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Abstract. A new hybrid system of off-line analytical recognition of Arabic handwriting combining 
a neural network type multi-layer perceptron (MLP) and hidden Markov models (HMM) is 
presented. We propose a way to cooperate HMM and MLP neural network in a probabilistic 
architecture taking advantage of both tools dedicated to the recognition of Arabic literal amounts. 
This description is based on statistical and structural characteristics extraction of the significant 
character of the handwritten Arabic words, which can be used in the MLP classification module to 
estimate probabilities used as the observations to perform a recognition by the HMM. The 
originality of our approach is based on the segmentation into characters taking into account 
diacritics with the characters that match them. The experiments show the convergence of the global 
system, even with a random initialization of the neural network. 

1. Introduction  
The handwriting recognition is in the domain of the pattern recognition which is interested in 

the forms of characters. The purpose is to develop a system that is closest to human being in his 
ability to read and to make communication man-machine easier and more flexible. Applications of 
handwriting recognition have been increasing in registration of bank checks, automatic processing of 
administrative records, etc. Character recognition has been one of the most fascinating and 
challenging research areas in the field of image processing and pattern recognition in recent years. 
Due to the variability in writing style and sizes, recognition of handwritten scripts is even more 
challenging than printed scripts. In general, character recognition can be defined as the task of 
transforming text represented in spatial form of graphical marks into its symbolic representation [1]. 
Automatic recognition of writing consists of the creation of systems capable of recognizing 
handwritten or printed characters. Despite the great progress of automatic recognition of writing, this 
area remains very active given the great variability of handwriting. The majority of proposed 
solutions were tested on Latin writing and then applied as such for the recognition of printed Arabic 
script. These methods generally assume that characters can be isolated by a segmentation step. This 
segmentation step is possible in the case of a printed Latin text, but very difficult in the case of 
cursive or semi-cursive Arabic writing. Therefore, it is clear that off-line recognition of Arabic text is 
still an open issue. There is still urgent need for high speed recognition rate systems. The 
improvements in any stage of recognition system will lead to increase the global system efficiency. 
Therefore, more research is needed in all the recognition system stages especially the segmentation 
and the classification stages, since they are the most challenging tasks in the off-line Arabic 
handwritten recognition system.   

Although Arabic handwriting is a cursive script, most of the research in this area handles 
isolated characters1, some researchers published papers about Arabic character recognition [2]-[10], 
some about Arabic-Indian numerals [11] and some included both [12]. Different method approaches 
have been used.  Most of these methods are based on neural network and hidden Markov model 
[13]-[15]. 
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2. Related Work 
The cursive nature of the Arabic script, the overlapping between the characters, different 

forms of each letter depending on its position in the word or the writing style and the presence of 
the secondary characters like dots, hamza and diacritics, are all factors that increase the difficulty of 
recognition. Osman [16] developed a segmentation algorithm for Arabic handwriting. The first step 
in the algorithm was to divide the selected image into lines and sub-words, then trace the sub-word 
contour. Finally, the algorithm detects the exact points where the contour changes its state from a 
horizontal to vertical or curved line and consider those point as a segmentation points. The 
algorithm achieved 89.4% segmentation accuracy on 537 tested words from the IFN/ENIT 
database. Alma'adeed et al. [17] and Gouda and Rashwan [18] propose a system of segmentation in 
handwritten Arabic text letters, the potential points of segmentation are at the level of the local 
minima of weak external contour. These points of segmentation are subject to a set of rules to 
validate them or reject them. For the validation of their segmentation tool, they use a character 
recognizer, but this idea remains with the state of project, which it does not seem be carried out 
thereafter. Boulid et al. [19] present an approach inspired by the perception mechanisms involved in 
human reading process to automatically extract text lines from Arabic handwritten documents. The 
proposed approach is based on multi-agent systems to detect and combine the components 
connected belonging to the same line. Samoud et al. [20] propose three criteria of evaluation for the 
comparison of two methods of segmentation for Arabic handwritten words. The first method of 
segmentation is based on a combination of projection and the minima and maxima of the out-line of 
the picture. The second method is a combination of Hough Transform and mathematical 
morphology. These methods are developed, evaluated and compared in reference to the IFN/ENIT 
database. Lawgali et al. [21] exploited the fact that segmentation points, which occur at the end of a 
character and the beginning of the next, are usually located in the region surrounding the baseline. 
The segmentation algorithm starts with segmenting the word into sub-words and then the baseline 
of each sub-word is computed. The vertical projection is used to find the candidate points for the 
segmentation. The algorithm has been tested using 800 handwritten Arabic words taken from 
IFN/ENIT database and has achieved 82.98% character accuracy. However, this algorithm could 
not segment the alphabets ( , شس ) into three segments rather it only segmented them into one. 
Tamen and Drias [22] tried to overcome the over-segmentation problem in the segmentation stage 
by pasting the segmented parts to rebuild the whole character form after the rejection or the 
ambiguousness decision in the recognition stage. The training was done using the back propagation 
algorithm with all the pre-segmented Arabic characters and their different positions written by three 
different persons. 

