonal Gaussian inference model (encoder). Partial
VAE models share the same size of architecture with 20 dimensional diagonal Gaussian
latent variables: the generator (decoder) is a 20-50-100-D neural network. The inference
nets (encoder) share the same structure of D-100-50-20 that maps the observed data into
distributional parameters of the latent space. Additionally, for PN-based parameterizations,
we further use a 20 dimensional feature mapping h parameterized by a single layer neural
network, and 100 dimensional ID vectors ei (please refer to section 7.2.1) for each variable.
We choose the symmetric operator g to be the basic summation operator.

Adam optimization and random missingness is applied as in the previous experiments.
We trained all models 1K iterations. During active learning, 10 samples were drawn to
estimate the expectation in Equation (7.2.9). Losses (RMSEs) of the target variable is also
estimated using 10 samples.
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Appendix 7.C Additional Theoretical Contributions

7.C.1 Zero imputing as a Point Net

Here we present how the zero imputing (ZI) and PointNet (PN) approaches relate.

Zero imputation with inference net In ZI, the natural parameter of λ (e.g., Gaussian
parameters in variational autoencoders) is approximated using the following neural network:

f (x) :=
L

∑
l=1

w(1)
l σ(w(0)

l xT )

,
where L is the number of hidden units, x is the input image with xi be the value of the ith

pixel. To deal with partially observed data x = xo∪xu, ZI simply sets all xu to zero, and use
the full inference model f (x) to perform approximate inference.

PointNet parameterization The PN approach approximates the natural parameter λ by a
permutation invariant set function

g(h(s1),h(s2), ...,h(sO)),

where si = [xi,ei], ei is the I dimensional embedding/ID/location vector of the ith pixel, g(·)
is a symmetric operation such as max-pooling and summation, and h(·) is a nonlinear feature
mapping from RI+1 to RK (we will always refer h as feature maps ). In the current version
of the partial-VAE implementation, where Gaussian approximation is used, we set K = 2H
with H being the dimension of latent variables. We set g to be the element-wise summation
operator, i.e. a mapping from RKO to RK defined by:

g(h(s1),h(s2), ...,h(sO)) = ∑
i∈O

h(si).

This parameterization corresponds to products of multiple Exp-Fam factors

∏i∈O exp{−⟨h(si),Φ⟩}.

From PN to ZI To derive the PN correspondence of the above ZI network we define the
following PN functions:

h(si) := ei ∗ xi
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g(h(s1),h(s2), ...,h(sO)) :=
I

∑
k=1

θkσ(∑
i∈O

hk(si)),

where hk(·) is the kth output feature of h(·). The above PN parameterization is also
permutation invariant; setting L = I, θl = w(1)

l ,(w(0)
l )i = (ei)l the resulting PN model is

equivalent to the ZI neural network.

Generalizing ZI from PN perspective In the ZI approach, the missing values are replaced
with zeros. However, this ad-hoc approach does not distinguish missing values from actual
observed zero values. In practice, being able to distinguish between these two is crucial
for improving uncertainty estimation during partial inference. One the other hand, we have
found that PN-based partial VAE experiences difficulties in training. To alleviate both issues,
we proposed a generalization of the ZI approach that follows a PN perspective. One of the
advantages of PN is setting the feature maps of the unobserved variables to zero instead of
the related weights. As discussed before, these two approaches are equivalent to each other
only if the factors are linear. More generally, we can parameterize the PN by:

h(1)(si) := ei ∗ xi

h(2)(h(1)i ) := NN1(h
(1)
i )

g(h(s1),h(s2), ...,h(sO)) := NN2(σ(∑
i∈O

h(2)k (h(1)i ))),

where NN1 is a mapping from RI to RK defined by a neural network, and NN2 is a mapping
from RK to R2H defined by another neural network.

7.C.2 Approximation Difficulty of the Acquisition Function

Traditional variational approximation approaches provide wrong approximation direction
when applied in this case (resulting in an upper bound of the objective Rφ (i,xO) which
we maximize). Justification issues aside, (black box) variational approximation requires
sampling from approximate posterior q(z|xO), which leads to extra uncertainties and com-
putations. For common proposals of approximation:

• Directly estimate entropy via sampling⇒ problematic for high dimensional target
variables

• Using reversed information reward Exi∼p(xi|xo)[DKL(p(xφ |xo)||p(xφ |xo,xi))], and then
apply ELBO (KL-divergence)⇒ This does not make sense mathematically, since this
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will result in upper bound approximation of the (reversed) information objective, this
is in the wrong direction.

• Ranganath’s bound [268] on estimating entropy⇒ gives upper bound of the objective,
wrong direction.

• All the above methods also needs samples from latent space (therefore second level
approximation needed).

7.C.3 Connection of EDDI information reward with BALD

We briefly discuss connection of EDDI information reward with BALD [121] and. MacKay’s
work [203]. Assuming the model is correct, i.e. q = p, we have

R(i,xo) = Exi∼p(xi|xo) [DKL(p(z|xi,xo)||p(z|xo))]

−Exi∼p(xi|xo)Exφ∼p(xφ |xi,xo)

[
DKL(p(z|xφ ,xi,xo)||p(z|xφ ,xo))

]
.

Note that based on McKay’s relationship between entropy and KL-divergence reduction, we
have:

Exi∼p(xi|xo) [DKL(p(z|xi,xo)||p(z|xo))]

=Exi∼p(xi|xo) [H(p(z|xi,xo))−H(p(z|xo))]] .

Similarly, we have

Exi∼p(xi|xo)Exφ∼p(xφ |xi,xo)

[
DKL(p(z|xφ ,xi,xo)||p(z|xφ ,xo))

]
=Exφ∼p(xφ |xo)Exi∼p(xi|xφ ,xo)

[
DKL(p(z|xφ ,xi,xo)||p(z|xφ ,xo))

]
=Exφ∼p(xφ |xo)Exi∼p(xi|xφ ,xo)

[
H(p(z|xφ ,xi,xo))−H(p(z|xφ ,xo))

]
=Exi∼p(xi|xo)Exφ∼p(xφ |xi,xo)

[
H(p(z|xφ ,xi,xo))

]
−Exφ∼p(xφ |xo)Exi∼p(xi|xφ ,xo)

[
H(p(z|xφ ,xo))

]
=Exi∼p(xi|xo)Exφ∼p(xφ |xi,xo)

[
H(p(z|xφ ,xi,xo))

]
−Exφ∼p(xφ |xo)

[
H(p(z|xφ ,xo))

]
,

where MacKay’s result is applied to Exi∼p(xi|xφ ,xo)

[
DKL(p(z|xφ ,xi,xo)||p(z|xφ ,xo))

]
.

Putting everything together, we have
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R(i,xo) = Exi∼p(xi|xo) [H(p(z|xi,xo))−H(p(z|xo))]]

−Exi∼p(xi|xo)Exφ∼p(xφ |xi,xo)

[
H(p(z|xφ ,xi,xo))

]
+Exφ∼p(xφ |xo)

[
H(p(z|xφ ,xo))

]
=
{
Exi∼p(xi|xo) [H(p(z|xi,xo))]−Exi∼p(xi|xo)Exφ∼p(xφ |xi,xo)

[
H(p(z|xφ ,xi,xo))

]}
−
{
Exi∼p(xi|xo) [H(p(z|xo))]−Exφ∼p(xφ |xo)

[
H(p(z|xφ ,xo))

]}
.

We can show that

H(p(z|xi,xo))−Exφ∼p(xφ |xi,xo)

[
H(p(z|xφ ,xi,xo))

]
=−

∫
z

p(z|xi,xo) log p(z|xi,xo)dz+
∫

z,xφ

p(z,xφ |xi,xo) log p(z|xφ ,xi,xo)

=
∫

z,xφ

p(z,xφ |xi,xo) log
p(z,xφ |xi,xo)

p(z|xi,xo)p(xφ |xi,xo)

=I
[
z,xφ |xi,xo

]
,

which is exactly the conditional mutual information I
[
z,xφ |xi,xo

]
used in BALD. Therefore,

our chain rule representation of reward function leads us to

R(i,xo) = Exi∼p(xi|xo)I
[
z,xφ |xi,xo

]
−Exi∼p(xi|xo)I

[
z,xφ |xo

]
.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7.14 Information reward estimated during the first 4 active variable selection steps on
a randomly chosen Boston Housing test data point. Model: PNP, strategy: EDDI. Each row
contains two plots regarding the same time step. Bar plots on the left show the information
reward estimation of each variable on the y-axis. All unobserved variables start with green
bars, and turns purple once selected by the algorithm. Right: violin plot of the posterior
density estimations of remaining unobserved variables.

.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7.15 Information reward estimated during the first 4 active variable selection steps on
a randomly chosen Boston Housing test data point. Models: PNP, strategy: single ordering.
Each row contains two plots regarding the same time step. Bar plots on the left show the
information reward estimation of each variable on the y-axis. All unobserved variables start
with green bars, and turns purple once selected by the algorithm. Right: violin plot of the
posterior density estimations of remaining unobserved variables.

.



Chapter 8

Identifiable Generative Models Under
Missing Not at Random Data

So far, our discussions have been based on the assumption that the missing data follows a
MAR (missing at random) mechanism. However, real-world datasets often have missing
values associated with complex generative processes, where the cause of the missingness
may not be fully observed. This is known as missing not at random (MNAR) data. Although
there are many relevant methods in the literature that have considered the MNAR scenario,
their model’s identifiability under MNAR is generally not guaranteed. That is, model
parameters can not be uniquely determined even with infinite data samples. Therefore, as
discussed in Chapter 6 Section 6.3, lack of model identifiability might introduce additional
biases in missing data imputation. This issue is especially overlooked by many modern
deep generative models. In this Chapter, we fill in this gap by systematically analyzing the
identifiability of generative models under MNAR. Furthermore, we propose a practical deep
generative model which can provide identifiability guarantees under mild assumptions, for a
wide range of MNAR mechanisms.

8.1 Introduction

Missing data is an obstacle in many data analysis problems, which may seriously compromise
the performance of machine learning models, as well as downstream tasks based on these
models. Being able to successfully recover/impute missing data in an unbiased way is
the key to understanding the structure of real-world data. This requires us to identify the
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underlying data-generating process, as well as the probabilistic mechanism that decides
which data is missing.

In general, there are three types of missing mechanisms [279]. The first type is missing
completely at random (MCAR), where the probability of a data entry being missing is
independent of both the observed and unobserved data (Figure 8.1 (a)). In this case, no
statistical bias is introduced by MCAR.The second type is missing at random (MAR), which
assumes that the missing data mechanism is independent of the value of unobserved data
(Figure 8.1 (b)). Under this assumption, maximum likelihood learning methods without
explicit modeling of the missingness mechanism can be applied by marginalizing out the
missing variables [55, 197, 200]. However, both MCAR and MAR do not hold in many
real-world applications, such as recommender systems [112, 136], healthcare [134], and
surveys [312]. For example, in a survey, participants with financial difficulties are more
likely to refuse to complete the survey about financial incomes. This is an example of
missing not at random (MNAR), where the cause of the missingness (financial income)
can be unobserved. In this case, ignoring the missingness mechanism will result in biased
imputation, which will jeopardize down-stream tasks.

There are few works considering the MNAR setting in scalable missing value imputation.
On the one hand, many practical methods for MNAR does not have identifiability guarantees
[128, 112, 190]. That is, the parameters can not be uniquely determined, even with access to
infinite samples [219, 278]. As a result, missing value imputation based on such parameter
estimation could be biased (Chapter 6, Section 6.3). On the other hand, there are theoretical
analyses on the identifiability in certain scenarios [219–221, 233, 321, 332, 352], but without
associated practical algorithms for flexible and scalable settings (such as deep generative
models). Moreover, MNAR data have many possible cases (Figure 8.1) based on different
independence assumptions [233], making the discussion of identifiability difficult. This
motivates us to fill this gap by extending identifiability results of deep generative models to
different missing mechanisms, and provide a scalable practical solution. Our contribution
are threefold:

• We provide a theoretical analysis of identifiability for generative models under differ-
ent MNAR scenarios (Section 8.3). More specifically, we provide sufficient conditions,
under which the ground truth parameters can be uniquely identified via maximum
likelihood (ML) learning using observed information [190]. We also demonstrate
how the assumptions can be relaxed in the face of real-world datasets. This provides
foundation for practical solutions using deep generative models.
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Figure 8.1 Exemplar missing data situations. (a): MCAR; (b): MAR; (c)-(i): MNAR.

• Based on our analysis, we propose a practical algorithm model based on VAEs (Section
8.4), named GINA (deep generative imputation model for missing not at random).
This enables us to apply flexible deep generative models in a principled way, even in
the presence of MNAR data.

• We demonstrate the effectiveness and validity of our approach by experimental eval-
uations (Section 8.6) on both synthetic data modeling, missing data imputation in
real-world datasets, as well as downstream tasks such as active feature selection under
missing data.

8.2 Backgrounds

8.2.1 Problem Setting

A critical component to develop model to impute MNAR data is the model identifiablity
[154, 278]. We give the definition below:

Definition 8.2.1 (Model identifiability). Assume pθθθ (X) is a distribution of some random
variable X, θθθ is its parameter that takes values in some parameter space ΩΩΩθθθ . Then, if pθθθ (X)

satisfies pθθθ 1(X) ̸= pθθθ 2(X)⇐⇒ θθθ 1 ̸= θθθ 2,∀θθθ 1,θθθ 2 ∈ΩΩΩθθθ , we say that pθθθ is identifiable w.r.t.
θθθ on ΩΩΩθθθ .

In other words, a model pθθθ (X) is identifiable, if different parameter configurations
implies a different probabilistic distributions over the observed variables. With identifiability
guarantee, if the model assumption is correct, the true generation process can be recovered.
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Next, we introduce necessary notations and of missing data, and set up a concrete problem
setting.
Basic Notation In this Chapter, we will use a notation system that is slightly different from
Chapter 7, which will allow us to denote different quantities more accurately. Similar to the
notations introduced by [128, 279], let X be the complete set of variables in the system of
interest. We call it observable variables. Let I = {1, ...,D} be the index set of all observable
variables, i.e., X = {Xi|i∈ I}. Let XO denote the set of actually observed variables, here O∈
I is a index set such that XO ⊂ X . We call O the observable pattern. Similarly, XU denotes
the set of missing/unobserved variables, and X = XO

⋃
XU . Additionally, we use R to denote

the missing mask indicator variable, such that Ri = 1 indicates Xi is observed, and Ri = 0
indicates otherwise. We call a probabilistic distribution p(X) on X the reference distribution,
that is, the distribution that we would have observed if no missing mechanism is present;
and we call the conditional distribution p(R|X) the missing mechanism, which decides
the probability of each Xi being missing. Then, we can define the marginal distribution
of partially observed variables, which is given by log p(XO,R) = log

∫
XU

p(XO,XU ,R)dXU .
Finally, we will use lowercase vectors to denote the realized values of the corresponding
random variable. For example, (xO,r)∼ p(XO,R) is the realization/samples of XO and R,
and the dimensionality of xO may vary for each realizations.
Problem setting Suppose that we have a ground truth data generating process, denoted by
pD(XO,R), from which we can obtain (partially observed) samples (xO,r)∼ pD(XO,R). We
also have a model to be optimized, denoted by p(θθθ ,ψψψ)(XO,XU ,R),where θθθ is the parameter
of reference distribution pθθθ (X), and ψψψ the parameter of missing mechanism pψψψ(R|X). Our
goal can then be described as follows:

• To establish the identifiability of the model p(θθθ ,ψψψ)(XO,R). That is, we wish to uniquely
and correctly identify θ̂θθ , such that p

θ̂θθ
(X) = pD(X), given infinite amount of partially

observed data samples from ground truth, (xO,r)∼ pD(XO,R).

