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Abstract—Two of the main principles underlying the life cycle of
an artificial intelligence (AI) module in communication networks
are adaptation and monitoring. Adaptation refers to the need to
adjust the operation of an AI module depending on the current
conditions; while monitoring requires measures of the reliability of
an AI module’s decisions. Classical frequentist learning methods
for the design of AI modules fall short on both counts of adaptation
and monitoring, catering to one-off training and providing over-
confident decisions. This paper proposes a solution to address both
challenges by integrating meta-learning with Bayesian learning. As
a specific use case, the problems of demodulation and equalization
over a fading channel based on the availability of few pilots are
studied. Meta-learning processes pilot information from multiple
frames in order to extract useful shared properties of effective
demodulators across frames. The resulting trained demodulators
are demonstrated, via experiments, to offer better calibrated soft
decisions, at the computational cost of running an ensemble of
networks at run time. The capacity to quantify uncertainty in the
model parameter space is further leveraged by extending Bayesian
meta-learning to an active setting. In it, the designer can select in
a sequential fashion channel conditions under which to generate
data for meta-learning from a channel simulator. Bayesian active
meta-learning is seen in experiments to significantly reduce the
number of frames required to obtain efficient adaptation procedure
for new frames.

Index Terms—Bayesian meta-learning, uncertainty quanti-
fication, Bayesian active meta-learning, demodulation.

I. INTRODUCTION

A. Motivation

Artificial intelligence (AI) is seen as a key enabler for next-
generation wireless systems [2]. Emerging solutions, such as
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Open-Radio Access Network (O-RAN), incorporate AI modules
as native components of a modular architecture that can be fine-
tuned to meet the requirements of specific deployments [3]. Two
of the main principles underlying the life cycle of an AI module
in communication networks are adaptation and monitoring [4].
Adaptation refers to the need to adjust the operation of an AI
module depending on the current conditions, particularly for
real-time applications at the frame level. At run time, an AI
model should ideally enable monitoring of the quality of its
outputs by providing measures of the reliability of its decisions.
The availability of such reliability measures is instrumental in
supporting several important functionalities, from the combina-
tion of multiple models to decisions about retraining [5].

Classical frequentist learning methods for the design of AI
modules fall short on both counts of adaptation and monitoring
(see, e.g., [6], [7]). First, conventional frequentist learning is well
known to provide inaccurate measures of reliability, typically
producing overconfident decisions [7]. Second, the standard
learning approach prescribes the one-off optimization of an AI
model, hence failing to capture the need for adaptation. This
paper investigates the integration of meta-learning and Bayesian
learning as a means to address both challenges. As we detail in
the next section, Bayesian learning can provide well-calibrated,
and hence reliable, measures of uncertainty of a model’s deci-
sion; while meta-learning can reduce the amount of data required
for adaptation to a new task, thus improving efficiency. As a
specific use case, we focus on the problems of demodulation
and equalization over a fading channel based on the availability
of few pilots (see Fig. 1). The goal is to develop AI solutions that
are capable of adapting the demodulator/equalizer to changing
conditions based on few training symbols, while also being able
to quantify the uncertainty of the AI model’s output.

B. Background

As illustrated in Fig. 2, frequentist learning assigns a single
value to each model parameter as a result of training. This
neglects (epistemic) uncertainty that exists at the level of model
parameters due to the limited availability of data. In contrast,
Bayesian learning can express uncertainty about the true value
of the model parameter vector by optimizing over a distribution,
rather than over a single point value [8]. By averaging predictions
over the distribution of the model parameters, Bayesian learning
is known to be capable of providing decisions that are well
calibrated [9], [10], [11]. Calibration refers to the capacity of
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Fig. 1. Illustration of the meta-learning problem studied in this work for the
example of 16-ary quadrature amplitude modulation (16-QAM). A receiver
has available data corresponding to frames previously received from multiple
devices, each possibly experiencing different channel conditions. Given meta-
training data sets {Dτ}tτ=1 of pilots from previous frames, partitioned into
training data and test data, the demodulator optimizes a hyperparameter vector
ξ. For a newly received frame, the receiver uses the few pilots therein to adapt
the demodulator/equalizer parameter vector φ∗. In the Bayesian meta-learning
framework, instead of a single parameter vector φ∗, the receiver optimizes over
an ensemble of parameter vectors through the hyperparameter vector ξ of a
posterior distribution p(φ∗|Dtr

∗ , ξ).

a model to produce confidence levels that reproduce well the
actual accuracy of the decisions.

Meta-learning, also known as learning to learn, optimizes
training strategies that can fine-tune a model based on few
samples for a new task by transferring knowledge across dif-
ferent learning tasks [12], [13], [14], [15], [16], [17], [18].
Meta-learning is a natural tool to produce AI solutions that
are optimized for adaptation. Prior work on meta-learning for
communication systems, including [19], [20], [21], [22], [23],
[24], [25], [26], [27], [28], [29], is limited to standard frequentist
learning. Therefore, existing art is unable to produce models that
provide well-calibrated estimations of reliability. Most related
to our work is [19], which proposes to leverage pilot information
from previous frames in order to optimize training procedures
to be applied to the pilots of new frames (see Fig. 1).

Bayesian meta-learning aims at optimizing the procedure
that produces the posterior distribution for new learning tasks.
Accordingly, the goal of Bayesian meta-learning is to enhance
the efficiency of Bayesian learning by reducing the number of
training points needed to obtain accurate and well calibrated
Bayesian models. The optimization of the Bayesian learning
process is carried out by transferring knowledge from pre-
viously encountered tasks for which data are assumed to be
available [30], [31], [32]. To the best of our knowledge, with the

exception of the conference version of this paper [1], this is the
first work to consider the application of Bayesian meta-learning
to communication systems.

Beside meta-learning, another approach to reduce the number
of required training data points is active learning [33], [34], [35],
[36], [37]. Active learning amounts to the process of choosing
which samples should be annotated next and incrementally
added to the training set [38]. Through this process, active learn-
ing can select relevant samples at which the model is currently
most uncertain in order to speed up the training process.

A much less studied area is active meta-learning, which aims
at reducing the number of tasks a meta-learner must collect
data from, before it can adapt efficiently to new tasks [37],
[39]. Reference [37] proposes a method based on Bayesian
meta-learning via empirical Bayes; while the paper [39] takes
a hierarchical Bayesian approach, generalizing the Bayesian
active learning by disagreements (BALD) criterion introduced
in [33] to meta-learning. While [37] assumes labeled training
sets, reference [39] considers unlabeled data during active meta-
learning. As such, the setting in it is not applicable to the problem
under study here in which data consists of supervised pairs
of pilots and received signals (see Fig. 1). A summary of the
relevant approaches built upon in this work is given in Table I.

C. Contributions

This paper introduces the use of Bayesian meta-learning to
enable both adaptation and monitoring for the tasks of demod-
ulation and equalization. Unlike prior works that considered
either frequentist meta-learning [6], [19], [20], [21], [22], [23],
[24], [25], [26] or Bayesian learning [40], [41], [42], [43], the
proposed Bayesian meta-learning methodology enables both
resource-efficient adaptation and a reliable quantification of
uncertainty. To further improve the efficiency of Bayesian meta-
learning we propose the use of active meta-learning, which re-
duces the number of required meta-training data from previously
received frames. Specific contributions are as follows.
� We introduce Bayesian meta-learning for the prob-

lems of demodulation and equalization from few pi-
lots. The proposed implementation is derived based on
parametric VI.

� We introduce Bayesian active meta-learning as a solu-
tion to reduce the number of frames required by meta-
learning. Active meta-learning selects in a sequential fash-
ion channel conditions under which to generate data for
meta-learning from a channel simulator.

� Extensive experimental results demonstrate that Bayesian
meta-learning produces demodulators and equalizers that
offer better calibrated soft decisions. Furthermore, they
show that for a target meta-testing loss, active meta-
learning can reduce the number of simulated meta-training
frames required.

Part of this paper was presented in [1], which presented the idea
of Bayesian meta-learning with some preliminary experiments.
This journal version presents full technical details, new results
and introduces for the first time Bayesian active meta-learning
for communication systems.
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Fig. 2. Network weights in frequentist and Bayesian learning: (a) in frequentist learning, each weight is described by a scalar value; (b) the scalar value
can be viewed as random variable having a degenerated probabilistic distribution concentrated at a simple prior; (c) in Bayesian learning, the weights are
assigned a probability distribution, which, unlike the frequentist point estimate (dashed vertical line), provides information about the uncertainty on the weight;
(d) in variational inference (VI), the posterior is approximated with a parameter distribution.

TABLE I
A SUMMARY OF THE RELEVANT TECHNIQUES CONSIDERED IN THIS WORK

The rest of the paper is organized as follows. Section II in-
troduces the channel model, along with background material on
standard frequentist learning and frequentist meta-learning. Sec-
tion III expands on Bayesian meta-learning. Then, we present
Bayesian active meta-learning in Section IV. Numerical results
are presented in Section V, and Section VI concludes the paper.

D. Related Work

For scalability, Bayesian learning can be implemented via ap-
proximate methods based on variational inference (VI) or Monte
Carlo (MC). VI methods approximate the exact Bayesian pos-
terior distribution with a tractable variational density [9], [44],
[45], [46], [47], while Monte Carlo techniques obtain approxi-
mate samples from the Bayesian posterior distribution [48], [49],
[50]. Each class of methods comes with its own set of technical
challenges and engineering choices. For instance, VI requires the
selection of a variational distribution family, such as mean-field
Gaussian models, and the specification of a stochastic opti-
mization algorithm. There are also non-parametric VI methods
such as Stein variational gradient descent (SVGD) [51], which
optimize over deterministic and interacting particles. For MC
techniques, solutions range from first-order Langevin dynamics
techniques [49] to more complex methods such as Hamiltonian
Monte Carlo (HMC) [48]. Implementing any of these schemes
for a specific engineering application is a non-trivial task.

Bayesian learning has been applied in reference [52] to the
problem of predicting the number of active users in LTE sys-
tem; papers [53], [54] applied MC-based Bayesian learning for
MIMO detection; the works [55], [56], [57] addressed chan-
nel prediction/estimation for massive MIMO systems; refer-
ence [58] studied the identification of IoT transmitters; and the
authors of [59] proposed the use of robust Bayesian learning for
modulation classification, localization, and channel modeling.

