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Abstract: SAR ship detection and recognition are important components of the application of SAR
data interpretation, allowing for the continuous, reliable, and efficient monitoring of maritime ship
targets, in view of the present situation of SAR interpretation applications. On the one hand, because
of the lack of high-quality datasets, most existing research on SAR ships is focused on target detection.
Additionally, there have been few studies on integrated ship detection and recognition in complex
SAR images. On the other hand, the development of deep learning technology promotes research on
the SAR image intelligent interpretation algorithm to some extent. However, most existing algorithms
only focus on target recognition performance and ignore the model’s size and computational effi-
ciency. Aiming to solve the above problems, a lightweight model for ship detection and recognition
in complex-scene SAR images is proposed in this paper. Firstly, in order to comprehensively improve
the detection performance and deployment capability, this paper applies the YOLOv5-n lightweight
model as the baseline algorithm. Secondly, we redesign and optimize the pyramid pooling structure
to effectively enhance the target feature extraction efficiency and improve the algorithm’s operation
speed. Meanwhile, to suppress the influence of complex background interference and ships’ distribu-
tion, we integrate different attention mechanism into the target feature extraction layer. In addition,
to improve the detection and recognition performance of densely parallel ships, we optimize the
structure of the model’s prediction layer by adding an angular classification module. Finally, we
conducted extensive experiments on the newly released complex-scene SAR image ship detection
and recognition dataset, named the SRSDDv1.0 dataset. The experimental results show that the
minimum size of the model proposed in this paper is only 1.92 M parameters and 4.52 MB of model
memory, which can achieve an excellent F1-Score performance of 61.26 and an FPS performance of
68.02 on the SRSDDv1.0 dataset.

Keywords: ship detection; ship recognition; lightweight model; attention mechanism; synthetic
aperture radar (SAR)

1. Introduction

Radar is a kind of sensor that uses microwaves for active sensing. Synthetic Aperture
Radar (SAR) extends the original concept of radar, using pulse compression technology
and the principle of synthetic aperture, which enables the radar system to perform the two-
dimensional high-resolution imaging of the target. Compared with optical and infrared
sensors, SAR is not affected by weather, light, and other conditions. Therefore, SAR has the
characteristics of all-day, all-weather, large-width, and high-resolution imaging, which has
become a significant tool for Earth observation [1–3].

With the continuous development of SAR image resolution and image quality, the
research on the automatic detection and identification of ship targets in SAR images has
become a significant research direction in the domain of SAR image interpretation [4].
Among them, the SAR ship identification technology has involved the courtesies of a
large number of researchers due to its task characteristics. In contrast, the research of ship
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recognition technology started relatively late, and there have been little research results. In
recent years, deep learning technology has accomplished encouraging results in various
fields, including target detection [5–7], image classification [8,9], autonomous driving [10],
saliency detection [11], semantic understanding [12], and so on [13–16]. Additionally, this
new technique also provides new ideas for the development of SAR target detection and
recognition technology. Additionally, it is possible to detect and recognize ship targets
in SAR images automatically based on deep learning technology [17–20]. For example,
Zhao et al. [21] proposed an automatic identification method for SAR ships based on
feature decomposition across different satellites. This method improves the performance
of target location and recognition by optimizing the backbone network to extract features.
Yoshida et al. [22] proposed a method to automatically detect ships in motion based
on the “You Only Look Once (YOLO) v5 model”, which can effectively capture ship
targets in ALOS-2 spotlight images. Zheng et al. [23] proposed an ensemble automated
method (MetaBoost) for heterogeneous DCNN models based on two-stage filtering, which
effectively achieved robustness and high-accuracy recognition for SAR ships. Extensive
experiments on OpenSARShip and FuSARShip datasets show that the MetaBoost can
significantly outperform individual classifiers and traditional ship recognition models.

As we all know, target detection and recognition have been developed and improved in
natural scenes. However, SAR images have major differences from those in natural scenes,
one of the most obvious points being that the change in the ship target’s morphology and
background interference, such as sidelobe, tailing, and so on. Although there is significant
research on SAR image target detection, target classification, and recognition, they still
have the following obvious problems:

• Due to the limitation of data quality and target labeling requirements, most of ex-
isting research methods are based on ship detection datasets such as SSDD [24],
AirSARship [25], HRSID [26], and LS-SSDD-v1.0 [27]. Research on the integration of
SAR ship detection and identification is lacking.

• The scenes of the SAR image are complex and changeable, which have obvious
influence on target imaging and morphological changes. A large number of ships
are missed and false alarms can easily occur nearshore or in areas where targets are
densely distributed.

• Compared with traditional recognition models, most existing deep learning models
show strong robustness and adaptability in target recognition performance. However,
these methods have obvious shortcomings such as low model training efficiency, high
deployment cost of embedded devices, and low real-time performance.

In response to the above problems, we propose a lightweight model for ship detection
and recognition in complex-scene SAR images. The work of this paper mainly includes the
following aspects:

1. In order to improve the model’s operating efficiency and reduce the cost of algorithm
deployment, this paper improves and optimizes the algorithm based on the YOLOv5-
n lightweight model. Combined with the fast pyramidal pooling structure, the target
feature extraction efficiency of the neural network model is effectively improved.