• Then, given the identified parameter, we will be able to perform missing data imputa-
tion, using p

θ̂θθ
(XU |XO). If our parameter estimate is unbiased, then our imputation is

also unbiased, that is, p
θ̂θθ
(XU |XO) = pD(XU |XO) for all possible configurations of XO.
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8.2.2 Dealing with MNAR: Rubin’s approach, and challenges

Recall the three types of missing mechanisms: if data is MCAR, p(R|X) = p(R); if data
is MAR, p(R|X) = p(R|XO); otherwise, we call it MNAR. When missing data is MCAR
or MAR, missing mechanism can be ignored when performing maximum likelihood (ML)
inference based only on the observed data [279], as:

argmax
θθθ

E(xO,r)∼pD(X ,R) log pθθθ (XO = xO) = argmax
θθθ

E(xO,r)∼pD(X ,R) log pθθθ (XO = xO,R = r)

where log p(XO) = log
∫

XU
p(XO,XU)dXU .In practice, ML learning on XO can done by EM

algorithm [55, 190]. However, when missing data is MNAR, the above argument does
not hold, and the missing data mechanism cannot be ignored during learning. Consider
the representative graphical model example in Figure 8.1 (d), which has appeared in many
context of machine learning. In this graphical model, X is the cause of R, and the connections
between X and R are fully connected, i.e., each single node in R are caused by the entire set
X . All nodes in R are conditionally independent from each other given X .

Clearly, this is an example of a data generating process with MNAR mechanism. In
this case, Rubin proposed to jointly optimize both the reference distribution pθθθ (X) and the
missing data mechanism pψψψ(R|X), by maximizing:

argmax
θθθ ,ψψψ

E(xO,r)∼pD(X ,R) log p(θθθ ,ψψψ)(XO = xO,R = r) (8.2.1)

This factorization is referred as selection modeling [128, 190]. There are multiple challenges
if we want to Eq. 8.2.1 to obtain a practical model that provide unbiased imputation. First,
we need model assumption to be consistent with the real-world data generation process,
pD(XO,R). Given a wide range of possible MNAR scenarios, it is a challenge to design a
general model. Secondly, the model need to be identifiable to enable the possibility to learn
the underlying process which leads to unbiased imputation.

8.2.3 Variational Autoencoders and its identifiability

As introduced in Chapter 2, recall that Variational auto-encdoers [149, 273] are flexible deep
generative models that are commonly used for estimating densities of pD(X). It takes the
following form:

log pθθθ (X) = log
∫

Z
dZpθθθ (X |Z)p(Z), (8.2.2)
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where Z is some latent variable model with prior p(Z), and pθθθ (X |Z) is given by pθθθ (X |Z) =
N ( fθ (Z),σ), with fθ (·) being a neural network parameterized by θ . Generally, VAEs do
not have identifiability guarantees w.r.t. θ [146]. Nevertheless, inspired by the identifiablity
of nonlinear ICA, [146] shows that the identifiability of VAE can be established up to
equivalence permutation under mild assumptions, if the unconditional prior p(Z) of VAE is
replaced by the following the conditionally factorial exponentially family prior,

pT,ζ (Z|U) ∝ ∏
i=1

Q(Zi)exp[
K

∑
j=1

Ti, j(Zi)ζi, j(U)], (8.2.3)

where U is some additional observations (called auxiliary variables), Q(Zi) is some base
measure, Ti(U) = (Ti,1, ...,Ti,K) the sufficient statistics, and ζζζ i(U) = (ζi,1, ...,ζi,K) the cor-
responding natural parameters. Then, the new VAE model given by

log pθθθ (X |U) = log
∫

Z
dZpθθθ (X |Z)pT,ζ (Z|U) (8.2.4)

is identifiable (Theorem 1 and 2 of [146], see Appendix 8.G).We call the model (8.2.4)
the identifiable VAE. Unfortunately, this identifiability results for VAE only hold when all
variables are fully observed; thus, it cannot be immediately applied to address the challenges
of dealing with MNAR data stated in Section 8.2.2. Next, we will analyze the identifiablity
of generative models under general MNAR settings (Section 8.3), and propose a practical
method that can be used in MNAR (Section 8.4).

8.3 Establishing model identifiability under MNAR

One key issue of training probabilistic models under MNAR missing data is its identifiability.
Recall that (Definition 8.2.1) model identifiability characterize the property that the mapping
from parameter θθθ to the distribution pθθθ (X) is one-to-one. This is often closely related
to maximum likelihood learning. In fact, it is not hard to show that Definition 8.2.1 is
equivalent to the following Definition 8.3.1:

Definition 8.3.1 (Equivalent definition of identifiability). We say a model pθθθ (X) is identifi-
able, if:

arg max
θθθ∈ΩΩΩθθθ

Ex∼pθθθ∗(X) log pθθθ (X = x) = θθθ
∗, ∀θθθ ∗ ∈ΩΩΩθθθ (8.3.1)

In other words, the “correct” model parameter θθθ
∗ can be identified via maximum

likelihood learning (under complete data), and the ML solution is unbiased. Similarly, when
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MNAR missing mechanism is present, we perform maximum likelihood learning on both XO

and R using Eq. 8.2.1. Thus, we need log pθθθ ,ψψψ(XO,R) to be identifiable under MNAR, so
that we can correctly identify the ground truth data generating process, and achieve unbiased
imputation. The identifiability of log pθθθ ,ψψψ(XO,R) under MNAR is usually not guaranteed,
even in some simplistic settings [219]. In this section, we will give the sufficient conditions
for model identifiability under MNAR, and study how these can be relaxed for real-world
applications

8.3.1 Sufficient conditions for identifiability under MNAR

In this section, we give sufficient conditions where the model parameters θθθ can be uniquely
identified by Rubin’s objective, Eq. 8.2.1. Our aim is to i), find a set of model assumptions,
so that it can cover many common scenarios and be flexible for practical interests; and ii),
under those conditions, we want to show that its parameters can be uniquely determined
by the partial ML solution Eq. 8.2.1. As shown in Figure 8.1, MNAR have many possible
difference cases depending on its graphical structures. We want our results to cover every
situation.

Instead of doing case by case analysis, we will start our identifiability anaylsis with one
fairly general case as the example shown in Figure 8.1 (h) where the missingness can be
caused by other partially observed variable, by itself (self-masking) or by latent variables.
Then, we will discuss how these analysis can be applied to other MNAR scenarios in Section
8.3.2.
Data setting D1 Suppose the ground truth data generation process satisfies the following
conditions: all variables X are generated from a shared latent confounder Z, and there are
no connections among X ; and the missingness indicator R variable can not be the parent of
other variables. A typical example of such distribution is depicted in Figure 8.1 (h). We
further assume that pD(XO,XU ,R) has the following parametric form: pD(XO,XU ,R) =∫

Z ∏d pθθθ
∗
d
(Xd|Z)p(Z)pψψψ∗(R|X ,Z)dZ, where pψψψ∗(R|X ,Z) = ∏d pψψψ∗d

(Rd|X ,Z), for some
θθθ
∗,ψψψ∗.

Then, consider the following model:
Model assumption A1. We assume that our model has the same graphical representation,
as well as parametric form as data setting D1, that is, our model can be written as:

pθθθ ,ψψψ(XO,R) =
∫

XU ,Z
dXU dZ ∏

d
pθθθ d(Xd|Z)∏

d
pψψψd

(Rd|X ,Z)p(Z) (8.3.2)
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Here, (θθθ ,ψψψ) ∈ ΩΩΩ are learnable parameters that belong to some parameter space ΩΩΩ =

ΩΩΩθθθ ×ΩΩΩψψψ . Each θθθ is the parameter that parameterizes the conditional distribution that
connects Xd and Z, pθθθ d(Xd|Z). Assume that the ground truth parameter of pD belongs to
the model parameter space, (θθθ ∗,ψψψ∗) ∈ΩΩΩ.

Given such a model, our goal is to correctly identify the ground truth parameter settings
given partially observed samples from pD(XO,XU ,R). That is, let

(θ̂θθ , ψ̂ψψ) = arg max
(θθθ ,ψψψ)∈ΩΩΩ

E(xO,r)∼pD(X ,R) log p(θθθ ,ψψψ)(XO = xO,R = r),

we would like to achieve θ̂θθ = θθθ
∗. In order to achieve this, we must make additional

assumptions.
Assumption A2. Subset identifiability: There exist a partition1 of I, denoted by AI =

{Cs}1≤s≤S, such that: for all Cs ∈ AI , pθθθ (Xos) is identifiable on a subset of parameters
{θθθ d|d ∈Cs}.

This assumption basically formalizes the idea of divide and conquer: we partition the
whole index set into several smaller subsets {Cs}1≤s≤S, on which each reference distribution
pθθθ (XCs) is only responsible for the identifiability on a subset of parameters.
Assumption A3. There exists a collection of observable patterns, denote by ĀI :=
{C′l}1≤l≤L, such that: 1), ĀI is a cover 1 of I; 2), pD(X ,RC′l

= 1,RI\C′l ) (hence any of
its marginal distributions) is positive for all X and 1 ≤ l ≤ L; and 3), for all index c ∈C′l ,
there exists Cs ∈ AI defined in A2, such that c ∈Cs ⊂C′l .

This assumption is about the strict positivity of the ground truth data generating process,
pD(XO,XU ,R). Instead of assuming that complete case data are available as in [233], here
we assume we should at least have some observations, pD(X ,RO = 1,RU = 0) > 0 for
O ∈ ÂI , on which pθθθ (XO) is identifiable.

To summarize, A1 ensures that our model has the same graphical representation/para-
metric forms as the ground truth; A2 pθθθ (XO) =

∫
XU

pθθθ (XO,XU)dXU should be at least
identifiable for a collection of observable patterns that forms a partition of I; and Assump-
tion A3 ensures that pD(XO,XU ,R) should be positive for certain important patterns (i.e.,
those on which pθθθ (XO) is identifiable). Given these assumptions, we have the following
proposition (See Appendix 8.C for proof.):

Proposition 8.1 (Sufficient conditions for identifiability under MNAR). Let pθθθ ,ψψψ(XO,XU ,R)
be a model on the observable variables X, and missing pattern R, and pD(XO,XU ,R) be the

1It can be arbitrary partition in the set theory sense.
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ground truth distribution. Assume that they satisfies Data setting D1, Assumptions A1, A2
and A3.

Let θθθ = argmax(θθθ ,ψψψ)∈ΩΩΩE(xO,r)∼pD(X ,R) log p(θθθ ,ψψψ)(XO = xO,R = r) be the set of ML
solutions of Equation 8.2.1. Then, we have θθθ = {θθθ ∗}×θθθ ψψψ . That is, the ground truth model
parameter θθθ

∗ can be uniquely identified via (partial) maximum likelihood learning.

Missing value imputation as inference Given a model p(θθθ)(XO,XU), the missing data im-
putation problem can be then formularized by the Bayesian inference problem pθθθ (XU |XO) ∝

pθθθ (XU ,XO). If the assumptions of Proposition 8.2 are satisfied, it enables us to correctly
identify the ground truth reference model parameter, θθθ

∗. Therefore, the imputed values
sampled from the posterior pθθθ

∗(XU |XO) will be unbiased, and can be used for down stream
decision making tasks.
Remark: Note that Proposition 8.1 can be extended to the case where model identifiability
is defined by equivalence classes [146, 321]. See Appendix 8.F for details.

8.3.2 Relaxing “correctness of parametric model” assumption (A1)

In this section, we further extend our previous results to the general MNAR cases including
all different examples in Figure 8.1. In particular, we would like to see the if the same model
setting in Section 8.3.1 can be applied to scenarios where pD(XO,XU ,R) and pθθθ ,ψψψ(XO,XU ,R)
might have different parametric forms, or even different graphical representations.

To start with, we would like to point out that the mismatch between pD(XO,XU ,R)
and the model pθθθ ,ψψψ(XO,XU ,R) can be, to a certain extend, modeled by the mappings
between spaces of parameters. Let ΩΩΩ ⊂ RI denote the parameter domain of our model,
pθθθ ,ψψψ(XO,XU ,R). Suppose we have a mapping Φ : ΩΩΩ⊂RI 7→RJ , such that (θθθ ,ψψψ) ∈ΩΩΩ⊂ΩΩΩ

is mapped to another parameter space (τ,γ) = Φ(θθθ ,ψψψ) ∈ ΞΞΞ ⊂ RJ via Φ(·). Here, ΩΩΩ is
a subset of ΩΩΩ on which Φ is defined. Then, the re-parameterized pθθθ ,ψψψ(XO,XU ,R) on
parameter space ΞΞΞ can be rewritten as:

p̃τ,γ(XO,XU ,R) := pΦ−1(τ,γ)(XO,XU ,R)

Assuming that the inverse mapping Φ−1 exists. Then trivially, if pθθθ ,ψψψ(XO,R) is identifiable
with respect to θθθ and ψψψ , then p̃τ,γ(XO,R) should be also identifiable with respect to τ and γ :

Proposition 8.2. Let ΩΩΩ ⊂ RI be the parameter domain of the model pθθθ ,ψψψ(XO,XU ,R).
Assume that the mapping Φ : (θθθ ,ψψψ) ∈ ΩΩΩ ⊂ RI 7→ (τ,γ) ∈ ΞΞΞ ⊂ RJ is one-to-one on ΩΩΩ

(equivalently, the inverse mapping Φ−1 : ΞΞΞ 7→ΩΩΩ is injective, and ΩΩΩ is its image set). Consider
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the induced distribution with parameter space ΞΞΞ, defined as p̃τ,γ(XO,R) := pΦ−1(τ,γ)(XO,R).
Then, p̃ is identifiable w.r.t. (τ,γ), if pθθθ ,ψψψ(XO,R) is identifiable w.r.t. θθθ and ψψψ .

Proposition 8.2 basically shows that if two distributions pθθθ ,ψψψ(XO,R) and p̃τ,γ(XO,R)
are related by a mapping Φ with nice properties, than the identifiability will translate
between them. This already covers many scenarios of the data-model mismatch. For
example, consider the case where ground truth data generation process satisfies the following
assumption:
Data setting D2 Suppose the ground truth pD(XO,XU ,R) satisfies: X are all generated by
shared latent confounders Z (as in D1), and R cannot be the cause of any other variables
as in [233, 342]. Typical examples are given by any of the cases in Fig 8.1(excluding (j)
where R1 is the cause of R2). Furthermore, the ground truth data generating process is given
by the parametric form pD(XO,XU ,R) = p̃τ∗,γ∗(XO,XU ,R), where ΞΞΞ = ΞΞΞτ ×ΞΞΞγ denotes its
parameter space.

Then, for such ground truth data generating process, we can show that we can always
find a model in the form of Equation 8.3.2, such that there exists some mapping Φ, that can
model their relationship:

Lemma 8.1. Suppose the ground truth data generating process p̃τ∗,γ∗(XO,XU ,R) satisfies
setting D2. Then, there exists a model pθθθ ,ψψψ(XO,XU ,R), such that: 1), pθθθ ,ψψψ(XO,XU ,R)
can be written in the form of Equation 8.3.2 (i.e., Assumption A1; and 2), there exists a
mapping Φ as described in Proposition 8.2, such that p̃τ,γ(XO,R) = pΦ−1(τ,γ)(XO,R), for
all (τ,γ) ∈ ΞΞΞ.

Model identification under data-model mismatch. Since we showed the identifiability
can be preserved under the parameter space mapping (Proposition 8.2), next we will prove
that if the model pθθθ ,ψψψ(XO,XU ,R) is trained on partially observed data points sampled from
p̃τ,ψψψ(XO,XU ,R) that satisfies data setting D2, then the ML solution is still unbiased. For
this purpose, inspired by Lemma 8.1, we work with the following additional assumption:
Model Assumption A4 Let p̃τ∗,γ∗(XO,XU ,R) denote our ground truth data generating
process that satisfies data setting D2. Then, we assume our model pθθθ ,ψψψ(XO,XU ,R) is the
one that satisfies the description given by Lemma 8.1. That is, its parametric form is given
by Equation 8.3.2, and there exists a mapping Φ as described in Proposition 8.2, such that
p̃τ,γ(XO,R) = pΦ−1(τ,γ)(XO,R).

Then, we have the following proposition:

Proposition 8.3 (Sufficient conditions for identifiability under MNAR and data-model mis-
match). Let pθθθ ,ψψψ(XO,XU ,R) be a model on the observable variables X and missing pattern R,
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and pD(XO,XU ,R) be the ground truth distribution. Assume that they satisfies Data setting
D2, Assumption A2, A3, and A4. Let θθθ = argmax(θθθ ,ψψψ)∈ΩΩΩE(xO,r)∼pD(X ,R) log p(θθθ ,ψψψ)(XO =

xO,R = r) be the set of ML solutions of Equation 8.2.1. Then, we have θθθ = {Φ−1
τ (τ∗)}×θθθ ψψψ .

