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Abstract

Reinforcement learning-based traffic signal control systems (RLTSC) can enhance dynamic adaptability, save vehicle travelling time
and promote intersection capacity. However, the existing RLTSC methods do not consider the driver’s response time requirement, so
the systems often face efficiency limitations and implementation difficulties. We propose the advance decision-making reinforcement
learning traffic signal control (AD-RLTSC) algorithm to improve traffic efficiency while ensuring safety in mixed traffic environment.
First, the relationship between the intersection perception range and the signal control period is established and the trust region state
(TRS) is proposed. Then, the scalable state matrix is dynamically adjusted to decide the future signal light status. The decision will be
displayed to the human-driven vehicles (HDVs) through the bi-countdown timer mechanism and sent to the nearby connected auto-
mated vehicles (CAVs) using the wireless network rather than be executed immediately. HDVs and CAVs optimize the driving speed
based on the remaining green (or red) time. Besides, the Double Dueling Deep Q-learning Network algorithm is used for reinforcement
learning training; a standardized reward is proposed to enhance the performance of intersection control and prioritized experience
replay is adopted to improve sample utilization. The experimental results on vehicle micro-behaviour and traffic macro-efficiency
showed that the proposed AD-RLTSC algorithm can simultaneously improve both traffic efficiency and traffic flow stability.
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1. Introduction
Intelligent intersection control (IIC) is a primary research area
within the field of the intelligent transportation system. The key
idea behind IIC is to apply optimal intersection passing rules that
utilize real-time traffic status information. With the development
of technologies such as autonomous driving, the urban traffic
environment will gradually form a mixed traffic environment. A
mixed traffic environment consists of numerous traffic partici-
pants with differing intelligent levels, such as human-driven vehi-
cles (HDVs) and connected automated vehicles (CAVs), fixed time
traffic signal lights and adaptive traffic signal lights. Developing
intersection optimization methods in mixed traffic environments
will be the long-term trend of IIC.

Adaptive traffic signal control systems can ‘decide’ to change
the signal according to intersection sensing data, such as the
waiting length. However, the unpredictability of signal changes
can lead to dangerous intersection situations. The need to im-
prove signal control efficiency and predictability for drivers in
mixed traffic environments makes the development of intersec-
tion control methods a priority. In recent years, the prolifera-
tion of artificial intelligence has brought new possibilities for
the development of intelligent transportation systems [1, 2]. For
example, the self-driving vehicle is expected to bring dramatic
changes in terms of energy consumption, safety, access and time
savings [3–5]. Motivated by the limitations of current intersec-

tion control systems, the aim of the present paper is to propose
a self-learning signal control method that addresses three key
challenges:

1). Take advantage of emerging technologies such as reinforce-
ment learning (RL) to improve intersection control performance
for mixed traffic environments.

2). Overcome the shortcomings of adaptive signal control,
which are unpredictable and often lead to dangerous behaviour
at intersections.

3). Design a decentralized intersection control algorithm that
can be extended to a widely road network.

The use of reinforcement learning (RL) in the traffic signal con-
trol problem has gained significant interests [6–11]. The model-
free RL method Q-learning is frequently used to approximate the
optimal solution in traffic signal control. In most early studies,
low-complexity traffic features were used as the input [12]. The
experience replay and target network technologies are involved
to automatically extract useful features (machine-crafted fea-
tures) from raw traffic data [13]. In Ref. [14], the state was de-
fined as vehicle location and vehicle speed, and the reward was
the difference in cumulative vehicle waiting time between signal
cycles.

With the development of reinforcement learning methods,
there is widespread interest in optimizing decision making and
improving training speed. Xu et al. [15] proposed a targeted trans-
fer reinforcement learning based method which uses unsuper-
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vised networks to evaluate the similarity of samples, and thus
accelerate the learning process. In Ref. [16], three input states
from low to high resolution were extracted from traffic data and
their performance comparisons were derived by an actor critic al-
gorithm. The experimental results revealed that machine learn-
ing methods are affected by the accuracy of traffic information.
From the existing work, there is consensus that the system de-
sign approach significantly impacts on the performance of ma-
chine learning-based traffic signal controllers.

