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Abstract. Introduction. This article presents a selective survey on
articles for Data Mining in the field of Agriculture. The main purpose
of the article is to research what algorithms are the most used in this
field for different aspects like temperature, humidity, but also predictions
like crop yield and crop health. The research has revealed that certain
algorithms, like Support Vector Machines and k-Nearest Neighbour tend
to offer better results, so they are favored. Also, in production, ensemble
algorithms may offer advantages over using single algorithms. Future
research could target distributed learning and other methodologies that
improve data safety and privacy, and also improve the cost-effectiveness
of Data Discovery Platforms.

1 Introduction

Agriculture, or the domestication of plants, is one of the most important aspects
of human activity. With a history of about 15.000 years [1], it surely played a very
important role in our history, paving the path to better food and, consequently,
for our existence.

Also, agriculture is one of the key fields where technical advances were wel-
comed and incorporated, leading to improvements in both the quality of life
for the workers, as well as the quality of the produce. The invention and im-
provement of tools, usage of animals, replacement of animals with mechanized
machinery, but also intimate knowledge about fertilizers and growth conditions
for different plants, all these aspects were refined during the ages, leading to the
plentifulness that we have today.

Although famine has not been eradicated, this is not really a production
issue, as 30% of the global production is wasted yearly [2], amount that could
potentially be used to feed the famine-stricken areas. Hence, the whole global
agriculture infrastructure, from the initial seeding and finishing with the din-
ner plate, can and should be optimized in order to obtain the most out of it.
This is even more important if we take into consideration the world population
growth [3] and reduction of the land mass that is usable for it [4].



Fig. 1. Number of articles related to data mining used for predictions in agriculture
published yearly in 2001 - 2021 (May)

In this context, the Data Revolution [5] that is in full growth today, can and
surely will play a major role. The importance of Data Mining and it’s usage in
agriculture [6] can be assessed also by simply counting the articles that were
published in this topic, as can be seen in Figure 1. The trend is currently and
exponential one, with no signs of it slowing down over the next decade. Benefits
of Data Mining are just beginning to be understood, as algorithms progress and
hardware is beginning to be capable enough to process, train and run ever more
powerful models with huge amounts of data.

Assessment of the best algorithms for different applications would mean test-
ing these algorithms and selecting the best performing ones. However, this im-
plies a large amount of work, as most of these algorithms do not perform well
with the standard parameters, so they would need tuning and optimizations.
As part of this work has already been performed, a closer look at the literature
will uncover some options that other researchers have taken in order to solve a
similar problem (see Table 1. These results could provide as a valuable starting
point.

The importance of this topic can also be understood by examining past sur-
veys such as the one by Mucherino et al. [7] in 2009, respectively in 2011 [8], by
Raorane et al. in 2013 [9], by Patel et al. in 2014 [10], and by Gandhi et al. in
2016 [11, 12].

Mucherino et al. [13] provide a comprehensive book for the data scientist,
that describe Machine Learning (ML) Algorithms as well as Data Mining (DM)
techniques that deal with Agriculture. Clustering, Classification and Neural Net-
works (NN) are all discussed, with specific use cases and ways to implement and
optimize the used algorithms.

Cunningham and Holmes [14] discuss different ML algorithms and their us-
age, using the WEKA platform. The described use-case uses a mushroom grading
application, with good results. The model’s accuracy was comparable to human
operators.

Majumdar et al. [15] use the less-known DBSCAN Clustering algorithm to
group regions in India with similar rainfall, soil type and temperature ranges,
in order to assess which regions have the best wheat crop production. A com-
prehensive comparison of three clustering methods was done, comparing PAM,



CLARA and DBSCAN, with DBSCAN being the best option for this kind of
application.

Bauckhage and Kersting [16] discuss about sensor integration, mobility, in-
formational networks in the context of Precision Farming. They present appli-
cations and how challenges are addressed when using data mining and pattern
recognition in agriculture. This topic is also covered, in less detail, covering only
some parts of the ML algorithms, by Yethiraj [17].

Sharma and Mehta [18] describe the architecture and high-level implementa-
tion for a Knowledge Management System (KMS), a very useful tool for storing,
retrieving and creating new information and knowledge.