Namely, the ground truth model parameter τ∗ of pD can be uniquely identified (as Φ(θθθ ∗))
via ML learning.

Remark: practical implications Proposition 8.3 allows us to deal with the cases where the
parameterization of ground truth data generating process and model distribution are related
through a set of mappings, {ΦO}. In general, the graphical structure of pD(XO,XU ,R) can
be any cases in Figure 8.1 excluding (j). Then, in those cases, we are still able to use a
model that corresponds to Equation 8.3.2 (Fig 8.1 (h)) to perform ML learning, provided
that our model is flexible enough (Assumption A4). This greatly improves the applicability
of our identifiability results, and we can build a practical algorithm based on Equation 8.3.2
to handle many practical MNAR cases.

8.4 GINA: A Practical Imputation Algorithm for MNAR

In the previous section, we have established the identifiability conditions for models in the
form of Equation (8.3.2). However, in order to derive a practically useful algorithm, we still
need to specify a parametric form of the model, that is both flexible and compatible with
our assumptions. In this section, by utilizing the results in Section 8.3, we propose GINA, a
deep generative imputation model for MNAR data (Figure 2). GINA fulfill identifiability
assumptions above, and can handle general MNAR case as discussed in section 8.3.2.

θθθ

ψψψ

λλλ zn

xnd
D

Rn

vn

N

Figure 8.2 Graphical repre-
sentations of our GINA.

The parametric form of GINA We use utilize the flexi-
bility of deep generative models to model the data gener-
ating process. We assume that the reference model pθθθ (X)

is parameterized by an identifiable VAE [146] to satisfy As-
sumption A2. That is, pθθθ (X |V ) =

∫
Z dZpε(X− f (Z))p(Z|V ),

where V is some fully observed auxiliary inputs. The de-
coder pε(X − fθθθ (Z)) is parameterized by a neural network,
f : RH 7→ RD. For convenience, we will drop the input V to
pθθθ (X |V ), and simply use pθθθ (X) to denote pθθθ (X |V ). Finally,
for the missing model pψψψ(R|X ,Z), we use a Bernoulli likeli-
hood model, pψψψ(R|X ,Z) :=∏d πd(X ,Z)Rd(1−πd(X ,Z))1−Rd ,
where πd(X ,Z) is parameterized by a neural network.
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In Appendix 8.G, we show that GINA fulfill the required assumptions of Proposition 8.1
and 8.3. Thus, we can use GINA to identify the ground truth data generating process, and
perform missing value imputation under MNAR.
Learning and imputation In practice, the joint likelihood in Equation 8.2.1 is intractable.
Similar to the approach proposed in [128], we introduce a variational inference network,
qλλλ (Z|XO), which enable us to derive a importance weighted lower bound of log pθθθ ,ψψψ(XO,R):

log pθθθ ,ψψψ(XO,R)≥ LK(θθθ ,ψψψ,λλλ ,XO,R) := Ez1,...,zK ,x1
U ,...,xK

U∼pθθθ (XU |Z)qλλλ (Z|XO)
log

1
K ∑

k
wk

where wk =
pψψψ (R|XO,XU=xk

U ,Z=zk)pθθθ (XO,Z=zk)

qλλλ (Z=zk|XO)
is the importance weights. Note that we did not

notate the missing pattern R as additional input to qλλλ , as this information is already contained
in XO. Then, we can optimize the parameters θθθ ,ψψψ,λλλ by solving the following optimization
problem

θθθ
∗,ψψψ∗,λλλ ∗ = arg max

θθθ ,ψψψ,λλλ
E(xO,r)∼pD(X ,R)LK(θθθ ,ψψψ,λλλ ,XO = xO,R = r)

Given θθθ
∗,ψψψ∗,λλλ ∗, we can impute missing data by solving the approximate inference prob-

lem:
pθθθ (XU |XO) =

∫
Z

pθθθ (XU |Z)pθθθ (Z|XO)dZ ≈
∫

Z
pθθθ (XU |Z)qλλλ (Z|XO)dZ.

8.5 Related works

We mainly review recent works for handling MNAR data. In Appendix 8.A, we provide a
brief review of traditional methods that deal with MCAR and MAR.

When the missing data is MNAR, a general framework is to learn a joint model on both
observable variables and missing patterns [190], in which a model of missing data is usually
assumed [320, 126]. This approach is also widely adopted in imputation tasks. For example,
in the field of recommender systems, different probabilistic models are used within such a
framework [112, 208, 353, 187, 184]. A similar approach has also been taken in the context
of causal approach to imputation [355, 354, Liang et al.]. Similar to the use of the missing
model, they have used an explicit model of exposure and adopted a causal view, where
MNAR is treated as a confounding bias. Apart from these, inverse probability weighting
methods are also used to debias the effect of MNAR [299, 353, 202] for imputation.
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One issue that is often ignored by many MNAR methods is the model identifiability.
Identifiability under MNAR has been discussed for certain cases ( [220, 219, 221, 352,
332, 321]). For example, [352] proposed the instrumental variable approach to help the
identification of MNAR data. [219] investigated the identifiability of normal and normal
mixture models, and showed that identifiability for parametric models is highly non-trivial
under MNAR. [220] studied conditions for nonparametric identification using shadow
variable technique. Despite the resemblance to the auxiliary variable in our approach,
[219, 220] mainly considers the supervised learning (multivariate regression) scenario.
[233, 232, 311] also discussed a similar topic based on a graphical and causal approach in a
non-parametric setting. Although the notion of recoverability has been extensively discussed,
their methods do not directly lead to practical imputation algorithms in a scalable setting.
On the contrary, our work takes a different approach, in which we handle MNAR with a
parametric setting, by dealing with learning and inference in latent variable models. We step
aside from the computational burden with the help of recent advances in deep generative
models for scalable imputation.

There has been a growing interest in applying deep generative models to missing data
imputation. In [200, 197, 241], scalable methods for training VAEs under MAR have been
proposed. Similar methods have also been advocated in the context of importance weighted
VAEs, multiple imputation [212], and heterogeneous tabular data imputation [241, 201, 199].
Generative adversarial networks (GANs) have also been applied to MCAR data [372, 175].
More recently, deep generative models under MNAR have been studied [128, 82, 87], where
different approaches such as selection models [279, 107] and pattern-set mixture models
[189] has been combined with partial variational inference for training VAEs. However,
without additional assumptions, the model identifiability remains unclear in these approaches,
and the posterior distribution of missing data conditioned on observed data might be biased.

8.6 Experiments

We study the empirical performance of the proposed algorithm of Section 8.4 with both
synthetic data (Section 8.6.1) and two real-world datasets with music recommendation
(Section 8.6.2) and personalized education (Section 8.6.3) . The experimental setting details
can be found in Appendix 8.B.
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Figure 8.3 Visualization of generated X2 and X3 from synthetic experiment. Row-wise
(A-C) plots for dataset A, B, and C, respectively; Column-wise (i-iv): training set (only
displays fully observed samples), PVAE samples, Not-MIWAE samples, and GINA samples,
respectively. Contour plot: kernel density estimate of ground truth density of complete
data;

8.6.1 Synthetic MNAR dataset

We first consider 3D synthetic MNAR datasets. We generate three synthetic datasets with
nonlinear data generation process (shown in Appendix 8.B.1). For all datasets, X1,X2,X3 are
generated via the latent variables, Z1,Z2,Z3 ,where X1 are fully observed and X2 and X3 are
MNAR. For dataset A, we apply self-masking(similar to Figure 8.1(c)): Xi will be missing if
Xi > 0. For datasets B and C, we apply latent-dependent self-masking: Xi will be missing, if
g(Xi,Z1,Z2,Z3)> 0, where g is a linear mapping whose coefficients are randomly chosen.

We train GINA and baseline models with partially observed data. Then, we use the
trained models to generate random samples. By comparing the generated samples with the
ground truth data density, we can evaluate whether pD(X) is correctly identified. Results are
visualized in Figure 8.3. In addition, we show the imputation results in Appendix 8.I. Across
three datasets, PVAE performs poorly, as it does not account for the MNAR mechanism.
Not-MIWAE performs better than PVAE, as it is able to generate samples that are closer to
the mode. However, it is still biased more towards the observed values. On the other hand,
GINA is much more aligned to ground truth, and is able to recover the ground truth from



8.6 Experiments 199

partially observed data. This experiment showed the clear advantage of our method under
different MNAR situations.

8.6.2 Recommender dataset imputation with random test set

Method Test MSE

Matrix Factorization Methods
PMF 1.401
IPW-PMF 1.375
Deconfounded-PMF 1.329
PMF-MNAR 1.483
PMF-MAR 1.480
VAE-based models
PVAE 1.259±0.003
PVAE w/o IW 1.261±0.004
Not-MIWAE 1.078±0.000
GINA 1.052±0.002
Others
CPTv-MNAR 1.056
Logitvd-MNAR 1.141
AutoRec 1.199
Oracle-test 1.057

Table 8.1 Test MSE on Yahoo! R3

Next, we apply our models to recommendation
systems on Yahoo! R3 dataset [208, 355] for
user-song ratings which is designed to evalu-
ate MNAR imputation. It contains an MNAR
training set of more than 300K self-selected rat-
ings from 15,400 users on 1,000 songs, and an
MCAR test set of randomly selected ratings from
5,400 users on 10 random songs. We train all
models on the MNAR training set, and evaluate
on MCAR test set. This is repeated 10 times
with different random seeds. Both the missing
model for GINA (p(R|X ,Z)) and Not-MIWAE
(p(R|X)) are parameterized by linear neural nets
with Bernoulli likelihood functions. The de-

coders for GINA, PVAE, and Not-MIWAE uses Gaussian likelihoods with the same network
structure. See Appendix 8.B for implementation details and network structures.

We compare to the following baselines: 1), probabilistic matrix factorization (PMF)
[228]; 2), inverse probability weighted PMF [299]; 3), Deconfounded PMF [355]; 4), PMF
with MNAR/MAR data [112]; 5), CPTv and Logitv models for MNAR rating [208]; 6),
Oracle [112]: predicts ratings based on their marginal distribution in the test set; and 7)
AutoRec [303]: Autoencoders that ignores missing data.

Results are shown in Table 8.1. Our method (GINA) gives the best performance among
all methods. Also, VAE-based methods are consistently better than PMF-based methods,
and MNAR-based models consistently outperform their MAR versions. More importantly,
among VAE-based models, our GINA outperforms its non-identifiable counterpart (Not-
MIWAE), and MAR counterpart (PVAE), where both models can not generate unbiased
imputation.
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8.6.3 Missing data imputation and active question selection on Eedi
education dataset

Finally, we apply our methods to the Eedi education dataset [356], one of the largest real-
world education response datasets. We consider the Eedi competition task 3 dataset, which
contains over 1 million responses from 4918 students to 948 multiple-choice diagnostic
questions. Each diagnostic question is a multiple-choice question. We consider predicting
whether a student answers a question correctly or not. Over 70% of the entries are missing.
The dataset also contains student metadata which we use as the auxiliary variables. In this
experiment, we randomly split the data in a 90% train/ 10% test/ 10% validation ratio, and
train our models on the response outcome data.

We evaluate our model on two tasks. Firstly, we perform missing data imputation, where
different methods perform imputation over the test set. As opposed to Yahoo! R3 dataset,
now the test set is MNAR, thus we use the evaluation method suggested by [355], where we
evaluate the average per-question MSE For each question, over all students with non-empty
response. Then, the MSEs of all questions averaged. We call this metric the debiased MSE.
While regular MSE might be biased toward questions with more responses, the debiased
MSE treats all questions equally, and can avoid selection bias to a certain degree. We report
results for 10 repeats in the first column in Table 8.2. We can see that our proposed GINA
achieves significantly improved results comparing to the baselines.

Secondly, we evaluate personalized education through active question selection [200] on
the test set which is task 4 from this competition dataset. The procedure is as follows: for
each student in the test set, at each step, the trained generative models are used to decide
which is the most informative missing question to collect next. This is done by maximizing
the information reward as in [200] (see Appendix 8.H for details).Since at each step, different
students might collect different questions, there isn’t a simple way to debias the predictive
MSE as in the imputation task. Alternatively, we evaluate each method with the help of
question meta data (difficulty level, which is a scalar).Intuitively, when the student response
to the previously collected question is correct, we expect the next diagnostic question which
has higher difficulty levels, and vice versa.Thus, we can evaluate the mean level change after
correct/incorrect responses, and expect them to have significant differences. We also perform
t-test between the level changes after incorrect/correct responses and report the p-value. We
can see in Table 8.2, GINA is the only method that reports a significant p-value (<0.05)
between the level changes of next collected questions after incorrect/correct responses which
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Table 8.2 Performance on Eedi education dataset (with standard errors)

Method Debiased
MSE

Level change
(correct)

Level change
(incorrect)

p-value

PVAE 0.194±0.001 0.131±0.138 -0.101±0.160 0.514
Not-MIWAE 0.192±0.000 0.062±0.142 -0.073±0.179 0.561
GINA 0.188±0.001 0.945±0.151 -0.353±0.189 1.01×10−7

are desired. This further indicates that our proposed GINA predicts the unobserved answer
with the desired behavior.

8.7 Conclusion

In this chapter, we provide a analysis of identifiability for generative models under MNAR,
and studies sufficient conditions of identifiability under different scenarios. We provide
sufficient conditions under which the model parameters can be uniquely identified, via joint
maximum likelihood learning on XO and R. Therefore, the learned model can be used to
perform unbiased missing data imputation. We proposed a practical algorithm based on
VAEs, which enables us to apply flexible generative models that is able to handle missing
data in a principled way. The main limitation of our proposed pracitical algorithm is the
need for auxiliary variables (meta feature) which is inherited from identifiable VAE models
[146]. In practice, they may not be always available. For future work, we will investigate
how to address such limitation, and how to extend to more complicated scenarios.
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Appendix for Chapter 8

Appendix 8.A Traditional methods for handling missing
data

Methods for handling missing data has been extensively studied in the past few decades.
Those methods can be roughly classified into two categories: complete case analysis (CCA)
based, and imputation based methods. CCA based methods, such as listwise deletion [5]
and pairwise deletion [209] focuses on deleting data instances that contains missing entries,
and keeping those that are complete. Listwise/pairwise deletion methods are known to be
unbiased under MCAR, and will be biased under MAR/MNAR. On the contrary, imputation
based methods tries to replace missing values by imputed/predicted values. One popular
imputation technique is called single imputation, where only produce one single set of
imputed values for each data instance. Standard techniques of single imputation include
mean/zero imputation, regression-based imputation [5], no- parametric methods [143, 325].
As opposed to single imputation, the multiple imputation (MI) methods such as MICE
[362], was first proposed by Rubin [280, 281, 119, 237] is essentially a simulation-based
methods that returns multiple imputation values for subsequent statistical analysis. Unlike
single imputation, the standard errors of estimated parameters produced with MI is known
to be unbiased [282]. Apart from MI, there exists other methods such as full information
maximum likelihood [9, 67] and inverse probability weighting [277, 120], which can be
directly applied to MAR without introducing additional bias. However, these methods
assumes a MAR missing data mechanism, and cannot be directly applied to MNAR without
introducing bias.

Appendix 8.B Implementation details

We first introduce the general settings of GINA and other baselines. Our model (GINA)
is based on the practical algorithm in Section 8.4. By default, we will set the auxiliary
variable U to be some fully observed meta feature (if there’s any) or the missing mask
pattern (if the dataset does not have a fully observed meta feature). The most important
baselines are as follows: 1), Partial VAE (PVAE) [200]: a VAE model with slightly modified
ELBO objective, specifically designed for MAR data; and 2), Not-MIWAE [128], a VAE
model for MNAR data trained by jointly maximizing the likelihood on both the partially
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observed data and the missing pattern. As opposed to our model, the latent priors p(Z) for
both PVAE and Not-MIWAE are parameterized by a standard normal distribution, hence
no auxiliary variables are used. Also, note that the graphical model of Not-MIWAE is
described by Fig 8.1 (a), and does not handle the scenarios where the ground truth data
distribution follows other graphs like Fig 8.1 (g). Finally, the inference model q(Z|X) for
the underlying VAEs is set to be diagonal Gaussian distributions whose mean and variance
are parameterized by neural nets as in standard VAEs [149] (with missing values replaced
by zeros[241, 128, 212]), or a permutation invariant set function proposed in [200]. See
Appendix 8.B for more implementation details for each tasks.