The field of recognition of handwritten Arabic words is a broad field that contains a large 
number of methods of classification which are more or less well suited to the handwriting 
recognition. However, it did not highlight the unquestionable superiority and the choice of a method 
of classifying compared to others. Different methods have been proposed and high recognition rates 
are reported for handwriting recognition using hidden Markov models and neural networks. Al-
Khateeb et al. [23] have presented an off-line recognition system Arabic handwritten text. The 
features were extracted from the segmented words using sliding window. The extracted features are 
fed to the HMM classifier.  In order to improve accuracy, the HMM result is further refined by 
using a re-ranking scheme. Using the IFN/ENIT database, the system has achieved 95.15% 
recognition rate. Using an explicit segmentation module, El-Zobi et al. [24] have presented an off-
line handwriting Arabic words recognition system based on hidden Markov model. Instead of using 
sliding window based features, they used shape representative features for each letter in each 
handwritten form. They have used two databases; the IESK-arDB for training and testing, and the 
IFN/ENIT database samples for validation. The recognition rates have reached 71% on the first 
database and only 42% for the second.  Hussien et al. [25] proposed an optical character recognition 
Arabic handwritten using the Hopfield neural network. They used a small database for eight Arabic 
letters with a success rate of 77.25%. El-Adel et al. [26] presented a neural network architecture 
based on the fast wavelet transformation, learning and classification of the Arabic system of 
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handwritten character tests were conducted using the IESK-arDB data set that includes 6000 
segmented characters. The rate of classification for groups of characters is 93.92%. Elleuch et al. 
[27] introduced an Arabic handwritten characters recognition using deep learning. The approach has 
been tested on the HACDB database with a classification error rate of 2.1%. Shatnawi et al. [28] 
model real distortions in Arabic script by using real examples of handwritten characters to 
recognize characters, they reach a 73.4 % recognition rate. Kef et al. [29] introduced a fuzzy neural 
network for Arabic handwritten characters recognition. The average result of the recognition rate is 
93.8%. Al-Abodi and Li [30] have proposed a new system of recognition based on geometric 
characteristics of Arabic characters. The IFN/ENIT database has been used in their experimental 
results. The average result of the recognition rate is 93.3% to 596 words. Lawgali et al. [31] 
introduced a new framework for the recognition of handwritten Arabic words based on 
segmentation. An artificial neural network has been used to identify the shape of the character using 
its characteristics obtained by applying discrete cosine transform. The average result of the 
recognition rate is 90.73%. Benouareth and Sellami [32] presented a reference system for the 
recognition of cursive writing off-line based on hidden Markov models, and analytical type without 
segmentation. The step of recognition is based on extraction of vector of characteristics according 
to the technique of sliding windows but with different inclinations. The step of combination allows 
merging the results post-processed to produce the most suitable candidate. The approach proposed 
by Kundu et al. [33] and Pervez and Al-Ohali [34], is based on a sequential combination of a neural 
approach with a Markov approach, architecture has properties interesting both in terms of their 
performance and their relative small size. The method proposed by Pechwitz and Maergner [35] 
present a recognition system based on HMM of one semi-continuous dimension. Experiments have 
been made on the four distinct sets (a, b, c, d) of the IFN/ENIT base containing 26.459 handwritten 
Arabic words, all (a, b, c) is used for learning and overall d is used for the test. The system is 
obtained a recognition rate about 89%. The method proposed by Dreuw et al. [36] is to introduce a 
system based on HMM for the off-line recognition of Arabic script that explicitly models the white 
spaces between the characters and the related pieces of Arabic words (PAW). A visual inspection of 
the models of learning has shown the need for a precise modeling and adaptation of the lengths of 
characters. Experiments are conducted on the IFN/ENIT database. The system reached rate 
recognition of 92.86%. The method proposed by Benouareth et al. [37] describes off-line Arabic 
word recognition system without constraint-based approach without segmenting (segmentation-
free) and semi-continus hidden Markov models with state time explicit, they offer a new version of 
the Viterbi algorithm taking into account the explicit state duration modeling. The results obtained 
realize a rate of 90.20% throughout 26.459 Arabic words of the IFN/ENIT database. The approach 
proposed by Mohamad et al. [38] is based on the combination of three classifiers based on 
homogeneous HMM. All the classifiers have the same topology as the reference system and differ 
only in the orientation of the sliding window. The results reported an a single classifier. Al-Khateeb 
et al. [39] offers off-line Arabic handwritten words recognition system, the vectors of features are 
used to classify the words using the classifier K-nearest neighbors. The proposed system has been 
tested successfully on the IFN/ENIT database. The experimental results show a recognition rate of 
76.04%. El-Sawy et al. [40] models a deep learning architecture, a convolutional neural network 
was trained and tested to their database that contains 16800 handwritten Arabic characters. The use 
of a convolutional neural network led to significant improvements, indeed, they reach a 
classification error average of 5.1% on the test data. 