As for active learning, applications to communication sys-
tems include paper [60], which proposed a sample-efficient
retransmission protocol; reference [61], which tackled initial
beam alignment for massive MIMO system; work [62], which
aimed at mitigating the problem of scarce training data in wire-
less cyber-security attack; and reference [63], which addressed
resource allocation problems in vehicular communication
systems.

Like Bayesian learning, meta-learning also provides a general
design principle, which can be implemented by following differ-
ent approaches. Optimization-based methods design the hyper-
parameters used by training algorithms; model-based techniques
optimize an additional neural network model to guide adapta-
tion of the main AI model; and metric-based schemes identify
metric spaces for non-parametric inference (see, e.g., [64] and
references therein).

The integration of meta-learning and Bayesian learning is
highly non-trivial, and is an active topic of research in the
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machine learning literature. References [65], [66], [67], [68],
[69] addressed Bayesian meta-learning via empirical Bayes
using parametric VI [65], [66], particle-based VI [67], deep-
kernels [68], and expectation-maximization [69]; while the pa-
pers [70], [71], [72], [73] studied full Bayesian meta-learning
that treats also the hyperparameters as random variables. Lastly,
the work [74] proposed the use of quantum machine learning
models as parameterized variational distributions.

II. CHANNEL MODEL AND BACKGROUND

A. Channel Model and Soft Demodulation or Equalization

In this paper, we consider frame-based transmission over a
memoryless block fading channel model with constellation X
and channel output’s alphabet Y . The channel is characterized
by a conditional distribution p(y|x, c) of received symbol y ∈ Y
given transmitted symbol x ∈ X and channel state c. In the case
of demodulation, we treat the set X as discrete; while for equal-
ization we view it as the space of vectors of a certain size. In both
cases, we will refer to channel input x as symbol. The channel
state c is constant within each frame, and it is independently
and identically distributed (i.i.d.) across frames according to an
unknown distribution p(c). At frame τ , the transmitter sends a
packet consisting of Nτ symbols xτ = {xτ [i]}Nτ

i=1. Given the
channel state cτ and the transmitted symbols, collected in a
vector xτ , the received samples yτ = {yτ [i]}Nτ

i=1 are condition-
ally independent and each received i-th sample is distributed as
yτ [i] ∼ p(yτ [i]|xτ [i], cτ ).

A soft demodulator/equalizer is a conditional distribution
p(x|y, φ) that maps channel outputs y ∈ Y to estimated prob-
abilities for channel input symbol x ∈ X . The demodula-
tor/equalizer depends on a vector of parameters φ, and is applied
separately to each received sample y[i] in a memoryless fashion
as p(x|yτ [i], φ). The ideal frame-specific parameter vector φτ

for the frame τ is the one that best approximates the channel
conditional distribution p(xτ |yτ , cτ ), within its model class,
obtained from the Bayes rule as

p(xτ |yτ , φτ ) ≈ p(xτ |yτ , cτ ) =
p(yτ |xτ , cτ )p(xτ )∑

x′τ∈X p(yτ |x′τ , cτ )p(x′τ )
,

(1)
where p(xτ ) is the distribution of the input symbol vector xτ .
In practice, as we detail below, the demodulator/equalizer is
optimized based on pilot symbols. To simplify the terminology,
we will also refer to demodulation/equalization as prediction
henceforth.

B. Conventional Data-Driven Demodulators/Equalizers

Pilot-aided schemes utilize available pilot symbols to adapt
the predictor p(x|y, φ) to the unknown channel state c in each
frame τ . A typical choice for a predictor is a multi-layer neural-
network [75]. With L layers, given received sample y, this class
of models produces a vector

a(y|φ) = WL · fWL−1,bL−1 ◦ · · · ◦ fW1,b1(y) + bL, (2)

where ◦ is the composition operator; the weights {Wl}Ll=1

and biases {bl}Ll=1 define the model parameter vector φ :=

{Wl, bl}Ll=1 for a total of D parameters; and the function
for the l-th layer fWl,bl is a linear mapping followed by an
entry-wise activation function h(·), i.e., yl = fWl,bl(yl−1) =
h(Wl · yl−1 + bl) with y0 = y. In the last, L-th layer, a soft
demodulator applies the softmax function to vector a(y|φ),
producing the probability distribution

p(x|y, φ) = [softmax(a(y|φ))]x

=
exp([a(y|φ)]x)∑

x′∈X exp([a(y|φ)]x′)
, (3)

using [·]x as the x-th element of the vector. In contrast, a soft
equalizer typically defines the conditional distribution

p(x|y, φ) = N
(
x|a (y|φ) , β−1

)
, (4)

where the precision β is fixed. Throughout this paper, we use
N (x|μ,Σ) to indicate the probability density function of a
Gaussian vector with mean μ and covariance matrix Σ.

In each frame τ , conventional learning optimizes the model
parametersφτ usingN tr

τ i.i.d. pilotsDtr
τ = {(ytr

τ [i], x
tr
τ [i])}

N tr
τ

i=1 as
training data. Optimization of the prediction aims at minimizing
the training log-loss

LDtr
τ
(φτ ) := − 1

N tr
τ

N tr
τ∑

i=1

log p
(
xtr
τ [i]|ytr

τ [i], φτ

)
, (5)

which amounts to the cross entropy for demodulation (3) and
the quadratic prediction loss for equalization (4). Minimization
of (5) can be done via gradient descent (GD), or stochastic GD
(SGD), a variant thereof [76].

GD updates model parameter vector φτ for I iterations
with learning rate η > 0 starting from an initialization vector
ξ. Accordingly, the updated parameters φτ := φGD(Dtr

τ |ξ) are
obtained via the iterations

φ(0)
τ = ξ,

∀i = 1, . . . , I : φ(i)
τ ← φ(i−1)

τ − η∇
φ
(i−1)
τ
LDtr

τ
(φ(i−1)

τ ),

φGD
(
Dtr

τ |ξ
)
= φ(I)

τ . (6)

The resulting prediction for a test input-output pair (yte
τ [i],x

te
τ [i])

is given as p(xte
τ [i]|yte

τ [i],φ
GD(Dtr

τ |ξ)).

C. Frequentist Meta-Learning

The most prominent shortcoming of conventional learning
is its potentially high sample complexity, which translates into
the need for a large number of pilots, N tr

τ , per frame. Meta-
learning addresses this issue by transferring knowledge acquired
over previous frames. Specifically, frequentist meta-learning, as
proposed in [19], treats the initialization vector ξ in (6) as a
hyperparameter vector to be optimized based on the availability
of pilots from t previous transmission frames.

As a preliminary step, we decompose the available pilots
from each frame τ into a disjoint training set Dtr

τ and test
set Dte

τ as Dτ = {Dtr
τ ,Dte

τ }. Furthermore, the data sets for all
previous t frames are stacked as D1:t = {Dτ}tτ=1, and simi-
larly for Dte

1:t = {Dte
τ }tτ=1, having a total of N te

1:t =
∑t

τ=1 N
te
τ
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samples. Meta-learning has two phases: meta-training and meta-
testing. These are defined next by following the frequentist
meta-learning strategy of [19].

Meta-training tackles the bi-level optimization problem

min
ξ

1
N te

1:t

t∑
τ=1

N te
τ LDte

τ

(
φτ

(
Dtr

τ |ξ
))

(7a)

s.t. φτ

(
Dtr

τ |ξ
)
= argmin

φ(ξ)

LDtr
τ
(φ), τ = 1, . . . , t. (7b)

The notation φ(ξ) in (7b) indicates the dependence of the opti-
mizer on the initialization vector ξ. By (7), the goal of frequentist
meta-training is to find a hyperparameter vector ξ such that for
any frame τ , the optimized model parameter vector φτ (Dtr

τ |ξ)
fits well the test data set Dte

τ .
Problem (7) is addressed via a nested loop optimization in-

volving SGD-based inner updates and SGD-based outer updates,
which are also referred as meta-iterations. The inner loop tackles
the inner optimization (7b) in a per-frame manner via (6) for a
randomly selected subset T ⊂ {1, . . . , t} of frames, which are
redrawn independently at each meta-iteration. The outer loop
addresses the outer optimization (7a) via an SGD step of the
meta-loss with learning-rate κ > 0, i.e.,

ξ ← ξ − κ
1

N te
T

∑
τ∈T

N te
τ ∇ξLDte

τ

(
φGD(Dtr

τ |ξ)
)
, (8)

based on data from the batch T of selected frames, and using
the notation N te

T =
∑

τ∈T N
te
τ for the total samples within the

batch of selected frames. Meta-training updates the initialization
vector ξ across multiple meta-iterations. When meeting some
stopping criterion, here determined by a predefined number of
meta-iterations Imeta, meta-training stops, and the hyperparam-
eter vector ξ is stored to be used for future learning tasks.

Upon deployment, i.e., during meta-testing, the meta-test
frames also include pilots and data as the meta-training frames.
Accordingly, each meta-test device loads the hyperparameter
vector ξ for initialization, and produces the adapted model
parameter vector φ∗ = φGD(Dtr

∗ |ξ) as in (6) using N tr
∗ pilots

symbols Dtr
∗ = {(ytr

∗ [i], x
tr
∗ [i])}

N tr
∗

i=1. Then, it applies the learned

model to the payload data symbols {yte
∗ [i]}

N te
∗

i=1 to carry out
demodulation or equalization

p
(
xte
∗ [i]|yte

∗ [i], φ∗
)
. (9)

III. THE BAYESIAN FRAMEWORK

A. Bayesian Learning

Bayesian learning treats the model parameter vector φτ for
some frame τ as a random vector, rather than as a deterministic
optimization variable as in frequentist learning framework. As il-
lustrated in Fig. 2, instead of producing a single demodulator pa-
rameters φτ = φGD(Dtr

τ |ξ) as in (6), Bayesian learning produces
a distribution p(φτ |Dtr

τ , ξ) over the space of the demodulator
parameters φτ . This distribution is computed based on training
dataDtr

τ and on predetermined prior distribution p(φτ |ξ), which
depends in turn on the hyperparameter vector ξ, also fixed a
priori.

Having obtained the distribution p(φτ |Dtr
τ , ξ), the ensemble

prediction of a test point (yte
τ [i], x

te
τ [i]) is given by the ensemble

average of the predictions p(xte
τ [i]|yte

τ [i], φτ )with random vector
φτ having distribution p(φτ |Dtr

τ , ξ), i.e.,

p
(
xte
τ [i]
∣∣yte

τ [i],Dtr
τ , ξ
)
= Ep(φτ |Dtr

τ ,ξ)

[
p
(
xte
τ [i]
∣∣yte

τ [i], φτ

)]
.