8.B.1 Synthetic dataset implementation details

Data generation The ground truth data generating process is given by
Z1,Z2,Z3 ∼ N (0,1),X1 = hw(Z1,Z2,Z3) + ε1,X2 = fθθθ 1(X1,Z1,Z2,Z3) + ε2,X3 =

fθθθ 2(X1,X2,Z1,Z2,Z3) + ε3 where hw is a linear mapping with coefficients w, f is
some non-linear mapping whose functional form is given by Appendix 8.B, θθθ 1 & θθθ 2 are
two different sets of parameters for f , and ε1, ε2, ε3 are observational noise variables
with mean 0, variance 0.01. We randomly sample three different sets of parameters, and
generate the corresponding datasets (Figure 8.3), namely dataset A, B, and C. Each dataset
consists of 2000 samples. Then, we apply different missing mechanisms for each dataset.
For all datasets, we assume that X1 are fully observed and X2 and X3 are MNAR. , and
missing mechanism will be only applied to X2 and X3. Finally, all observable variables are
standardized.

Network structure and training We use 5 dimensional latent space with fully factorized
standard normal priors. The decoder part pθθθ (X |Z) uses a 5-10-D structure, where D = 3
in our case. For inference net, we use a zero imputing [200] with structure 2D-10-10-5,
that maps the concatenation of observed data (with missing data filled with zero) and mask
variable R into distributional parameters of the latent space. For the factorized prior p(Z|V )

of the i-VAE component of GINA, we used a linear network with one auxiliary input (which
is set to be fully observed dimension, X1). The missing model pψψψ(R|X) for GINA and
i-NotMIWAE is a single layer neural network with 10 hidden units. All neural networks use
Tanh activations (except for output layer, where no activation function is used). All baselines
uses importance weighted VAE objective with 5 importance samples. The observational
noise for continuous variables are fixed to logσ =−2. All methods are trained with Adam
optimizer with batchsize with 100, and learning rate 0.001 for 20k epochs.
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8.B.2 Yahoo!R3 experiment implementation details

Before training, all user ratings are scaled to be between 0 and 1 (such scaling will be
reverted during evaluation). For all baselines, we use Gaussian likelihood with variance
of 0.02. We use 20 dimensional latent space, and the decoder pθθθ (X |Z) uses a 20-10-D
structure. We use Tanh activation function for the decoder (except for output layer, where
no activation function is used). For inference net, we uses the point net structure proposed
in [200], we use 20 dimensional feature mapping h parameterized by a single layer neural
network and 20 dimensional ID vectors for each variable. The symmetric operator is set to
be the summation operator. The missing model pψψψ(R = 1|X) for GINA and i-NotMIWAE
is parameterized by linear neural network. All methods are trained with 400 epochs with
batchsize 100.

8.B.3 Eedi dataset experiment implementation details

Since Eedi dataset is a binary matrix with 1/0 indicating that the student response is correc-
t/incorrect, we use Bernoulli likelihood for decoder pθθθ (X |Z). For We use 50 dimensional
latent space, and the decoder pθθθ (X |Z) uses a 50-20-50-D structure. Such structure is chosen
using the validation set using grid search. We use ReLU activation function for the decoder
(except for output layer, where no activation function is used). For inference net, we uses
the point net structure that were used in Yahoo!R3 dataset. Here, the difference is that we
we use 50 dimensional feature mapping h parameterized by a single layer neural network
and 10 dimensional ID vectors for each variable. All methods are trained with 1k epochs
with batchsize 100. A trick that we used for both not-MIWAE and GINA to improve the
imputation performance, is to turn down the weight of the likelihood term for pψψψ(R|X), by
multiplying a factor of β = 0.5. This is due to that majority of the student response matrix
is missing, the pψψψ(R|X) will most likely dominate the training, hence the learning algorithm
will prefer more about learning the models that explains the missing mechanism better, over
the models that explains the observable variables X better.

Appendix 8.C Proof for Proposition 8.1

Proof : First, we show that pθθθ ,ψψψ(XC′l
,R) is partially identifiable (i.e., identifiable on subset

of parameters) on {θθθ d}d∈C′l
for ∀C′l ∈ ĀI . We prove this by contradiction. Suppose there

exists two different set of parameters (θθθ 1,ψψψ1) (θθθ 2,ψψψ2), such that there exits at least one
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index c ∈C′l for some l, such that θθθ
1
c ̸= θθθ

2
c , and p(θθθ 1,ψψψ1)(XC′l

,R) = p(θθθ 2,ψψψ2)(XC′l
,R). That is,

p(XC′l
,R) is not identifiable on {θθθ d}d∈C′l

.
According to Assumption A3, there exists Cs ∈ AI , such that c ∈ Cs ⊂ C′l . Then,

consider the marginal

pθθθ (XCs) =
∫

Z,R,X\Cs

dZ ∏
d∈Cs

pθθθ d(Xd|Z)pψψψ(R|X ,Z)p(Z) = pθθθ d∈Cs
(XCs)

. Since p(θθθ 1,ψψψ1)(XC′l
,R) = p(θθθ 2,ψψψ2)(XC′l

,R), we have p(θθθ 1
Cs)

(XCs) = p(θθθ 2
Cs)

(XCs) (the joint
uniquely determines marginals). However, this contradicts with our Assumption A2
that pθθθCs

(XCs) is identifiable: this identifiability assumption implies that we should have
p(θθθ 1

Cs)
(XCs) ̸= p(θθθ 2

Cs)
(XCs). Therefore, by contradiction, we have p(XC′l

,R) is partially identi-

fiable on {θθθ d}d∈C′l
for ∀C′l ⊂ ĀI .

Then, we proceed to prove that the ground truth parameter θθθ
∗ can be uniquely identified

via ML learning. Based on our Assumption A1, upon optimal ML solution,

θθθ ML = arg max
(θθθ ,ψψψ)∈Ω

E(xO,r)∼pD(X ,R) log p(θθθ ,ψψψ)(XO = xO,R = r)

, we have the following identity:

p(θθθ ML,ψψψML)
(XO,R) = p(θθθ∗,ψψψ∗)(XO,R)

holds for all (θθθ ML,ψψψML) ∈ θθθ ML, and all ∀O⊂ I that satisfies p(XO,R)> 0.
Note also that:

p(θθθ ML,ψψψML)
(XO,R) =

∫
Z,XI\O

dZ ∏
d

p
θθθ

ML
d
(Xd|Z)pψψψML(R|X)p(Z)

, which depends on both θθθ O and ψψψ . Since we have already shown that p(θθθ ,ψψψ)(XC′l
,R)

are partially identifiable on {θθθ d}d∈C′l
for ∀C′l ⊂ ĀI , according to Assumption A3, upon

optimal solution , we have that
{θθθ d = θθθ

∗
d}d∈C′l

holds for all ∀C′l ⊂ ĀI . Since we have assumed that
⋃

C′l∈ĀI
XC′l

= I in Assumption 3
(i.e.,ĀI is a cover of I ), this guarantees that

θθθ
ML
d = θθθ

∗
d
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for all d. In other words, we are able to uniquely identify θθθ
∗ from observed data, therefore

θθθ = {θθθ ∗}×θθθ ψψψ

.

Appendix 8.D Proof of Proposition 8.2

Proof Let (τ1,γ1) and (τ2,γ2) be two different parameters in ΞΞΞ. Then, we have

p̃τ1,γ1(XO,R)

=pΦ−1(τ1,γ1)
(XO,R)

̸=pΦ−1(τ2,γ2)
(XO,R)

=p̃τ2,γ2(XO,R)

where the third line is due to the fact that Φ−1 is injective and pθθθ ,ψψψ(XO,R) is identifiable
with respect to θθθ and ψψψ .

Appendix 8.E Relaxing Assumption A1

8.E.1 Proof of Lemma 8.1

Lemma 1. Suppose the ground truth data generating process p̃τ∗,γ∗(XO,XU ,R) satisfies
setting D2. Then, there exists a model pθθθ ,ψψψ(XO,XU ,R), such that: 1), pθθθ ,ψψψ(XO,XU ,R)
can be written in the form of Equation 8.3.2 (i.e., Assumption A1; and 2), there exists a
mapping Φ as described in Proposition 8.2, such that p̃τ,γ(XO,R) = pΦ−1(τ,γ)(XO,R), for
all (τ,γ) ∈ ΞΞΞ. Additionally, such Φ is decoupled, i.e., Φ(θθθ ,ψψψ) = (Φθθθ (θθθ),Φψψψ(ψψψ)).

Proof: 2

Case 1 (connections among X): Suppose the ground truth data generating pro-
cess pD(X ,R) = p̃τ∗,γ∗(XO,XU ,R) is given by Figure 8.1 (i). That is, pD(X ,R) =

2We mainly consider the case where all variables are continuous. Discrete variables will complicate the
discussion, but will not change the conclusion.
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p̃γ(X |R)
∫

Z ∏i p̃τi(Xi|Z, pa(Xi)
⋂

X)p(Z)dZ. Without loss of generality, assume that prob-
abilistic distributions p̃τi(Xi|Z, pa(Xi)

⋂
X) takes the form as p̃τi(Xi|Z, pa(Xi)

⋂
X) =∫

εi
δ (Xi− f ψψψ i

i (εi, pa(Xi)
⋂

X ,Z))p(εi)dεi. Therefore, we have

p̃τ(X)

=
∫

Z
∏

i
p̃τi(Xi|Z, pa(Xi)

⋂
X)p(Z)dZ

=
∫

z

[
∏

{i|N(Xi)
⋂

X ̸= /0}

∫
εi

dεiδ (Xi− f ψψψ i
i (εi, pa(Xi)

⋂
X ,Z))p(εi)

]
 ∏
{ j|N(X j)

⋂
X= /0}

p(X j|Z)

 p(Z)dZ

=
∫

z,{i|N(Xi)
⋂

X ̸= /0}

[
∏

{i|N(Xi)
⋂

X ̸= /0}
δ (Xi− f ψψψ i

i (εi, pa(Xi)
⋂

X ,Z))p(εi)

]
 ∏
{ j|N(X j)

⋂
X= /0}

p(X j|Z)

 p(Z)dZ

Apparently, there exists a set of function {gi(·)|N(Xi)
⋂

X ̸= /0}, such that:

∫
z,{i|N(Xi)

⋂
X ̸= /0}

[
∏

{i|N(Xi)
⋂

X ̸= /0}
δ (Xi− f ψψψ i

i (εi, pa(Xi)
⋂

X ,Z))p(εi)

]
 ∏
{ j|N(X j)

⋂
X= /0}

p(X j|Z)

 p(Z)dZ

=
∫

z,{i|N(Xi)
⋂

X ̸= /0}

[
∏

{i|N(Xi)
⋂

X ̸= /0}
δ (Xi−gi(εi,ancε(i),Z))p(εi)

]
 ∏
{ j|N(X j)

⋂
X= /0}

p(X j|Z)

 p(Z)dZ

Where ancε(i) is the shorthand for

{εk|Xk ∈ ancXi
⋂

Z,1≤ k ≤ D}
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Note that, the graphical model of the new parameterization,

p(X) =
∫

z,{i|N(Xi)
⋂

X ̸= /0}

[
∏

{i|N(Xi)
⋂

X ̸= /0}
δ (Xi−gi(εi,ancε(i),Z))p(εi)

]
 ∏
{ j|N(X j)

⋂
X= /0}

p(X j|Z)

 p(Z)dZ

has a new aggregated latent space, {Z,{εi|1 ≤ i ≤ D}}. That is, for each Xi that has non
empty neighbour in X , a new latent variable will be created. With this new latent space,
the connections among X can be decoupled, and the new graphical structure of p(X ,R)
corresponds to Figure 8.1 (h).

The mapping Φ that connects p̃τi(X ,R) and p(X ,R) can now be defined as identity
mapping, since no new parameters are introduced/removed when reparameterizing p̃τi(X ,R)
into p(X ,R). Hence, the two requirements of Lemma 8.1 are fulfilled.

Case 2(subgraph): Next, consider the case that the ground truth data generating process
pD(X ,R) = p̃τ∗,γ∗(XO,XU ,R) is given by one of the Figure 8.1 (a)-(g). That is, it is a
subgraph of Figure 8.1 (h). Without loss of generality, assume that p̃γi(Ri = 1|pa(Ri)) =

logit−1(fγi(pa(Ri))), and pa(Ri)⊊ {X ,Z}; in other words, certain connections from {X ,Z}
to Ri is missing. Consider the model distribution parameterized by p(Ri = 1|X ,Z) =
logit−1(fγi(pa(Ri))+gθθθ i({X,Z}\pa(Ri))), satisfying gθθθ i=0(·)≡ 0. Therefore, the mapping
Φ−1 is given as Φ−1(γi) := (γi,θθθ i = 0). Apparently, Φ−1 is injective, hence satisfying the
requirement of Proposition 8.2.

8.E.2 Proof for Proposition 8.3

Proposition 3 (Sufficient conditions for identifiability under MNAR and data-model mis-
match). Let pθθθ ,ψψψ(XO,XU ,R) be a model on the observable variables X and missing pattern R,
and pD(XO,XU ,R) be the ground truth distribution. Assume that they satisfies Data setting
D2, Assumption A2, A3, and A4. Let θθθ = argmax(θθθ ,ψψψ)∈ΩE(xO,r)∼pD(X ,R) log p(θθθ ,ψψψ)(XO =

xO,R = r) be the set of ML solutions of Equation 8.2.1. Then, we have θθθ = {Φ−1
τ (τ∗)}×θθθ ψψψ .

Namely, the ground truth model parameter τ∗ of pD can be uniquely identified (as Φ(θθθ ∗))
via ML learning.
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Proof : First, it s not hard to show that pθθθ ,ψψψ(XC′l
,R) is partially identifiable on {θθθ d}d∈C′l

for ∀C′l ∈ ĀI . This has been shown in the proof of Proposition 8.1, and we will not repeat
this proof again.

Next, given data setting D2 and Assumption A4, define

θθθ ML = arg max
(θθθ ,ψψψ)∈Ω

E(xO,r)∼pD(X ,R) log p(θθθ ,ψψψ)(XO = xO,R = r)

, then we have:
p(θθθ ML,ψψψML)

(XO,R) = pΦ−1(τ∗,γ∗)(XO,R)

holds for all (θθθ ML,ψψψML) ∈ θθθ ML, and all ∀O⊂ I that satisfies p(XO,XU ,RO = 1,RU = 0)>
0.

Since p(θθθ ,ψψψ)(XC′l
,R) are partially identifiable on {θθθ d}d∈C′l

for ∀C′l ⊂ ĀI and according
to Assumption A3, pD(XO,XU ,RC′l

= 1,RI\C′l = 0)> 0. Therefore,

{θθθ d = Φ
−1
θθθ
(τ∗,γ∗)d}d∈C′l

must be true for all ∀C′l ⊂ ĀI , where Φ
−1
θθθ
(τ∗,γ∗) denotes the components of Φ−1(τ∗,γ∗)

that corresponds to the entries of θθθ . Since we have assumed that
⋃

C′l∈ĀI
XC′l

= I in
Assumption 3 (i.e.,ĀI is a cover of I ), this guarantees that

θθθ
ML
d = Φ

−1
θθθ
(τ∗,γ∗)d

for all d. In other words, we are able to uniquely identify θθθ
∗ from observed data, therefore

θθθ = {Φ−1
θθθ
(τ∗,γ∗)}×θθθ ψψψ

.
Finally, according to Assumption 4 and the proof of Lemma 8.1, Φ is decoupled as

(Φθθθ (θθθ),Φψψψ(ψψψ)). Therefore, we can write θθθ = {Φ−1(τ∗)}×θθθ ψψψ . That is, the ground truth
model parameter τ∗ of pD can be uniquely identified (as Φ(θθθ ∗)).