The contributions of this paper are threefold.
First, we propose a method to train the reinforcement learning-

based traffic signal control (RLTSC) using scalable traffic informa-
tion. The sensing range of the intersection is modified dynamically
to improve data processing efficiency. The coverage of 5G commu-
nication technology that could be applied in IIC in the future is
a few hundred metres [17]. In contrast to previous work, which
only provided the designing of action and reward functions of
their reinforcement learning algorithm, the relationship between
the traffic status sensing range and the traffic light control period
is proposed through theoretical analyses and simulation experi-
ments. Based on our analyses, we propose a Region-based RLTSC
(Region-RLTSC) method, which can train an optimal control policy
for isolated intersections.

Second, the unpredictability of adaptive traffic signal control
(TSC) is solved to achieve smooth control in mixed traffic flow.
Most previous research on RLTSC did not consider the human
factor, such as reaction times and comfortable acceleration for
drivers. With existing methods, the vehicle cannot predict signal
light changes, which can cause the vehicle to become involved
in dangerous situations, such as sudden braking. We propose the
advance decision-making method that provides all vehicles with
the next state of traffic lights ahead of time, and thereby avoids
dangerous behaviour at intersections.

Third, the impact of the proportion of intelligent traffic signal
lights on large-scale traffic networks is explored. Our experiment
exams the influence of agents on mixed traffic flow, two aspects
are considered: i) the proportion of intelligent traffic signal con-
troller, and ii) the penetration rate of CAVs.

The following sections of this paper are organized as follows.
Section 2 introduces our proposed Region-RLTSC strategy. Two
new concepts are proposed to optimize the design of algorithm
components, trust region state and standardized reward. In ad-
dition, the cycle of action is analysed to match the travelling
demand. In Section 3, based on the Region-RLTSC, the advance
decision-making reinforcement learning algorithm (AD-RLTSC) is
proposed and discussed to solve the unpredictability of traditional
adaptive traffic signal control methods. An introduction on how
to train the control policy by using the Double Duelling Deep Q-
learning Network (3DQN) algorithm is presented in Section 4. In
Section 5, we verify our algorithm by simulations and compare its
performance to popular traffic signal control algorithms. In Sec-
tion 6 we present our conclusions.

2. Region-based reinforcement learning
traffic signal control
The traffic signal light system can be considered as an intelligent
agent, which can observe the states from the intersection and re-
turn a phase selection action, as shown in Fig. 1. Our goal is to
fit an optimized signal timing policy to make the agent take the
optimal action. Modelling the states, actions and rewards are the
critical issues in designing an RLTSC system. This section intro-
duces the proposed Region-RLTSC algorithm.

Fig. 1. Schematic diagram of the traditional RLTSC model.

Fig. 2. Schematic diagram of the proposed trust region.

2.1 Input state for advance decision making
An adequate sensing distance is crucial in the learning process of
RL based traffic signal control method. Limited vehicles’ informa-
tion is not enough for agent’s decision making. On the contrary,
excessive information can exacerbate instability and make neu-
ral network training difficult.

Fig. 2 is a schematic diagram of the perception region. In one
control period, the vehicles in Region T will pass the intersection,
the vehicles in Region P cannot pass and the vehicles in Region Q
do not affect the intersection. Therefore, we define the distance of
Region T as the trust region.

The perception range, denoted as dp, represents the length of
the trust region and refers to the traffic data perception range,
which is calculated as Eq. (1). The control cycle refer to the interval
of time between two actions.

dp = C × v̄ (1)

where, C is the control circle and v is the average speed. Fig. 3 is
a schematic diagram to explain the implementation of the trust
region state. The information within the dp is helpful for decision-
making. However, a dynamically changing matrix cannot be fed
into a neural network as the input matrix. Hence, for implemen-
tation, the trust region state St is defined as an element-wise mul-
tiplication of a binary mask matrix M and the full-scale state ma-
trix S, as shown in Eq. (2). In Refs. [12–13], the grid technology is
employed to define the state matrix, and we observe two types of
data, vehicles’ position and speed. There are three lanes in each
direction and four directions in total. Therefore, the size of the
full-scale state matrix S and the trust region state St are L × 12 × 2,
where L is as defined as Eq. (3).
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Fig. 3. Schematic diagram of intersection model and trust region state matrix: (a) perception range; (b) input matrix.

St = S × M (2)

L =
⌊

2dmax

w

⌋
(3)

Mi, j =
{

1, if i, j ∈
[

dmax−dp

w ,
dmax+dp

w

]
0, else

(4)

dmax = C × v f (5)

The mask matrix M is defined as Eq. (4), where dmax is the
largest perception distance can be provided, v f is the free flow
speed and w is the size of the grid. The function of the mask matrix
M is to select the perception range dp. Only vehicles that satisfy
this distance constraint can be observed by the agent.