Kale and Patil [19] propose a methodology for aiding farmers make informed
and correct decisions. Fuzzy logic and machine learning approaches are used to
generate expert decisions, thus aiding the farmer and guiding him throughout
the farming process.

This article is structured as follows: Section 2 summarizes the architectures
used for ML in Agriculture and also depicting a generalization of them. Section
2.1 describes the currently used hardware components for Data Driven Agri-
culture (DDA), while also exploring possible future research and development
trends. Sections 3 to 8 describe the usage of algorithms for different aspects of
DDA and provide an overview of them in Section 9 and Table 1. Conclusions
and future research are analyzed in Section 10.

2 Architectures of Data Mining Systems used in
Agriculture

The architecture of a typical complete data mining process is depicted in figure 2.
This class of architectures is very flexible, so it can be completely adapted to
the current application, by removing unneeded modules, or by adding others.

Fig. 2. General Architecture for the Data Mining Process

The IoT context, generally used in agriculture, introduces some constraints
for the ML process, primarily caused by the very large amounts of data that one
device produces [20]. Multiplying these devices could mean important issues for
the cloud platform, that could translate into high costs and/or poor performance.



In this regard, Federated Learning [21] and Collaborative Data Mining [22] ap-
proaches can be used in order to improve both the quality as well as the optimal
usage of computing and communication resources.

Concepts like Digital Twins, Edge Computing (for local data preprocessing),
Context Aware Data Mining and others, are explored in a humidity forecasting
solution for agriculture, by Matei et al. [23]. A large scale agricultural assessment
platform is set up, with multiple geographical locations, providing data at a 10
minutes resolution and combining weather forecasts into the assessment, via
Context Aware Data Mining. The three-tier architecture is scalable and flexible,
able to sustain multiple locations, depending on the needs of the overseer [24–27].

2.1 Hardware in Agriculture 4.0

From a hardware point of view, we have many classes of devices that are running
inside the Agriculture 4.0 Ecosystem, namely [28]:

1. Sensors, that gather data from their environment;
2. Actuators, that perform various tasks, like controlling lighting, watering or

other parameters;
3. Edge Computing devices, that read sensor data, store and prepare it for

upload;
4. Cloud Computing infrastructure, for performing centralized Data Min-

ing tasks;
5. User Interface Devices, like smartphones, laptops, desktop computers,

used for interaction with the on-site personnel.

These components and their communication stream are depicted in Figure 3.

Fig. 3. Hardware components and their connections in Agriculture 4.0

Depending on the scale of the project, not all of these classes of components
will be present at any installation. Smaller scale applications require just a few
basic components, or merging some of them together (e.g.: ML/DM can be also
done on Edge Computing devices, like a Raspberry PI, for a small project).

Gagliardi et al. [29] propose a smart flexible architecture, where drones are
used in order to import information from a ZigBee sensor array, that use the



802.15.4 IEEE ZigBee wireless protocol. The Wireless Sensor Network (WSN) [30,
31] does not need to have a direct internet connection, making this solution suit-
able to extremely remote areas, where access is limited. Specially built drones,
with uplink possibilities, are sent at specific intervals (eg.: once a week) in or-
der to connect to the sensor array and upload the data into an SD card. The
advantage of this method is obvious: remote locations are easier to manage, as
many drones can be programmed to follow a route automatically and there is
no line-of-sight needed for manually flying the aircraft. The downside is that the
drones introduce a fragile single point of failure, where a significant amount of
data can be lost.

Open Source Hardware (OSH) [32–34] is another approach that is suitable
for small (or home) projects. Enthusiast builders have a wide range of sensors
and components that they can use in order to build a small scale project. OSH
can also be used for prototyping, in order to validate certain architectures and
software components, due to the low cost and high flexibility that OSH provides.
Complete agricultural systems can be easily designed and built, using off-the-
shelf components that fit together and are easy to program. 3D printing can
also be used in order to build a well-designed case that is cheap and fit for the
specific use-case.