In this brief, we conclude that HMMs dominate the field of the cursive handwriting 
recognition, the performance of a classifier rely on the quality of the features and of the classifier 
itself. A good set of features should represent the characteristics of a class and it is also invariant as 
possible for changes in this class.  

To address the problems faced by researchers, and given the limitations of existing 
approaches to the recognition of Arabic script and the difficulties of the Arabic word segmentation, 
many of research are turned to use hybrid methods and in particular to the neural-Markov methods. 
Such a system needs to take into account a large number of the variability of characters, the main 
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advantage of the HMM is attributed to their probabilistic framework, which fits well with the nature 
of the signals noise as the case of handwriting. The main argument for the use of the MLP for the 
probabilities of output, it is that it is driven in a discriminative way and that no assumption is made 
on their distributions. Motivated by these advantages, we have proposed a recognition system 
evaluated using a hybrid model-based on neural network type multi-layer perceptron and hidden 
Markov models in a limited vocabulary.  

3. The Hybrid System  
A hidden Markov model is a stationary Markov chain where the observation is a probabilistic 

function of the state. We also have a notion of observation sequence that appears, meaning, at every 
given moment, there is a realization of a random variable according to the probability distribution 
associated with the state currently visited.  

The recognition system models the words and characters in the form of Markov models 
hidden. The system is analytical where patterns of words are constructed by concatenating the 
character models. The probability densities of observations in each state are modeled by a Gaussian 
distribution. Learning using the iterative Expectation-Maximization algorithm. During initialization, 
the observations are affected in states segmenting them linearly then the first parameters are 
estimated from this assignment [41]. 

The discrete time Markov models have two disadvantages, the first is that learning is not 
discriminating in that the parameters of each word model are adjusted only with the word images 
associated with its class. On the other hand, the weakness of the discrete system is that the 
observations are often continuous vectors, the use of discrete distribution models thus implies a 
preliminary phase of vector quantification, with the resulting degradation. It is interesting to include 
observation densities in Markov models using neural networks, which incorporate discriminant 
functions as a result of learning. The solution adopted to estimate the probability of occurrence of 
observations is to use a multilayer neural network.  
3.1. The multilayer perceptron and estimation of the parameters of the neuro-Markovian network: 
Topologically, the multilayer perceptron consists of three layers, the first layer is the input layer 
consisting of the vector of characteristics obtained from the input image, and the second layer has 
the hidden units. Finally, the output layer is dimensioned to the number of classes to be 
discriminated. A neural network is a system that learns from a base of examples containing forms of 
associated inputs and outputs adjusts its internal settings in our case the synaptic weights. At the 
end of an optimal training, the output of the multilayer perceptron is a good estimate of probabilities 
with respect to each class presented at the input of neural network. The outputs of the network 
asymptotically approximate the Bayesian probabilities belonging to the classes [41], [42].  

3.2.   Estimate of the parameters by the MLP network: 

We use a perceptron multilayer to estimate probabilities of issue 𝑝𝑝(𝑜𝑜𝑗𝑗 𝑒𝑒𝑗𝑗⁄ ,𝑀𝑀). Each state of the 
Markov chain will be considered as a network class and observation will be the feature vector 
extracted from the character. The markovian alignment uses the 𝑝𝑝(𝑜𝑜 𝑒𝑒⁄ ) probability for observation 
of the character 𝑜𝑜 since the state 𝑒𝑒, the two terms are related by the formula from Bayes: 

𝑝𝑝(𝑜𝑜/𝑒𝑒) =  𝑝𝑝(𝑒𝑒/𝑜𝑜)×𝑝𝑝(𝑜𝑜)
𝑝𝑝(𝑒𝑒)

                                                    (1) 

And for a sequence 𝑜𝑜1, … , 𝑜𝑜𝑛𝑛 and a path 𝑒𝑒1, … , 𝑒𝑒𝑛𝑛: 