2. Aiming to improve the detection and recognition performance of ship targets in high-
resolution complex-scene SAR images, this paper integrates an attention mechanism
into the target feature extraction layer. The proposed attention module can improve
the model’s attention to target features in complex scenes and suppress the influence
of background noise.

3. To optimize the performance of ship positioning and recognition in complex scenes
such as nearshore or the dense distribution of ship targets, this paper introduces an
angle classification module in the prediction layer of the network model to achieve
the rotation detection and recognition of ship targets.

4. We conducted extensive experiments on the newly released SAR ship detection
and recognition dataset named SRSDD [28] to validate the proposed improvements.
The experimental results show that the proposed method in this paper not only
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outperforms several other deep learning methods in terms of detection and recognition
performance, but also has significant advantages in terms of algorithm parameters,
model size, and operation efficiency.

The rest of this paper is organized as follows. In Section 2, the related research
work is briefly introduced. In Section 3, we propose the overall framework of the model
in this paper and describe several optimization modules. We analyze the experimental
performance of the proposed lightweight model in Section 4. Meanwhile, some visual
recognition results are presented in Section 4. Finally, the conclusions are drawn in Section 5.

2. Related Work

This section mainly introduces some of the latest deep learning methods applied in
the field of SAR image ship detection and recognition. According to the improvement and
innovation proposed by the methods in this study, the related methods are divided into
three categories: lightweight models, embedded attention mechanism models, and rotation
detection models.

2.1. Lightweight Models

The majority of convolutional neural network-based ship target detection algorithms
improve the identification score at the expense of technical complexity, but they are chal-
lenging to directly apply and deploy. To address this problem, Zhou et al. [29] proposed a
lightweight anchorless ship detection network (LASDNet) for SAR images. The method
is improved based on the single-stage anchor-free network FCOS and can achieve the
lowest parameter size of 1.15 MB, the lowest computational complexity (1.01 GFLOPs),
and average precision (59.25) on the HRSID dataset. A lightweight framework based
on a threshold neural network (TNN) was suggested by Cui et al. [30] to quickly locate
ship targets in large-scene SAR imagery. The neural network, which has a higher detec-
tion accuracy and more resilience, is used in the procedure to obtain the target detection
threshold. It is important to note that the techniques’ size is considerably less than that of
other deep learning models. An improved lightweight RetinaNet was recommended by
Miao et al. [31] for ship detection in SAR images. The ghost module, which replaces the
backbone’s shallow convolutional layers and reduces the number of deep convolutional
layers, is the network’s main selling point because it allows for a significant reduction in the
number of floating-point operations and parameters without sacrificing detection precision
and recall. In their proposed learned detector, Light-YOLOv4, Ma et al. [32] eliminated
the network’s uninteresting channels and layers, considerably lowering the network’s
breadth and depth. OSCAR-RT, the first end-to-end algorithm/hardware codesign frame-
work for SAR ship identification based on CNN on real-time satellites, was suggested by
Yang et al. [33]. The model may concurrently produce highly effective field-programmable
gate array (FPGA)-based hardware accelerators that can be installed on satellites, as well
as precise, hardware CNN models. Yang et al. [34] proposed an efficient and lightweight
object detection network combined with soft quantization. The network employs a soft
quantization algorithm to reduce the impact of quantization errors on model accuracy.
Yu et al. [35] suggested a fast and lightweight detection network named FASC-Net, and the
model contains four kinds of network lightweight optimization modules, which greatly
reduce the number of parameters of the target feature extraction network. Chang et al. [36]
develop a new architecture with less layers called YOLOv2-reduced to reduce the computa-
tional time. Yu et al. [37] suggested a light ship identification network based on YOLOX-s.
The network outputs a pyramid structure with a large amount of computation and builds a
streamlined network on the first-level features, which effectively improves the detection
efficiency. Feng et al. [38] proposed a new lightweight position-enhanced anchorless SAR
ship detection algorithm LPEDet. The network uses YOLOX as the benchmark framework
and redesigned a lightweight multi-scale backbone to balance the detection speed and
accuracy. Li et al. [39] proposed an ultralight and high detection accuracy SAR ship detec-
tion method based on YOLOX. The network contains an ultralight and high-performance
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detection backbone based on ghost cross stage partial (GhostCSP) and lightweight spatially
dilated convolutional pyramid (LSDP). Xu et al. [40] designed a lightweight cross-level local
(L-CSP) module to decrease the computation and prune the network for a more compact
detector. Guo et al. [41] proposed a lightweight single-stage SAR ship target detection
model, called Yold-based Lightweight multi-scale ship detector (LMSD-YOLO), in which
the DSASFF module is designed, to attain the adaptive fusion of multi-scale features with a
few parameters. Liu et al. [42] proposed a lightweight network based on the YOLOv4-LITE
model, which uses MobileNetv2 to extract the features and designed an improved receptive
field block (RFB) structure.