Smart Irrigation Systems [35] are easily integrated inside a smart system, due
to the increasing availability of energy-efficient and low-cost actuators, in order
to optimize both the humidity of the land, providing an optimal environment
for the crops to grow, as well as optimize the usage of water, applicable in areas
where water is a scarce commodity.

Comprehensive review of hardware usage in smart agriculture was performed
by Sharma et al. [36] while some aspects of Smart Agriculture, like protocols,
platforms and standards are also discussed by Stočes et al. [37].

In large scale agricultural systems, IoT is beginning to play an important
role, by assessing the health of the crops, as well as the growing conditions. By
combining this information with weather predictions, more informed choices can
be made, while also optimizing the usage of chemicals and irrigation water.

Singh et al. [38] use an approach based on Raspberry PI and Arduino UNO
(as the Raspberry PI does not have analog inputs) and an array of off-the-shelf
sensors and components to build an automated irrigation system. These systems
could be widely used in regions where water is a scarce commodity.

Analyzing the already presented literature regarding hardware usage in agri-
cultural systems, reveals three key aspects of hardware design that must be met
by the component, in order to be usable in a long term installation:

– Power Usage - advancements in resolution technology for silicon based
chips mean better power usage. This also translates in modules, like Blue-
tooth Low Energy (BLE) Modules, that deliver high-performance at low
power usage, enabling data gathering at higher resolutions;

– Price - lower prices mean more devices that can be bought with the same
budget, enabling higher coverage in the fields, for better control of the input
data;



– Computing power - higher computing power installed on devices, means
more pre-processing can be done at the sensor installation, less information
to be uploaded or more functions to be designed, enabling engineers to design
better and smarter systems.

Hardware is a very important part of all the platforms for Data Mining
in Agriculture. Trends in hardware include the transition to Low-Power Us-
age, with optimizing both physical components (the circuitry), as well as the
software components (algorithmic optimization for low power). Increase in on-
board computing power means that more processing will take place at the Edge
components, lowering network traffic and costs with cloud infrastructure. Cloud
components could potentially be eliminated and replaced with large-scale col-
laborative distributed systems that are only supervised from a central location.

3 Data mining for soil moisture and air humidity
predictions

Soil moisture is an important factor that directly and heavily impacts the quality
and performance of crops. Each crop type depends on a specific moisture level in
order to perform. While many types of plants can tolerate more drastic moisture
changes, some of them are more difficult to grow in less then ideal moisture
conditions. In this context, predicting moisture levels enables the farmers to
better control growing conditions as well as optimizing water and energy usage.

Matei et al. [39] proposed and built a complete moisture prediction sys-
tem within the ModSoil Project3, where a number of 20 weather stations were
deployed across the Transylvanian Depression, complete with soil temperature
sensors, soil humidity sensor and 10 of them also have rain gauges. Data reading
is done with a 10 minutes resolution for each sensor. Preparing the data means
computing the average value and the standard deviation for each day. Time Win-
dowing is used, in order to predict the next values, with a Time Window of one
day. Several ML algorithms were tested on a smaller scale dataset, including k
Nearest Neighbour (k-NN), Support Vector Machines (SVM), Neural Networks
(NN), Logistic Regression, Linear Regression, Rule Induction, Fast Large Mar-
gin, Decision Tree and Random Forest. The highest accuracy was obtained with
k-NN, that yielded a 74.36% accuracy. The average accuracy of the tested al-
gorithms was 68.65% with a standard deviation of 0.033857. In production, the
average error was just -0.3%, and the absolute value is 0.68%, proving that k-NN
is an algorithm suitable for this application.

Another similar comparison is made by Myers et al. [40] in their work, where
they compare a ML approach (without disclosing what algorithms they used),
with a satellite based heuristic data processing workflow, the HRLDAS/Noah
LSM model. An average 30% improvement was obtained by using the ML ap-
proach.

3 https://research.holisun.com/projects/agriculture-4-0/modsoil



Support Vector Machine (SVM) and Relevance Vector Machine (RVM) al-
gorithms are also used by Hong et al. [41] for predicting soil moisture for n

days ahead. The developed framework achieves low error rates (15%) and high
correlations (95%) when forecasting 14 days ahead.