(10)
The frequentist prediction (9), reviewed in the previous section,
can be viewed as a special case in which one is limited to the
choice p(φτ |Dtr

τ , ξ) = δ(φτ − φGD(Dtr
τ |ξ)), with δ(·) indicating

the Dirac Delta. With this choice, the distribution p(φτ |Dtr
τ , ξ) is

concentrated at one point, namely the GD solution (6). The fre-
quentist approach is therefore inherently limited in its capacity
to express uncertainty on the model parameters due to limited
data.

Ideally, the distribution p(φτ |Dtr
τ , ξ) should be obtained as the

posterior distribution

p
(
φτ |Dtr

τ , ξ
)
∝ p (φτ |ξ) p

(
Dtr

τ |φτ

)
, (11)

where p(Dtr
τ |φτ ) =

∏N tr
τ

i=1 p(x
tr
τ [i]|ytr

τ [i], φτ ) is the likelihood
function for the training data. However, computing the posterior
p(φτ |Dtr

τ , ξ) in (11) is generally intractable for high dimensional
vector φτ . ’

To address this challenge, we follow VI and introduce a
variational distribution approximation

q (φτ |ϕτ ) ≈ p
(
φτ |Dtr

τ , ξ
)
, (12)

which depends on a variational parameter vector ϕτ . A typical
choice is given by the Gaussian mean-field approximation [77]
which can be expressed as

q (φτ |ϕτ ) = N (φτ |ντ ,Diag (exp (2�τ ))) , (13)

with variational parameter vectorϕτ = [ν
τ , �


τ ]

, and the expo-

nent function is applied element-wise. The variational parameter
vector includes the mean vector ντ ∈ RD and the vector of the
logarithm of the standard deviations �τ ∈ RD for the Gaussian
random vector φτ . Note that vector �τ models uncertainty in the
model parameter space.

To describe VI, we will use the Kullback-Liebler (KL) diver-
gence KL(p(z)||q(z)) [78], which is a measure of the distance
between two distributions p(z) and q(z). It is defined as the
average of the log-likelihood ratio log(p(z)/q(z)) as

KL(p(z)||q(z)) = Ep(z)

[
log

(
p(z)

q(z)

)]
. (14)

VI-based Bayesian learning prescribes that the variational pa-
rameter vectors φτ be obtained via the minimization of the KL
divergence KL(q(φτ |ϕ)||p(φτ |Dtr

τ , ξ)) between the variational
distribution q(φτ |ϕ) and the posterior distribution p(φτ |Dtr

τ , ξ).
This problem can be equivalently formulated as the minimiza-
tion [76], [77]

ϕτ = argmin
ϕ

FDtr
τ
(ϕ|ξ), (15)

where the variational free energy [79] is defined as

FDtr
τ
(ϕτ |ξ)=N tr

τ Eq(φτ |ϕτ)

[
LDtr

τ
(φτ )

]
+ KL (q (φτ |ϕτ) ||p (φτ |ξ))

= N tr
τ LDtr

τ
(ϕτ ) + KL (q (φτ |ϕτ ) ||p (φτ |ξ)) . (16)
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In (16), we have defined as LDtr
τ
(ϕτ ) the expectation of loss

functionLDtr
τ
(φτ ) (5) over variational distribution q(φτ |ϕτ ), i.e.,

LDtr
τ
(ϕτ ) = Eq(φτ |ϕτ )[LDtr

τ
(φτ )]. (17)

In (16), the second summand is a regularizer that restricts
the variational distribution to be close to the prior distribution.
Note that, if the variational distribution has ability to express
the posterior distribution in (11), the minimizer of the problem
(15) becomes the Bayesian posterior p(φτ |Dtr

τ , ξ), since the
KL divergence KL(q(φτ |ϕ)||p(φτ |Dtr

τ , ξ)) is minimized (and it
equals zero) when the two distributions are the same.

A typical choice for the prior distribution p(φτ |ξ) is the
Gaussian distribution. In this case, we have

p(φτ |ξ) = N (φτ |ν,Diag (exp(2�))) , (18)

which is defined by the hyperparameter vector ξ = [ν
, �
]
,
where ν ∈ RD and � ∈ RD stand for the mean and logarithm
of the standard deviation vector of the Gaussian random vector
φτ .

Assuming the Gaussian variational distribution in (13) and the
Gaussian prior (18), the regularizer term in (16) can be computed
in closed-form as

KL(q(φτ |ϕτ )||p(φτ |ξ)) =

1

2

D∑
d=1

(
2(�[d]−�τ [d])+

exp(2�τ [d])+(ντ [d]−ν[d])2
exp(2�[d])

−1
)
,

which is a differentiable function for ϕτ .
With these choices of variational posterior and prior, prob-

lem (15) can be addressed via gradient-descent methods by
using the reparametrization trick [80]. This is done by writ-
ing the random model parameter vector φτ ∼ q(φτ |ϕτ ) as
φτ = ντ + exp (�τ )� e, with random vector e ∼ N (0, ID)
and� being the element-wise multiplication. An estimate of the
gradient of the objective (17) using the reparametrization trick
is done with the aid of R drawn independently samples of the
standard normal Gaussian random vector e, and differentiating
the resulting empirical estimate of (17).

Specifically, we estimate the free energy in (16) by replacing
the training loss LDtr

τ
(ϕτ ) with the empirical estimate

L̂Dtr
τ
(ϕτ ) =

1

R

R∑
r=1

LDtr
τ
(ντ + exp (�τ )� eτ,r) , (19)

obtained by drawing samples eτ,r ∼ N (0, ID) for r =
1, 2, . . . , R. This yields the estimated free energy

F̂Dtr
τ
(ϕτ |ξ) = N tr

τ L̂Dtr
τ
(ϕτ ) + KL(q(φτ |ϕ)||p(φτ |ξ)). (20)

This is a special case of Algorithm 1 with input G(φτ ) =
LDtr

τ
(φτ ). The function (20) can be directly differentiated and

used in SGD updates.
Once the variational parameter ϕτ is inferred using Bayesian

training, ensemble prediction for a payload data symbol
(yte

τ [i], x
te
τ [i]) can be obtained via (10) by replacing p(φτ |Dtr

τ , ξ)
with q(φτ |ϕτ ) to yield the ensemble predictor

p
(
xte
τ [i]|yte

τ [i], ϕτ

)
= Eq(φτ |ϕτ )

[
p
(
xte
τ [i]|yte

τ [i], φτ

)]
. (21)

Practically, it uses Monte Carlo sampling with R model vectors,
producing the approximated soft predictor p̂

(
xte
τ [i]|yte

τ [i], ϕτ

)
via Algorithm 1 with G

(
φτ

)
= p
(
xte
τ [i]|yte

τ [i], φτ

)
.

B. Bayesian Meta-Learning

While conventional Bayesian learning assumes that the ran-
dom model parameter vector φτ has a fixed prior distribution
p(φτ |ξ) parametrized by a predefined hyperparameter vector ξ,
Bayesian meta-learning leverages the stronger assumption that
there is a shared prior distribution p(φτ |ξ) across all frames that
can be optimized through a hyperparameter vector ξ.

In this section, we formulate Bayesian meta-learning by
following empirical Bayes [81], with the aim of selecting a
distribution p(φτ |ξ) that provides a useful prior for the de-
sign of the predictor on new frames. Mathematically, Bayesian
meta-training optimizes over the hyperparameter vector ξ by
addressing the bi-level problem

min
ξ

1

N te
1:t

t∑
τ=1

N te
τ Eq(φτ |ϕτ (Dtr

τ |ξ))
[
LDte

τ
(φτ )

]
(22a)

s.t. ϕτ (Dtr
τ |ξ) = argmin

ϕ
FDtr

τ
(ϕ|ξ), τ = 1, . . . , t. (22b)

Problem (22) chooses the hyperparameter vector ξ that min-
imizes the average test loss on the meta-training frames τ ∈
{1, . . . , t} that is obtained with the variational posterior via
(15). The subproblems in (22b) correspond to Bayesian learning
applied separately to each frame as explained in Section III-A.
An illustration of all the quantities involved in problem (22)
can be found in Fig. 3 by using the formalism of Bayesian
networks [82].

To address problem (22) in a tractable manner, we apply the
reparametrization trick for both outer (22a) and inner optimiza-
tion (22b) by following the same steps described in Section III-A.
Details on the optimization can be found in Algorithm 2. In short,
the inner loop updates the frame-specific variational parameters
ϕτ by minimizing the approximated free energy (20) separately
for each frame τ within a mini-batch T via GD (dashed blue
line in Fig. 3(b)). Following [30], [66], the prior’s parameter
vector ξ plays two roles in the inner loop, namely (i) as the
initialization for the inner GD update in Algorithm 2 line 9;
and (ii) as the regularizer for the same update via the prior
p(φτ |ξ). The outer optimization (22a) is addressed via SGD
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Fig. 3. Probabilistic graphical model (Bayesian network) [82] for Bayesian
meta-learning. Circles represent random variables; double-lined circles rep-
resent deterministic variables or (hyper)parameters; shaded circles represent
observations; dashed diamonds represent variational parameter vectors; and
plaques indicate multiple instances (the outer plaques represent frames, whereas
the inner represent multiple sample, e.g., symbols across time): (a) High level
representation, assuming a prior p(φ|ξ) and predictor p(x|y, φ); (b) Model
using the train/test splits, with variational inference q(φτ |ϕτ ) ≈ p(φτ |Dtr

τ , ξ)
indicated as dashed arrows.

to minimize the average log-likelihood for test set using Algo-
rithm 1 with G(φτ ) = LDte

τ
(φτ ), shown as dashed green line in

Fig. 3(b).
After obtaining meta-trained hyperparameter ξ, meta-testing

takes place, starting with the adaptation of the variational pa-
rameter ϕ∗(Dtr

∗ |ξ) via (22b) using the available pilot data Dtr
∗ at

the current frame, to obtain ensemble prediction

p
(
xte
∗ [i]|yte

∗ [i], ϕ∗
)
= Eq(φ∗|ϕ∗)

[
p
(
xte
∗ [i]|yte

∗ [i], φ∗
)]

, (23)

as done in (21). Bayesian meta-learning is illustrated compara-
tively to meta-learning in Fig. 4.

C. Computational Complexity

We now briefly elaborate on the complexity of meta-learning
by analyzing the complexity of meta-training and of meta-
testing. To this end, let us define as C the complexity of ob-
taining the probability p(x|y, φ) for a data sample (y, x). This
baseline complexity depends on the model dimensionality, and it
accounts for the amount of time needed to carry out the forward
pass on the neural network implementing the model p(x|y, φ).