2.2. Embedding Attention Mechanism Models

Ship target recognition in SAR images frequently creates more false alarms and may
result in the missing detection of tiny objects because of the complex backdrop and coherent
speckle noise interference. Gao et al. [43] proposed an improved attention-based yolo4
(imyolo4) model. The adverse effects of the complex background and noise are suppressed
by introducing a threshold attention module (TAM), and an attention module is added
to the backbone network to enhance the discriminative ability of the multi-scale target
features. Peng et al. [44] suggested a new approach based on enhanced YOLOX as an
anchor-free target detection method, which achieved high-speed and high-precision ship
target detection by combining a coordinated attention mechanism and improving the loss
function. Zha et al. [45] proposed a novel ship detection model based on multi-feature
transformation and fusion (MFTF-Net) to suppress false alarms and improve small target
detection performance. To reduce the interference of noisy information, the method applies
a modified convolutional block attention module (CBAM) and a squeeze-excited attention
(SE) mechanism to the lower and upper two layers of the network output, respectively.
Jiang et al. [46] proposed an effective lightweight anchor-free detector called R-Centernet+
and introduced the CBAM module to the backbone network. Zhang et al. [47] proposed a
cross-scale region predictive perception network (CSRP-Net), by designing a cross-scale self-
attention (CSSA) module, which suppressed the influence of noise and complex background
and enhanced the detection ability of multi-scale targets. A multi-scale detection network
for ships in SAR pictures was suggested by Zhang et al. [48] and is based on attention and
weighted fusion. This technique, which is based on the YOLOv5 architecture, introduces a
coordinate attention block to sharpen the position characteristics of ship targets and muffle
the interference from complicated backdrops. Guo et al. [49] added the CBAM module
and the BiFPN module to the YOLOv5 network, which enables it to fully learn the feature
information of the spatial and channel dimensions, and enhance the information fusion
transfer between multi-scale targets, and the problem of missed detection of multi-scale
targets is well resolved. A novel anchor-free SAR target recognition technique, AFSar, was
put forth by Wan et al. [50] based on multi-scale improved representation learning. This
approach emphasizes the distinct strong scattering properties of SAR targets by combining
channel and spatial attenuation processes. Li et al. [51] proposed a new deep learning
network, the attention-guided balanced feature pyramid network (A-BFPN), and designed
a channel attention-guided fusion network (CAFN) model to obtain the optimized multi-
scale features, reducing severe aliasing effects in the mixed feature maps. Zhou et al. [52]
suggested a multi-scale ship detection network (MSSDNet) method based on a small model
size YOLOv5 (YOLOv5s) by introducing an improved backbone network Res2Net (MRes2)
with a coordinate attention module (CAM)) for the multi-scale feature extraction in scale
dimension to better represent the features. Su et al. [53] suggested a new spatial information
integration network (SII-Net) detection method, and designed a channel location attention
mechanism (CLAM) module to extract location information along two spatial directions to
enhance the detection capability of the backbone network.
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2.3. Rotation Detection Models

Ship targets are often densely arranged and docked in nearshore areas. The tradi-
tional positive frame detection method will cause a large number of missed detections
and false detections of targets. In order to improve the detection performance of ship
targets in the berth area in SAR images, Zhao et al. [54] proposed a ship rotation detection
method based on an orientation-aware feature fusion network (OFF-Net) in SAR images.
This method proposes a decoupled orientation perception head that is more robust to
ship targets with arbitrary orientations. At the same time, the authors also provide a
high-resolution SAR ship detection dataset (OBB-HRSDD) with rotatable bounding boxes.
Man et al. [55] proposed a new center-to-corner vector navigation network (CCVNet) for
SAR ship rotation detection, which uses an anchor-free method to directly predict the
vector from the center to the corner, which can reduce the number of separate predictions’
accumulation of errors caused by angles and scales. Cheng et al. [56] proposed an arbitrary
orientation-oriented SAR ship detection network, global context-guided feature balance
network (GFB-Net). The method obtains the output feature map by rotating ROIAlign,
and uses it for classification and regression in the second stage of the network, and finally
realizes ship detection in any direction. Zhao et al. [57] designed a head network with
stepwise regression from coarse-grained to fine-grained to accurately detect ships in arbi-
trary orientations. At the same time, the method also combines the attention module to
calibrate the multi-scale fusion features to highlight the ship information while suppressing
the surrounding background interference. Li et al. [58] proposed a new directional SAR
ship detector and embedded a hybrid convolutional channel attention (MCCA) module in
the backbone network to enhance the ship by reweighting all channels of the feature map
and boat characterization features. Zhao et al. [59] improved the original deep subdomain
adaptation network (DSAN) and designed a dual branch network (DBN) embedded with
an attention module to extract more discriminative deep transferable features, thereby
improving the subdomain adaptation performance. Sun et al. [60] proposed an arbitrary
orientation SAR ship detector (BiFA-YOLO) based on bidirectional feature fusion and angle
classification. In order to effectively detect arbitrary orientation and densely distributed
ships in HR SAR images, BiFA-YOLO adds an angle classification structure to the head net-
work. He et al. [61] proposed a directional ship detector based on dual-branch probes and
adaptive SAR feature enhancement, and an oriented region proposal network (ORPN) was
designed to study the conversion of horizontal regions of interest to rotational regions of in-
terest. Shao et al. [62] proposed a rotation-balanced feature alignment network (RBFA-Net)
and designed an anchor-guided feature alignment network (AFAN) to adaptively align
convolutional features according to the rotated anchor boxes. Xu et al. [63] proposed an ar-
bitrary orientation-oriented SAR ship detection model combining triangle distance IoU loss
(TDIoU loss) and attention-weighted feature pyramid network (AW-FPN), and proposed
TDIoU loss as a rotating bounding box regression efficient solution for inconsistencies in
loss metrics and discontinuities in boundaries.