The scarcity of fresh water is a problem addressed by Singh et al. [38]. This
is a huge problem in the context of accelerated desertification [42] that the world
is facing, with the global weather change. Singh et al. use a Gradient Boosting
Regression Trees (GBRT) algorithm, with very good results, in order to predict
the need for an irrigation system to be started in a specific day, so obtaining
Water Usage Optimization.

A Deep Learning/Deep Neural Networks (DL/DNN) approach is used by Cai
et al. [43] aim to replace empirical formulae and other ML algorithms with the
power of Deep Learning, that takes into consideration every available parameter,
in order to find hidden links between various input parameters. A Rectified
Linear Activation function (ReLU) [44] is used in the neuron, a simple function
that improves the speed of data flow inside the Network, improving both the
training as well as the exploitation speed. The Adagrad [45] algorithm is used
for optimizing the learning stage, an algorithm that actively adjusts the learning
rate.

Atanasov [46] predicts the water content of tomatoes by using the leaves
color. This method enables the usage of readily available smartphones with high
resolution cameras, in order to assess the health and water availability of plants
(tomatoes in this case). Seven algorithms are assessed, including ZeroR, Linear
Regression, k-NN, M5P Nonlinear Model Tree, Decision Trees, SMOreg and
MultyPerc, for deciding the best performing one. The resulting M5P model has
a correlation coefficient of 85%.

Aboutalebi et al. [47] present an approach based on multi-spectral imagery,
taken with a Unmanned Aerial Vehicle (UAV) to estimate soil moisture at differ-
ent depths. They assessed multiple algorithms, like Neural Networks and Support
Vector Machine (SVM). They found a strong positive correlation of the model
accuracy with the site that the training data is sourced, making this approach
an ideal candidate for Federated Learning or Collaborative Data Mining.

Surveys about data mining techniques that use pattern recognition are com-
piled by Kumar and Kannathasan [48], and also Hemageetha [49]. Both surveys
address the problem of soil parameters for agricultural properties, without dis-
cussing crop growth or any other crop-related parameters.

A Collaborative Data Mining workflow is also used by Anton et al. [50] for
predicting air humidity. This variable directly influences soil moisture, so it’s
an important parameter that farmers need to take into account. Multiple lo-
cations within the Transylvanian Plateau are taken into account in order to
successfully raise the accuracy of the resulting predictions. Meanwhile, Muang-
prathub et al. [51] deploy an array of sensors that also include air humidity, in
order to optimize water usage near three villages in India. The enhanced farms
are controlled from mobile smartphone applications, enabling low-latency user
interaction as well as live system status overview.



3.1 Collaborative Data Mining

Collaborative Data Mining (CDM) is a technique meant to improve results
obtained from ML models, by using data from other sources, when it is un-
available in a single source. Compared with classical imputation of values with
medians or deleting entire rows, replacing data with similar data available at
other locations has the added benefit of maintaining data resolution as well as
variation of the missing data.

Anton et al. [52] use a variety of algorithms, like KNN, LPR, SVM and NN
in a collaborative manner to predict soil moisture and temperature, using data
from five sources. A comparison, using only KNN, assessing the importance of
using multiple data sources, is done in another article by Anton et al. [53], while
possible treatments in the case of missing/incomplete data is explored in [54].
If the predictive values obtained in the standalone process are below 0.500 then
the collaborative process with multiple sources produces higher values in most
cases. If the predictive values obtained in the standalone process are above 0.500
then the collaborative process with multiple sources produces higher values in
cases where the predicted source has correlations situated around 0.500.

3.2 Context Aware Data Mining

Data can seldom be regarded as self-sufficient, self-explanatory and free of out-
side influences. This is the reason why hybridised approaches are used in modern
times, in order to improve results and accuracy of models. Matei et al. [55] have
proved that infusing contextual data (outside data-sources) into the ML process
can improve results. Seemingly inexplicable variations (often regarded as data
noise) can otherwise be explained as the result of outside processes or events,
that can impact internal data readings. The application that Matei et al. use is
based on soil moisture prediction by analysing historical data as well as weather
forecast information (linked to temperature and rainfall).