Fig. 4. Bayesian meta-learning (blue) as compared to frequentist meta-
learning (red). The frequentist predictor uses a single predictor, depicted as
a neural network (NN), whereas Bayesian meta-learning uses an ensemble of
predictors, e.g., a Bayesian NN (BNN). The dashed line represents the operation
of the active meta-learning introduced in Section IV. The data for each frame is
generated by following the distribution p(x, y|c) = p(x)p(y|x, c), with input
distribution p(x) and conditional distribution p(y|x, c) for channel state c.

Accordingly, as seen in Table II, the per-data point complexity
of meta-testing equals C for frequentist learning, and CRte for
Bayesian learning, where Rte is the size of the ensemble used
for inference.

The complexity of computing the first-order gradient via
backpropagation per-sample is given by G1 C, with G1 being a
constant in the range between 2 and 5 [83], [84]. Furthermore,
computing the Hessian-vector product (HVP) has a complexity
of the order G2G1 C, where constant G2 is also between 2 to 5
[19, Appendix A], [85, Appendix C]. Assume that all tasks have
data sets of equal size, i.e., N tr

τ = N tr and N te
τ = N te for any

task τ . Therefore, for each meta-training iteration, for a batch of
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TABLE II
COMPUTATIONAL COMPLEXITY OF FREQUENTIST AND BAYESIAN

META-LEARNING. (SEE TEXT IN SECTION III-C FOR DETAILS)

B tasks with I local updates, the complexity of the frequentist
meta-update (8) is of the order

B

(
IN trG1 C︸ ︷︷ ︸

frame-specific update

+ IN trG2G1 C︸ ︷︷ ︸
HVPs in meta-update

+ N teG1 C︸ ︷︷ ︸
gradient in meta-update

)
.

(24)
For Bayesian meta-learning, the complexity increases linearly

with the training ensemble size that is used for estimating the loss
functions in (22a) and (22b). Note that the impact of the size Rtr

of the training ensemble used for meta-training is different from
the sizeRte used for inference, as the first determines the variance
of the stochastic loss functions, while the latter determines the
quality of Bayesian prediction (see, e.g., [59] and references
therein). Ignoring the constant cost of differentiating the KL
term in the free energy and for sampling from the Gaussian
distribution, the complexity analysis is summarized in Table II.

IV. BAYESIAN ACTIVE META-LEARNING

In the previous sections, we have considered a passive meta-
learning setting in which the meta-learner is given a number
of meta-training data sets, each corresponding to a different
channel state c. In this section, we study the situation in which
the meta-learner has access to a simulator that can be used
to generate random data sets for any channel state c via the
channel p(y|x, c). The problem of interest is to minimize the
use of the simulator by actively selecting the channels {cτ} for
which meta-training data is generated. To this end, we devise
a sequential approach, whereby the meta-learner optimizes the
next channel state ct+1, given all t meta-training data sets of
frames τ = 1, . . . , t.

At the core of the proposed active meta-learning strategy,
are mechanisms used by the meta-learner to discover model
parameter vectors φ that have been underexplored so far, and
to relate model parameter vector φ to a channel state.

A. Active Selection of Channel States

After having collected t meta-training data sets D1:t =
{Dτ}tτ=1, the proposed active meta-learning scheme selects
the next channel state, ct+1, to use for the generation of the
(t+ 1)-th meta-training data set Dt+1. We adopt the general
principle of maximizing the amount of “knowledge” that can
be extracted from the data set associated with selected channel
ct+1, when added to the t available data sets D1:t. This is done
via the following three steps: (i) searching in the space of model
parameter vectors for a vector φt+1 that is most “surprising”
given the available meta-training data D1:t; (ii) translating the
selected model parameter vector φt+1 into a channel ct+1; and

(iii) generating data set Dt+1 by using the simulator with input
ct+1.

As illustrated in Fig. 5, in step (i), we adopt the scoring
function introduced in [37], i.e.,

st (φ|ϕ1:t) := − log

(
1

t

t∑
τ=1

q(φ|ϕτ )

)
(25)

in order to select the next model parameter vector as

φt+1 = argmax
φ

st(φ|ϕ1:t). (26)

The criterion (25) measures how incompatible model parameter
vectorφ is with the available dataD1:t. In fact, by the derivations
in the previous section: the mixture of variational distributions
1
t

∑t
τ=1 q(φ|ϕτ ) quantifies how likely a vector φ is on the basis

of the data D1:t (Fig. 5(b)); and the negative logarithm in (25)
evaluates the information-theoretic “surprise” associated with
that mixture. Problem (26) can be addressed either by grid
search for low-dimensional model parameter space, or by using
gradient ascent due to the differentiability nature of the scoring
function (25), as illustrated in Fig. 5(c).

In step (ii), we need to convert the selected model parameter
vectorφt+1, i.e., the outcome of (26), into channel state ct+1. We
choose the channel state ct+1 that minimizes the cross entropy
loss when evaluated at φt+1, i.e.,

ct+1 ∈ argmin
c

{
Lp(φt+1|c) = Ep(x,y|c) [− log p (x|y, φt+1)]

}
,

(27)
where we set p(x, y|c) = p(x)p(y|x, c), with p(x) being some
fixed distribution and p(y|x, c) being the distribution of the
output of the simulator. In (27), we have emphasized that
there may be more than one solution to the problem. The
rational behind problem (27) is that data generated from the
distribution p(x, y|ct+1) can be interpreted as being the most
compatible with the demodulator p(x|y, φt+1), where com-
patibility is measured by the average of the cross entropy
Ep(y|ct+1)[H(p(x|y, ct+1), p(x|y, φt+1))].

We emphasize that the proposed approach is different from the
methodology introduced by [37], which uses another variational
distribution in problem (22). In our experiments, we found the
method in [37] to be ineffective and complex for the problem
under study here. The main issue appears to be overfitting for the
additional variational distribution, which is overcome by lever-
aging the availability of the channel simulator implementing the
model p(y|x, c).

In some models, problem (27) can be solved analytically. For
more complex models, SGD-based approaches can be used,
either by differentiating an estimate of the loss in a manner
similar to the discussion in Section III (i.e., Algorithm 1 with
G(φt+1) = Lp(φt+1|c)), or by directly estimating its gradi-
ent [86].

Finally, in step (iii), meta-training data set Dt+1 =

{(yt+1[i], xt+1[i])}Nt+1

i=1 is generated using the simulator in an
i.i.d. fashion following the distribution

Nt+1∏
i=1

p (xt+1[i]) p
(
yt+1[i]

∣∣xt+1[i], ct+1

)
. (28)
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Fig. 5. Illustration of how model parameter vectors are scored to enable active meta-learning provided t = 3 meta-training sets. (a) Frequentist meta-learning
relies on point estimates, and is hence unable to score as-of-yet unexplored model parameters; (b) Bayesian meta-learning can associate a score to each model
parameter vector φ based on the variational distributions {q(φ|ϕτ )} evaluated in the previously observed frames τ = 1, . . . , t; (c) The scoring function can be
maximized to obtain the next model parameter vector φt+1 as the most “surprising” one.

As a final note, we adopt the proposal in [37] of implementing
active selection only after tinit > 1 channel states that are gener-
ated at random, as a means to avoid being overconfident at early
stages. The overall proposed Bayesian active meta-learning
scheme is summarized in Algorithm 3.

V. EXPERIMENTS

In this section, we present experimental results to evalu-
ate the performance of Bayesian meta-learning for demodula-
tion/equalization.

A. Performance Metrics

Apart from the standard measures of symbol error rate (SER)
and mean squared error (MSE), we will also evaluate metrics
quantifying the performance in terms of the reliability of the

confidence measures provided by the predictor. While such
measures can be defined for both classification and regression
problems, we will focus here on uncertainty quantification for
demodulation via calibration metrics (see [87] for discussion on
regression).

As discussed in the previous sections, for a new frame, we
need to make a prediction for the payload symbols{yte

∗ [i]}
N te
∗

i=1 via
the demodulator p(xte

∗ [i]|yte
∗ [i], φ∗) for frequentist meta-learning

(9), or p(xte
∗ [i]|yte

∗ [i], ϕ∗) for Bayesian meta-learning (21). The
confidence level assigned by the model to the hard predicted
symbol

x̂te
∗ [i] = argmax

x∈X
p(x|yte

∗ [i], θ) (29)

given the received symbol yte
∗ [i], can be defined as the corre-

sponding probability [7]

p̂[i] = max
x∈X

p
(
x|yte
∗ [i], θ

)
= p

(
x̂te
∗ [i]|yte

∗ [i], θ
)
, (30)

where we have θ = φ∗ for frequentist meta-learning and θ =
ϕ∗ for Bayesian meta-learning. Perfect calibration [7] can be
defined as the condition where symbols that are assigned a
confidence level p̂[i] are also characterized by a probability of
correct detection equal to p.

Two standard means of quantifying the extent to which the
perfect calibration is satisfied are reliability diagrams [88] and
expected calibration error (ECE) [7]. To introduce them, the
probability interval [0, 1] is first divided into M equal length
intervals, with the m-th interval (m−1M , m

M ] referred to as the
m-th bin henceforth. Let us denote as Bm the subset of the
payload data symbol indices whose associated confidence level
p̂[i] lie within the m-th bin, i.e.,

Bm =
{
i
∣∣p̂[i] ∈ (m−1M , m

M

]
, with i = 1, 2, . . . , N te

∗
}
. (31)

Note this is a partition of the data set Dte
∗ since we have⋃M

m=1 Bm = {i = 1, 2, . . . , N te
∗ } and Bm ∩ Bm′ = ∅ for any

m′ �= m.
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The within-bin empirical average accuracy of the predictor
for the m-th bin is defined as

acc(Bm) =
1

|Bm|
∑
i∈Bm

1
(
x̂te
∗ [i] = xte

∗ [i]
)
, (32)

with 1(·) being indicator function and |Bm| denoting the num-
ber of total samples in Bm. The within-bin empirical average
confidence of the predictor for the m-th bin is

conf (Bm) =
1

|Bm|
∑
i∈Bm

p̂[i]. (33)

A perfectly calibrated demodulator p(x|y, θ) would have
acc(Bm) = conf(Bm) for all m ∈ {1, . . . ,M} in the limit of
a sufficiently large payload data set, i.e., N te

∗ → ∞.
Reliability diagrams plot the accuracy acc(Bm) and the con-

fidence conf(Bm) over the binned probability interval [0,1].
Ideal calibration would yield acc(Bm) = conf(Bm) in a reli-
ability plot. If in the m-th bin, the empirical accuracy and
empirical confidence are different, the predictor is considered
to be over-confident when conf(Bm) > acc(Bm), and under-
confident when conf(Bm) < acc(Bm).