Appendix 8.F Identifiability based on equivalence classes

In this section, we introduce the notion of identifiability based on equivalence classes. Let ∼
be a equivalence relation on a parameter space Ω. That is, it satisfies reflexivity (θθθ 1 ∼ θθθ 1),
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symmetry (θθθ 1 ∼ θθθ 2 if and only if θθθ 2 ∼ θθθ 1), and transitivity (if θθθ 1 ∼ θθθ 2 and θθθ 2 ∼ θθθ 3, then
θθθ 1 ∼ θθθ 3). Then, a equivalence class of θθθ 1 ∈Ω is defined as {θθθ |θθθ ∈Ω,θθθ ∼ θθθ}. We denote
this by [θθθ 1]. Then, we are able to give the definition of model identifiability based on
equivalence classes:

Definition 8.F.1 (Model identifiability). Assume pθθθ (X) is a distribution of some random
variable X, θθθ is its parameter that takes values in some parameter space Ωθθθ , and sim some
equivalence relation on Ω Then, if pθθθ (X) satisfies pθθθ 1(X) = pθθθ 2(X)⇐⇒ θθθ 1 ∼ θθθ 2 ⇐⇒
[θθθ 1] = [θθθ 2],∀θθθ 1,θθθ 2 ∈Ωθθθ , we say that pθθθ is ∼ identifiable w.r.t. θθθ on Ωθθθ .

Apparently, definition 8.2.1 is a special case of definition 8.F.1, where ∼ is given by the
equality operator, =. When the discussion is based on the identifiability under equivalence
relation, then it is obvious that all the arguments of Proposition 8.1, 8.2, and 8.3 still holds.
Also, the statement of the results needs to adjusted accordingly. For example, in Proposition
8.1, instead of “the ground truth model parameter θθθ

∗ can be uniquely identified", we now
have “the ground truth model parameter θθθ

∗ can be uniquely identified up to a equivalence
relation, ∼".

Appendix 8.G Subset identifiability (A2) for identifiable
VAEs

The GINA model needs satisfy the requirement on model of Proposition 8.1 or 8.3, if we
wish to use it to fit to the partially observed data and then perform (unbiased) missing
data imputation. In order to show that the identifiability result of Proposition 8.1/8.3 can
be applied to GINA, the key assumption that we need to verify is the local identifiability
(Assumption A2).

To begin with, in [146], the following theorem on VAE identifiability has been proved:

Theorem 8.1. Assume we sample data from the model given by p(X ,Z|V ) = pε(X −
f (Z))pT,ζ (Z|V ), where f is a multivariate function f : RH 7→ RD. pT,ζ (Z|V ) is parameter-
ized by exponential family of the form pT,ζ (Z|V ) ∝ ∏i=1M Q(Zi)exp[∑ j=1K Ti, j(Zi)ζi, j(V )],
where Q(Zi) is some base measure, M is the dimensionality of the latent variable Z,
Ti(V ) = (Ti,1, ...,Ti,K) are the sufficient statistics, and ζζζ i(V ) = (ζi,1, ...,ζi,K) are the corre-
sponding parameters, depending on V . Assume the following holds:

1. The set {X ∈ X |φε(x) = 0} has zero measure, where φ is the characteristic function
of pε ;
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2. The multivariate function f is injective;

3. Ti, j are differentiable a.e., and (Ti, j)1≤ j≤k are linearly independent on any subset of
X of measure greater than zero;

4. There exists nk + 1 distinct points V 0, ...,V nk, such that the matrix L = (ζζζ (V 1−
U0), ...,ζζζ (V nk−V 0)) of size nk by nk is invertible.

Then, the parameters ( f ,T,ζ ) are∼A-identifiable, where∼A is the equivalence class defined
as (see also Appendix 8.F):

( f ,T,ζ )∼ ( f̃ , T̃ , ζ̃ ) ⇐⇒ ∃A,c|T( f−1(X)) = AT( f̃−1(X))+ c

. Here, A is a nk by nk matrix, and c is a vector.

Note that under additional mild assumptions, the A in the ∼A equivalence relation can
be further reduced to a permutation matrix. That is, the model parameters can be identified,
such that the latent variables differs up to a permutation. This is not inconsequential in many
applications. We refer to [146] for more discussions on permutation equivalence.

So far, Theorem 8.1 only discussed the identifiability of p(X) on the full variables,
X = XO

⋃
XU . However, in Assumption A2, we need the reference model to be (partially)

identifiable on a partition Cs ∈ AI , pθθθ (Xos). Naturally, we need additional assumptions on
the the injective function f , as stated below:

Assumption A5 There exists an integer DO, such that fO : RH 7→ R|O| is injective for all
O that |O| ≥ D0. Here, fO is the entries from the output of f , that corresponds to the index
set O.

Remark Note that, under assumption A5, the Assumption A3 in Section 8.3 becomes
more intuitive: it means that in order to uniquely recover the ground truth parameters, our
training data must contain training examples that have more than D0 observed features. This
is different from some previous works ([233] for example), where complete case data must
be available.

Finally, given these new assumptions, it is easy to show that:

Corollary 8.1 (Local identifiability). Assume that p(X ,Z|V ) = pε(X − f (Z))pT,ζ (Z|V )

is the model parameterized according to Theorem 8.1. Assume that the assumptions in
Theorem 8.1 holds for p(X |V ). Additionally, assume that f satisfies assumption A5.
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Then, consider the subset of variables, XO. Then, p(XO|V ) is ∼A-identifiable on
( fO,T,ζ ) for all O that satisfies |O| ≥ D0, where fO is the entries from the output of f ,
that corresponds to the index set O.

Proof : it is trivial to see that the assumptions 1, 3, and 4 in Theorem 8.1 automatically
holds regarding p(XO|V ). fO is injective according to Assumption A5. Hence, p(XO|V )

satisfies all the assumptions in Theorem 8.1, and p(XO|V ) is ∼A-identifiable on ( fO,T,ζ )
for all O that satisfies |O| ≥ D0.

Remark In practice, Assumption A5 is often satisfied. For example, consider the f that
is parameterized by the following MLP composite function:

f (Z) = h(W ◦g(Z)) (8.G.1)

, where g is a D0 dimensional, injective multivariate function g : RH 7→ RD0 , h is some
activation function h :R 7→R, and W is a injective linear mapping W :RD0 7→RD represented
by the matrix WD0×D, whose submatrices that consists of |O| ≥D0 arbitrary selected columns
are also injective. Note that this assumption for W is not hard to fulfill: a randomly generated
matrix (e.g., with element-wise i.i.d. Gaussian prior) satisfies this condition with probability
1. To verify fO is injective for all |O| ≥ D0, notice that fO(Z) = h(WO ◦g(Z)), where WO is
the output dimensions of W that corresponds to the index set O. Since W is injective and
|O| ≥ D0, we have that WO is also injective, hence fO is also injective.

Appendix 8.H Active question selection

Suppose XO be the set of observed variables, that represents the correctness of student’s
response to questions that are presented to them. Then, in the problem of active question
selection, we start with O = /0, and we would like to decide which variable Xi from XU to
observe/query next, so that it will most likely provide the most valuable information for
some target variable of interest, Xφ ; Meanwhile, we should while make as few queries as
possible. Once we have decided which Xi to observed next, we will make query and add i to
O. This process is done by maximizing the information reward proposed by [200]:

i∗ = argmax
i∈U

R(i | XO) := EXi∼p(Xi|XO)KL
[
p(Xφ |Xi,XO)∥ p(Xφ |XO)

]
.
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In the Eedi dataset, as we do not have a specific target variable of interest, it is defined
as Xφ = XU . In this case, Xφ could be ver high-dimensional, and direct estimation of
KL
[
p(Xφ |Xi,XO)∥ p(Xφ |XO)

]
. could be inefficient. In [200], a fast approximation has been

proposed:

R(i | XO) =EXi∼p(Xi|XO)DKL [p(Z|Xi,XO)||p(Z|XO)]−
EXφ ,Xi∼p(Xφ ,Xi|XO)DKL

[
p(Z|Xφ ,Xi,XO)||p(Z|Xφ ,XO)

]
.

≈EXi∼p̂(Xi|XO)DKL [q(Z|Xi,XO)||q(Z|XO)]−
EXφ ,Xi∼p̂(Xφ ,Xi|XO)DKL

[
q(Z|Xφ ,Xi,XO)||q(Z|Xφ ,XO)

]
.

In this approximation, all calculation happens in the latent space of the model, hence we can
make use of the learned inference net to efficeintly estimate R(i | XO).

Appendix 8.I Additional results

8.I.1 Imputation results for synthetic datasets

In addition to the data generation samples visualized in Figure 8.3, we present the imputation
results for synthetic datasets in Figure 8.4. The procedure of generating the imputed samples
are as follows. First, each model are trained on the randomly generated, partially observed
synthetic dataset described in Section 8.6.1. Once the models are trained, they are used
to impute the missing data in the training set. For each training data, we draw exactly
one sample from the (approximate) conditional distribution ptheta(XU |XO). Thus, we have
“complete” version of the training set, one for each different model. Finally, we draw the
scatter plot for each imputed training set, per dataset and per model. If the model is doing a
good job recovering the ground truth distribution pD(X) from training set, then its scatter
plot should be close to the KDE estimate of the ground truth density of complete data.
According to Figure 8.4, the imputed distribution is similar to the generated distribution in
Figure 8.3.
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PVAE Not-MIWAE Ours

Dataset A

Dataset B

Dataset C

Figure 8.4 Visualization of imputed X2 and X3 from synthetic experiment. Row-wise (A-C)
plots for dataset A, B, and C, respectively; Column-wise: PVAE imputed samples, Not-
MIWAE imputed samples, and GINA imputed samples, respectively. Contour plot: kernel
density estimate of ground truth density of complete data;



Chapter 9

Conclusion and Future Work

9.1 Conclusion: the hidden story line

The contribution of the thesis is centered around two closed connected themes: function
space inference for quantifying model uncertainty in supervised learning (Theme A), and
generative models for missing data uncertainty and decision making (Theme B). These are
summarized in Table 9.1 below.

Table 9.1 Two themes in the thesis

Theme A Theme B

Type of ML problems supervised learning unsupervised learning

Type of uncertainties model/parameter uncertainty
(epistemic)

missing data uncertainty
(aleatoric)

Contribution function space inference deep generative models for
missing data uncertainty

Type of inference algorithms function space VI amortized VI

Consequences of model non-
identifiability

symmetries, multi-modality,
and posterior inconsistency

imputation biases

Main applications Bayesian regression multiple imputation, decision
making

Recall that in Chapter 1, both themes are motivated from the perspective of Bayesian
approaches to uncertainties. Here, we provide another hidden driving force that connects all
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the chapters in this thesis, from the perspective of (Bayesian) deep learning. We all know
that machine learning, especially deep learning, has been the driving force behind modern AI
research, due to its unmatched flexibility and scalability. Despite its empirical success, it has
been argued that deep learning methods often fail to produce reliable uncertainty estimates
for their predictions, which might jeopardize their performance in critical real-life decision-
making tasks. Following the recent development of (approximate) Bayesian inference
techniques, there has been a resurgence of interest in combining Bayesian techniques with
deep learning methods. This results in Bayesian deep learning (BDL) tools that can tell their
users when the algorithms are “making a random guess”.

Both research themes (Table 9.1) presented in this thesis were largely inspired by many
works in Bayesian deep learning, especially by the work of two of my lab alumnus, Yarin
Gal [74] and Yingzhen Li [176]. Both of their works have been widely recognized to be quite
essential to the field of modern Bayesian deep learning, as well as approximate inference.
In some sense, the works presented in this thesis can also be treated as the “reverse" of
typical Bayesian deep learning paradigms. In Bayesian deep learning, scalable approximate
inference algorithms are usually developed and applied for specific deep learning models,
such as deep neural networks for regression and classification. On the contrary, we utilized
the ideas from (Bayesian) deep learning to help propose new directions and develop new
approaches of Bayesian approximate inference. Examples of this paradigm can be found in
many places of the thesis, for instance:

• In Part A, the research question of performing inference in the function space is largely
motivated by analyzing the pathologies of model non-identifiability in neural networks.
The fact that the deep learning literature cares more about prediction functions than
the specific neural network weights motivates us to perform inference in the space of
minimal sufficient parameters, i.e., the function space.

• In the work of variational implicit processes (Chapter 4), the concept of implicit
distributions developed in deep learning (GANs) was applied to create new stochastic
process priors. The flexibility of neural networks helps us extend the existing Bayesian
non-parametric priors (GPs) to some class of more general and flexible priors, namely
the implicit processes. Furthermore, we developed a wake-sleep approximate inference
procedure for implicit processes, which is a method that is generalized from the
Helmholtz machines in deep unsupervised learning literature.

• In the work of functional variational inference (Chapter 5), we further generalize the
idea proposed in Chapter 4, to a more general method that performs non-Gaussian
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approximations under the framework of variational inference. One of the defining
features of this work is that it allows efficient and scalable estimation of the (grid-)
functional KL divergence, which is due to the VAE parameterization of the non-
Gaussian coefficients, {as}1≤s≤S. The introduction of such deep learning structures
not only allows us to specify rich posterior approximations in function space, but also
to avoid using computational costly gradient estimators such as SSGEs.

• Part B is solely based on the idea of using deep generative models to quantify missing
data uncertainty, perform multiple imputations, and acquire new information. The
empirical success in the work of EDDI (Chapter 7) also benefits a lot from many
innovations from the deep learning literature. First, the neural network decoder used
by the partial VAE allows us to represent expressive distributions for accurate density
estimation. Second, the proposed partial amortization method is based on the point-net
structures in point clouds modeling, which enables us to handle inference queries
of 2D different possible combinations of missing patterns. Last but not the least,
the efficient information reward estimation method is only possible due to the latent
representations provided by the encoder-decoder structures of VAEs.

• Finally, the introduction of deep neural networks to missing data imputation does
introduce certain pathologies due to model non-identification. Therefore, in Chapter 8,
this problem is further studied by analyzing the sufficient conditions of identifiability
for generative models under MNAR assumption.

In this thesis, we have proposed a number of new directions and new approaches in
Bayesian inference, by introducing ideas from the deep learning literature to approximate
inference and Bayesian machine learning. All these new advances would not be possible
without the recent developments of deep learning methods in the past decades. Therefore,
the new directions discussed in this thesis also open leads to future works, as detailed in the
next section.

9.2 Future research questions for function space inference

9.2.1 Function space inference beyond VI

Our contributions in function space inference are mainly based on variational inference, i.e.,
constructing algorithms that minimize (grid-) functional KL divergences between stochastic
processes. Nevertheless, the way that we define the grid-functional KL divergence in Chapter
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5 is constructive: we take the KL divergence on finite measure points, and marginalize out
the measure points w.r.t. n and Xn. This gives us a valid divergence in function space. The
same approach can be used to define function space variants of other divergences, such as α

divergences [113], f -divergences [351], χ-divergences [60], etc. It would be interesting to
see how different divergence measures will impact the behavior of inference algorithms.

9.2.2 End-to-end functional divergence approximations

To some degree, the grid-functional divergence estimation method proposed in Chapter 5 is
a two-stage method: it first approximates the functional prior with stochastic process genera-
tors (SPGs) and then uses the resulting SPG as a surrogate before estimating the functional
divergence. The drawback of this approach is that the quality of the divergence estimation
is largely based on the quality of the surrogate SPG, which is not always guaranteed since
this SPG is learned via a finite number of samples drawn from the prior. Therefore, it will
be desirable to develop an end-to-end divergence estimation method that can be directly
computed using samples from the prior. One possibility is to develop the function space
variant of Stein discrepancy [191–193], which is a special case of the integral probability
metric, which is commonly used for quantifying differences between a probability measure
and a set of samples.

9.2.3 Function space VI for BNNs

The two function space inference methods presented in this thesis are developed for general
purposes and can be applied to functional priors that are not limited to BNNs. However, it
would be interesting to develop FVI algorithms that are specifically designed for BNNs. This
would allow us to take advantage of the structures of BNNs, such that further algorithmic
simplifications and accelerations can be established. Moreover, the dimension reduction
methods for BNNs discussed in in Chapter 2 Section 2.3.2 [51, 131, 64] are naturally
compatible with our functional variational inference (Chapter 5). The reason for this is that
their low dimensional representations can be used to efficiently estimate the grid-functional
KL divergences using latent space approximations similar to Proposition 5.5.