Based on the above survey, it is not difficult to find that the current work of ship
detection on SAR images mainly focuses on how to improve the performance of target
detection in complex scenes while reducing the complexity of the model and improving the
efficiency of the algorithm. This is also the starting point of our proposed method in this
paper. However, different from the above research, we focus more on the comprehensive
detection and recognition performance of ship targets.

3. Proposed Method

In this part, a thorough description of the suggested lightweight model will be given.
First, the general structure of our model is shown. After that, each important module’s
mechanism will be described.
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3.1. Overall Framework

Figure 1 depicts the process and general structure of the strategy suggested in this
article. We choose the YOLOv5n model as the basic framework, which has a more con-
cise network structure and faster running and reasoning speed, so it is easier to achieve
lightweight deployment. Our improved method is mainly composed of three parts: the
first part is the improved backbone network in the dotted frame in Figure 1. First of all,
in order to effectively suppress the background noise and enhance the prominent target
features, we embed a lightweight attention module in each C3 feature extraction module
on the basis of the original YOLOv5-n backbone network framework. Second, based on
the improvement of the original framework, the attention structure and the simplified
spatial pyramid pooling fast structure (SimSPPF) were combined to further improve the
generation speed of the target candidate box and effectively save the computational cost.
In the part of prediction, we added the angle classification module to the prediction layer,
and improved the constraint through the loss function to achieve the directed prediction of
ship targets.

Figure 1. The overall framework of the proposed lightweight model.

3.2. C3_Attention Block

In contrast with the optical image, the ship target contains less information in the
SAR image, while the background occupies most of the pixels. Therefore, in complex
scenes such as inshore areas and high sea conditions, the ship features extracted by the
network are less dominant. For this reason, we choose to add an attention module in
the network feature extraction layer to further enhance the highlighting of target features
and suppress the interference of background noise. Among many attention modules, we
choose to embed the strong attention module squeeze excitation (SE) attention model
and the convolutional block attention module (CBAM) based on the original C3 structure
and construct new feature extraction structures C3SE and C3CBAM. Figure 2a,b show
the structures of the C3SE and C3CBAM. Unlike transformer, which consumes a lot of
computing resources to obtain the relationship between features, SE and CBAM modules
directly calculate the feature weights in channel dimension and spatial dimension, and
have significant advantages in computational efficiency and reasoning speed.

As seen in Figure 2a, C3SE initially decreases the dimension of spatial features by
global average pooling based on the width and height of the feature map in order to
draw emphasis to the channel dimension. Then, as seen in Equation (1), the link be-
tween the channels is established utilizing two complete connection layers and a nonlinear
activation function.

Fc = T(ReLU(T(
1

H × W

H

∑
i=1

W

∑
j=1

Fin(i, j)))) (1)

where Fin represents input features, Fc represents middle layer features, H and W represent
the width and height of the channel, respectively, ReLU represents the nonlinear activation
function, and T represents the fully connected layer.



Remote Sens. 2022, 14, 6053 7 of 20

Figure 2. The structures of two proposed different attention blocks. (a) The C3SE block; (b) The
C3CBAM block. “Ci” represents the number of feature channels, “Conv” means the ordinary
convolution-2D layer, “BN” means the batch normalization layer, “SiLU” means swish function,
“BottleNeck” is formed by stacking multiple convolution layers, “GAvgPool” means the global aver-
age pooling-2D layer; “GMaxPool” means the global max pooling-2D layer; “FC” means the fully
connection layer, and the “r” is a reduction factor, “Max-C“ represents the maximum-channel-pixel,
“Mean-C” means the average-channel-pixel.

Following the Sigmoid activation function, the normalized weight is acquired, and it
is then multiplied by each channel of the original feature graph to complete the channel
attention and recalibrate the original feature, as given in Equation (2).

Fout = Fin·σ(Fc) (2)

where Fout represents the output features and σ represents the Sigmoid function. The global
receptive field may be produced by global average pooling. By lowering the dimension
of the feature graph, the parameters and computation in the first complete connection
are significantly lowered. It is restored to its original number of channels by a complete
connection after a nonlinear activation function, and the correlation between channels is
formed. After that, the network can pay more attention to the channel characteristics that
contain more information, and reduce the attention to the features with less information.

The C3CBAM attention mechanism module is separated into two sections: spatial
attention and channel attention, as seen in Figure 2b. The featured graph is input, followed
by the channel attention, GAP, and GMP based on the width and height of the feature graph,
the attention weight for the channel through MLP, the normalized attention weight through
the Sigmoid function, and finally the weighting of the normalized attention weight to the
original input feature graph channel by the channel through multiplication. Complete
Equation (3)’s formula for the original feature’s channel attention recalibration:

Fc = σ(MLP(AvgPool(Fin)) + MLP(MaxPool(Fin))) (3)

where AvgPool represents the average pooling, MaxPool represents the maximum pooling,
MLP represents a two-layer neural network.