2.2 Standardized reward
The reward function reflects the expected benefit of the actions.
The goal of the TSC is to keep the traffic flow efficient and smooth.
Therefore, two indicators, the queue length and vehicle speed,
are involved in our reward function [18]. It should be noted that
the transportation system is a highly dynamic system. Congestion
at intersections is closely related to the traffic demand from up-
stream. Because of real-time changes in traffic demand it is pos-
sible to get different temporal rewards even if the agent chooses
the same action.

Therefore, a standardized reward function is adopted in this
paper. At time t, the reward for the agent is defined as Eq. (6). At the
end of the control cycle, the reward is the average of cumulative
rewards over a control cycle, defined as Eq. (7).

Rt = α × tanh
(
Qb − Qt

)
− (1 − α) × tanh

(
Vb − Vt

)
(6)

Rm =
∑C

t=0 Rt

C
(7)

In Eq. (6), two indicators are involved in the reward value,
namely the average queue length and vehicle speed respectively.
Qb and Vb are the baseline values under the current vehicle ar-
rival rate, respectively. Qt and Vt are the real-time feedback values
at time t. To simultaneously satisfy the two goals of maximizing

Fig. 4. The baselines of the two factors in the reward function are tested
by the fixed time control method: (a) input arrival rate; (b) baseline of
the waiting length; (c) baseline of the average speed. (The red solid line
is the baseline function fitted by the least square method.)

vehicle speed and minimizing queue length, the function tanh is
used to scale the two factors to a uniform range. α is invoked as
an impact factor and is set as 0.5 through experiments.

The baseline values are acquired from the fixed time control
method, as in Fig. 4. According to the traffic flow steady-state the-
ory, the delay time and stopping rate of vehicles at the signal con-
trol intersection mainly depends on the vehicle arrival rate and
the capacity of the intersection [19]. However, when the vehicle
arrival rate is dynamically changing, queue waiting length and
average vehicle speed depend on not only the current traffic vol-
ume saturation but also the previous traffic conditions. To gain the
baseline values under the assumption of dynamic traffic volume
and to eliminate the deviation caused by the modelling of traf-
fic simulation software, we tested the fixed time control method
with the same control cycle and the same traffic volume via traffic
simulations.

It can be seen from Eq. (6) that if the agent acts better than the
fixed time controller, it will get a positive reward; otherwise, it will
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Fig. 5. The signal phases represented by four actions.

Fig. 6. Schematic diagram of transition relationships.

get a negative punishment. If the agent acts as well as the fixed
time controller, the reward will be 0.

2.3 Action
Consider an isolated intersection, which has two straight and two
left-turn phases, as illustrated in Fig. 5. The ‘action’ of the agent is
to choose one phase among all four phases in every control cycle.

The critical issue of action modelling is how to choose a suit-
able signal control cycle, denoted as C earlier in this article. In
accordance with the traffic control theory, the minimum period
time which is the total time of all phases is defined as:

Cmin = N × l

1 −
(

qc

3600/hs

) (8)

where, N denotes the number of phases in one period; l is to the
activation time of one phase; qc refers to the sum of traffic volume
in key lanes; hs indicates the saturation headway. The equation
suggests that the traffic demand is proportional to the minimum
period required. Given the analysis in Section 2.1, the signal con-
trol cycle is proportional to the perception distance. Accordingly,
the minimum control period is expanded as traffic demand rises
and a higher traffic demand requires a larger perception distance.
The design of the control cycle should satisfy the traffic demand.
A short control cycle and a small perception range are applicable
for the intersection with small traffic demands, while the inter-
section with large traffic demands requires a long control cycle as
well as a large perception range.

In brief, the control cycle should match the traffic demand at
the intersection and should be minimized from the point of view
of efficiency. Accordingly, the minimum acceptable control period
is adopted as the control cycle of the agent.

Table 1. The relationship between the decision light state and the
light display state.

Transition between two decision states Traffic light display state

1 (green → green) Green
2 (red → red) Red
3 (green → red) Green countdown
4 (red → green) Red countdown

Fig. 7. Schematic diagram of transition relationships.