The ECE quantifies the overall amount of miscalibration by
computing the weighted average of the differences between
within-bin accuracy and within-bin confidence levels across all
M bins, i.e.,

ECE =
1

N te
∗

M∑
m=1

∣∣Bm∣∣∣∣∣acc(Bm)− conf(Bm)
∣∣∣. (34)

B. Frequentist and Bayesian Meta-Learning for Demodulation

For the first set of experiments, we focus on a demodulation
problem at the symbol level in the presence of transmitter I/Q
imbalance [89], [90], as considered also in [19]. The main reason
for this choice is that channel decoding typically requires a
hard decision on the transmitted codeword, whose accuracy
can be validated via a cyclic redundancy check. In contrast,
demodulation is usually a preliminary step at the receiver side,
and downstream blocks, such as channel decoding, expect soft
inputs that are well calibrated. For each frame τ , the trans-
mitted symbols xτ [i] are drawn uniformly at random from the
16-QAM constellation X = 1/

√
10({±1,±3}+ j{±1,±3}).

The received symbol yτ [i] ∈ Y = C is given as

yτ [i] = hτfIQ,τ (xτ [i]) + zτ [i], (35)

for a unit energy fading channel coefficient hτ , where the ad-
ditive noise is zτ [i] ∼ CN (0,SNR−1) for some signal-to-noise
ratio (SNR) level SNR, and the I/Q imbalance function [91]
fIQ,τ : X → X̄τ is

fIQ,τ (xτ [i])= x̄I,τ [i] + jx̄Q,τ [i][
x̄I,τ [i]

x̄Q,τ [i]

]
=

[
1+ετ 0

0 1−ετ

][
cos δτ −sin δτ
−sin δτ cos δτ

][
xI,τ [i]

xQ,τ [i]

]
,

(36)

which depends on the imbalance parameters ετ and δτ . In (35),
xI,τ [i] and xQ,τ [i] refer to the real and imaginary parts of the
modulated symbol xτ [i]; and x̄I,τ [i] and x̄Q,τ [i] stand for the

Fig. 6. Symbol error rate (SER) as a function of the number t of meta-training
frames with 16-QAM, Rayleigh fading, and I/Q imbalance for N tr

τ = 4, N tr
∗ =

8. The symbol error rate is averaged over by N te
∗ = 4000 data symbols and 50

meta-test frames with ensemble of size 100.

real and imaginary parts of the transmitted symbol fIQ,τ (xτ [i]).
Note that the constellation X̄τ of the transmitted symbols x̄τ [i]
is also composed of 16 points via (36).

By (35) and (36), the channel state cτ consists of the tuple: (a)
amplitude imbalance factor ετ ∈ [0, 0.15]; (b) phase imbalance
factor δτ ∈ [0, 15◦]; and (c) channel realization hτ ∈ C. All of
the variables are drawn i.i.d. across different frames and are fixed
during each frame. We consider the channel state distribution for
frame τ as

p(cτ ) = Beta
(

ετ
0.15

∣∣∣5, 2)Beta
(

δτ
0.15◦

∣∣∣5, 2) CN (hτ |0, 1).
(37)

We set our base learner to be a multi-layer fully-connected
neural network (3) with L = 5 layers. The real and imaginary
parts of the input y[i] ∈ C are treated as a vector in R2, which is
fed to layers with 10, 30, and 30 neurons, all with ReLU activa-
tions, while the last linear layer implements a softmax function
that produces probabilities for the 16QAM constellation points.

To address the ability of meta-learning to adapt the demodula-
tor using only few pilots, we set the number of pilots as N tr

τ = 4
during meta-training and N tr

∗ = 8 for meta-testing [19]. Fig. 6
shows the SER as a function of the number of total meta-training
frames t. Since only half of the constellation points are available
as pilots during meta-test (N tr

∗ = 8 different symbols out of
16), conventional learning cannot obtain a SER lower than
of 0.5. In fact, conventional learning performs worse than a
standard model-based receiver applying linear minimal mean
square error (LMMSE), followed by maximum likelihood (ML)
demodulation, while disregarding the presence of I/Q imbalance
function fIQ. Both meta-learning schemes are clearly superior
to conventional learning and to the mentioned model-based
solution, showing that useful knowledge has been transferred
from previous frames to a new frame. Furthermore, Bayesian
meta-learning obtains a slightly lower SER as compared to fre-
quentist meta-learning. This advantage stems from the capacity
of ensemble predictors to implement more complex decision
boundaries [59].
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Fig. 7. Expected calibration error (ECE) over meta-test dataDte
∗ as a function

of the number t of meta-training frames, for the same setting as in Fig. 6.

Fig. 8. Reliability diagrams (top) for frequentist meta-learning (left) and
Bayesian meta-learning (right) with SNR = 18 dB, using t = 16 meta-training
frames and predictions averaged over 50 meta-test frames. Frequentist meta-
learning tends to be over-confident, whereas the Bayesian soft predictions are
better matched to the true accuracy. The bottom figure shows the histogram of
|Bm|/N of prediction over M = 10 bins. Full details in Appendix A.

To gain insights into the reliability of the uncertainty quantifi-
cation provided by the demodulator, we use the metrics defined
in Section V-A by setting the total number of bins to M = 10.
We plot the ECE as a function of the number of total meta-
training frames t in Fig. 7. Bayesian meta-learning is seen to
achieve a lower ECE than frequentist meta-learning, indicating
that Bayesian meta-learning provides more reliable estimates of
uncertainty. Furthermore, the increase in ECE as the number t
of available meta-training frames increases may be interpreted
as a consequence of meta-overfitting [92]. This suggests that
meta-learning may be considered as complete after a number
of frames that depends on the complexity of the propagation
environment. In practice, this can be assessed by evaluating the
performance of the demodulator on pilots (see the online strategy
in [19] for further discussion on this point).

To further elaborate on the quality of uncertainty quan-
tification, Fig. 8 depicts reliability diagrams for frequentist
and Bayesian meta-learning. The within-bin accuracy lev-
els acc(Bm) in (32) and the within-bin empirical confidence

conf(Bm) in (33) are depicted as dark (blue) and light (red)
bars, respectively. Frequentist meta-learning is observed to
produce generally over-confident predictions, while Bayesian
meta-learning provides better calibrated predictions with well-
matching confidence and accuracy levels.

C. Bayesian Active Meta-Learning for Equalization

In this sub section, we illustrate the operation of active meta-
learning by investigating a single-input multiple-output (SIMO)
Rayleigh block fading real channel model. At frame τ , the mod-
ulator uses a 4-PAM to produce symbolsxτ [i], i = 1, 2, . . . , Nτ ,
taken uniformly from the set X ∈ 1/

√
5{−3,−1,+1,+3}.

Given channel state cτ = [c0τ , c
1
τ ]

 ∈ R2, the i-th channel out-

put symbol yτ [i] ∈ R2 for i = 1, 2, . . . , Nτ is defined as the
two-dimensional real vector

yτ [i] = cτxτ [i] + zτ [i], (38)

where both the additive noise zτ [i] ∼ N
(
0,

1
2SNR I2

)
and the nor-

malized real block fading coefficients cτ ∼ p(c) = N (c|0, I2)
are i.i.d. We adopt the linear equalizer

x̂τ [i] = φ
τ · yτ [i] (39)

with linear equalizer weight vector φτ = [φ0
τ , φ

1
τ ]

 ∈ R2. To

obtain a soft equalization, we account for a precision level β via
the conditional distribution

p (xτ [i]|yτ [i], φτ ) = N
(
φ
τ · yτ [i], β−1

)
. (40)

The next model parameter φt+1 is chosen to maximize the
scoring function as in (26) by restricting the optimization to
the domain ||φ|| ≤ 1. This restricted optimization domain is
selected in order to match the circular symmetry of the prob-
lem. Furthermore, the corresponding next channel state ct+1

is selected by tackling problem (27), which amounts to the
minimization

ct+1(φ) ∈ argmin
c

Ep(x)p(y|x,c) [− log p(x|y, φ)] (41a)

= argmin
c

Ep(x)p(z)

[
β
2 (x− φ
 · (cx+ z))2

]
= argmin

c
Ep(x)p(z)

[
β
2

(
(1− φ
 · c)x− φ
z

)2]
=
{
c
∣∣φ
 · c = 1

}
. (41b)

In the set of solutions of problem (41b), we select the minimum-
norm solution ct+1 = φt+1/‖φt+1‖2. This way, the selected
channel focuses on the more challenging low-SNR regime.
Details of this experiment are provided in Appendix A.

Fig. 9 illustrates the scoring function (25) used to select
the next model parameter φt+1 as a heat map in the space of
model parameter φ. Specifically, the figure shows the scoring
functions after observing t = 4 and t = 5 meta-training frames.
The optimized next model parameter vector φt+1 (26) is shown
as a star, while the previously selected model parameter vectors
φ1:t are shown as squares. Fig. 9 illustrates how active meta-
learning efficiently explores the model parameter space. It does
so by avoiding the inclusion of channel states that are similar to
those already considered (i.e., the squares in the figure). This
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Fig. 9. Scoring function (25) used by Bayesian active meta-learning to select
the next model parameter vector φt+1 at the fourth and fifth iterations. The
scoring function is shown as a heat map over the two dimensional space of the
model parameter vector φ for the example detailed in Section V-C.

Fig. 10. Meta-test mean squared error (MSE) loss as function of the number
of frames t. Bayesian active meta-training is able to achieve lower meta-test loss
levels by using fewer meta-training tasks t. Solid lines are the mean test loss over
100 channel states. The confidence levels account for one standard deviation.

way, the model parameter space can be covered with fewer
meta-training frames t, leading to a larger frame efficiency of
active meta-learning.

Finally, to numerically validate the advantage of active meta-
learning, we plot the meta-test MSE loss in Fig. 10 for both
passive and active Bayesian meta-learning versus the number of
frames t. For passive meta-learning, we have generated random
channel realizations by drawing from the distribution p(c) =
N (c|0, I2). We have repeated the experiment 100 times, and
show the confidence interval of one standard deviation for the
meta-test loss. The results in the figure confirm that active meta-
learning requires far fewer meta-training frames. Furthermore,
the increased randomness of passive meta-learning is due to the
random selection of channel states at each iteration.