The feature graph output through the channel also performs global maximum pooling
and global average pooling based on the width and height of the feature graph, transform-
ing the feature dimension from H × W to 1 × 1, then reducing the dimension of the feature
graph after convolution kernel 7 × 7 and Relu activation function, and finally lifting it to
the original dimension after a convolution. This process obtains the attention feature in
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spatial dimension. Finally, the feature map standardized by Sigmoid activation function
and the feature map of channel attention outputs merged to complete the recalibration of
the feature graph in the space and channel dimensions, as shown in Equation (4).

Fout = σ( f 7×7([AvgPool(Fc); MaxPool(Fc)])) (4)

where f 7×7 represents the convolution operation with 7 × 7 convolution kernel. In the
spatial attention module, the global average pooling and maximum pooling obtain spatial
attention features, and the correlation between spatial features is established through two
convolutions, while keeping the input and output dimensions unchanged. Through the
convolution operation with 7 × 7 convolution kernel, the parameters and the amount of
calculation are greatly reduced, which is beneficial to the establishment of high-dimensional
spatial feature correlation. The association between each feature in the channel and space
is substantially improved after CBAM, which makes it easier to extract the target’s useful
characteristics. The new feature graph will also obtain attention weights in the channel and
spatial dimensions.

3.3. SimSPPF Block

Spatial pyramid pooling (SPP) was originally proposed by He et al. [64] to solve
the problem that the size of the input image cannot always meet the requirements of
the input, which leads to the distortion of the network input image. When applied to
the target detection network, SPP can effectively solve the problem of graph correlation
repetitive feature extraction by convolution neural network, which greatly improves the
speed of generating candidate boxes and saves computational costs. Specifically, as shown
in Figure 3a, SPP first carries out convolution and normalization activation processing on
the input feature, and then carries on the maximum value pool processing to the activation
feature on three scales, and then splices the three scale features together with convolution
normalization activation to obtain the features, as shown in Equation (5).

Fout = CBL[MaxPool5×5CBL(Fin); MaxPool9×9CBL(Fin); MaxPool13×13CBL(Fin); CBL(Fin)] (5)

where CBL represents the combination of “Conv”, “BN”, and “ReLU”.

Figure 3. The structures of the SPP and SimSPPF block. “RF” represents the receptive field.
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The SimSPPF module used in this paper is further improved and optimized based
on the SPP structure. As shown in Figure 3b, SimSPPF also carries out the convolution
and normalized activation of the input features at first, but the difference is that the
activated features are not pooled at the same time at three scales, but progressive pooling.
In this way, the efficiency of target feature extraction and candidate box selection can be
further accelerated. The experimental results show that the processing speed of SimSPPF is
significantly higher than that of SPP.

3.4. OBB Prediction Block

The original YOLOv5 network is based on rectangle regression. However, for the SAR
images of complex scenes, there are many dense distributions of ship targets, especially
in the nearshore scene, often docking many ships. As such, the network will suppress
some high-quality prediction boxes when calculating the IOU between the target prediction
frames. Therefore, the SAR ship detection method based on the original YOLOv5 network
is not effective for ships close to the shore. In order to improve the detection performance,
the regression mode of the network detection frame can be changed to the directed frame
form. Due to the limitation of the angle, Sun et al. [60] classified and predicted ships in
any direction by adding angle components to the structure of the network prediction layer.
The experimental results show that the angle classification method can effectively improve
the performance of ship target prediction without significantly increasing the complexity
of the model. Figure 4 shows the improved rotation prediction head structure adopted in
this paper.

Figure 4. The structure of the oriented bounding box (OBB) prediction block.

Due to the addition of an angle classification module, the training loss function of the
model proposed in this paper consists of four parts: classes loss, objectness loss, location
loss, and angular loss [60], as shown in Equation (6):

Loss = Lcls + Lobj + Lloc + Lang (6)

where Lcls, Lobj, Lloc, and Lang denote the classes loss, objectness loss, location loss, and
angular loss, respectively. Among them, the BCE loss is adopted for Lcls,Lobj, and Lang,
and the CIOU loss is adopted for Lloc. Lcls represents the classification loss of the positive
sample [16]. Lloc represents the location loss of the positive sample. Lobj represents the BCE
loss between the prediction bounding box with the ground truth box. In order to balance
the losses of different scales, the Lobj of three prediction layers are dynamically weighted as
Equation (7).

Lobj = λ1Lsmall
obj + λ2Lmedium

obj + λ3Llarge
obj (7)

where Lsmall
obj , Lmedium

obj , and Llarge
obj , denote the objectness loss of three scales in the prediction

layers, λ1, λ2, and λ3 are the equilibrium coefficient.
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4. Experiments

We conducted several tests on the recently published ship detection and identification
dataset, SRSDD-v1.0, to assess the efficacy of the approaches suggested in this work. The
experimental dataset, setup, and assessment indicators will initially be covered in this
section. We conducted ablation tests to confirm the efficiency of the suggested module
on this foundation. Finally, the outcomes of our visualization experiment using SRSDD
datasets are presented and statistically evaluated against those of alternative deep-learning
techniques. The results of the experiments demonstrate that the suggested technique has
the best detection performance and the shortest model size.