3. Advance decision-making reinforcement
learning traffic signal control
In existing studies, the TSC agent will obtain the current state and
take another phase at the end of a control cycle. However, there is
uncertainty about the next phase and the vehicle does not know
whether the current phase will change. The uncertainty can lead
to dangerous behaviours (e.g. sudden braking at intersections). To
address this problem, we propose the advance decision-making
reinforcement learning algorithm for traffic signal control and a
novel traffic signal mechanism, termed as a bi-countdown timer.

3.1 Advance decision-making reinforcement
learning

The core idea of the Advance Decision-making Reinforcement
Learning (ADRL) control algorithm is to separate the decision cy-
cle from the control cycle and generate the action of the following
control cycle in advance.

The decision cycle and the control cycle have the same cycle
interval C, and the decision time is earlier than the control time.
To simplify the later analysis, we set the decision cycle half a cycle
in advance of the control cycle. At the decision time t, the traffic
information within the trust region dp is captured by the inter-
section information sensing sensor, such as a camera, and stored
as St . The state matrix St is fed to the deep reinforcement learn-
ing network as the input. The optimal action At serves as output
which is the next activated phase. Each lane direction is controlled
by an independent signal light, including four states: green, red,
green countdown and red countdown. The decision of each lane
has two states: green and red. At the beginning of the decision
cycle, the decision light state is compared with the current light
state. For a lane, if the decision state is different from the current
state, the current light will count down from 1/2C to 0, and the
decision light state will be activated when the countdown is fin-
ished. Otherwise, if the decision state is same as the current state,
the current light will remain until the beginning of the next deci-
sion cycle. The output decision has two states: green and red, as
shown in Fig. 6. The two adjacent decision states constitute four
kinds of transition relationships. Four kinds of transition relation-
ships determine the traffic light display state: green, red, green
countdown and red countdown, as in Table 1.
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Fig. 8. An example for AD-RLTSC.

To separate the decision and control process, the state matrix
is adjusted. The output action, which is calculated at the decisive
moment t, will be executed at future time t + 1/2C. Therefore,
the input for the decision process will be the state in the near
future. We use St+1/2C instead of the current state St to achieve
the advance decision. There are two ways to get the state matrix
St+1/2C. The first is to capture the state matrix St and predict
St+1/2C according to St . However, the prediction process is a
difficult task and will introduce new systematic errors. From the
analysis in the trust region state, we could adjust the intersection
sensing range instead of predicting the state matrix. Then at the
decision moment, the critical vehicles will be the vehicles which
pass through the intersection at time [1/2C, 1/2C + C], and the
speed range of vehicles is [vmin, v̄]. Considering that the current
speed of the vehicles queued at the intersection, and thus the

minimum vehicle speed is set to 0. Finally, the perception range
dp is adjusted to Eq. (9).

dp = 3
2

× C × v̄ (9)

Fig. 7 shows the model of our proposed ADRL algorithm. In gen-
eral, it incorporates two adjustments compared to the traditional
reinforcement learning algorithms.

First, we separate the agent’s ‘action’ to two processes: ‘de-
cision’ and ‘control’. At the intervals during which the deci-
sion has been made but the agent has not been controlled,
a reminder signal is sent to all vehicles in the mixed traffic
environment.

Second, we make future action decisions by expanding the
sensing range of the state matrix, utilizing the relationship be-
tween the sensing range and the control period.

Fig. 9. The overall architecture of the AD-RLTSC algorithm.
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3.2 Bi-countdown timer
Generally, a traffic light has three display states, which are red,
green and yellow. Some cities in China (e.g. Nanjing) have started
to use countdown timers to eliminate safety hazards at intersec-
tions.

The proposed bi-countdown timer consists of two hold states
and two countdown states. The two hold states refer to green and
red, suggesting that the current state will be kept more than time
1/2C. The two countdown states reveal that the signal state will
change at the end of the countdown.

The benefits of the bi-countdown timer and AD-RLTSC cover
three points:

1) For the human driver, it acts as a acceptable signal rule. The
proposed Bi-countdown timer can provide the precise remaining
time of the current phase. The state of the light can vary from red
to green or from green to red.

2) For the intelligent vehicles, the remaining signal time can be
exploited to optimize driving speed. Since the next state of the
traffic light is hard to predict, almost all existing adaptive traffic
light control methods are not capable of providing the informa-
tion about phase change prediction. Using the AD-RLTSC control
method, driving speed control methods can be adopted to vehicles
with differing intelligent levels.