The predicted accuracy of the system is, thus, vastly improved, leading to
better use of water resources. A more complete assessment of the results is done
by Avram et al. [56]. The importance of context is highlighted by Avram et
al. [57], showing that missing contextual information from the dataset has a
higher impact in the result than the noise that is present inside the data. The
main conclusion of the study is that having a context affected by up to 30%
noise and up to 40% missing data, does not influence the results proportionally
and the context chosen still proves to be efficient in the noise and missing data
ranges that were studied. In other words, a robust context can overcome the
shorting of data quantity and quality to a high extent.

3.3 Collaborative vs Context-Aware Data Mining

Rather than being opposite methods, Collaborative Data Mining (CDM) and
Context-Aware Data Mining (CADM) are actually complementary in nature.
They both improve the quality of resulting models [58], by using missing values



from similar sources (CDM) and also infusing contextual (or external) data into
the model, like data from public forecasts. Avram et al. [59] propose a practical
framework for combining CDM with CADM into a complete knowledge discovery
system, with improved accuracy.

3.4 Federated Learning

Two of the largest drawbacks of modern ML systems is the constant need for
data transfer, data availability and, in consequence, the lack of privacy. GDPR
regulations in Europe have put a strain on Data Driven Systems, making it hard
for data consumers to gather user information and behaviour. In this context,
Federated Learning (FL) approaches might be a viable solution. FL based sys-
tems do not centralize data in order to use it, rather build partial models on
the edge and then orchestrate the final model build in the cloud without ever
transferring private information.

Besides improved data privacy, the Federated Learning approach has the
added benefit of distributing the workload of training models to the Edge com-
ponents of the Cyber-Physical System. Research in the FL field is in its infancy,
with some work being done by Zhang et al. [21], with a proposed implementation
for Cyber Physical Systems, Kumar et al. [60] that present an application of FL
for Smart Agriculture, and Durrant et al. [61] that use a FL approach for yield
prediction.

4 Data mining for air temperature

Along with soil moisture, presented in Section 3, air temperature is another factor
that directly influences growth and well-being of crops. As physics dictates, air
temperature also influences soil and air moisture, variation being a key factor into
how moisture is transferred to the soil and, finally, to the crops. In this regard, air
temperature variation triggers complex agricultural system behaviour, in need
of Data Mining techniques to be understood and predicted.

The DBSCAN algorithm is also used by Bilgin et al. [62] in order to pinpoint
clusters of similar temperature variations within Turkey. This information can
be used to group several locations in order to be able to perform Collaborative
Data Mining. The algorithm was used on 66 years of historical data (1930 to
1996). A similar approach was used also by Kohail and El-Halees [63], for the
Gaza Strip.

Fathi and Ezziyyani [64] use Unsupervised Learning and Data Mining for
predicting air temperature, in order to optimize crop yields, incorporating pre-
dictions for the climate changes, for the Morocco region.

A LoRaWAN based system for analytics, including air temperature, is also
proposed by Davcev et al. [65]. The system’s use case is providing analytics
for a grape farm, but, as it also incorporates an important Cloud Computing
component, it can be adapted to any other agricultural use-case.



5 Data mining for air CO2 in agriculture

Unlike animals, that consume O2 and exhale CO2, plant life do the opposite,
consuming the available CO2 and producing our much needed O2. This is why,
analyzing the CO2 level present in the air is important for the well-being of the
crops, much more so in the case of closed spaces (vertical agriculture, urban
agriculture). Also, CO2 may be emitted by the soil, raising the importance of
green farms and carbon neutral exploitation. Usually, CO2 alone is not handled
by DM methodologies for agriculture, but is used in conjunction with other
parameters, presented in this article, in order to build complex DM models,
capable to handle and predict more precise data.

Hira and Deshpande [66] present an approach of Data Mining and analysis
on Multidimensional Data in agricultural parameters, that also includes CO2

assessment. Farhate et al. [67] analyze the soil CO2 emissions for a sugarcane
plantation in Brazil, in order to assess its impact on the environment. They assess
the relationship between CO2, soil moisture, soil temperature and others (a total
of 18 variables), while also assessing multiple algorithms: Decision Trees, Bayes
Classifiers, Neural Networks, Support Vector Machines and Logistic Regression.