9.2.4 Theoretical properties of FVI

The functional divergence estimation method proposed in Chapter 5 is a combination of
different approximation techniques, such as surrogate approximation of the prior, MC
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sampling of the measure points, MC sampling from the posterior process, as well as
debiasing techniques based on Russian roulette estimators. It is, therefore, important to carry
further theoretical analysis regarding the variance and asymptotic convergence properties
of such estimators, as well as related variance reduction techniques for function space
inference. This is a topic that is ignored by many function space inference literature and is
worth further investigation. Finally, it is also helpful to investigate the posterior consistency
and contraction rates of function space inference methods (assuming all approximations are
accurate), and compare with the corresponding contraction rates of weight-space VI [27].

9.3 Future directions for generative modeling under miss-
ing data uncertainty

9.3.1 Fast approximations and stop criterion for large-scale informa-
tion acquisition

In the EDDI framework introduced in Chapter 9, the computational time complexity for
active information acquisition is O(D2 logD), where D is the dimension of features in each
data point. This is too demanding for problems with high dimensional features, such as
time-series clinical data, recommender systems data, and image data, etc. Most recently,
our preliminary work of [106] proposed a new acceleration strategy designed specifically
for symptom-based self-diagnosis problems, which allows us to apply the EDDI framework
to large healthcare datasets. The acceleration strategy is based on irrelevant symptom
identification, fast information reward approximation, and an early stopping criterion by
monitoring the posterior (missing data) uncertainty levels. When combined together, we are
able to outperform state-of-the-art reinforcement learning baselines for self-diagnosis. The
empirical success of such acceleration strategies motivates us to further develop large-scale
information acquisition methods for general tasks beyond self-diagnosis.

9.3.2 Learning hierarchical Bayesian deep generative models under
missing data

Deep neural networks are the key ingredient of deep generative models, which enables us
to process a massive amount of unlabelled raw data. Therefore, similar to the supervised
learning case, it is also equivalently important to quantify the parameter uncertainties of these
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neural networks. Also, it has been argued [86] that such epistemic uncertainty in generative
models is crucial to handling the ice-start problem, where there is little or no training data
from the beginning. Therefore, it is desirable to also assume a prior on the generative
model parameters θθθ , and perform approximate inference over both model parameters θθθ

and the latent variables, z. Unfortunately, this would add heavy computational burdens
to VAE-like amortized inference methods: imagine up to millions of distributions over
deep neural net weights, each having complex interactions with latent variables {z}. When
applying amortized inference to this case, such correlations between θθθ and z can be difficult
to model using inference networks. In the preliminary work of [86], such interactions
are ignored by applying a mean-field approximation. However, such approximations will
be quite limited, especially when applied to more complex models (such as hierarchical
generative models). Therefore, one possible future direction is to investigate how to perform
learning and inference for such hierarchical Bayesian generative models under missing
data. A potentially promising direction is to combine (Hamiltonian) MCMC methods and
variational inference for specific generative models, to demystify the correlations between θθθ

and z.

9.3.3 Deep generative models for partially observed, mixed type tabu-
lar data.

In the deep learning literature, deep generative models such as VAEs are typically applied to
standard homogeneous datasets in which each data dimension has a similar type and similar
statistical properties (e.g., consider spatial or temporal correlations found in images and
videos). However, many real-world datasets are tabular datasets, which are heterogeneous
and contain variables with different types. For instance, in healthcare applications, a patient
record may contain demographic information such as nationality (which is of categorical
type), age (which is ordinal), and height (which is continuous). In our work in Part B,
we have demonstrated that deep generative models can also be successfully applied to
partially observed tabular datasets, which opens up new possibilities that broaden the range
of applications where deep generative models can be deployed. However, our treatment
of mixed-type data is quite ad-hoc: we simply convert all variables into continuous type
variables and apply Partial VAEs with gaussian likelihoods to the processed data. A more
principled way of learning from tabular data is to treat each different variable type correctly
and apply the different likelihood functions for each type (e.g. Gaussian likelihoods for
real-valued variables and Bernoulli likelihoods for binary variables). In our preliminary
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work in [201], we argue that naively applying VAEs to such mixed-type heterogeneous
data can lead to unsatisfying results. The reason for this is that the contribution that each
likelihood makes to the training objective can be very different, leading to challenging
optimization problems in which some data dimensions may be poorly-modeled in favor of
others. In the same paper, we proposed a preliminary two-stage solution to this problem,
by first learning a homogeneous representation of each heterogeneous variable, and then
learning a partial VAE over those heterogeneous representations. Nevertheless, it is still
an open question how to develop extensions of deep generative models to properly handle
partially observed, mixed typed tabular datasets.

9.3.4 Extending identifiability results for deep generative models under
missing data.

In Chapter 8, we have studied certain sets of sufficient conditions for the identifiability
of generative models under MNAR. To some degree, our proposed conditions are “meta”
conditions, in the sense that these sufficient conditions rely on the subset-identifiability of
the base model, pθθθ (x). While such setting is convenient to work with in practice, our results
are naturally restricted by the limitations of the specific base model, pθθθ (x). For example,
we mainly used identifiable VAE models [146] as the base model, which requires a set of
fully observed auxiliary variables (V ), which is often quite hard to obtain, especially in
applications such as recommender systems and surveys. Therefore, a future direction would
be to lift such constraints.

9.4 Interplay between the techniques developed in Theme
A and Theme B

As summarized in Table 9.1, each of Theme A and Theme B covers quite a different set of
topics, methodologies, and applications. Due to this reason, these materials are organized and
presented separately in this thesis. Nevertheless, we do believe that the techniques developed
under each individual theme will also benefit the other one. Therefore, one possible direction
for future work is to further explore such interplay between these two themes. For example,
similar to the approach developed in Gaussian latent variable models (GPLVMs) [165],
the function space inference method in Theme A can also be used to quantify epistemic
uncertainty in Bayesian deep generative models. This may subsequently help improve the
missing data imputation and decision making of Theme B. Also, it would also be interesting
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to investigate how function space inference methods would impact the model identifiability
and asymptotic convergence properties of the deep generative models under MNAR from
Theme B. Finally, models such as implicit processes, or Bayesian regression models trained
by FVI can also be trivially combined with Partial VAE to perform active feature acquisition.
This can be done via the factorization p(xφ ,x\xφ ,z) = p(x\xφ ,z)p(xφ |z,x\xφ ) , where
the term p(xφ |z,x\xφ ) can be modelled by a Bayesian regression model. By monitoring
the uncertainty level on both z and xφ , we can also establish an optimal stop criterion for
active information acquisition.



Bibliography

[1] (2005). National health and nutrition examination survey.

[2] Agakov, F. V. and Barber, D. (2004). An auxiliary variational method. In International
Conference on Neural Information Processing, pages 561–566. Springer.

[3] Aitchison, L. (2020). A statistical theory of cold posteriors in deep neural networks. In
International Conference on Learning Representations.

[4] Al-Shedivat, M., Wilson, A. G., Saatchi, Y., Hu, Z., and Xing, E. P. (2017). Learning
scalable deep kernels with recurrent structure. The Journal of Machine Learning Research,
18(1):2850–2886.

[5] Allison, P. D. (2001). Missing data. Sage publications.

[6] Allman, E. S., Matias, C., and Rhodes, J. A. (2009). Identifiability of parameters in latent
structure models with many observed variables. The Annals of Statistics, 37(6A):3099–
3132.

[7] Andrieu, C., De Freitas, N., Doucet, A., and Jordan, M. I. (2003). An introduction to
MCMC for machine learning. Machine learning, 50(1):5–43.

[8] Anscombe, F. J., Aumann, R. J., et al. (1963). A definition of subjective probability.
Annals of mathematical statistics, 34(1):199–205.

[9] Arbuckle, J. L., Marcoulides, G. A., and Schumacker, R. E. (1996). Full information
estimation in the presence of incomplete data. Advanced structural equation modeling:
Issues and techniques, 243:277.

[10] Arenz, O., Neumann, G., and Zhong, M. (2018). Efficient gradient-free variational
inference using policy search. In International conference on machine learning, pages
234–243. PMLR.

[11] Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasserstein generative adversarial
networks. In International conference on machine learning, pages 214–223. PMLR.

[12] Asuncion, A. and Newman, D. (2007). UCI machine learning repository.

[13] Bahadur, R. R. (1954). Sufficiency and statistical decision functions. The annals of
mathematical Statistics, pages 423–462.



224 Bibliography

[14] Ball, K. (1992). Eigenvalues of euclidean distance matrices. Journal of Approximation
Theory, 68(1):74–82.

[15] Balog, M., Lakshminarayanan, B., Ghahramani, Z., Roy, D. M., and Teh, Y. W. (2016).
The mondrian kernel. In Proceedings of the Thirty-Second Conference on Uncertainty in
Artificial Intelligence, pages 32–41.

[16] Barankin, E. (1961). Sufficient parameters: solution of the minimal dimensionality
problem. The Annals of Mathematical Statistics, pages 91–118.

[17] Barber, D. and Bishop, C. M. (1998). Ensemble learning in Bayesian neural networks.
Nato ASI Series F Computer and Systems Scieneces, 168:215–238.

[18] Baxter, B. (1994). Norm estimates for inverses of Toeplitz distance matrices. Journal
of Approximation Theory, 79(2):222–242.

[19] Beal, M. J. (2003). Variational algorithms for approximate Bayesian inference. Uni-
versity of London, University College London (United Kingdom).

[20] Beaumont, M. A., Cornuet, J.-M., Marin, J.-M., and Robert, C. P. (2009). Adaptive
approximate Bayesian computation. Biometrika, 96(4):983–990.

[21] Beck, D. and Cohn, T. (2017). Learning kernels over strings using Gaussian pro-
cesses. In Proceedings of the Eighth International Joint Conference on Natural Language
Processing (Volume 2: Short Papers), volume 2, pages 67–73.

[22] Bengio, Y. (2009). Learning deep architectures for AI. Foundations and trends® in
Machine Learning, 2(1):1–127.

[23] Bengio, Y., Delalleau, O., and Le Roux, N. (2005). The curse of dimensionality for
local kernel machines. Techn. Rep, 1258.

[24] Berger, J. O. (2013). Statistical decision theory and Bayesian analysis. Springer
Science & Business Media.

[25] Berk, R. H. (1970). Consistency a posteriori. The Annals of Mathematical Statistics,
pages 894–906.

[26] Bernardo, J. M. (1979). Expected information as expected utility. The Annals of
Statistics, pages 686–690.

[27] Bhattacharya, S., Liu, Z., and Maiti, T. (2020). Variational Bayes neural network: Pos-
terior consistency, classification accuracy and computational challenges. arXiv preprint
arXiv:2011.09592.

[28] Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent dirichlet allocation. Journal of
machine Learning research, 3(Jan):993–1022.

[29] Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wierstra, D. (2015). Weight
uncertainty in neural network. In International conference on machine learning, pages
1613–1622. PMLR.



Bibliography 225

[30] Bonassi, F. V., West, M., et al. (2015). Sequential Monte Carlo with adaptive weights
for approximate Bayesian computation. Bayesian Analysis, 10(1):171–187.

[31] Bornschein, J. and Bengio, Y. (2014). Reweighted wake-sleep. arXiv:1406.2751.

[32] Botev, A., Ritter, H., and Barber, D. (2017). Practical Gauss-Newton optimisation
for deep learning. In International Conference on Machine Learning, pages 557–565.
PMLR.

[33] Bottou, L. et al. (1998). Online learning and stochastic approximations. On-line
learning in neural networks, 17(9):142.

[34] Bradshaw, J., Matthews, A. G. d. G., and Ghahramani, Z. (2017). Adversarial examples,
uncertainty, and transfer testing robustness in Gaussian process hybrid deep networks.
arXiv:1707.02476.

[35] Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan,
A., Shyam, P., Sastry, G., Askell, A., et al. (2020). Language models are few-shot learners.
Advances in neural information processing systems, 33:1877–1901.

[36] Bui, T., Hernández-Lobato, D., Hernandez-Lobato, J., Li, Y., and Turner, R. (2016a).
Deep Gaussian processes for regression using approximate expectation propagation. In
International Conference on Machine Learning, pages 1472–1481.

[37] Bui, T. D. and Turner, R. E. (2014). Tree-structured Gaussian process approximations.
In Advances in Neural Information Processing Systems, pages 2213–2221.

[38] Bui, T. D., Yan, J., and Turner, R. E. (2016b). A unifying framework for sparse
Gaussian process approximation using power expectation propagation. arXiv:1605.07066.

[39] Burt, D. R., Ober, S. W., Garriga-Alonso, A., and van der Wilk, M. (2020). Under-
standing variational inference in function-space. arXiv preprint arXiv:2011.09421.

[40] Casert, C., Mills, K., Vieijra, T., Ryckebusch, J., and Tamblyn, I. (2020). Optical
lattice experiments at unobserved conditions and scales through generative adversarial
deep learning. arXiv preprint arXiv:2002.07055.

[41] Chen, R. T., Behrmann, J., Duvenaud, D. K., and Jacobsen, J.-H. (2019). Residual
flows for invertible generative modeling. In Advances in Neural Information Processing
Systems, pages 9916–9926.

[42] Cho, Y. and Saul, L. K. (2009). Kernel methods for deep learning. In Advances in
Neural Information Processing Systems, pages 342–350.

[43] Collobert, R. and Weston, J. (2008). A unified architecture for natural language
processing: Deep neural networks with multitask learning. In Proceedings of the 25th
International Conference on Machine Learning, pages 160–167. ACM.

[44] Cover, T. M. and Thomas, J. A. (2012). Elements of information theory. John Wiley &
Sons.



226 Bibliography

[45] Cox, R. T. (1946). Probability, frequency and reasonable expectation. American
journal of physics, 14(1):1–13.

[46] Cunningham, J. P., Shenoy, K. V., and Sahani, M. (2008). Fast Gaussian process
methods for point process intensity estimation. In Proceedings of the 25th International
Conference on Machine Learning, pages 192–199. ACM.

[47] Cutajar, K., Bonilla, E. V., Michiardi, P., and Filippone, M. (2017). Random feature
expansions for deep Gaussian processes. In International Conference on Machine
Learning, pages 884–893. PMLR.

[48] Dai, B. and Wipf, D. (2019). Diagnosing and enhancing VAE models. In International
Conference on Learning Representations.

[49] Damianou, A. and Lawrence, N. (2013). Deep Gaussian processes. In Artificial
Intelligence and Statistics, pages 207–215.

[50] Daniely, A., Frostig, R., and Singer, Y. (2016). Toward deeper understanding of neural
networks: The power of initialization and a dual view on expressivity. In Advances in
Neural Information Processing Systems, pages 2253–2261.

[51] Daxberger, E., Nalisnick, E., Allingham, J. U., Antorán, J., and Hernández-Lobato,
J. M. (2021). Bayesian deep learning via subnetwork inference. In International Confer-
ence on Machine Learning, pages 2510–2521. PMLR.

[52] Dayan, P., Hinton, G. E., Neal, R. M., and Zemel, R. S. (1995). The helmholtz machine.
Neural computation, 7(5):889–904.

[53] De Finetti, B. (1937). La prévision: ses lois logiques, ses sources subjectives. In
Annales de l’institut Henri Poincaré, volume 7, pages 1–68.

[54] Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977a). Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series B
(Methodological), pages 1–38.

[55] Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977b). Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical Society: Series B
(Methodological), 39(1):1–22.

[56] Denker, J. and Lecun, Y. (1991). Transforming neural-net output levels to probability
distributions. In Advances in Neural Information Processing Systems 3. Citeseer.

[Depeweg et al.] Depeweg, S., Hernández-Lobato, J. M., Doshi-Velez, F., and Udluft,
S. Learning and policy search in stochastic dynamical systems with Bayesian neural
networks. In 5th International Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track Proceedings.