3) Bi-countdown timer is capable of saving phase loss time and
achieving short-cycle control at intersections. It can achieve a long
switching reminder time without taking up green time. Accord-
ingly, the control period can be very short to enhance intersection
efficiency.

Fig. 8 presents an example to illustrate the AD-RLTSC algo-
rithm. At the beginning of the decision cycle, time = 0, the agent
captures the current state matrix S0 and makes the decision of
light state at time C/2. The output decision AC/2 is ‘green’, the
same as the current light state; thus, the traffic light will stay
green for one more cycle. At C, the first decision cycle ends and
the second decision cycle starts. The state matrix Sc is obtained
and the output decision light state A3C/2 is ‘red’, which differs from
the current display state of light. Subsequently, the light display
state will change from ‘green’ to ‘red’ at the beginning of the con-
trol cycle at 3C/2. During the time [C, 3C/2], the green countdown
timer will start and count from C/2 to 0. At 3C/2, the decision A3C/2

will be executed. The light state turns into ‘red’ and holds at least
to 2C.

4. 3DQN
The 3DQN algorithm is used for the policy function approxima-
tion. The network’s input is the observed intersection state and
the output is a vector of estimated Q-values. Prioritized experi-
ence replay is employed to improve the training efficiency.

4.1 Double Deep Q-Network
Q-learning is a model free learning algorithm, attempting to eval-
uate how good it is to use current policy to act a in state s using
the Q-value. The Q-value is defined as Eq. (10). The solution of Q-
value can be formalized as Eq. (11), where r(s, a) is the immediate
reward received, maxQ(s, a) is the highest possible Q-value from
state s and γ is a discount factor. The strategy takes the action
that maximizes the Q-value to get the highest reward in the long
term.

Q (s, a) = E

( ∞∑
k = 0

γ kRt+k| St = s, At = a, π

)
(10)

Q (s, a) :=r (s, a) + γ max
a

Q (s′, a) (11)

The deep Q-Network (DQN) was proposed by DeepMind in 2015
[20]. The idea of DQN is to approximate the Q-value using neu-
ral network. Then the Q-value is denoted as Q (s, a; θ ), where θ

represents the weights of the network. The training aims to min-
imize the difference between the current Q-value, Q(s, a; θ ), and
the target Q-value. The target Q-value is the sum of immediate
and future rewards, as Eq. (12).

L =
[
Q (s, a; θ ) −

(
r (s, a) + γ max

a
Q (s′, a; θ )

)]2
(12)

In DQN, both true label (target Q-value) and samples (current
Q-values) are generated from the same neural network. To elim-
inate the impact of changing goals, the double Q-learning algo-
rithm is employed [21]. In the double DQN, a target network is
adopted to generate the target Q-value, while the current action
is generated from the current network. The cost of the training is
expressed in Eq. (13).

L =
[
Q (s, a; θ ) −

(
r (s, a) + γ max

a
Q (s′, a; θ ′ )

)]2
(13)

4.2 The duelling network architecture and
prioritized experience replay

The duelling network architecture replaced the single-stream Q
network with two streams, representing the state values and
(state-dependent) action advantages, respectively. Intuitively, the
duelling architecture can estimate which states are (or are not)
valuable, without learning the effect of each action for each
state. The modified Q function is expressed in Eq. (14), where
V denotes the value function and A represents the advantage
function [22].

Q (s, a; θ, α, β ) = V (s; θ, β ) + A (s, a; θ, α) (14)

If the experience inputs are uniformly sampled from a replay
memory, the probability of the occurrence of samples will be ig-
nored, making a few valuable samples hard to apply for training.
Prioritized experience replay was proposed in 2015 and widely
used to improve the performance of the DQN [23]. In TSC, the
sample of the rush hour is more important than the other time.
Prioritized experience replay is involved for the following three
reasons. First, increasing the probability that important samples
in rush hours to be sampled; second, forgetting previous expe-
riences to be avoided; third, correlations between experiences to
be reduced. The experiences are ranked as the value of δ, which
represents the temporal difference error, as shown in Eq. (15).
pi is the priority of the experience i, which is the reciprocal of
the rank value, as shown in Eq. (16). Pi is the final sampling
probability, and τ denotes the importance factor, as defined in
Eq. (17).