VI. CONCLUSION

In this paper, we have introduced tools for reliable and
efficient AI in communication systems via Bayesian meta-
learning. Bayesian learning has the advantage of producing
well-calibrated decisions whose confidence levels are a close

match for the corresponding test accuracy. This property facili-
tates monitoring of the quality of the outputs of an AI module.
Meta-learning optimizes models that can quickly adapt based
on few pilots, producing sample-efficient AI solutions. This
paper has focused on the application of Bayesian meta-learning
to the basic problems of demodulation/equalization from few
pilots. We have demonstrated via experiments that the demod-
ulator/equalizer obtained via Bayesian meta-learning not only
achieves a higher accuracy, but it also enjoys better calibration
performance than its standard frequentist counterpart. Further-
more, thanks to meta-learning, such performance levels can be
obtained based on a limited number of pilots per frame.

To reduce the number of past frames required by meta-
learning, we have also introduced Bayesian active meta-
learning, which leverages the uncertainty estimates produced
by Bayesian learning to actively explore the space of channel
conditions. We have shown via numerical results that active
meta-learning can indeed significantly speed up meta-training
in terms of number of frames.

Future work may consider a fully Bayesian meta-learning
implementation that also accounts for uncertainty at the level
of hyperparameters (see, e.g., [73] and references therein). This
may be particularly useful in the regime of low number of frames.
Another direction for research would be to investigate different
scoring functions for active meta-learning (see, e.g., [39]). A
study on the impact of well-calibrated decisions obtained via
Bayesian learning on downstream blocks at the receiver, such as
channel decoding, is also of interest. Finally, the proposed tools
may find applications to other problems in communications,
such as power control [25] and channel coding [28], [93].

APPENDIX A
EXPERIMENTS DETAILS

Table III summarizes the parameters used for the numerical
experiments in Section V for demodulation and equalization.
Throughout the simulations, we used PyTorch [94] adopting
autograd’s option create_graph = True to allow the com-
putational graph to calculate second-order derivatives.

For the demodulation problem in Section V-B (Figs. 6–8), the
complex input space Y = C is treated as a two-dimensional real
vector space R2 when is fed into the neural network demod-
ulator. The KL term in (20) is suppressed by a multiplicative
coefficient of 0.1, as a means to emphasize the average log-
likelihood term should have over the prior. This is an approach
known as generalized Bayesian inference [79], [95]. To handle
the discrepancy in the number of pilots for adaptation during
meta-training and meta-testing, i.e., N tr

∗ > N tr
τ , we consider the

following strategy akin to burn-in phase [49] during meta-testing
as done in [19]: (i) start with I updates using learning rate η
utilizing N tr

τ pilots among the available N tr
∗ pilots; (ii) then,

additional I∗ − I updates are performed with reduced learning
rate (5% of the original learning rate) with all availableN tr

∗ pilots.
This strategy becomes particularly useful in practical scalable
systems in which the number of pilots may change depending
on the deployment environments.

As for the equalization setting in Section V-C (Figs. 9–10),
we observe that reinitializing the hyperparameter ξ to a random
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TABLE III
PARAMETERS FOR THE DEMODULATION AND EQUALIZATION META-LEARNING

value at each data acquisition iteration benefits meta-training in
practice. While using the previous iteration’s optimized hyper-
parameter vector ξ as the starting point for the current iteration
is useful in reducing the computational complexity [19], [96],
we found it beneficial not to do so in our equalization problem
to avoid meta-overfitting especially in the few-frames (e.g., 10
frames) regime of interest.

ACKNOWLEDGEMENT

The authors would like to thank the use of the Research Com-
puting Facility at King’s College London (2022), King’s Com-
putational Research, Engineering and Technology Environment
(CREATE). Retrieved October 25, 2022, from https://doi.org/
10.18742/rnvf-m076, and Rosalind (https://rosalind.kcl.ac.uk)

REFERENCES

[1] K. M. Cohen, S. Park, O. Simeone, and S. Shamai, “Learning to learn to
demodulate with uncertainty quantification via Bayesian meta-learning,”
in Proc. WSA 25th Int. ITG Workshop Smart Antennas EURECOM, 2021,
pp. 202–207.

[2] K. B. Letaief, W. Chen, Y. Shi, J. Zhang, and Y.-J. A. Zhang, “The roadmap
to 6G: AI empowered wireless networks,” IEEE Commun. Mag., vol. 57,
no. 8, pp. 84–90, Aug. 2019.

[3] L. Bonati, S. D’Oro, M. Polese, S. Basagni, and T. Melodia, “Intelligence
and learning in O-RAN for data-driven NextG cellular networks,” IEEE
Commun. Mag., vol. 59, no. 10, pp. 21–27, Oct. 2021.

[4] P. H. Masur, J. H. Reed, and N. Tripathi, “Artificial intelligence in open-
radio access network,” IEEE Aerosp. Electron. Syst. Mag., vol. 37, no. 9,
pp. 6–15, Sep. 2022.

[5] O-RAN Working Group 2, “O-RAN AI/ML workflow description and
requirements–v1. 03,” O-RAN. WG2. AIML-v01. 03 Tech. Specification,
2021.

[6] O. Simeone, S. Park, and J. Kang, “From learning to meta-learning:
Reduced training overhead and complexity for communication systems,”
in Proc. 2nd 6G Wireless Summit, 2020, pp. 1–5.

[7] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On calibration of modern
neural networks,” in Proc. Int. Conf. Mach. Learn., 2017, pp. 1321–1330.

[8] D. Barber, Bayesian Reasoning and Machine Learning. Cambridge, MA,
USA: Cambridge Univ. Press, 2012.

[9] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight
uncertainty in neural network,” in Proc. Int. Conf. Mach. Learn., 2015,
pp. 1613–1622.

[10] H. Wang and D.-Y. Yeung, “A survey on Bayesian deep learning,” ACM
Comput. Surv., vol. 53, no. 5, pp. 1–37, 2020.

[11] Y. Gal and Z. Ghahramani, “Dropout as a Bayesian approximation: Rep-
resenting model uncertainty in deep learning,” in Proc. Int. Conf. Mach.
Learn., 2016, pp. 1050–1059.

[12] S. Thrun, “Lifelong Learning algorithms,” in Learning to Learn. Boston,
MA, USA: Springer, 1998, pp. 181–209.

[13] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for
fast adaptation of deep networks,” in Proc. 34th Int. Conf. Mach. Learn.,
vol. 70, 2017, pp. 1126–1135.

[14] L. Zintgraf, K. Shiarli, V. Kurin, K. Hofmann, and S. Whiteson, “Fast
context adaptation via meta-learning,” in Proc. Int. Conf. Mach. Learn.,
2019, pp. 7693–7702.

[15] D. Maclaurin, D. Duvenaud, and R. Adams, “Gradient-based hyperparam-
eter optimization through reversible learning,” in Proc. Int. Conf. Mach.
Learn., 2015, pp. 2113–2122.

[16] Z. Li, F. Zhou, F. Chen, and H. Li, “Meta-SGD: Learning to learn quickly
for few-shot learning,” 2017, arXiv:1707.09835.

[17] H. S. Behl, A. G. Baydin, and P. H. Torr, “Alpha MAML: Adaptive model-
agnostic meta-learning,” in Proc. 6th ICML Workshop Automated Mach.
Learn., Long Beach, California, USA, 2019, pp. 1–11.

[18] J. Baxter, “Theoretical Models of Learning to Learn,” in Learning to Learn.
Boston, MA, USA: Springer, 1998, pp. 71–94.

[19] S. Park, H. Jang, O. Simeone, and J. Kang, “Learning to demodulate
from few pilots via offline and online meta-learning,” IEEE Trans. Signal
Process., vol. 69, pp. 226–239, 2021.

[20] M. Goutay, F. Ait Aoudia, and J. Hoydis, “Deep HyperNetwork-based
MIMO detection,” in Proc. IEEE 21st Int. Workshop Signal Process. Adv.
Wireless Commun. Atlanta, USA, 2020, pp. 1–5.

[21] Y. Yuan, G. Zheng, K.-K. Wong, B. Ottersten, and Z.-Q. Luo, “Transfer
learning and meta learning-based fast downlink beamforming adapta-
tion,” IEEE Trans. Wireless Commun., vol. 20, no. 3, pp. 1742–1755,
Mar. 2021.

[22] Y. Hu, M. Chen, W. Saad, H. V. Poor, and S. Cui, “Meta-reinforcement
learning for trajectory design in wireless UAV networks,” in Proc. IEEE
Glob. Commun. Conf., Taipei, Taiwan, 2020, pp. 1–6.

[23] T. Raviv, S. Park, N. Shlezinger, O. Simeone, Y. C. Eldar, and J.
Kang, “Meta-ViterbiNet: Online meta-learned viterbi equalization for
non-stationary channels,” in Proc. IEEE Int. Conf. Commun. Workshops,
Montreal, Canada, 2021, pp. 1–6.

[24] A. E. Kalør, O. Simeone, and P. Popovski, “Prediction of mmWave/THz
link blockages through meta-learning and recurrent neural networks,” in
IEEE Wireless Commun. Lett., vol. 10, no. 12, 2021, pp. 2815–2819,
doi: 10.1109/LWC.2021.3118269.

[25] I. Nikoloska and O. Simeone, “Fast power control adaptation via meta-
learning for random edge graph neural networks,” in Proc. 2021 IEEE
22nd Int. Workshop Signal Process. Adv. Wireless Commun., Lucca, Italy,
2021, pp. 146–150.

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on December 07,2022 at 09:23:37 UTC from IEEE Xplore.  Restrictions apply. 

https://doi.org/10.18742/rnvf-m076
https://doi.org/10.18742/rnvf-m076
https://rosalind.kcl.ac.uk
https://dx.doi.org/10.1109/LWC.2021.3118269


COHEN et al.: BAYESIAN ACTIVE META-LEARNING FOR RELIABLE AND EFFICIENT AI-BASED DEMODULATION 5379

[26] J. Zhang, Y. Yuan, G. Zheng, I. Krikidis, and K.-K. Wong, “Embedding
model-based fast meta learning for downlink beamforming adaptation,”
IEEE Trans. Wireless Commun., vol. 21, no. 1, pp. 149–162, Jan. 2022.

[27] A. E. Kalør, O. Simeone, and P. Popovski, “Prediction of mmWave/THz
link blockages through meta-learning and recurrent neural networks,”
IEEE Wireless Commun. Lett., vol. 10, no. 12, pp. 2815–2819,
Dec. 2021.