𝑝𝑝(𝑜𝑜1, … , 𝑜𝑜𝑛𝑛, 𝑒𝑒1, … , 𝑒𝑒𝑛𝑛,𝑀𝑀) =  ∏ 𝑝𝑝 �𝑒𝑒𝑗𝑗
𝑜𝑜𝑗𝑗

,𝑀𝑀� ×𝑛𝑛
𝑗𝑗=1  𝑝𝑝 � 𝑒𝑒𝑗𝑗

𝑒𝑒𝑗𝑗−1
,𝑀𝑀� ×

∏ 𝑝𝑝�𝑜𝑜𝑗𝑗�𝑛𝑛
𝑗𝑗=2

∏ 𝑝𝑝�𝑒𝑒𝑗𝑗�𝑛𝑛
𝑗𝑗=2

                     (2) 
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As the product of the probabilities of the segments of image 𝑝𝑝(𝑜𝑜𝑗𝑗) does not depend on the 
hypothesis of word  𝑀𝑀, we can write: 

𝑝𝑝(𝑜𝑜1, … , 𝑜𝑜𝑛𝑛, 𝑒𝑒1, … , 𝑒𝑒𝑛𝑛,𝑀𝑀) =  
∏ 𝑝𝑝�

𝑒𝑒𝑗𝑗
𝑜𝑜𝑗𝑗

,𝑀𝑀�×𝑛𝑛
𝑗𝑗=1  𝑝𝑝�

𝑒𝑒𝑗𝑗
𝑒𝑒𝑗𝑗−1

,𝑀𝑀�

∏ 𝑝𝑝�𝑒𝑒𝑗𝑗�𝑛𝑛
𝑗𝑗=1

                            (3) 

The recognition is performed by finding the optimal path that will provide the class 
(discriminant path) in the case of one model for all classes, for this, the Viterbi algorithm 
determines the probability of the best path.  After decoding, the observation series is associated with 
an optimal path, that is to say, one that maximizes the observation probability according to the 
formula (3). This path provides labeling for each observation by indicating the hidden Markov 
chain state with which it is associated. Learning consists in estimating the probabilities of 
transitions and observations for all the characters constituting the lexicon. The different 
probabilities of transitions between states are estimated by counting on the whole learning base. The 
probabilities of observation of characters are estimated by the outputs of the neural network, this 
network have as many outputs as possible states. 

4. The Experimental Phase  
4.1.   Architecture of the system proposed: 

We present a new method of segmentation for recognition of handwritten words based on a 
hybrid system type neuro-Markovian incorporating neural networks and hidden Markov models in a 
complementary architecture. The most common strategy in hybrid systems neuro-Markovian is to 
use neural networks to estimate Markovian model observation probabilities in their usual 
formalism. The proposed analytical method takes into account points and diacritics inclinations and 
the false positions in writing. Combination step merges the outputs produced by the HMM to 
choose the most suitable candidate word. Development start with the pre-processing of the images, 
then the extraction of the representative characteristics of those words to serve as input to the 
proposed classifier. In what follows, we will detail the work, giving first the general scheme of the 
system used before moving on to describe each completed step. 

 
Figure 1. Methodology of the Arabic handwriting recognition. 
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4.2.  Data collection: 
The main goal here is to collect images of Arabic handwritten characters and words written by 

many writers and to make the databases as much representative as possible. So, a form is designed 
to do so, the form consists of 34 alphabets and 37 words written by 120 scripters. Also we have 
asked writers to use their everyday writing in order to get the most natural and unconstrained way 
of writing. No restrictions were imposed on the writing instrument. Hence, word produced with a 
number of different writing instruments is included in the database (ballpoint pens, ink pens, and 
pencils) all with various stroke widths. An example of a filled form is shown in Figs. 6-8. All form 
pages were scanned using a high quality scanner. The output of the scanner can be either a (.jpeg) or 
(.bmp) format. After collecting all forms, characters and words were extracted automatically and 
pre-processed in order to remove noises. 
4.3.  Pre-processing: 

The task of pre-processing is an important step in any system of recognition, the purpose of 
this step in the handwritten word recognition is to improve the readability of the image and remove 
details that do not have power discriminative in the recognition process. The proposed system takes 
as input an image scanned from a handwritten Arabic word. To ease the difficult task of 
identification, we use the binarization, smoothness, standardization, the skeletonization and the 
estimate of the baseline [43], [44]. 

 
(a)                     (b)                      (c)  

Figure 2. Image preprocessing “word ألف”:  
(a) Original image, (b) binary image and (c) skeleton image. 