δi = ∣∣Q(s, a; θ )i − Q(s, a; θ ′ )i

∣∣ (15)

pi = 1
δi

(16)

Pi = pτ
i∑

k pτ
k

(17)

4.3 Learning architecture
Fig. 9 shows the overall architecture of the proposed AD-RLTSC
algorithm. There are mainly two parts in the overall architec-
ture, advance decision-making traffic signal control and the train-
ing process of reinforcement learning network. The input state is
obtained from the traffic condition in real time. And the action
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Fig. 10. The architecture and hyper parameters of the 3DQN algorithm.

Fig. 11. The flowchart of the simulation3

for the next signal control cycle is generated by the current net-
work in advance. The decision phase and the current phase deter-
mines whether to start the countdown timer. Subsequently, the
decision phase will be started and held for half one cycle. Before
the execution of the next signal cycle, the current network will
be updated. The sample mini-batches is collected by the prior-
itized experience replay. And the target network is updated ev-
ery few control cycles. The RMSProp Optimizer is used to update
the parameters with the goal of minimizing the difference be-
tween the target Q-value and the predicted Q-value. intersection
information.

The current network is copied to the target network to update
the training goal every N step. The structure of our neural net-
work is illustrated in Fig. 10. A convolution network is employed
to approximate the policy function and duelling architecture, con-
sisting of three convolution layers, two fully connected layers, as
well as the hyper parameters, as shown in Fig. 10. The network
outputs the Q-value of the four possible actions. The action with
the maximum Q-value will be taken.

5. Experiment
In this section, we first compare the performance of the proposed
AD-RLTSC algorithms with other traffic signal control methods
in isolated intersections, including fixed time (FT), longest queue
first (LQF), general reinforcement learning based TSC (RLTSC),
Region-TSC and fixed time with bi-countdown timer (Bi-FT). Sec-
ond, we apply the pre-trained model to a larger road network
to explore the influence of the proportion of AD-RLTSC lights on
large-scale mixed traffic flow.

5.1 Experiment setup
The experiment was conducted in a popular open-source traffic
simulation software, SUMO [24].

Intersection: The whole simulation scenario is a 600 m ×
600 m area. In simulations, an intersection with four ways and
four phases was considered, as shown in Fig. 3. Each 300 m road
consists of three lanes, controlling the left turn, the straight turn
and the right turn, respectively. The right turn is always allowed,
the grid size of the state matrix is 5 m, and the control cycle C is
set to be 10 s.

Vehicle model: For HDVs, the Krauss car following model [25]
acts as the default car following model and the CACC [26] model
serves as the default model for the CAVs. The maximum speed
is 20 m/s; the average acceleration and deceleration is 2.5 m/s2;
the vehicle length and minimum gap between vehicles are set to
5 m and 2 m, respectively.

Vehicle arrival rate: A sinusoidal function is used to
simulate dynamic vehicle arrival rates. The control cycle
C = 10 s; phase number N = 4; minimum time headway
hs = 1.5 s, and time loss of one phase l = 1 s. Fig. 4(a) sug-
gests the vehicle arrival rate for each control cycle, ranging from
0.6 pch/s to 1 pch/s. In each episode, the whole simulation time
is 15 h (54,000 s), and control cycle is 10 s, so the traffic light is
controlled 5,400 times in one episode.
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Table 2. Comparison of different traffic signal controllers on single intersection scenario.

Evaluation FT Bi-FT LQF RLTSC Region-TSC AD-RLTSC

Average vehicle waiting time (s) 8.26 8.75 7.2 7.04 7.02 7.0
Average vehicle speed (m/s) 9.66 9.55 9.57 10.00 10.54 9.89
Std. of vehicle speed 0.69 0.63 0.82 0.78 0.64 0.56
Dangerous acceleration (times) 201 0 219 248 223 0

Fig. 12. Comparison on velocity distribution of all vehicles.

Fig. 13. Comparison on acceleration distribution of all vehicles.

Simulation process: Fig. 11 illustrates our overall simulation
program flowchart for one control period. At the beginning of a de-
cision cycle, the state matrix is extracted from the simulation soft-
ware and fed into the input of the reinforcement learning model,
namely 3DQ-Network. The action vector is a four-dimensional
vector representing the probability of 4 phases. The phase with
maximum probability is chosen but is not immediately activated.
If the current phase is the same as the decision phase, the traf-
fic signal state will not be changed. However, if the two phases
differ, the countdown timer will be started to remind all vehicles
that the current light signal will be in the reverse-phase mode
when the timer ends. During the countdown, the target speed of
all vehicles will be calculated based on the built-in car-following
model using the induction method introduced in Section 3.2. Fi-
nally, new vehicles are added into the simulation environment

and a one-step simulation is performed until the control period
ends.