[28] Y. Jiang, H. Kim, H. Asnani, and S. Kannan, “Mind: Model independent
neural decoder,” in Proc. IEEE 20th Int. Workshop Signal Process. Adv.
Wireless Commun., Cannes, France, 2019, pp. 1–5.

[29] J. Zhang, Y. He, Y.-W. Li, C.-K. Wen, and S. Jin, “Meta learning-based
MIMO detectors: Design, simulation, and experimental test,” IEEE Trans.
Wireless Commun., vol. 20, no. 2, pp. 1122–1137, Feb. 2021.

[30] C. Nguyen, T.-T. Do, and G. Carneiro, “Uncertainty in model-agnostic
meta-learning using variational inference,” in Proc. IEEE/CVF Winter
Conf. Appl. Comput. Vis., 2020, pp. 3090–3100.

[31] K. Posch, J. Steinbrener, and J. Pilz, “Variational inference to measure
model uncertainty in deep neural networks,” 2019, arXiv:1902.10189.

[32] Z. Sun, J. Wu, X. Li, W. Yang, and J.-H. Xue, “Amortized bayesian
prototype meta-learning: A new probabilistic meta-learning approach to
few-shot image classification,” in Proc. Int. Conf. Artif. Intell. Statist.,
2021, pp. 1414–1422.

[33] N. Houlsby, F. Huszár, Z. Ghahramani, and M. Lengyel, “Bayesian
active learning for classification and preference learning,” 2011,
arXiv:1112.5745.

[34] Y. Gal, R. Islam, and Z. Ghahramani, “Deep Bayesian active learning with
image data,” in Proc. Int. Conf. Mach. Learn., 2017, pp. 1183–1192.

[35] F. Sohrabi, T. Jiang, W. Cui, and W. Yu, “Active sensing for commu-
nications by learning,” IEEE J. Sel. Areas Commun., vol. 40, no. 6,
pp. 1780–1794, Jun. 2022.

[36] H. Sahbi, S. Deschamps, and A. Stoian, “Active learning for interactive
satellite image change detection,” 2021, arXiv:2110.04250.

[37] J. Kaddour et al., “Probabilistic active meta-learning,” in Proc. Adv. Neural
Inf. Process. Syst. Virtual-Only Conf., vol. 33, 2020, pp. 20813–20822.

[38] A. Kirsch, J. Van Amersfoort, and Y. Gal, “BatchBALD: Efficient and
diverse batch acquisition for deep Bayesian active learning,” in Proc. 33rd
Int. Conf. Neural Inf. Process. Syst., 2019, pp. 7026–7037.

[39] I. Nikoloska and O. Simeone, “Bayesian active meta-learning for black-
box optimization,” in Proc. IEEE 23rd Int. Workshop Signal Process. Adv.
Wireless Commun., Oulu, Finland, 2022, pp. 1–5.

[40] X. Zhang, Y.-C. Liang, and J. Fang, “Bayesian learning based multiuser
detection for M2M communications with time-varying user activities,” in
Proc. IEEE Int. Conf. Commun., Paris, France, 2017, pp. 1–6.

[41] X. Zhang, Y.-C. Liang, and J. Fang, “Novel Bayesian inference algorithms
for multiuser detection in M2M communications,” IEEE Trans. Veh.
Technol., vol. 66, no. 9, pp. 7833–7848, Sep. 2017.

[42] R. Prasad, C. R. Murthy, and B. D. Rao, “Joint channel estimation and
data detection in MIMO-OFDM systems: A sparse Bayesian learning
approach,” IEEE Trans. Signal Process., vol. 63, no. 20, pp. 5369–5382,
Oct. 2015.

[43] X. Lv, Y. Li, Y. Wu, X. Wang, and H. Liang, “Joint channel estimation
and impulsive noise mitigation method for OFDM systems using sparse
Bayesian learning,” IEEE Access, vol. 7, pp. 74500–74510, 2019.

[44] A. Graves, “Practical variational inference for neural networks,” in Proc.
24th Int. Conf. Neural Inf. Process. Syst., 2011, pp. 2348–2356.

[45] M. Dusenberry et al., “Efficient and scalable Bayesian neural nets with
rank-1 factors,” in Proc. Int. Conf. Mach. Learn., Baltimore, USA, 2020,
pp. 2782–2792.

[46] E. Daxberger, A. Kristiadi, A. Immer, R. Eschenhagen, M. Bauer, and P.
Hennig, “Laplace redux-effortless Bayesian deep learning,” in Proc. Adv.
Neural Inf. Process. Syst. Virtual-Only Conf., vol. 34, 2021, pp. 20089–
20103.

[47] S. Farquhar, L. Smith, and Y. Gal, “Liberty or depth: Deep Bayesian
neural nets do not need complex weight posterior approximations,” in
Proc. Adv. Neural Inf. Process. Syst. Virtual-Only Conf., vol. 33, 2020,
pp. 4346–4357.

[48] R. M. Neal et al., “MCMC using Hamiltonian dynamics,” in Handbook
of Markov Chain Monte Carlo. Boca Raton, FL, USA: CRC Press, 2011,
pp. 113–160.

[49] M. Welling and Y. W. Teh, “Bayesian learning via stochastic gradi-
ent Langevin dynamics,” in Proc. 28th Int. Conf. Mach. Learn., 2011,
pp. 681–688.

[50] R. Zhang, C. Li, J. Zhang, C. Chen, and A. G. Wilson, “Cyclical stochastic
gradient MCMC for Bayesian deep learning,” in Proc. 8th Int. Conf. Learn.
Representations, 2020, pp. 1–27.

[51] Q. Liu and D. Wang, “Stein variational gradient descent: A general purpose
Bayesian inference algorithm,” in Proc. 30th Int. Conf. Neural Inf. Process.
Syst., 2016, pp. 2378–2386.

[52] O. Narmanlioglu, E. Zeydan, M. Kandemir, and T. Kranda, “Prediction of
active UE number with Bayesian neural networks for self-organizing LTE
networks,” in Proc. 8th Int. Conf. Netw. Future, 2017, pp. 73–78.

[53] Z. Wu and H. Li, “Stochastic gradient Langevin dynamics for massive
MIMO detection,” IEEE Commun. Lett., vol. 26, no. 5, pp. 1062–1065,
May 2022.

[54] N. Zilberstein, C. Dick, R. Doost-Mohammady, A. Sabharwal, and S.
Segarra, “Annealed Langevin dynamics for massive MIMO detection,”
2022, arXiv:2205.05776.

[55] Z. Tao and S. Wang, “Improved downlink rates for FDD massive MIMO
systems through Bayesian neural networks-based channel prediction,”
IEEE Trans. Wireless Commun., vol. 21, no. 3, pp. 2122–2134, Mar. 2022.

[56] N. K. Jha and V. K. Lau, “Transformer-based online Bayesian neural
networks for grant-free uplink access in CRAN with streaming varia-
tional inference,” IEEE Internet Things J., vol. 9, no. 9, pp. 7051–7064,
May 2022.

[57] N. K. Jha and V. K. Lau, “Online downlink multi-user channel estimation
for mmWave systems using Bayesian neural network,” IEEE J. Sel. Areas
Commun., vol. 39, no. 8, pp. 2374–2387, Aug. 2021.

[58] J. Xu, Y. Shen, E. Chen, and V. Chen, “Bayesian neural networks for iden-
tification and classification of radio frequency transmitters using power
amplifiers’ nonlinearity signatures,” IEEE Open J. Circuits Syst., vol. 2,
pp. 457–471, 2021.

[59] M. Zecchin, S. Park, O. Simeone, M. Kountouris, and D. Gesbert, “Robust
Bayesian learning for reliable wireless AI: Framework and applications,”
2022, arXiv:2207.00300.

[60] D. Liu, G. Zhu, Q. Zeng, J. Zhang, and K. Huang, “Wireless data ac-
quisition for edge learning: Data-importance aware retransmission,” IEEE
Trans. Wireless Commun., vol. 20, no. 1, pp. 406–420, Jan. 2021.

[61] S.-E. Chiu, N. Ronquillo, and T. Javidi, “Active learning and CSI acquisi-
tion for mmWave initial alignment,” IEEE J. Sel. Areas Commun., vol. 37,
no. 11, pp. 2474–2489, Nov. 2019.

[62] K. Yang, J. Ren, Y. Zhu, and W. Zhang, “Active learning for wireless IoT
intrusion detection,” IEEE Wireless Commun., vol. 25, no. 6, pp. 19–25,
Dec. 2018.

[63] M. K. Abdel-Aziz, S. Samarakoon, M. Bennis, and W. Saad, “Ultra-
reliable and low-latency vehicular communication: An active learning
approach,” IEEE Commun. Lett., vol. 24, no. 2, pp. 367–370, Feb. 2020.

[64] T. M. Hospedales, A. Antoniou, P. Micaelli, and A. J. Storkey, “Meta-
learning in neural networks: A survey,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 44, no. 9, pp. 5149–5169, Sep. 2021.

[65] C. Finn, K. Xu, and S. Levine, “Probabilistic model-agnostic meta-
learning,” in Proc. 32nd Int. Conf. Neural Inf. Process. Syst., 2018,
pp. 9537–9548.

[66] S. Ravi and A. Beatson, “Amortized Bayesian meta-learning,” in Proc.
Int. Conf. Learn. Representations, Vancouver, Canada, 2018, pp. 1–14.
[Online]. Available: https://openreview.net/forum?id=rkgpy3C5tX

[67] J. Yoon, T. Kim, O. Dia, S. Kim, Y. Bengio, and S. Ahn, “Bayesian model-
agnostic meta-learning,” in Proc. Adv. Neural Inf. Process. Syst., 2018,
pp. 7343–7353.

[68] M. Patacchiola, J. Turner, E. J. Crowley, M. O’Boyle, and A. J. Storkey,
“Bayesian meta-learning for the few-shot setting via deep kernels,” in Proc.
34th Int. Conf. Neural Inf. Process. Syst., 2020, pp. 16108–16118.

[69] Y. Zou and X. Lu, “Gradient-EM Bayesian meta-learning,” in Proc. 34th
Int. Conf. Neural Inf. Process. Syst., 2020, pp. 20865–20875.

[70] R. Amit and R. Meir, “Meta-learning by adjusting priors based on extended
PAC-Bayes theory,” in Proc. Int. Conf. Mach. Learn., Stockholm, Sweden,
PMLR, 2018, pp. 205–214.

