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Abstract: Nowadays, rapid product iterations result in large quantities of end-of-life products. To meet the fast-growing demand 

for remanufacturing engineering, companies have quickened the standardization and industrialization of waste dissembling. Two-

sided disassembly lines can effectively disassemble large-sized products on both sides of the lines, and parallel disassembly lines 

can disassemble multiple products simultaneously with fewer workstations and higher production efficiency. Combining the two 

types of disassembly can effectively increase the disassembly efficiency of large-sized products. However, the parallel two-sided 

disassembly line has not been fully investigated because of the essential complexity of the problem. Therefore, this research 

introduced the parallel two-sided disassembly lines balancing problem (PTDLBP) with fixed common stations. Firstly, a multi-

objective mixed-integer programming model is established to solve the problem for the first time. The model is proved to be 

correct through small-scale numerical examples. Secondly, a multi-objective improved moth–flame optimization algorithm is 

implemented to solve the proposed large-scale problems. The proposed algorithm employs a two-phase decoding approach to 

design the scheme and a discrete moth for fire operation to search and replace new individuals, then a restart strategy is 

introduced to reduce the probability of the population falling into a local optimum. Finally, the algorithm solved extensive 

disassembly line balancing problems with different layouts including the straight-line, two-sided, and parallel two-sided, and 

case studies demonstrated the reliability and validity of the proposed method. 
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Highlights: 

 The parallel two-sided disassembly line balancing problem (PTDLBP) is considered. 
 An MIP model for PTDLBP is proposed for the first time. 
 An improved moth-flame optimization algorithm for DLBPs is proposed. 
 The validity of the proposed method is demonstrated by numerous cases. 

 

1. Introduction 

The recycling and disassembly of waste electronic products is a crucial part of the development of a global circular 

economy. This not only effectively avoids the damage caused by long-term storage of waste products to the surrounding 

atmosphere, water, soil, and ecological systems, but also alleviates the bottlenecks in development caused by resource shortages 

in countries. The disassembly line is the first step and the most effective means to recycle many products. Balancing disassembly 

lines has an important impact on the overall performance of an entire remanufacturing system. The problem of optimizing the 

disassembly task allocation in a manner that multiple goals are optimized effectively, including the number of workstations, load 

of each station, harmful degree of the production line, etc., is called the disassembly line balancing problem (DLBP) (Gungor & 

Gupta, 2001). 
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Depending on the different purposes there exist several configurations in DLBPs. Large-sized waste products such as 

automobiles are often disassembled in the form of two-sided disassembly lines. Two-sided disassembly lines have operators on 

both sides of a conveyor belt, and two opposite stations operate in parallel simultaneously on the same product. Two-sided 

disassembly lines are productive for large-sized waste products, effectively achieving shorter line lengths, reduced production 

times, fewer worker movements, and higher production efficiency (Zhang et al., 2022).  

For a large number of end-of-life products, the traditional single disassembly line may not fulfil the disassembly efficiency 

requirements. So Hezer & Kara (2015)  proposed the concept of the parallel disassembly line balancing problem (PDLBP), 

which uses two or more disassembly lines parallel to each other. Compared with single-line disassembly lines, parallel 

disassembly lines can disassemble similar products or different models of the same products at different cycle times in adjacent 

lines (Bhosale & Pawar, 2020). Workers between the two lines can manage tasks on both lines. This layout effectively results in 

fewer open workstations, improved resource utilization, and higher production productivity (Zhu et al., 2020). Aiming at 

handling a mass of large waste products, the parallel two-sided disassembly line, which mixes the advantages of the two layouts 

mentioned above, has become one of the choices for decision makers. 