5.2 Single intersection
A comparison of different traffic signal controllers is presented
in Table 2. The FT algorithm has the maximum queue length
and leads to considerable dangerous behaviour. The Bi-FT algo-
rithm solves the problem of dangerous acceleration by provid-
ing countdown information to vehicles. However, because of its
fixed timing, it is a less-efficient approach. The performance of
RLTSC and LQF is similar: they have better average vehicle speed
compared to the former two methods, but they perform worse
regarding both safety and stability. The Region-TSC further im-
proves efficiency compared to the RLTSC, but still gives rise to dan-
gerous driving phenomena. The proposed AD-RLTSC algorithm
has the lowest vehicle waiting time. Finally, the Bi-countdown
timer mechanism and the advance decision-making strike an
effective balance between operational efficiency and dangerous
acceleration.

Fig. 12 shows the velocity distribution for all vehicles. It can be
seen that the vehicle speed is distributed mainly in two intervals,
specifically, the interval of [10.0 m/s,15.0 m/s]. Any interval near
0 reflects the number of stops made by the vehicle. The FT has
the maximum stop times and the RLTSC has the maximum ve-
hicle speed. The AD-RLTSC has the minimum stop times and a
relatively fast driving speed.

Fig. 13 shows the acceleration distribution. Most of the accel-
erations are in the interval of [2 m/s2, 2.5 m/s2]. A zero accelera-
tion means the vehicle is driving with a constant speed. The AD-
RLTSC has the largest zero acceleration distribution, which indi-
cates that traffic flow is the most stable. The maximum deceler-
ation is set to 6 m/s2 and the maximum comfort deceleration is
set to 3 m/s2. If the deceleration is smaller than 3 m/s2 and larger
than 6 m/s2, it means the human driver adopted an aggressive
driving strategy. If the deceleration is smaller than 6 m/s2, it in-
dicates dangerous driving behaviour, especially in the case of
a sudden red light. As can be seen, both FT and RLTSC meth-
ods often result in dangerous conditions. In contrast, the AD-
RLTSC method provides comfortable acceleration most of the
time.

To clearly clarify the behavior of vehicles near the intersection,
Figs. 14 and 15 provide heat maps of vehicle speed and vehicle
acceleration, respectively. The vertical coordinate is the position
in the map and the middle position, set at 40 m, is the position
of the intersection. The horizontal coordinate is simulation time,
and there are 54,000 simulation steps in an episode. These two
figures show vehicles’ speed and acceleration on the straight lane
running from north to south.

In Fig. 14, the red dot indicates that the vehicle speed is
zero, which means the intersection is congested. The blue dot
represents speed as the maximum speed, which means the
intersection area is running smoothly. Fig. 14(d) the simula-
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Fig. 14. Comparison on velocity heat map: (a) fixed time; (b) Bi-countdown; (c) reinforcement learning; (d) advance decision-making reinforcement
learning.

tion results for the AD-RLTSC method. Compared to the other
three methods, the congestion and queuing length near the
intersection are significantly reduced, and the congestion is al-
located to the upstream section.

In Fig. 15, the red dot indicates that the vehicle has a large ac-
celeration, representing sudden braking. The blue dot represents a
zero acceleration, that is, the vehicle is travelling at a comfortable
constant speed. There is much less sudden braking in AD-RLTSC
and Bi-FT due to the bi-countdown timer.

Overall, the proposed AD-RLTSC algorithm can improve inter-
section efficiency and help keep the traffic flow running smoothly.

5.3 Multiple intersections
We applied the pre-trained AD-RLTSC model into a 3 × 3 road net-
work to evaluate its control performance in a large-scale traffic
environment, as shown in Fig. 16. All signal lights operate inde-
pendently in the multiple intersections scenario, and the traf-
fic participants have both HDVs, CAVs, AD- RLTSC lights and FT
lights.

An intelligent signal system penetration experiment was con-
ducted to study the effect of the proportion of intelligent signal
lights on overall traffic efficiency. The results are presented in Ta-
ble 3. In this experiment, all the vehicles are HDVs. The traffic
lights listed in the second row are controlled by the AD-RLTSC
and the remaining lights are traditional fixed time signal lights.
Result indicated that as the number of intelligent signal lights in-
creased, the average speed of the vehicle increased, the average
queue length at the intersection decreased, suggesting that traffic
efficiency improved, and the standard deviation of vehicle speed
and the queue length became smaller, indicating enhanced traffic
stability.