[71] J. Rothfuss, V. Fortuin, M. Josifoski, and A. Krause, “PACOH: Bayes-
optimal meta-learning with PAC-Guarantees,” in Proc. Int. Conf. Mach.
Learn. Virtual-Only Conf., 2021, pp. 9116–9126.

[72] J. Rothfuss et al., “Meta-learning reliable priors in the function space,” in
Proc. Adv. Neural Inf. Process. Syst., 2021, vol. 34, pp. 280–293.

[73] S. T. Jose, S. Park, and O. Simeone, “Information-theoretic analysis of
epistemic uncertainty in Bayesian meta-learning,” in Proc. Int. Conf. Artif.
Intell. Statist., 2022, pp. 9758–9775.

[74] I. Nikoloska and O. Simeone, “Quantum-aided meta-learning for Bayesian
binary neural networks via born machines,” 2022, arXiv:2203.17089.

[75] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

[76] O. Simeone, “A brief introduction to machine learning for engineers,”
Found. Trends Signal Process., vol. 13, no. 12, pp. 200–431, Aug. 2018.

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on December 07,2022 at 09:23:37 UTC from IEEE Xplore.  Restrictions apply. 

https://openreview.net/forum{?}id$=$rkgpy3C5tX


5380 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022

[77] E. Angelino et al., “Patterns of scalable Bayesian inference,” Found. Trends
Mach. Learn., vol. 9, no. 2-3, pp. 119–247, 2016.

[78] T. M. Cover and J. A. Thomas, “Information theory and statistics,” Ele-
ments Inf. Theory, vol. 1, no. 1, pp. 279–335, 1991.

[79] S. T. Jose and O. Simeone, “Free energy minimization: A unified frame-
work for modeling, inference, learning, and optimization [lecture notes],”
IEEE Signal Process. Mag., vol. 38, no. 2, pp. 120–125, Mar. 2021.

[80] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” 2013,
arXiv:1312.6114.

[81] E. Grant, C. Finn, S. Levine, T. Darrell, and T. Griffiths, “Recasting
gradient-based meta-learning as hierarchical bayes,” in Proc. 6th Int. Conf.
Learn. Representations, Vancouver, Canada, 2018, pp. 1–13.

[82] D. Koller and N. Friedman, Probabilistic Graphical Models: Principles
and Techniques. Cambridge, MA, USA: MIT Press, 2009.

[83] O. Simeone, Machine Learning for Engineers. Cambridge, U.K.: Cam-
bridge University Press, 2022.

[84] A. Griewank, “Some bounds on the complexity of gradients, Jacobians, and
Hessians,” in Complexity in Numerical Optimization. Singapore: World
Scientific, 1993, pp. 128–162.

[85] A. Rajeswaran, C. Finn, S. M. Kakade, and S. Levine, “Meta-learning with
implicit gradients,” in Proc. Neural Inf. Process. Syst., Vancouver, Canada,
2019, pp. 113–124.

[86] S. Mohamed, M. Rosca, M. Figurnov, and A. Mnih, “Monte Carlo gradient
estimation in machine learning,” J. Mach. Learn. Res., vol. 21, no. 132,
pp. 1–62, 2020.

[87] T. Melluish, C. Saunders, I. Nouretdinov, and V. Vovk, “Comparing the
Bayes and typicalness frameworks,” in Proc. Eur. Conf. Mach. Learn.,
Freiburg, Germany, Springer, 2001, pp. 360–371.

[88] M. H. DeGroot and S. E. Fienberg, “The comparison and evaluation of
forecasters,” J. Roy. Stat. Soc.: Ser. D, vol. 32, no. 1-2, pp. 12–22, 1983.

[89] Y. Zhang et al., “DeepWiPHY: Deep learning-based receiver design and
dataset for IEEE 802.11 ax systems,” IEEE Trans. Wireless Commun.,
vol. 20, no. 3, pp. 1596–1611, Mar. 2021.

[90] A. G. Helmy, M. Di Renzo, and N. Al-Dhahir, “On the robustness of
spatial modulation to I/Q imbalance,” IEEE Commun. Lett., vol. 21, no. 7,
pp. 1485–1488, Jul. 2017.

[91] D. Tandur and M. Moonen, “Joint adaptive compensation of transmitter
and receiver IQ imbalance under carrier frequency offset in OFDM-Based
systems,” IEEE Trans. Signal Process., vol. 55, no. 11, pp. 5246–5252,
Nov. 2007.

[92] M. Yin, G. Tucker, M. Zhou, S. Levine, and C. Finn, “Meta-learning
without memorization,” in Proc. Int. Conf. Learn. Representations, 2019,
pp. 1–21.

[93] R. Li et al., “A channel coding benchmark for meta-learning,”
in Proc. Adv. Neural Inf. Process. Syst. Virtual-Only Conf.,
Track Datasets Benchmarks, 2021, pp. 1–12. [Online]. Available:
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/
e96ed478dab8595a7dbda4cbcbee168f-Abstract-round2.html

[94] A. Paszke et al., “Automatic differentiation in pytorch,” in Proc. Conf.
Neural Inf. Process. Syst. Workshop Autodiff, 2017.

[95] J. Knoblauch, J. Jewson, and T. Damoulas, “Generalized varia-
tional inference: Three arguments for deriving new posteriors,” 2019,
arXiv:1904.02063.

[96] C. Finn, A. Rajeswaran, S. Kakade, and S. Levine, “Online meta-
learning,” in Proc. Int. Conf. Mach. Learn., Long Beach, CA, USA, 2019,
pp. 1920–1930.

Kfir M. Cohen (Student Member, IEEE) received the
B.Sc. (summa cum laude) and M.Sc. degrees from
the Electrical Engineering Faculty, Technion–Israel
Institute for Technology, Haifa, Israel, in 2006 and
2013, respectively. He is currently working toward the
Ph.D. degree with King’s Communications, Learning
and Information Processing Lab, Department of En-
gineering of King’s College London (KCL), London,
U.K. He worked for 15 years in different R&D roles.
Before joining KCL, his last position was as a Com-
munication Signal Processing Engineer. His research

interests include Bayesian and reliable machine learning, signal processing, and
their applications to communications systems.

Sangwoo Park (Member, IEEE) received the B.S.
degree in physics, and the M.S.E and Ph.D. degrees in
electrical engineering from Korea Advanced Institute
of Science and Technology (KAIST), Daejeon, Ko-
rea, in 2014, 2016, and 2020, respectively. He is cur-
rently a Research Associate with the Department of
Engineering, King’s Communications, Learning and
Information Processing Lab, King’s College London,
London, U.K. His research interests include practical,
reliable AI and its application for wireless communi-
cation systems and quantum information processing.

Osvaldo Simeone (Fellow, IEEE) received the M.Sc.
degree (with Hons.) and the Ph.D. degree in informa-
tion engineering from Politecnico di Milano, Milan,
Italy, in 2001 and 2005, respectively. He is currently
a Professor of information engineering with the Cen-
tre for Telecommunications Research, Department of
Engineering, King’s College London, London, U.K.,
where he directs the King’s Communications, Learn-
ing and Information Processing Lab. From 2006 to
2017, he was a Faculty Member with the Electrical
and Computer Engineering Department, New Jersey

Institute of Technology, Newark, NJ, USA, where he was affiliated with the
Center for Wireless Information Processing. His research interests include
information theory, machine learning, wireless communications, neuromorphic
computing, and quantum machine learning. Dr Simeone was a co-recipient
of the 2022 IEEE Communications Society Outstanding Paper Award, 2021
IEEE Vehicular Technology Society Jack Neubauer Memorial Award, 2019
IEEE Communication Society Best Tutorial Paper Award, 2018 IEEE Signal
Processing Best Paper Award, 2017 JCN Best Paper Award, 2015 IEEE Com-
munication Society Best Tutorial Paper Award, Best Paper awards of IEEE
SPAWC 2007 and IEEE WRECOM 2007, and was the recipient of an Open
Fellowship by the EPSRC in 2022 and a Consolidator Grant by the European
Research Council (ERC) in 2016. His research has been also supported by the
U.S. National Science Foundation, European Commission, European Research
Council, Vienna Science and Technology Fund, European Space Agency, and
by the number of industrial collaborations including with Intel Labs and In-
terDigital. He is the Chair of the Signal Processing for Communications and
Networking Technical Committee of the IEEE Signal Processing Society and
of the U.K. & Ireland Chapter of the IEEE Information Theory Society. He is
currently a Distinguished Lecturer of the IEEE Communications Society, and he
was a Distinguished Lecturer of the IEEE Information Theory Society in 2017
and 2018. He is also the author of the textbook Machine Learning for Engineers
published by Cambridge University Press, four monographs, two edited books,
and more than 180 research journal and magazine papers. He is a Fellow of the
IET and EPSRC.

Shlomo Shamai (Shitz) (Life Fellow, IEEE) is cur-
rently with the Department of Electrical Engineer-
ing, Technion–Israel Institute of Technology, where
he is also a Technion Distinguished Professor, and
holds the William Fondiller Chair of telecommuni-
cations. He was the recipient of the 2011 Claude E.
Shannon Award, 2014 Rothschild Prize in Mathemat-
ics/Computer Sciences and Engineering, and the 2017
IEEE Richard W. Hamming Medal and numerous
Technical and Paper awards and recognitions of the
IEEE (Donald G. Fink Prize Paper Award), Informa-

tion Theory, Communications and Signal Processing Societies and EURASIP.
He was also the co-recipient of the 2018 Third Bell Labs Prize for Shaping
the Future of Information and Communications Technology. He is listed as a
Highly Cited Researcher (computer science) for the years 2013/4/5/6/7/8. He
was an Associate Editor for the Shannon Theory of the IEEE TRANSACTIONS

ON INFORMATION THEORY and has also been twice on the Board of Governors
of the Information Theory Society. He was on the Executive Editorial Board of
the IEEE TRANSACTIONS ON INFORMATION THEORY, IEEE Information Theory
Society Nominations and Appointments Committee, and IEEE Information
Theory Society (Shannon Award Committee). Dr. Shamai is an URSI Fellow,
the Member of the Israeli Academy of Sciences and Humanities, and Foreign
Member of the U.S. National Academy of Engineering.

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on December 07,2022 at 09:23:37 UTC from IEEE Xplore.  Restrictions apply. 

https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/e96ed478dab8595a7dbda4cbcbee168f-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/e96ed478dab8595a7dbda4cbcbee168f-Abstract-round2.html


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