Ponce-Guevara et al. [68] present a complete software solution (GreenFarm-
DM ) that integrates Big Data and Data Mining in a green house installation.
The system analyzes several factors of crop growth, including soil moisture,
temperature and CO2.

6 Data mining for crop recommendation

Recommendation systems use available knowledge, along with complex assess-
ments of the growing conditions (soil characteristics, weather and climate infor-
mation) in order to provide the best crop options to the farmers. This assessment
targets increases in crop yield and productivity.

Pudulamar et al. [69] use a complete assessment system with the aim of
providing accurate crop recommendations. As wrong choice could be costly for
the farmers, an ensemble model with majority voting is designed, that uses
several algorithms: Random Tree, CHAID, KNN, Naive Bayes. This method
raises the accuracy of the prediction to 88%.

Ensemble algorithms are used by Kulkarni et al. [70] and also Akshatha and
Shreedhara [71], for crop recommendations for different regions of India. The
algorithms used in the ensembles are Random Forest, Naive Bayes, Linear SVM,
and K-Nearest Neighbor, individually optimized. This system uses soil types
as well as geographic location and local weather data for accurate suggestions
of possible cultures. The resulting classification accuracy is 99.91%, a very high
value for this kind of problem, mainly due to the ensemble voting mechanism that
drastically improves accuracy without compromising flexibility or over-fitting. A
similar ensemble system is also developed by Reddy et al. [72], using Random
Tree, CHAID, K-Nearest Neighbour (KNN) and Naive Bayes algorithms.

We can observe that, at least for this use-case, ensemble mechanisms provide
a more stable system, able to better generalize and better adapt to the data



while also maintaining a high accuracy. Ensemble algorithms are, thus, important
mechanisms in raising the TRL of the resulting system, making it easier to
prepare and deploy the model into production.

An evaluation of several algorithms for optimized crop recommendation is
also performed by Arooj et al. [73] for the Pakistan region. They used the WEKA
tool and assessed the following algorithms: Decision Trees, Breath First Tree,
OneR and Naive Bayes, with the best performing being Naive Bayes.

7 Data mining for crop disease prediction

Crop diseases are a very common problem in the agricultural domain. They can
be caused by insects, viruses, bacteria and even other plant life (known as weeds).
The impact of these diseases can be dramatic, as entire crops can be lost. In
order to prevent this from happening, the farmer needs to know beforehand the
complete growing conditions for the selected crop as well as potential problems
that may arise.

Ayub and Moqurrab [74] developed an ensemble system using Decision Tree,
Random Forest, Neural Networks, Naive Bayes, Support Vector Machines and K-
Nearest Neighbor algorithms in order to predict loss due to the grass grub insect.
Kumar and Kumar [75] propose another approach, by designing a detection
system that uses image processing and data mining in an effort to assess what
exactly is threatening the current crop. Their use-case is for the paddy fields in
Tamilnadu, Southern India.

Another approach, using an entire wireless sensor network, is presented by
Tripathy et al. [76]. Their system was trained on historic data and is able to gen-
erate almost real-time decisions for disease prediction and mitigation on existing
crops, an improvement for the farmers that can result in more optimal usage of
time and resources, while also maintaining a greener yield.

8 Data mining in crop yield predictions

A short survey just for crop yield predictions was done by Medar and Rajpurohit
in 2014 [77]. An interesting approach to crop yields is proposed by Marinkovic
et al. [78], in an application incorporating both Data Mining (using the M5P
algorithm) as well as Genetic Algorithms, in an effort to optimize parameters
for the best possible yield.

Gupta et al. [79] use Data Mining algorithms such as Random forest, KNN,
SVM to monitor and predict some parameters related to yield prediction. Grow-
ing parameters like humidity, temperature, soil characteristics are continuously
monitored through a sensor network, and prediction results are presented to the
farmer via a web interface.

Naive Bayes and K-Nearest Neighbor methods are used by Paul et al. [80] to
predict the soil category, in order to estimate crop yields.