As indicated in Table 3, the traffic efficiency is the highest when
all the lights are AD-RLTSC. Table 4. shows the results of testing
the effect of the ratio of CAVs on traffic efficiency. In this experi-
ment, the AD-RLTSC algorithm controls all nine traffic lights. The
results show that an increased ratio of CAVs leads to an increase
in the vehicle moving speed and a decrease in intersection queue
length. In short, it appears that CAVs also can enhance traffic
stability.

Compared to the full HDVs and full FT controller scene,
the full CAVs and full AD-RLTSCs scene improves the vehi-
cle speed up to 15.9% and decreases the queue length up to
43%.

6. Conclusions and Discussion
In this paper, we proposed three new conceptualizations in the
traffic signal control field.

The first is the Region-based RLTSC. Because the vehicle on the
road will arrive at the intersection sometime in the future, we
established the relationship between the perception range and
the signal control period, and we defined a scalable state matrix,
namely the trust region state. We considered the performance of
the fixed time traffic light as the baseline to standardize the re-
ward function of the reinforcement learning network. Based on
the trust region state and the standardized reward function, we
presented the Region-based RLTSC. However, rapid changes in sig-
nal lights still exacerbate the occurrence of dangerous behaviour.
Second, to address this problem, which is common to most adap-
tive signal control methods, we presented the novel control ap-
proach, advance decision-making reinforcement learning traffic
signal control. Compared with the general reinforcement learn-
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Fig. 15. Comparison on acceleration heat map: (a) fixed time; (b) Bi-countdown; (c) reinforcement learning; (d) advance decision-making reinforcement
learning.

Fig. 16. Comparison on acceleration distribution of all vehicles.

ing algorithm, the AD-RLTSC separates the decision and control
processes of the agent. Based on the theory of the trust region
state, the information in a larger perception range can be used as
the future state to make the future decision. The time difference
between decision and control is used to broadcast future signal

status to all vehicles to avoid dangerous driving behaviour. The
bi-countdown timer is also proposed, which is a signal display
mechanism that can be used in real-life scenarios. It consists of
four states: green, red, green countdown and red countdown.

We conducted isolated intersection test and multiple inter-
sections tests, and we compared the effects of different control
methods on vehicle micro-behaviour and traffic macro-efficiency.
The results showed that the proposed AD-RLTSC algorithm could
simultaneously improve both traffic efficiency and traffic flow
stability.

In the multi-intersection experiment, we evaluated the impact
of both the intelligent signal penetration rate and the intelligent
vehicle penetration rate on traffic efficiency. The results showed
that traffic efficiency is improved as the number of smart subject
increasing.

A methodological point worth noting is that in the present re-
search the AD-RLTSC and the CAVs were always making the deci-
sion independently, although the CAVs could receive countdown
information. In future work, we will combine the intelligent in-
frastructure and the intelligent vehicles together to improve traf-
fic efficiency, safety and stability.

Table 3. The impact of ratio of AD-RLTSC signal lights on traffic efficiency.

Ratio of AD-RLTSC Light 0/9 3/9 6/9 9/9

The index of the AD-RLTSC None #2,#5,#8 #1,#5,#9 #1, #3, #4, #7, #8, #9 #2, #3, #4, #5, #6, #8 All
Average speed (m/s) 8.69 8.86 8.91 9.12 9.07 9.32
Std of vehicle speed 0.54 0.52 0.55 0.51 0.50 0.49
Average waiting length 47.47 41.57 42.34 36.26 35.67 30.56
Std of waiting length 17.47 15.74 15.41 14.55 13.90 12.15
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Table 4. The impact of ratio of CAVs on traffic efficiency.

Ratio of CAVs 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Average speed (m/s) 9.33 9.38 9.42 9.50 9.56 9.62 9.70 9.78 9.87 9.97 10.07
Std of speed 0.497 0.504 0.502 0.504 0.497 0.494 0.491 0.483 0.474 0.464 0.460
Average waiting length 30.54 30.49 30.66 30.15 29.85 29.69 29.29 28.77 28.03 27.65 27.02
Std of waiting length 11.970 12.121 12.056 11.605 11.292 11.094 10.386 10.050 9.321 9.041 8.456
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