[58] Devlin, J., Chang, M., Lee, K., and Toutanova, K. (2019). BERT: pre-training of deep
bidirectional transformers for language understanding. In Burstein, J., Doran, C., and
Solorio, T., editors, Proceedings of the 2019 Conference of the North American Chapter of



Bibliography 227

the Association for Computational Linguistics: Human Language Technologies, NAACL-
HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171–4186. Association for Computational Linguistics.

[59] Dheeru, D. and Karra Taniskidou, E. (2017). UCI machine learning repository.

[60] Dieng, A. B., Tran, D., Ranganath, R., Paisley, J., and Blei, D. (2017). Variational
inference via χ-upper bound minimization. Advances in Neural Information Processing
Systems, 30.

[61] Diggle, P. J. and Gratton, R. J. (1984). Monte Carlo methods of inference for implicit
statistical models. Journal of the Royal Statistical Society. Series B (Methodological),
pages 193–227.

[62] Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., and Darrell, T.
(2014). Decaf: A deep convolutional activation feature for generic visual recognition. In
ICML, pages 647–655.

[63] Doob, J. L. (1949). Applications of the theory of martingales. In Le Calcul des
Probabilite´s et ses Applications, 13, Paris. Colloques Internationaux du Centre National
de la Recherche Scientifique.

[64] Dusenberry, M., Jerfel, G., Wen, Y., Ma, Y., Snoek, J., Heller, K., Lakshminarayanan,
B., and Tran, D. (2020). Efficient and scalable Bayesian neural nets with rank-1 factors.
In International conference on machine learning, pages 2782–2792. PMLR.

[65] Duvenaud, D., Lloyd, J., Grosse, R., Tenenbaum, J., and Zoubin, G. (2013). Struc-
ture discovery in nonparametric regression through compositional kernel search. In
International Conference on Machine Learning, pages 1166–1174. PMLR.

[66] Duvenaud, D. K., Maclaurin, D., Iparraguirre, J., Bombarell, R., Hirzel, T., Aspuru-
Guzik, A., and Adams, R. P. (2015). Convolutional networks on graphs for learning
molecular fingerprints. In Advances in Neural Information Processing Systems, pages
2224–2232.

[67] Enders, C. K. and Bandalos, D. L. (2001). The relative performance of full information
maximum likelihood estimation for missing data in structural equation models. Structural
equation modeling, 8(3):430–457.

[68] Farquhar, S., Smith, L., and Gal, Y. (2020). Liberty or depth: Deep Bayesian neural nets
do not need complex weight posterior approximations. Advances in Neural Information
Processing Systems, 33:4346–4357.

[69] Flam-Shepherd, D., Requeima, J., and Duvenaud, D. (2017). Mapping Gaussian
process priors to Bayesian neural networks. NIPS Bayesian deep learning workshop.

[70] Foong, A., Burt, D., Li, Y., and Turner, R. (2020). On the expressiveness of approximate
inference in Bayesian neural networks. Advances in Neural Information Processing
Systems, 33:15897–15908.



228 Bibliography

[71] Foong, A. Y., Li, Y., Hernández-Lobato, J. M., and Turner, R. E. (2019). ’in-
between’uncertainty in Bayesian neural networks. arXiv preprint arXiv:1906.11537.

[72] Fortuin, V., Garriga-Alonso, A., Wenzel, F., Rätsch, G., Turner, R., van der Wilk,
M., and Aitchison, L. (2021). Bayesian neural network priors revisited. arXiv preprint
arXiv:2102.06571.

[73] Fu, M. C. (2006). Gradient estimation. Handbooks in operations research and
management science, 13:575–616.

[74] Gal, Y. (2016). Uncertainty in deep learning. PhD thesis, PhD thesis, University of
Cambridge.

[75] Gal, Y. and Ghahramani, Z. (2016a). Dropout as a Bayesian approximation: Repre-
senting model uncertainty in deep learning. In International Conference on Machine
Learning, pages 1050–1059.

[76] Gal, Y. and Ghahramani, Z. (2016b). A theoretically grounded application of dropout
in recurrent neural networks. In Advances in Neural Information Processing Systems,
pages 1019–1027.

[77] Gal, Y., Hron, J., and Kendall, A. (2017). Concrete dropout. Advances in neural
information processing systems, 30.

[78] Gal, Y. and Turner, R. (2015). Improving the Gaussian process sparse spectrum ap-
proximation by representing uncertainty in frequency inputs. In International Conference
on Machine Learning, pages 655–664.

[79] Garnelo, M., Rosenbaum, D., Maddison, C., Ramalho, T., Saxton, D., Shanahan, M.,
Teh, Y. W., Rezende, D., and Eslami, S. A. (2018a). Conditional neural processes. In
International Conference on Machine Learning, pages 1704–1713. PMLR.

[80] Garnelo, M., Schwarz, J., Rosenbaum, D., Viola, F., Rezende, D. J., Eslami, S., and
Teh, Y. W. (2018b). Neural processes. arXiv preprint arXiv:1807.01622.

[81] Gershman, S. J., Hoffman, M. D., and Blei, D. M. (2012). Nonparametric variational
inference. In Proceedings of the 29th International Coference on Machine Learning,
pages 235–242.

[82] Ghalebikesabi, S., Cornish, R., Holmes, C., and Kelly, L. (2021). Deep generative miss-
ingness pattern-set mixture models. In International Conference on Artificial Intelligence
and Statistics, pages 3727–3735. PMLR.

[83] Gilboa, I. (2009). Theory of decision under uncertainty, volume 45. Cambridge
university press.

[84] Globerson, A. and Livni, R. (2016). Learning infinite-layer networks: beyond the
kernel trick. arxiv preprint. arXiv preprint arXiv:1606.05316.

[85] Gong, W., Li, Y., and Hernández-Lobato, J. M. (2021a). Sliced kernelized Stein
discrepancy. In International Conference on Learning Representations.



Bibliography 229

[86] Gong, W., Tschiatschek, S., Nowozin, S., Turner, R. E., Hernández-Lobato, J. M., and
Zhang, C. (2019). Icebreaker: Element-wise efficient information acquisition with a
Bayesian deep latent Gaussian model.

[87] Gong, Y., Hajimirsadeghi, H., He, J., Durand, T., and Mori, G. (2021b). Variational
selective autoencoder: Learning from partially-observed heterogeneous data. In Interna-
tional Conference on Artificial Intelligence and Statistics, pages 2377–2385. PMLR.

[88] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., and Bengio, Y. (2014). Generative adversarial nets. In Advances in Neural
Information Processing Systems, pages 2672–2680.

[89] Gopalan, P. K., Charlin, L., and Blei, D. (2014). Content-based recommendations with
poisson factorization. In Advances in Neural Information Processing Systems, pages
3176–3184.

[90] Gordon, J., Bruinsma, W. P., Foong, A. Y. K., Requeima, J., Dubois, Y., and Turner,
R. E. (2020). Convolutional conditional neural processes. In International Conference
on Learning Representations.

[91] Graves, A. (2011). Practical variational inference for neural networks. In Advances in
Neural Information Processing Systems, pages 2348–2356.

[92] Gray, R. M. (2011). Entropy and information theory. Springer Science & Business
Media.

[93] Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B., and Smola, A. (2012). A
kernel two-sample test. The Journal of Machine Learning Research, 13(1):723–773.

[94] Grünwald, P. and Van Ommen, T. (2017). Inconsistency of Bayesian inference for
misspecified linear models, and a proposal for repairing it. Bayesian Analysis, 12(4):1069–
1103.

[95] Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. (2017). On calibration of modern
neural networks. In International Conference on Machine Learning, pages 1321–1330.
PMLR.

[96] Guo, F., Wang, X., Fan, K., Broderick, T., and Dunson, D. B. (2016). Boosting
variational inference. arXiv preprint arXiv:1611.05559.

[97] Guss, W. H. (2016). Deep function machines: Generalized neural networks for
topological layer expression. arXiv preprint arXiv:1612.04799.

[98] Hachmann, J., Olivares-Amaya, R., Jinich, A., Appleton, A. L., Blood-Forsythe, M. A.,
Seress, L. R., Roman-Salgado, C., Trepte, K., Atahan-Evrenk, S., Er, S., et al. (2014).
Lead candidates for high-performance organic photovoltaics from high-throughput quan-
tum chemistry–the harvard clean energy project. Energy & Environmental Science,
7(2):698–704.



230 Bibliography

[99] Hamesse, C., Ackermann, P., Kjellström, H., and Zhang, C. (2018). Simultaneous
measurement imputation and outcome prediction for achilles tendon rupture rehabilitation.
In ICML/IJCAI Joint Workshop on Artificial Intelligence in Health.

[100] Han, S., Liao, X., Dunson, D., and Carin, L. (2016). Variational Gaussian copula
inference. In Artificial Intelligence and Statistics, pages 829–838. PMLR.

[101] Harsanyi, J. C. (1978). Bayesian decision theory and utilitarian ethics. The American
Economic Review, 68(2):223–228.

[102] Harsanyi, J. C. (1979). Bayesian decision theory, rule utilitarianism, and arrow’s
impossibility theorem. Theory and Decision, 11(3):289–317.

[103] Harutyunyan, H., Khachatrian, H., Kale, D. C., Ver Steeg, G., and Galstyan, A.
(2019). Multitask learning and benchmarking with clinical time series data. Scientific
data, 6(1):1–18.

[104] Hazan, T. and Jaakkola, T. (2015). Steps toward deep kernel methods from infinite
neural networks. arXiv:1508.05133.

[105] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778.

[106] He, W., Mao, X., Ma, C., Huang, Y., Hernàndez-Lobato, J. M., and Chen, T. (2022).
BSODA: A bipartite scalable framework for online disease diagnosis. In Proceedings of
the ACM Web Conference 2022, pages 2511–2521.

[107] Heckman, J. J. (1979). Sample selection bias as a specification error. Econometrica:
Journal of the econometric society, pages 153–161.

[108] Heinemann, U., Livni, R., Eban, E., Elidan, G., and Globerson, A. (2016). Improper
deep kernels. In Artificial Intelligence and Statistics, pages 1159–1167.

[109] Hensman, J., Fusi, N., and Lawrence, N. D. (2013). Gaussian processes for big data.
arXiv:1309.6835.

[110] Hernández-Lobato, J. M. (2010). Balancing flexibility and robustness in machine
learning: semi-parametric methods and sparse linear models.

[111] Hernández-Lobato, J. M. and Adams, R. (2015). Probabilistic backpropagation for
scalable learning of Bayesian neural networks. In International Conference on Machine
Learning, pages 1861–1869.

[112] Hernández-Lobato, J. M., Houlsby, N., and Ghahramani, Z. (2014). Probabilistic
matrix factorization with non-random missing data. In International Conference on
Machine Learning, pages 1512–1520. PMLR.

[113] Hernández-Lobato, J. M., Li, Y., Rowland, M., Hernández-Lobato, D., Bui, T., and
Turner, R. E. (2016). Black-box α-divergence minimization.



Bibliography 231

[114] Hinton, G. E., Dayan, P., Frey, B. J., and Neal, R. M. (1995). The" wake-sleep"
algorithm for unsupervised neural networks. Science, 268(5214):1158.

[115] Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006). A fast learning algorithm for
deep belief nets. Neural computation, 18(7):1527–1554.

[116] Hinton, G. E. and Salakhutdinov, R. R. (2008). Using deep belief nets to learn
covariance kernels for Gaussian processes. In Advances in Neural Information Processing
Systems, pages 1249–1256.

[117] Hinton, G. E. and Van Camp, D. (1993). Keeping the neural networks simple by
minimizing the description length of the weights. In Proceedings of the Sixth Annual
Conference on Computational Learning Theory, pages 5–13. ACM.

[118] Hoffman, M. D., Blei, D. M., Wang, C., and Paisley, J. (2013). Stochastic variational
inference. The Journal of Machine Learning Research, 14(1):1303–1347.

[119] Horton, N. J. and Lipsitz, S. R. (2001). Multiple imputation in practice: comparison
of software packages for regression models with missing variables. The American
Statistician, 55(3):244–254.

[120] Horvitz, D. G. and Thompson, D. J. (1952). A generalization of sampling without
replacement from a finite universe. Journal of the American statistical Association,
47(260):663–685.

[121] Houlsby, N., Huszár, F., Ghahramani, Z., and Lengyel, M. (2011). Bayesian active
learning for classification and preference learning. arXiv preprint arXiv:1112.5745.

[122] Hron, J., Matthews, A., and Ghahramani, Z. (2018). Variational Bayesian dropout:
pitfalls and fixes. In International Conference on Machine Learning, pages 2019–2028.
PMLR.

[123] Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K. Q. (2017). Densely
connected convolutional networks. In 017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 2261–2269. IEEE.

[124] Huang, S.-J., Xu, M., Xie, M.-K., Sugiyama, M., Niu, G., and Chen, S. (2018). Active
feature acquisition with supervised matrix completion. arXiv preprint arXiv:1802.05380.

[125] Huszár, F. (2017). Variational inference using implicit distributions. arXiv preprint
arXiv:1702.08235.

[126] Ibrahim, J. G., Lipsitz, S. R., and Chen, M.-H. (1999). Missing covariates in general-
ized linear models when the missing data mechanism is non-ignorable. Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 61(1):173–190.

[127] Immer, A., Korzepa, M., and Bauer, M. (2021). Improving predictions of Bayesian
neural nets via local linearization. In International Conference on Artificial Intelligence
and Statistics, pages 703–711. PMLR.



232 Bibliography

[128] Ipsen, N. B., Mattei, P.-A., and Frellsen, J. (2021). not-{miwae}: Deep generative
modelling with missing not at random data. In International Conference on Learning
Representations.

[129] Itô, K. (1984). An Introduction to Probability Theory. Cambridge University Press.

[130] Iwata, T. and Ghahramani, Z. (2017). Improving output uncertainty estimation and
generalization in deep learning via neural network Gaussian processes. arXiv:1707.05922.

[131] Izmailov, P., Maddox, W. J., Kirichenko, P., Garipov, T., Vetrov, D., and Wilson,
A. G. (2020). Subspace inference for Bayesian deep learning. In Uncertainty in Artificial
Intelligence, pages 1169–1179. PMLR.

[132] Izmailov, P., Vikram, S., Hoffman, M. D., and Wilson, A. G. G. (2021). What are
Bayesian neural network posteriors really like? In International conference on machine
learning, pages 4629–4640. PMLR.

[133] Jain, P., Meka, R., and Dhillon, I. S. (2010). Guaranteed rank minimization via
singular value projection. In Advances in Neural Information Processing Systems.

[134] Jakobsen, J. C., Gluud, C., Wetterslev, J., and Winkel, P. (2017). When and how
should multiple imputation be used for handling missing data in randomised clinical
trials–a practical guide with flowcharts. BMC medical research methodology, 17(1):1–10.

[135] Jang, E., Gu, S., and Poole, B. (2017). Categorical reparameterization with Gumbel-
Softmax. In International Conference on Learning Representations.

[136] Jannach, D., Zanker, M., Felfernig, A., and Friedrich, G. (2010). Recommender
systems: an introduction. Cambridge University Press.

[137] Jaynes, E. T. (2003). Probability theory: The logic of science. Cambridge university
press.

[138] Jeffreys, H. (1998). The theory of probability. OUP Oxford.

[139] Johnson, A. E., Pollard, T. J., Shen, L., Li-wei, H. L., Feng, M., Ghassemi, M., Moody,
B., Szolovits, P., Celi, L. A., and Mark, R. G. (2016). Mimic-iii, a freely accessible
critical care database. Scientific Data, 3:160035.

[140] Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., and Saul, L. K. (1999). An introduction
to variational methods for graphical models. Machine learning, 37(2):183–233.

[141] Kahn, H. (1955). Use of different Monte Carlo sampling techniques.

[142] Kalchbrenner, N. and Blunsom, P. (2013). Recurrent continuous translation models.
In EMNLP, volume 3, page 413.

[143] Keerin, P., Kurutach, W., and Boongoen, T. (2012). Cluster-based KNN missing
value imputation for dna microarray data. In 2012 IEEE International Conference on
Systems, Man, and Cybernetics (SMC), pages 445–450. IEEE.



Bibliography 233

[144] Keshavan, R. H., Montanari, A., and Oh, S. (2010). Matrix completion from noisy
entries. Journal of Machine Learning Research.