 
In our work, we examined the standardization operation that brings back the images of words 

and even the images of the characters to standard sizes and reduce all types of variations. Indeed, 
the size of a character can vary one entry to another, which can cause instability of parameters. The 
operation of smoothing is applied to eliminate the noise in the image and to describe it by a 
sequence of vectors of at least stable features. For this purpose, we use the algorithm of smoothing 
proposed in [14]. Extraction of characteristics (i.e. diacritical points) needs to estimate the baseline 
of word. The method described in [15], gives a good estimate of the baseline. It is based on the 
analysis of the histogram of horizontal projection after transformation to a binary image word [45]. 
To get the skeleton word we use the algorithm of Hilditch [46], he proceeds by successive 
refinements. The skeletonization is used to reduce the variability of writing style and make simple 
extraction of certain features. Generally, this will take a lot of time, and sometimes its application to 
Arabic script can remove diacritical points that are relevant primitives for the word discrimination. 
The algorithm of Hilditch has lower complexity and its application preserves the diacritical points. 
Fig. (2c) shows the result of the application of this algorithm in Fig. (2a). 
4.4.  Segmentation method: 

Most of the currently proposed segmentation algorithms do not resolve the problem of 
duplication of characters in Arabic script. Segmentation stage is the most difficult stage, and the 
main source of errors in recognition. The purpose of this step is extraction of the characteristics 
obtained in vertical segmentation. The segmentation module that we implemented is achieved in 
two steps, segmented word in characters and the characters into related parts. It is a non-uniform 
segmentation based on the analysis of vertical projection histogram [45]. This algorithm is based on 
the skeleton of the word and the detection of the essential points (branch or cross). The general idea 
of this process is to make segmentation between each two branch points or crossing and the 
segmentation column must contain a single pixel after having extracted the skeleton of the word, 
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this technique involves the word segmentation in individual characters, segmentation points are 
identified at the end of a character and the beginning of the next. The skeleton word representation 
we permit to obtain some characteristics that are difficult to extract from the bitmap representation. 
In order to isolate the characters, our approach is to find the characteristic points of the most 
common characters. These points are usually close to the baseline. The general idea of characters 
segmentation is to determine the baseline for the given word based on the horizontal projection. The 
vertical projection on the word done by summing the pixels of the characters vertically, we find the 
characteristic points of character, where segmentation should take place if the width of the 
segmented part does not have to be very small  and there is a rapid change in the vertical projection 
in the vicinity of the point (the case of the character "س"). 

 
Figure 3. Segmentation into characters. 

4.5.  Extraction of characteristics and vectorization: 
Extraction of primitives is to transform an image (character, grapheme, word...) in a vector of 

fixed size primitives. This transformation is to change the space of data representation of the image 
to an N-dimensional space (ℜN). The choice of characteristics is very decisive for the stage of 
recognition. We used in our system a mixture between statistical and structural characteristics from 
the literature that give better results. After several tests, we chose features that seem relevant to the 
discrimination of Arabic words and all of these features have been selected for the description of 
each character [47]. 
a. Statistical characteristics:  

For these kinds of characteristics, we use the moments of projections: the mean μ, variance σ2 
which are calculated for different angles projection (horizontal, vertical, diagonal 45° and 135°), 
therefore, 08 features are extracted from the histograms of projection [48], [49]. For the description 
of a character, we choose Fourier descriptors which are introduced in the vector of primitives whose 
goal is to encode the contour in a more compact way. Fourier descriptors are invariant by 
translation, rotation and scaling [49], [50]. Also, we include the moments of Hu, these moments are 
descriptors overall since they take into account the internal organization of the shape of the 
character and a small number of these moments are used to describe a character. The moments of 
Hu are invariant to translations, rotations and scale changes [49], [51]. For these reasons, we are 
interested in this kind of attributes.  Other moments are used are moments of Zernike, they are 
based on the principle of orthogonal polynomials. As a result, the reconstruction of the form from 
these moments is possible. A relatively small set of Zernike moments can characterize the overall 
shape of an object. If we use Zernike moments of higher order, the more precise is the 
reconstruction of the image of the object. The interest of calculating Zernike moments lies in their 
invariance vis-a-vis a translation, a change of scale or a rotation of a given form. We chose to 
calculate the Zernike moments from the skeleton of the word [49]. To extract density by zoning, the 
word is divided into three horizontal zones and each zone is divided into three vertical areas, we get 
finally nine areas. Densities in each area should be normalized by dividing by the surface of the 
area, since the words are not all the same size [52]. We get profiles of the handwritten word take 
into account diacritics, it is determined on a number of lines, in general, spread evenly over the 
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height of the character, the distance between the left edge (respectively, right, upper, bottom and 
oriented) character and the first black pixel met on this line. The set of these distances defines a left 
profile (respectively, right, upper, bottom and oriented) character. Profiles must be normalized 
(dividing by the width of the image of the character), therefore we get a feature vector that contains 
eight profiles [61]. The direction of the plot is sufficient to define the shape of the skeleton, the 
most famous code is the Freeman code of 8-connectivity. For this method, we have obtained a 
vector that contains the distribution on the eight orientations, over the whole character from which 
we draw a vector of characteristics of dimension eight [43], [53]. 
 