Other work include Mishra et al. [81], Guo and Xue [82] and also Dahikar
et al. [83] that use Neural Networks in order to compare spatial to temporal



approaches. A more extensive review in the use of Neural Networks is done by
Khairunniza et al. [84].

9 Data Mining algorithms used in agriculture

A short overview of the ML Algorithms successfully used in agriculture is de-
scribed in Table 1. This table is useful in the initial stages of researching a
particular algorithm for an application, algorithms that offer superior perfor-
mance.

Abbreviations used in Table 1: Crop Rec - Crop Recommendation, CDP -
Crop Disease Prediction, SVM - Support Vector Machines, SMP - Soil Moisture
Prediction, CYP - Crop Yield Prediction, RVM - Relevance Vector Machine

As shown in Table 1, a rather large body of work was dedicated to Soil
Moisture Prediction, with the most important algorithms being Decision Trees
(DT), k-Nearest Neighbour, Bayesian Network and Neural Networks.

10 Conclusions

Agriculture is historically a very important aspect of human existence. It is only
natural that a large body of work is dedicated to research in it, incorporated
in most of today’s research fields (including Electronics, Computer Science and
Engineering). Today’s Computer Science research landscape for Agriculture pro-
poses a vast number of mature algorithms that can be used to develop high TRL
production systems.

In Data Driven Agriculture, predictions have been made (or proven possi-
ble), for: soil and air humidity, soil and air temperature, CO2/O2, crop disease
prediction, crop recommendation and even crop yield prediction. These aspects
are highly important, in the context of optimizing the outcome of agricultural
activities (maximizing outcome, minimizing waste and pollution due to chemical
treatments). Monitoring and modifying these aspects leads to less usage of said
chemicals, so it can also define a crop as being BIO, in the context of raised
awareness and interest on this topic.

10.1 Future Research Trends

Researching the available literature, it can be noticed that some algorithms stand
out, like SVM, kNN and Decision Trees. These are highly used and could form a
good basis for applicative research on a high TRL ensemble platform that would
be suitable for a production-grade Data Mining Platform. Ensemble algorithms
provide better model accuracy, needed for a production system.

On the topic of hardware, further research is needed for advanced algorithms
for dimensionality reduction of the gathered data, in order to better be able



Table 1. Overview of Data Mining Algorithms used in Agriculture

Algorithm Used by Applications

SVM
[39–41, 47, 66, 67, 70, 71]
[74, 79, 85–91]

SMP, CYP,Air CO2,CDP

RVM [41] SMP

Deep Learning (DL) [43] SMP

Naive Bayes [69–74, 80] Crop Rec , CDP, CYP

K-means Clustering [90] SMP

k-Nearest Neighbour
[39, 46, 69–72, 74, 79, 80]
[90–95]

SMP, CYP, CDP

Neural Networks [39, 47, 66, 67, 74, 81–84] SMP, Air CO2, CDP, CYP

Logistic Regression [39, 66, 67] SMP, Air CO2

Linear Regression [39, 46] SMP

ZeroR, SMOreg, MultyPerc [46] SMP

Rule Induction [39] SMP

Fast Large Margin [39] SMP

Random Forest [39, 69–72, 74, 79] SMP, Crop Rec, CDP, CYP

Decision Tree Analysis
[46, 66, 67, 73, 74, 78, 91]
[93]

SMP, CYP, Air CO2, CDP

GBRT [38] SMP

Bayesian network [66, 67, 90] SMP, Crop Rec, Air CO2

Unsupervised Clustering [64] Air Temp

DBSCAN [62, 63] Air Temp

LoRaWAN [65] Air Temp

CHAID [69, 72] Crop Rec

OneR [73] Crop Rec

DM Survey [48, 49] -



to maintain its intrinsic information, while lowering as much as possible the
required bandwidth and storage requirements.

Today’s trends include many Distributed Learning approaches and method-
ologies, many of them being in initial phases. More work is to be done especially
on Federated Learning, but also the possibility of integration with other ap-
proaches, like Collaborative and Context-Aware Data Mining.
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R Torres-Sánchez. A software architecture based on fiware cloud for precision
agriculture. Agricultural water management, 183:123–135, 2017.