[145] Khan, M. E. E., Immer, A., Abedi, E., and Korzepa, M. (2019). Approximate
inference turns deep networks into Gaussian processes. Advances in neural information
processing systems, 32.

[146] Khemakhem, I., Kingma, D., Monti, R., and Hyvarinen, A. (2020). Variational
autoencoders and nonlinear ICA: A unifying framework. In International Conference on
Artificial Intelligence and Statistics, pages 2207–2217. PMLR.

[147] Kim, H., Mnih, A., Schwarz, J., Garnelo, M., Eslami, A., Rosenbaum, D., Vinyals,
O., and Teh, Y. W. (2019). Attentive neural processes. In International Conference on
Learning Representations.

[148] Kingma, D. P. and Ba, J. L. (2015). Adam: a method for stochastic optimization. In
International Conference on Learning Representations, pages 1–13.

[149] Kingma, D. P. and Welling, M. (2013). Auto-encoding variational Bayes.
arXiv:1312.6114.

[150] Kingma, D. P. and Welling, M. (2014). Auto-encoding variational Bayes. In Interna-
tional Conference on Learning Representation.

[151] Kleijn, B. J. and van der Vaart, A. W. (2012). The Bernstein-von-Mises theorem
under misspecification. Electronic Journal of Statistics, 6:354–381.

[152] Kleijn, B. J. K. and van der Vaart, A. W. (2006). Misspecification in infinite-
dimensional Bayesian statistics. The Annals of Statistics, 34(2).

[153] Knapik, B. (2013). Bayesian Asymptotics: Inverse Problems and Irregular Mod-
els. PhD thesis, Vrije Universiteit Amsterdam. Naam instelling promotie: VU Vrije
Universiteit Naam instelling onderzoek: VU Vrije Universiteit.

[154] Koller, D. and Friedman, N. (2009). Probabilistic graphical models: principles and
techniques. MIT press.

[155] Kolmogorov, A. (1950). Foundations of the theory of probability. Chelsea Publishing
Company.

[156] Koopmans, T. C. and Reiersol, O. (1950). The identification of structural characteris-
tics. The Annals of Mathematical Statistics, 21(2):165–181.

[157] Körding, K. P. and Wolpert, D. M. (2004). Bayesian integration in sensorimotor
learning. Nature, 427(6971):244–247.

[158] Körding, K. P. and Wolpert, D. M. (2006). Bayesian decision theory in sensorimotor
control. Trends in cognitive sciences, 10(7):319–326.

[159] Krauth, K., Bonilla, E. V., Cutajar, K., and Filippone, M. (2016). AutoGP: Exploring
the capabilities and limitations of Gaussian process models. arXiv:1610.05392.



234 Bibliography

[160] Kristiadi, A., Hein, M., and Hennig, P. (2020). Being Bayesian, even just a bit, fixes
overconfidence in Relu networks. In International Conference on Machine Learning,
pages 5436–5446. PMLR.

[161] Krizhevsky, A., Hinton, G., et al. (2009). Learning multiple layers of features from
tiny images.

[162] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with
deep convolutional neural networks. In Advances in Neural Information Processing
Systems, pages 1097–1105.

[163] Kullback, S. and Leibler, R. A. (1951). On information and sufficiency. The annals
of mathematical statistics, 22(1):79–86.

[164] Laplace, P. S. (1820). Théorie analytique des probabilités. Courcier.

[165] Lawrence, N. D. (2004). Gaussian process latent variable models for visualisation of
high dimensional data. In Advances in Neural Information Processing Systems, pages
329–336.

[166] Lázaro-Gredilla, M., Quiñonero-Candela, J., Rasmussen, C. E., and Figueiras-Vidal,
A. R. (2010). Sparse spectrum Gaussian process regression. Journal of Machine Learning
Research, 11(Jun):1865–1881.

[167] Le, Q. V. (2013). Building high-level features using large scale unsupervised learning.
In 2013 IEEE International Conference on Acoustics, Speech and Signal Processing,
pages 8595–8598. IEEE.

[168] Le Cam, L. (2012). Asymptotic methods in statistical decision theory. Springer
Science & Business Media.

[169] Le Roux, N. and Bengio, Y. (2007). Continuous neural networks. In Artificial
Intelligence and Statistics, pages 404–411.

[170] Lean, J., Beer, J., and Bradley, R. (1995). Reconstruction of solar irradiance since
1610: Implications for climate change. Geophysical Research Letters, 22(23):3195–3198.

[171] LeCun, Y. (1998). The MNIST database of handwritten digits. http://yann. lecun.
com/exdb/mnist/.

[172] Lee, H. K. (2000). Consistency of posterior distributions for neural networks. Neural
Networks, 13(6):629–642.

[173] Lee, J., Sohl-dickstein, J., Pennington, J., Novak, R., Schoenholz, S., and Bahri, Y.
(2018). Deep neural networks as Gaussian processes. In International Conference on
Learning Representations.

[174] Lewenberg, Y., Bachrach, Y., Paquet, U., and Rosenschein, J. S. (2017). Knowing
what to ask: A Bayesian active learning approach to the surveying problem. In AAAI,
pages 1396–1402.



Bibliography 235

[175] Li, S. C.-X., Jiang, B., and Marlin, B. (2019). MisGAN: Learning from incomplete
data with generative adversarial networks. In International Conference on Learning
Representations.

[176] Li, Y. (2018). Approximate inference: New visions. PhD thesis, University of
Cambridge.

[177] Li, Y. and Gal, Y. (2017). Dropout inference in Bayesian neural networks with
alpha-divergences. In International conference on machine learning, pages 2052–2061.
PMLR.

[178] Li, Y., Hernández-Lobato, J. M., and Turner, R. E. (2015). Stochastic expectation
propagation. In Advances in Neural Information Processing Systems, pages 2323–2331.

[179] Li, Y. and Liu, Q. (2016). Wild variational approximations.

[180] Li, Y. and Turner, R. E. (2016). Rényi divergence variational inference. In Advances
in Neural Information Processing Systems, pages 1073–1081.

[181] Li, Y. and Turner, R. E. (2018). Gradient estimators for implicit models. In Interna-
tional Conference on Learning Representations.

[182] Li, Y., Turner, R. E., and Liu, Q. (2017). Approximate inference with amortised
MCMC. arXiv:1702.08343.

[Liang et al.] Liang, D., Charlin, L., and Blei, D. M. Causal inference for recommendation.

[184] Liang, D., Charlin, L., McInerney, J., and Blei, D. M. (2016). Modeling user exposure
in recommendation. In Proceedings of the 25th international conference on World Wide
Web, pages 951–961.

[185] Lichman, M. et al. (2013). UCI machine learning repository.

[186] Lindley, D. V. (1956). On a measure of the information provided by an experiment.
The Annals of Mathematical Statistics, pages 986–1005.

[187] Ling, G., Yang, H., Lyu, M. R., and King, I. (2012). Response aware model-based
collaborative filtering. In Proceedings of the Twenty-Eighth Conference on Uncertainty
in Artificial Intelligence, pages 501–510.

[188] Little, R. and Rubin, D. (1987). Statistical analysis with missing data. Technical
report.

[189] Little, R. J. (1993). Pattern-mixture models for multivariate incomplete data. Journal
of the American Statistical Association, 88(421):125–134.

[190] Little, R. J. and Rubin, D. B. (2019). Statistical analysis with missing data, volume
793. John Wiley & Sons.

[191] Liu, Q. and Feng, Y. (2016). Two methods for wild variational inference.
arXiv:1612.00081.



236 Bibliography

[192] Liu, Q., Lee, J. D., and Jordan, M. I. (2016). A kernelized Stein discrepancy for
goodness-of-fit tests. In Proceedings of the International Conference on Machine Learn-
ing (ICML).

[193] Liu, Q. and Wang, D. (2016). Stein variational gradient descent: A general purpose
Bayesian inference algorithm. In Advances in Neural Information Processing Systems,
pages 2370–2378.

[194] Loeve, M. (1977). In Probability Theory I-II. Springer.

[195] Louizos, C. and Welling, M. (2016). Structured and efficient variational deep learning
with matrix Gaussian posteriors. In International Conference on Machine Learning,
pages 1708–1716. PMLR.

[196] Louizos, C. and Welling, M. (2017). Multiplicative normalizing flows for variational
Bayesian neural networks. In International Conference on Machine Learning, pages
2218–2227. PMLR.

[197] Ma, C., Gong, W., Hernández-Lobato, J. M., Koenigstein, N., Nowozin, S., and
Zhang, C. (2018). Partial VAE for hybrid recommender system.

[198] Ma, C., Li, Y., and Hernández-Lobato, J. M. (2019a). Variational implicit processes.
In International Conference on Machine Learning, pages 4222–4233. PMLR.

[199] Ma, C., Tschiatschek, S., Li, Y., Turner, R., Hernandez-Lobato, J. M., and Zhang,
C. (2020a). Hm-vaes: a deep generative model for real-valued data with heterogeneous
marginals. In Symposium on Advances in Approximate Bayesian Inference, pages 1–8.
PMLR.

[200] Ma, C., Tschiatschek, S., Palla, K., Hernandez-Lobato, J. M., Nowozin, S., and Zhang,
C. (2019b). EDDI: Efficient dynamic discovery of high-value information with partial
VAE. In International Conference on Machine Learning, pages 4234–4243. PMLR.

[201] Ma, C., Tschiatschek, S., Turner, R., Hernández-Lobato, J. M., and Zhang, C. (2020b).
VAEM: a deep generative model for heterogeneous mixed type data. Advances in Neural
Information Processing Systems, 33:11237–11247.

[202] Ma, W. and Chen, G. H. (2019). Missing not at random in matrix completion:
The effectiveness of estimating missingness probabilities under a low nuclear norm
assumption. Advances in Neural Information Processing Systems, 32.

[203] MacKay, D. J. (1992a). Information-based objective functions for active data selection.
Neural computation, 4(4):590–604.

[204] MacKay, D. J. (1992b). A practical Bayesian framework for backpropagation net-
works. Neural computation, 4(3):448–472.

[205] Mackay, D. J. C. (1992). Bayesian methods for adaptive models. PhD thesis,
California Institute of Technology.



Bibliography 237

[206] Maddox, W. J., Benton, G., and Wilson, A. G. (2020). Rethinking parameter counting
in deep models: Effective dimensionality revisited. arXiv preprint arXiv:2003.02139.

[207] Marjoram, P., Molitor, J., Plagnol, V., and Tavaré, S. (2003). Markov Chain
Monte Carlo without likelihoods. Proceedings of the National Academy of Sciences,
100(26):15324–15328.

[208] Marlin, B. M. and Zemel, R. S. (2009). Collaborative prediction and ranking with
non-random missing data. In Proceedings of the third ACM conference on Recommender
systems, pages 5–12.

[209] Marsh, H. W. (1998). Pairwise deletion for missing data in structural equation models:
Nonpositive definite matrices, parameter estimates, goodness of fit, and adjusted sample
sizes. Structural Equation Modeling: A Multidisciplinary Journal, 5(1):22–36.

[210] Martens, J. (2020). New insights and perspectives on the natural gradient method.
The Journal of Machine Learning Research, 21(1):5776–5851.

[211] Martens, J. and Grosse, R. (2015). Optimizing neural networks with kronecker-
factored approximate curvature. In International conference on machine learning, pages
2408–2417. PMLR.

[212] Mattei, P.-A. and Frellsen, J. (2019). MIWAE: Deep generative modelling and
imputation of incomplete data sets. In International Conference on Machine Learning,
pages 4413–4423. PMLR.

[213] Matthews, A. G. d. G., Hensman, J., Turner, R., and Ghahramani, Z. (2016). On sparse
variational methods and the Kullback-Leibler divergence between stochastic processes.
Journal of Machine Learning Research, 51:231–239.

[214] Matthews, A. G. d. G., Rowland, M., Hron, J., Turner, R. E., and Ghahramani, Z.
(2018). Gaussian process behaviour in wide deep neural networks. arXiv:1804.11271.

[215] Matthews, A. G. d. G., Van Der Wilk, M., Nickson, T., Fujii, K., Boukouvalas, A.,
León-Villagrá, P., Ghahramani, Z., and Hensman, J. (2017). GPflow: A Gaussian process
library using tensorflow. The Journal of Machine Learning Research, 18(1):1299–1304.

[216] McCallumzy, A. K. and Nigamy, K. (1998). Employing EM and pool-based active
learning for text classification. In International Conference on Machine Learning, pages
359–367. Citeseer.

[217] Melville, P., Saar-Tsechansky, M., Provost, F., and Mooney, R. (2004). Active feature-
value acquisition for classifier induction. In International Conference on Data Mining,
pages 483–486. IEEE.

[218] Mescheder, L., Nowozin, S., and Geiger, A. (2017). Adversarial variational Bayes:
Unifying variational autoencoders and generative adversarial networks. In International
Conference on Machine Learning, pages 2391–2400. PMLR.



238 Bibliography

[219] Miao, W., Ding, P., and Geng, Z. (2016). Identifiability of normal and normal mixture
models with nonignorable missing data. Journal of the American Statistical Association,
111(516):1673–1683.

[220] Miao, W., Liu, L., Tchetgen, E. T., and Geng, Z. (2015). Identification, doubly robust
estimation, and semiparametric efficiency theory of nonignorable missing data with a
shadow variable. arXiv preprint arXiv:1509.02556.

[221] Miao, W. and Tchetgen, E. T. (2018). Identification and inference with nonignorable
missing covariate data. Statistica Sinica, 28(4):2049.

[222] Miller, A. C., Foti, N. J., and Adams, R. P. (2017). Variational boosting: Iteratively
refining posterior approximations. In International Conference on Machine Learning,
pages 2420–2429. PMLR.

[223] Minka, T. P. (2001). Expectation propagation for approximate Bayesian inference.
In Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence,
pages 362–369. Morgan Kaufmann Publishers Inc.

[224] Minka, T. P. (2004). Power EP. Technical report.

[225] Minka, T. P. (2005). Divergence measures and message passing. Technical report,
Technical report, Microsoft Research, Cambridge.

[226] Mnih, A. and Gregor, K. (2014). Neural variational inference and learning in belief
networks. In International Conference on Machine Learning, pages 1791–1799. PMLR.

[227] Mnih, A. and Rezende, D. (2016). Variational inference for Monte Carlo objectives.
In International Conference on Machine Learning, pages 2188–2196. PMLR.

[228] Mnih, A. and Salakhutdinov, R. R. (2007). Probabilistic matrix factorization. Ad-
vances in neural information processing systems, 20:1257–1264.

[229] Moens, V., Ren, H., Maraval, A., Tutunov, R., Wang, J., and Ammar, H. (2021).
Efficient semi-implicit variational inference. arXiv preprint arXiv:2101.06070.

[230] Mohamed, A.-r., Dahl, G. E., and Hinton, G. (2012). Acoustic modeling using
deep belief networks. IEEE Transactions on Audio, Speech, and Language Processing,
20(1):14–22.

[231] Mohamed, S., Rosca, M., Figurnov, M., and Mnih, A. (2020). Monte Carlo gradient
estimation in machine learning. J. Mach. Learn. Res., 21(132):1–62.

[232] Mohan, K. and Pearl, J. (2014). Graphical models for recovering probabilistic and
causal queries from missing data. Technical report.

[233] Mohan, K., Pearl, J., and Tian, J. (2013). Graphical models for inference with missing
data. Advances in neural information processing systems, 26:1277–1285.

[234] Molchanov, D., Kharitonov, V., Sobolev, A., and Vetrov, D. (2019). Doubly semi-
implicit variational inference. In The 22nd International Conference on Artificial Intelli-
gence and Statistics, pages 2593–2602. PMLR.



Bibliography 239

[235] Murphy, K. P. (2012). Machine learning: a probabilistic perspective. MIT press.

[236] Murray, I. A. (2007). Advances in Markov Chain Monte Carlo methods. University
of London.

[237] Murray, J. S. et al. (2018). Multiple imputation: a review of practical and theoretical
findings. Statistical Science, 33(2):142–159.

[238] Mustafa, M., Bard, D., Bhimji, W., Lukić, Z., Al-Rfou, R., and Kratochvil, J. M.
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