b. Structural characteristics:  
Features which are calculated from the skeleton image correspond to firstly, characteristic 

points, they represent the black pixels in the skeleton of a word with a number of different neighbor 
of 0 and 2. There are two types, the extreme points and junction points. An extreme point 
corresponds to a segment beginning/end of a line segment. Junction points connect three or more in 
the skeleton word, and are divided into points of intersection and branch points [31], [43]. 
Secondly, we extract the ascenders and descenders, generally, the first step is the determination of 
the median area of the word that distinguishes the letters to ascenders or descenders. The method 
used is based on the analysis of the horizontal histogram. We are looking at the top line data index 
(m1) as well as in the lower part, the indices of the minima of the histogram respectively M1 and 
M2. In the ideal case, these two minima mark the middle zone [43]. Also, we extract and classify 
the secondary tracks, diacritical points corresponds to black pixels whose skeleton with a number of 
neighbors is equal to 0, these points are distinguished by their position (above or below the base 
line). 

            
Figure 4. Detection the median area by horizontal projection. 

In Arabic words, diacritics parties (hamza, point...) which can be considered as a secondary 
trait are an integral part of the characters, their number and their position above or below the 
character, change the meaning of the latter. This property has led us to detect the diacritics parts in 
the characters. For this purpose, we have adopted the compact setting by 𝛿𝛿 such as 𝛿𝛿 is the number 
of pixel. Therefore, discrimination between the main and secondary tracks on the one hand and 
between the secondary tracks themselves, can be done by application of the following chart: 
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Figure 5. Traces classification flowchart. 

Another characteristic is used pieces of Arabic word (PAW), the extraction of PAW 
procedure also called labeling of the pixels, is widely used in recognition of forms to segment the 
binary images. The technique is to group the neighboring pixels into a related component called set. 
Each set is disjoint from the others and can be easily isolated. We have use an algorithm works in a 
single pass, following the criterion of 8-connectedness [36]. 

All these features have been selected for the description of each character. As a result we get a 
vector of characteristics with statistical and structural characteristics for each character. The final 
result of vectorization is the composition of a matrix of characteristic for each manuscript word of 
size 𝑙𝑙 ∗ 𝑧𝑧 such that 𝑙𝑙  is the number of character and 𝑧𝑧 and the total number of primitives. The choice 
of this type of features is amply motivated by the simplicity and robustness of their calculation, as 
well as by their power discriminative. 

 
4.6.  Learning: 

Neural network requires a large data of images of handwritten characters training to get a 
good result. Available training data are divided into two different sets, set of learning and validation 
set. There should not be any overlap between these two sets of data in order to improve the ability 
of generalization of a neural network. The test is designed to access the network generalization 
ability.  
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Figure 6. Overview of database 1.                         Figure 7. Overview on the test database. 

Learning is to establish two types of classes, a class of words and a class of letters. First a list 
ranked by order of each character position (Fig. 6). The goal is to get the correct character in the 
first position in this list. Second, a list classified according to the letter (Fig. 8). 

 
Figure 8. Preview on the database 2. 

For the dictionary design, it is based on sequences of representative training vectors. This 
procedure is to present each class by a characteristic vector, then, it optimizes iteratively the partition 
of the dictionary by using the fast K-means algorithm [43]. The result of this fast K-means is used to 
initiate a multi-layer perceptron, of which the number of classes of output will be the same as the 
number K of partitions of the fast K-means. Learning of the HMM and MLP is done separately in 
four steps: 

1) Decode words with the hybrid system databases to create a base of characteristic vectors 
annotated to the neural network. 

2) Train neural network by retro spread of the gradient. 
3) Use the new neuron network to calculate the probabilities of observation. 
4) Optimize the transition probabilities of the states of the HMM by the Baum-Welch algorithm 

[42]. 
This iterative process is repeated throughout the base training up to performance saturation using the 
Viterbi alignment [42]. It only exploits the sequence of states that make up the best path and 
forward-backward probabilities, which to redistribute probabilities subsequently on several classes 
and no longer targets on a single. 
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4.7.  Classification and recognition: 
Recognition model combines MLP and HMM works to recognize a word as shown in Fig. 2. 