26. Li Tan, Ronald Haley, Riley Wortman, and Qin Zhang. An extensible and inte-
grated software architecture for data analysis and visualization in precision agri-
culture. In 2012 IEEE 13th International Conference on Information Reuse &
Integration (IRI), pages 271–278. IEEE, 2012.

27. Qing Zhu, Kaihua Liao, Yan Xu, Guishan Yang, Shaohua Wu, and Shenglu Zhou.
Monitoring and prediction of soil moisture spatial–temporal variations from a hy-
dropedological perspective: a review. Soil Research, 50(8):625–637, 2013.

28. Parijata Majumdar, Sanjoy Mitra, and Diptendu Bhattacharya. Iot for promoting
agriculture 4.0: a review from the perspective of weather monitoring, yield predic-
tion, security of wsn protocols, and hardware cost analysis. Journal of Biosystems
Engineering, pages 1–22, 2021.

29. G. Gagliardi, M. Lupia, G. Cario, F. C. Gaccio, V. D’angelo, A. I. M. Cosma,
and A. Casavola. An internet of things solution for smart agriculture. Agronomy,
11(11), 2021.

30. Mohamed Rawidean Mohd Kassim, Ibrahim Mat, and Ahmad Nizar Harun. Wire-
less sensor network in precision agriculture application. In 2014 International
Conference on Computer, Information and Telecommunication Systems (CITS),
pages 1–5. IEEE, 2014.

31. Denis Ilie-Ablachim, George Cristian Pătru, Iulia-Maria Florea, and Daniel Ros-
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JC Alvarado-Pérez. Greenfarm-dm: A tool for analyzing vegetable crops data
from a greenhouse using data mining techniques (first trial). In 2017 IEEE second
ecuador technical chapters meeting (ETCM), pages 1–6. IEEE, 2017.

69. S Pudumalar, E Ramanujam, R Harine Rajashree, C Kavya, T Kiruthika, and
J Nisha. Crop recommendation system for precision agriculture. In 2016 Eighth
International Conference on Advanced Computing (ICoAC), pages 32–36. IEEE,
2017.

70. Nidhi H Kulkarni, GN Srinivasan, BM Sagar, and NK Cauvery. Improving crop
productivity through a crop recommendation system using ensembling technique.
In 2018 3rd International Conference on Computational Systems and Information
Technology for Sustainable Solutions (CSITSS), pages 114–119. IEEE, 2018.

71. KR Akshatha and KS Shreedhara. Implementation of machine learning algorithms
for crop recommendation using precision agriculture. International Journal of
Research in Engineering, Science and Management (IJRESM), 1(6):58–60, 2018.

72. D Anantha Reddy, Bhagyashri Dadore, and Aarti Watekar. Crop recommendation
system to maximize crop yield in ramtek region using machine learning. Inter-
national Journal of Scientific Research in Science and Technology, 6(1):485–489,
2019.

73. Ansif Arooj, Mohsin Riaz, and Malik Naeem Akram. Evaluation of predictive
data mining algorithms in soil data classification for optimized crop recommenda-
tion. In 2018 International Conference on Advancements in Computational Sci-
ences (ICACS), pages 1–6. IEEE, 2018.

74. Umair Ayub and Syed Atif Moqurrab. Predicting crop diseases using data mining
approaches: classification. In 2018 1st International Conference On Power, Energy
And Smart Grid (Icpesg), pages 1–6. IEEE, 2018.

75. SA Ramesh Kumar and K Ramesh Kumar. A study on paddy crops disease pre-
diction using data mining techniques. crops, 1:2, 2015.

76. AK Tripathy, J Adinarayana, D Sudharsan, SN Merchant, UB Desai, K Vijay-
alakshmi, D Raji Reddy, G Sreenivas, S Ninomiya, M Hirafuji, et al. Data min-
ing and wireless sensor network for agriculture pest/disease predictions. In 2011
World Congress on Information and Communication Technologies, pages 1229–
1234. IEEE, 2011.



77. Ramesh A Medar and Vijay S Rajpurohit. A survey on data mining techniques
for crop yield prediction. International Journal of Advance Research in Computer
Science and Management Studies, 2(9):59–64, 2014.
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