4.1. Dataset

The SRSDD-v1.0 dataset proposed by Lei et al. [28] is built using 30 large-scene images
of the Chinese GF-3 spotlight (SL) model, all with an image resolution of 1 m. These
large-scene images are cropped into 1024 × 1024-pixel patches. After cropping, the dataset
contains 666 SAR image slices and a total of 2884 ships. It is worth noted that this dataset is
the first publicly released dataset containing different types of SAR ships. Table 1 shows
the information on several datasets. In all published datasets, SRSDD is the only SAR
ship dataset with different resolutions and different categories. Therefore, we conduct
ship detection and recognition experiments based on this dataset. Figure 5 shows the
quantity distribution of six categories of ships in the SRSDD-v1.0 dataset. Figures 6 and 7,
respectively, show the distribution of the length, width, and direction angle of the ships
in the training and testing datasets. The overall distribution of the training and testing
datasets is consistent. Figure 8 shows some examples of ships in the SRSDD data, including
the six categories of Ore-oil, Bulk cargo, Finishing, LawEnforce, Dredger, and Container.

Table 1. Comparison of different SAR ship datasets.

Dataset Size (Pixel) Image (Num) Ship (Num) Annotations Resolution (m) Categories

SSDD 190–668 1160 2586 HBB 1–15 1
SSDD+ 190–668 1160 2586 OBB 1–15 1

Official-SSDD 190–668 1160 2586 Polygon 1–15 1
SAR-Ship-Dataset 256 × 256 43,819 59,535 HBB 3–25 1
Air-SARship-1.0 3000 × 3000 31 461 HBB 1, 3 1
Air-SARship-2.0 1000 × 1000 300 2040 HBB 1, 3 1

HRSID 800 × 800 5604 16,951 Polygon 0.5, 1, 3 1
LS-SSDD-v1.0 24,000 × 16,000 15 6015 HBB 5 × 20 1

RSDD-SAR 512 × 512 7000 10,263 OBB 2–20 1
SRSDD-v1.0 1024 × 1024 666 2884 OBB 1 6

Figure 5. The quantity distributions of six categories of ships in SRSDD-v1.0 dataset.
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Figure 6. The distributions of the ships’ width, length, and angle on the training dataset.

Figure 7. The distributions of the ships’ width, length, and angle on the test dataset.

Figure 8. Instances of SRSDD-v1.0 dataset. (a) The original SAR images. (b) The ground truth. (c) The
corresponding optical images. From left to right are the Ore-oil, Bulk cargo, Finishing, LawEnforce,
Dredger, and Container.
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4.2. Experimental Setup

All the tests in this work were carried out in PyTorch on a computer with an Intel Core
(TM) i7-10875H CPU clocked at 2.30 GHz and an NVIDIA RTX 2070 GPU, as shown in
Table 2. The computer was running in Windows 10. Table 2 shows how the computer and
deep learning environment were set up for our experiments. In order to solve the problem
of insufficient performance caused by the small sample size of the dataset, we used some
traditional methods such as rotation and flipping to expand the original dataset to a certain
extent. In addition, through the inspection of the data, we found that there were some
problems with the original release data label, so we revised the data’s label before training.

Table 2. Experimental setup and environment.

Project Model/Parameter

System windows 10
RAM 32 GB
CPU Intel i7-10875H
GPU NVIDIA RTX 2070

Platform PyTorch
Code python3.8

Framework CUDA10.1/cudnn7.6.5
Epochs 200

Learning rate 0.01
Momentum 0.0005

The stochastic gradient descent approach is used by the optimizer, and 200 training
epochs are used. The learning rate is set to 0.01 and the momentum and weight decay rates
are 0.0005 and 0.8, respectively. In every trial, the detection threshold IOU is set to 0.5.

4.3. Evaluation Metrics

We primarily use the accuracy, recall, and F1-score as assessment markers to com-
pare various approaches in order to statistically measure the detection performance. The
following are the definitions of recall and precision:

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

where the terms “true positives”, “false positives”, and “false negatives” stand for “true
positives”, “false positives”, and “missing ships”, respectively. Precision and recall are
combined in the F1 score as follows:

F1 − score = 2 × Precision × Recall
Precision + Recall

(10)

Furthermore, we applied the frames-per second (FPS) to evaluate the detection effi-
ciency of different methods as follows:

FPS =
1

Tper−img
(11)

where Tper-img represents the inference time per image. As for the algorithm complexity,
we use the number of parameters, model size, and floating-point operations per second
(FLOPS) to evaluate the different methods.
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4.4. Ablation Studies

We performed a series of ablation tests on the SRSDD-v1.0 to evaluate the efficacy of
each improvement suggested in this study.