The Markov model used is organized into columns of states, and each state may only issue a single 
class of observations. Each column includes N states where N is the number of all possible classes 
of characters making up the words in the lexicon. In our application, the MLP is upstream with the 
HMM. Emission probability  of the observations are calculated by MLP, transition probabilities are 
estimated by counting and priori probabilities are obtained by calculating the number of 
occurrences of each state (class) in the learning base. We adopted a model (Discriminant Path) that 
has one model for all classes of words, by searching for the optimal path which is based on 
Bayesian probability. To recognize a word by the system, the likelihood of words is calculated as 
the sum of probabilities over all possible paths through the HMM model. In this case, the 
recognition is to determine the path corresponding to the sequence of observation, that is to be 
found in the model, the suite of states, called sequence of states of Viterbi, that maximizes the 
quantity p(e o⁄ , A), the Viterbi algorithm is used to find the optimal path representing the 
recognized word. For a word image to be recognized, we will retain one and only a succession of 
states (classes) provided by the HMM which maximizes the probability of observation. The 
performance of a classifier can be measured by calculating the three following rates: 

rejection rate = number of rejected forms
total number of forms

                                       (4) 

recognition rate = number of recognized forms
total number of forms

                                (5) 

substitution rate = number of males recognized forms
total number of forms

                             (6) 

The procedure of learning and recognition for a character is the same for a handwritten word.  

5. Tests, Results and Discussion  
Our goal was to implement a new method of segmentation into characters and test the 

effectiveness of this algorithm in a recognition system hybrid neural-Markovian of handwritten 
Arabic words. To validate the proposed approach, we conducted experiments on two databases of 
handwritten words, one on a lexicon (Database 1) of size 37 for the literal amounts (Fig. 7), the 
other (Database 2) of size 34 but formed by the handwritten Arabic letters (Fig. 8). Each base 
contains about 4440 samples of words manuscripts and 4440 samples for handwritten letters that are 
written by 120 scripters (secondary students and personal administrative). These databases have 
been developed by our research team at the laboratory of automatic of Constantine. We have 
divided the basis of words in two sub-bases, the first contains 80% of the words for the operation of 
learning and the second contains 20% of the words for testing (Fig. 9), for the character database we 
also added about 5500 samples for the different letter formats from the DBAHCL database [54]. 

 

Figure 9. Creating database flowchart. 

24 IJET Volume 14



 

Several tests were conducted to assess the recognition rate of the system according to the 
segmentation procedure of the words image in print. 

Table 1. Success and error rates obtained for different position of the arabic word. 

Characters groups Isolated Beginning End middle 

Recognition rate (%) 100 98.7 97.2 86.4 
Error rate (%) 0 1 1.7 4.6 

Substitution rate (%) 0 0.3 1.1 9 

We have a recognition rate of character at the beginning of word of 98.7%, this shows that the 
majority of the characters are recognized in the first position, where a perfect recognition of the 
overall word (Table 1). According the results obtained (Tables 1-3), we notice that it is no big error 
at recognition except for characters س and ش because of the similarity of these characters. We also 
reach substitution rates of 0% for the characters (ه ,ن ,ل ,ت  ب ,ا and ي), it shows the great potential 
and the ability of recognition of our system to recognized handwritten Arabic characters. We can 
also see that some characters are very confused with similar characters (ex:  ع ,حand خ), the small 
distinction of the structure and position of the diacritical point causes challenges for some similar 
characters. There are also certain traits of the characters are missing with the structure of the 
character. Other characters may have an extra stroke. 

Maybe these arguments of the difficulty of recognition of Arabic characters are the main 
reason why some words are very difficult to recognize as ( ستة and  تسعة  ). 

Table 2. Success and error rates obtained from the database of the character. 

Arabic 
letters 

Rates (%) 
 Arabic 

letters 

Rates (%) 
 

recognition reject substitution recognition reject substitution 
 2 0 98 غ 0 0 100 ا
 2 1 97 ف 0 0 100 ب
 3 7 90 ق 0 0 100 ت
 0 2 98 ك 1 2 97 ث
 0 0 100 ل 4 2 94 ج
 1 1 98 م 1 0 99 ح
 0 0 100 ن 1 1 98 خ
 0 0 100 ه 1 1 98 د
 4 3 93 ئ 7 4 89 ذ
 0 0 100 ء 2 1 97 ر
 1 1 98 ى 2 0 98 ز
 0 0 100 ي 4 7 89 س
 3 1 96 و 8 5 87 ش
 6 4 90 ؤ 3 2 95 ط
 0 2 98 ص 2 1 93 ظ
 4 2 94 ض 1 0 99 ع
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Table 3. Success and error rate obtained from the database of the word. 