The parallel two-sided disassembly line is a manufacturing mode in which two or more two-sided disassembly lines are 

parallel to each other, aiming to produce one or more products with similar disassembly tasks, as shown in Fig. 1. Stations on 

parallel two-sided disassembly lines can be divided into separate and common stations. The stations adjacent to the two lines can 

be merged into common stations. Operators at common stations must work on both the right and left sides. If common stations 

are fixedly placed on two neighboring lines, the generality of the overall structure can be improved. In this condition, for many 

large-sized products, only a few operators would be required, and disassembly efficiency can be increased. However, when 

balancing two-sided disassembly lines, owing to the complex constraints of priority relationships, idle time is occasionally 

unavoidable, and when it comes to two or more two-sided disassembly lines, the complexity of problems increases significantly. 

Beyond that, DLBPs are NP-hard combinatorial optimization problems (McGovern & Gupta, 2007), and multi-objective 

collaborative optimization should also be considered. Under those circumstances, as the necessity and difficulty of the PTDLBP, 

it is certainly worth developing powerful and efficient ways to reach the optimal solution that meets the demand. 

Common station

Separate station

Separate station

Mated-workstation

Line I

Line II

L1-left

L1-right

L2-left

L2-right

 

Fig. 1 Configuration of a parallel two-sided assembly line 
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2. Literature review 

The DLBP has attracted significant interest from scholars since it was first proposed in 2001. Gungor et al. (2001) firstly 

established a complete disassembly model with five optimization objectives, including minimized idle time and disassembly 

direction changes and prioritized disassembly of easily accessible, hazardous, and highly demanded parts, which lay a theoretical 

foundation for later study. We review the evolvement of DLBP from the layout types and solving methods and point out the 

insufficiency in the following part. 

2.1 Line style 

The disassembly lines have diverse layouts due to different characteristics. Research on DLBPs mainly concerns the 

structure of the straight, U-shaped, two-sided, and parallel (Özceylan et al., 2019). Among them, the most basic straight type, to 

which most attention has been paid, can promote standardization and larger-scale operations (Edis et al., 2022; Wu et al., 2022). 

The U-shaped line uses less area and is more efficient than the straight lines (Li & Janardhanan, 2021; Wang et al., 2020). 

Two-sided disassembly lines apply to the disposal of large-scale end-of-life products and have attracted increasing interest. 

Wang et al. (2019) developed a flower pollination algorithm for a stochastic two-sided partial DLBP. Kucukkoc (2020) 

established a mixed-integer linear programming model for the TDLBP for the first time. Considering the energy consumption 

objective, Liang, et al. (2021) solved the two-sided disassembly line model with a parallel operation.  Zhang et al. (2022) 

considered the part characteristic indexes, established a multi-objective MIP for two-sided disassembly lines and proposed an 

improved whale optimization algorithm to solve the considered problem. Mutlu & Güner (2021) reported a memetic algorithm to 

solve the balancing problem of mixed-model two-sided disassembly lines. All the above studies were conducted for a single two-

sided disassembly line. 

To increase the productivity of a line and reduce disassembly costs, Hezer & Kara (2015) first defined and solved a PDLBP 

using a network model based on the shortest route model. Zhu, Zhang, & Guan, (2020) studied the parallel partial disassembly 

line balancing problem (PPDLBP) with hazardous and demand parts. Wang et al. (2021) studied the PPDLBP considering the 

uncertainty of task time and variables and then developed a genetic simulated annealing algorithm to solve it. These studies were 

all conducted for multiple straight linear disassembly lines. 

2.2 Methodologies 

There are three main solution approaches in DLBP studies, including exact methodologies, heuristic, and meta-heuristic 

approaches. The early common methods to solve DLBPs were exact algorithms, including integer programming (Altekin et al., 

2008), dynamic programming (Koc et al., 2009), and piecewise linear programming (Altekin, 2017). Because the DLBP is an 

NP-complete problem (McGovern & Gupta, 2007), feasible solutions increase geometrically with an increase in problem scales, 

and the solution effect of the exact methods are greatly reduced. So heuristic and meta-heuristic algorithms are also widely used. 

For heuristic algorithms, such as uninformed (H-K) search methods (McGovern & Gupta, 2005) and reinforcement learning 

(Tuncel et al., 2014), because they are specially designed for the particular problem, so their generality is not good. 