4.4.1. Effect of C3_Attention Block

The suggested C3_Attention block module’s effects on the effectiveness of model
detection are examined through the tests in this section. Table 3 presents the experimental
findings based on the test dataset. It appears that the suggested C3 Attention module
can significantly enhance the detection performance, particularly the recall index. Finally,
the C3SE module and the C3CBAM increase precision and recall by 2.69%, 2.88%, 3.77%,
and 4.12%, respectively, in comparison to the baseline. Additionally, the F1 scores are
higher by 3.24 and 3.51%, indicating that the suggested improved model may perform
better at comprehensive identification. In terms of model complexity, the two proposed
attention modules are lightweight models, so there is no increase in the final model size
and FLOPS value.

Table 3. Performance comparison of different attention modules.

Methods Precision (%) Recall (%) F1 FPS Model (MB) FLOPS

YOLOv5n (Base) 55.42 53.77 54.58 75.19 4.06 4.2G
Base + C3SE 58.11 57.54 57.82 73.00 4.06 4.2G

Base + C3CBAM 58.30 57.89 58.09 72.46 4.06 4.2G

4.4.2. Effect of SimSPPF Block

Table 4 shows the comparison of experimental results with or without the addition of
SimSPPF modules. We can find that replacing SPP with SimSPPF in the backbone network
structure will not affect the detection performance of the model, and the comprehensive F1
value of the model detection is still 54.48. In addition, the model complexity, including the
total number of parameters, model size and computational complexity, remain unchanged.
In terms of the operational efficiency of the model, the addition to SimSPPF structure,
can significantly improve the reasoning speed, and FPS increases by 10.28 compared with
the baseline.

Table 4. Performance comparison of with and without the SimSPPF Block.

Methods F1 FPS Param (M) Model (MB) FLOPS

YOLOv5n (Base) 54.58. 75.19 1.68 4.06 4.2G
Base + SimSPPF 54.58 85.47 1.68 4.06 4.2G

4.4.3. Effect of OBB Prediction Block

In this section, the OBB prediction block is verified. The same parameter settings are
used for training the network in these experiments. The results in Table 5 show that the
OBB prediction method yields better overall performance. Specifically, prediction with OBB
finally increases the precision and recall by 0.05% and 3.64%, respectively. Furthermore,
the F1 scores are increased by 1.84, implying that the effectiveness of angle classification.
To demonstrate the advantages of OBB prediction more visually, we visualized the HBB
and OBB prediction results, as shown in Figure 9. Among them, different color callout
boxes represent different categories. We can find that there are a large number of densely
arranged ships in the SRSDD dataset, and there are obvious missing ships in the detection
results of HBB prediction. On the contrary, the OBB prediction results are better able to
capture a large number of docked or side-by-side ships.
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Table 5. Performance comparison of different attention modules with OBB prediction method.

Methods Precision (%) Recall (%) F1 FPS Model (MB) FLOPS

YOLOv5n (Base) 55.42 53.77 54.58 75.19 4.06 4.2G
Base + OBB 55.47 57.41 56.42 69.40 4.52 5.0G

Figure 9. Detection results of different prediction methods on SRSDD. (a) The original SAR images.
(b) The ground truth. (c) HBB prediction results. (d) OBB prediction results. Yellow ellipse indicates
a false prediction.

4.5. Comparison with Other Methods

To verify the comprehensive performance of our method, we compare the proposed
model with other deep-learning methods in terms of detection performance, inference
efficiency, and model complexity (obtained from the corresponding literature), as shown in
Table 6. It can be seen that, in the two-stage detection network, O-RCNN [65] has the best
comprehensive detection performance in the SRSDD dataset, with the highest detection
precision of 64.01%, a detection recall rate of 57.61%, and a comprehensive F1 value of 60.64.
In the single-stage detection model, the comprehensive performance of BBAVectors [66] is
the best, but the recall rate of this method on SRSDD data is only 34.56%. However, the F1
score of the proposed models in this paper is 61.26, which is 0.86% and 20.36% higher than
that of O-RCNN and BBAVectors, respectively. More importantly, our method processes
the SRSDD dataset almost seven times faster than other methods, and the model size is
only 4.52 M, which is significantly better than the 244 M of the original lightest model
R-FCOS [67]. Although the precision index of the proposed method is 59.70%, which is
lower than the 64.01% of O-RCNN and 60.56% of R-FCOS. However, the recall index of
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our model is 62.90%, which is significantly higher than the 57.61% of the O-RCNN and all
other methods. The results show that our model can more effectively detect ship targets
in complex-scene SAR images. In terms of the running efficiency of different models, the
maximum FPS of two-stage detection models for processing images on the SRSDD dataset
is only 8.38. Among the other one-stage detection models, R-RetinaNet [68] has the fastest
processing speed, but the FPS of R-RetinaNet model is only 10.53. In contrast, through
Table 6, we can clearly find that the FPS value of our model proposed in this paper is 68.02,
and the processing efficiency has a significant advantage over other one-stage or two-stages
detection models.

Table 6. Detection results of different CNN-based methods on SRSDD-v1.0.