Arabic 
Words 

Rates (%) Arabic 
words 

Rates (%) 

recognition reject substitution recognition reject substitution 

 5.04 3.4 91.56 تسعون 0.2 0.3 98.25 واحد
 2 1 97 مائة 0.04 1 98.76 اثنان
 4 2 94 مئة 2.2 11.3 86.5 ثلاثة
 8.3 5 86.7 مائتان 0.94 1 98.06 اربعة
 0.4 1.1 98.5 ثلاثمائة 0.33 11 88.67 خمسة
 12 5 83 أربعمائة 3.51 5.45 91.04 ستة
 5.04 3.4 91.56 خمسمائة 12 2.42 96.38 سبعة
 4 3 93 ستمائة 1 2 97 ثمانیة
 1 2 97 سبعمائة 4 3 93 تسعة
 8.3 5 86.7 ثمانمائة 0.4 0.9 98.7 عشرة
 0 0 100 تسعمائة 2 1 97 عشر
 0 1 99 ألف 0.4 0.9 98.7 عشرون
 0.5 0.8 98.7 آلاف 2 2 94 ثلاثون
 0 0 100 ألفا 0.4 0.9 98.7 اربعون
 0 0 100 ألفان 5.04 3.4 91.56 خمسون
 1 1 98 دینار 5.04 4.3 91.56 ستون
 3 6.76 90.24 جزائري 12.42 2 96.38 سبعون
 0 1 99 احد 1 2 97 ثمانون

Table 4. Recognition and error rate achieved on our databases. 

Rates (%) Words database Character database 
Recognition rate 94.7 96.31 

Rejection rate 02.79 01.56 
Substitution rate 03.09 02.12 

    At character level, the recognition error is 3.37% and the success rate is 97.17%. This shows 
that the majority of the characters are recognized hybrid network that gave us a rate of recognition 
words of 94.7%. Taking into account the context by hybrid system brings an increase in the rate of 
recognition (Table 4). 

We conducted a precise research at the level of each step in the process of recognition and we 
noticed that the images of these words have lost information at the level of the acquisition and 
sometimes the skeletisation. So this is the poor quality of the images that has disrupted the 
recognition process and the bad writing of some writers. Fig. 10 shows typical examples of 
recognition errors 

 
  

  

Figure 10. Samples examples for bad writing. 

6. Conclusion and Prospects 
Our goal is off-line recognition of handwritten Arabic words with a limited vocabulary using 

an analytical method with application on the Arabic literal amounts. In order to achieve an off-line 
handwritten Arabic words recognition system we have made first necessary transformations to 
process forms. They show different aberrations of the acquisition system which must be to guard 
before starting any procedure of recognition. In order to better characterize the image of the word, 
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we segment it into series of characters and from each of these characters, we calculate a vector of 
parameters. This allows us to describe the image of the word by a matrix of features or each line 
represents a vector of characteristics of the character of the word. For Arabic handwriting 
recognition rate depends on the segmentation so we based on the analytical approach for the 
development of segmentation technique because a good segmentation maintains the full character 
making it easy for operations that follow (extraction of parameters and recognition). The work on 
the recognition of handwriting showed recognition system performance can be improved by using a 
combination of statistical and structural characteristics. Indeed, a bad choice of primitives 
influences negatively on the results even if a very powerful classifier is used. Recognize an object is 
decided that the vector characterizing the object analyzed to recognize close to the vector 
memorized at the time of the training. The choice of classifier is based on its speed and its ability to 
deal with heterogeneous data. HMMs are considered among the most frequently used and 
successful methods in the recognition of off-line Arabic manuscript words. As the Arabic script is 
cursive nature, one of the major obstacles encountered in an effort to improve the Arabic 
handwriting recognition is the lack of effective and efficient solutions to the problem of 
segmentation. The originality of our approach is that it is possible to propose a recognition system 
taking into account diacritics with their characters in the segmentation, the main interest of this 
technique that it is easier to find the set of potential segmentation points. In this system, the model 
applied to a vocabulary of the literals amounts. A new hybrid model type neural-Markovian allows 
incorporating more contexts by setting the diacritics to their characters. The reduction of the lexicon 
using a sophisticated segmentation algorithm while introducing a new modeling of words. 

We showed that the results are promising with a general recognition rate of 98.59% for words 
and 94.85% for characters. Poor recognition of the word or characters is because of several factors, 
including the number of characters, the complexity of each character, the similarity between the 
characters, in addition to the quality of the database and the means of exercising it. 
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