Model Category Precision (%) Recall (%) F1 FPS Model (M)

FR-O [28] Two-stage 57.12 49.66 53.13 8.09 315
ROI [28,69] Two-stage 59.31 51.22 54.97 7.75 421

Gliding Vertex [28,70] Two-stage 57.75 53.95 55.79 7.58 315
O-RCNN [28,65] Two-stage 64.01 57.61 60.64 8.38 315

R-RetinaNet [28,68] One-stage 53.52 12.55 20.33 10.53 277
R3Det [28,71] One-stage 58.06 15.41 24.36 7.69 468

BBAVectors [28,66] One-stage 50.08 34.56 40.90 3.26 829
R-FCOS [28,67] One-stage 60.56 18.42 28.25 10.15 244

Ours One-stage 59.70 62.90 61.26 68.02 4.52

4.6. Detection and Recognition Results on SRSDD

Finally, we visualize the detection and recognition results of the proposed model in
the nearshore and offshore scenarios of the SRSDD dataset, as shown in Figures 10 and 11.
From Figure 10, we can see that the proposed method can basically detect the inshore ships
and assign the correct labels. This is mainly because the embedded attention module can
strengthen the target features while suppressing the background interference information.
For the nearshore scene, the background interference is serious, and the use of the attention
enhancement feature can effectively remove the false alarms. Through Figure 11, it can be
found that almost all the offshore ship targets are detected by the proposed method, which
further verifies the effectiveness of our designed model.

Figure 10. Detection and recognition results of inshore ships. The first column is the original SAR
images, the second column is the ground truth, and the third column is our results.
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Figure 11. Detection and recognition results of offshore ships. The first column is the original SAR
images, the second column is the ground truth, and the third column is our results.

In order to quantitatively analyze the detection and recognition performance of our
method on SRSDD data, we calculate the detection and recognition results of six categories
of ships, as shown in Tables 7 and 8. As can be seen from Table 7, the detection rates vary
greatly among different categories, in which the comprehensive F1 value of Container
can reach 0.71, but that of Fishing is only 0.39. This phenomenon demonstrates that our
method still has obvious space for improvement in detection performance. In terms of
target recognition performance, as shown in Table 8, the recognition rate of large ships
such as Container, Dredger, and Ore-oil is significantly higher than that of small ships
such as Fishing and Bulk cargo. Among them, the Background FN in the meter indicates
that the false alarms in the detection and recognition results are non-ship targets, which
mainly includes land interferers and sea islands. In other words, there is still some room for
improvement in the detection performance on all categories of ships. In addition, the results
of Table 8 show that the recognition performance of Bulk Cargo, Fishing and LawEnforce
is relatively low. This is because Bulk Cargo accounts for the vast majority of the SRSDD
dataset, while Fishing and LawEnforce are relatively few. Although this paper adopts
some data augmentation methods to improve the recognition performance, the serious
data imbalance results in the low recognition rate of these three categories of ships. On the
other hand, Bulk Cargo, Fishing, and LawEnforce are mostly distributed along the shore,
and the target size is small and often densely distributed, which brings some challenges
to network detection and recognition. In any case, the method proposed in this paper can
effectively detect and identify six categories of ships to a certain extent, and the current gap
is also the focus of our future work.

Table 7. Detection results of six categories of ships.

Class Precision (%) Recall (%) F1

Ore-oil 53.5 46.7 0.50
Bulk cargo 52.6 59.3 0.56

Fishing 64.3 28.0 0.39
LawEnforce 44.2 100.0 0.61

Dredger 77.4 67.0 0.72
Container 66.4 76.2 0.71
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Table 8. The confusion matrix of proposed method in the six categories of ships.

Ore-Oil Bulk Cargo Fishing LawEnforce Dredger Container Background FN

Ore-oil 0.47 0.01 0.00 0.00 0.02 0.00 0.02
Bulk cargo 0.00 0.53 0.13 0.00 0.10 0.10 0.78

Fishing 0.00 0.00 0.22 0.00 0.00 0.00 0.08
LawEnforce 0.00 0.00 0.00 0.25 0.00 0.00 0.04

Dredger 0.00 0.00 0.00 0.00 0.63 0.00 0.03
Container 0.00 0.00 0.00 0.00 0.00 0.71 0.04

Background FN 0.53 0.45 0.64 0.75 0.24 0.19 0.00

5. Conclusions

This research suggests a lightweight model for ship detection and recognition in
complex-scene SAR images. In order to enhance the model’s detection and recognition
performance in complicated scenarios and increase the model’s deployment possibilities,
we optimized the module based on three aspects: the designed C3_attention module,
the improved SimSPPF module, and the OBB prediction module. The results of many
ablation experiments performed on the latest SRSDD-v1.0 dataset demonstrate the potency
of each module created in this paper. Experimental findings demonstrate that the model
suggested in this paper can perform well, with an F1-Score of 61.26 and an FPS of 68.02
on SRSDD, and using just 1.92 M parameters and 4.52 MB of model memory. It is worth
noting that our approach is more suited for practical equipment than previous approaches
and can meet the real-time requirements of SAR ship detection and recognition in the
future. However, through many comparative experiments, we find that our method still
has obvious deficiencies in the performance of ship target recognition due to the influence
of image quality and resolution. Therefore, we will consider carrying out more in-depth
research on the following aspects: (1) We will build a higher-quality SAR ship detection
and recognition dataset including more categories of ships; (2) We will conduct more
research on the improvement of SAR image quality to improve the performance of ship
target recognition; (3) We will continue to investigate the study on the quick detection and
recognition of ship targets in SAR images.
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