The meta-heuristic strategy is frequently a general strategy that does not depend on the unique conditions of a problem and 

has good generality and strong global optimization ability (Shu et al., 2022). Refer to, for example, Kalayci & Gupta (2013) for 

the artificial bee colony, Kalayci & Gupta (2014) for the taboo search algorithm, and Kalayci et al. (2015) for the variable 

neighborhood search. The above algorithms sort the optimization objective through dictionary sorting, and multi-objectives are 

managed in turn according to the assumed importance, which transforms the multi-objective problem into a single objective one, 

and a single optimal solution can be obtained. Ding et al. (2009) introduced Pareto optimality into the ant colony algorithm and 

provided multiple feasible solutions when a decision-maker’s preference is unknown. 

2.3 Knowledge Gaps 

Interestingly, after looking back at studies of DLBPs, no research was conducted on the parallel two-sided disassembly line 

balancing problem, although there are few reports on the parallel two-sided assembly line balancing problems (PTALBPs) 

(Kucukkoc & Zhang, 2014; Özcan et al., 2010). However, DLBPs are not a simple inversion of ALBPs (Lambert & Gupta, 

2008), and there are many differences between ALBPs and DLBPs (e.g. precedence relationship and optimization objectives 
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(Koc et al., 2009). Therefore, one of the motivations of this study was to make a supplement in this field. It should also be 

mentioned that literature about PTALBP rarely provided solvable mixed integer programming (MIP) models and supposed that 

common stations are not fixed. The current study considers comprehensively above-mentioned factors, and the main 

contributions are as follows: 

 This paper contributes to the references by introducing the parallel two-sided disassembly line balancing problem with 

fixed common stations. 

 A MIP model for PTDLBP is proposed considering the opening of common stations between two adjacent lines. 

 An improved moth-flame optimization algorithm (IMFO) is proposed, and special discretization operations are 

presented. 

 The validity of the proposed algorithm is demonstrated by comparison with MIP and other algorithms. 

The remainder of this paper is organized as follows. Section 3 introduces more details of the PTDLBP and presents the 

mathematical formulation. Section 4 describes the proposed IMFO process. Section 5 provides verification and demonstration, 

including model verification and the performance of the algorithm on DLBPs, TDLBPs, and PTDLBPs. Section 6 summarizes 

the research and presents the future research considerations. 

3. Problem description and formulation 

3.1 Problem description 

Parallel two-sided disassembly lines have multiple two-sided disassembly lines in parallel, which can disassemble one or 

more product models with similar characteristics. Skilled workers are assigned on both sides of each conveyor belt to perform the 

corresponding disassembly tasks at their respective stations. Each line has a left and right station. Each pair of workstations of all 

lines together form a mated-workstation. Unlike two separate two-sided disassembly lines, two stations between two adjacent 

lines are fixedly combined into a common station (see Fig. 1). The right station of Line I and the left station of Line II are 

combined into a single station called the common station. For common stations, only one worker is required to complete the 

tasks assigned to the station, and the workers must complete the tasks of both lines by moving back and forth. The left station of 

Line I and the right station of Line II are called separate stations. For separate stations, the workers must fulfil the tasks on one 

side of any parallel two-sided line.  

The types of disassembly tasks include R-type tasks (can only be assigned to the right), L-type tasks (can only be assigned 

to the left), and E-type tasks (can be assigned to both sides). Each disassembly task has an operating time, and the total task time 

in each station cannot exceed an upper time limit called the cycle time (CT). In addition, the priority relationship between tasks 

should be carefully considered, which results in extra idle time. Fig. 2 shows an example of a parallel two-sided disassembly line. 

In Line I, task 4 immediately precedes task 6, and task 2 can only be assigned to the left, which results in a gap between tasks 2 

and 4. The shaded part between tasks 4 and 2 in Fig. 2 is the idle time caused by interference. 

4 2

5 6
3

1 4

6

5

1

7 3
2

Line Ⅰ

Line Ⅱ 

L

R

L

R

Mated-workstation 1 Mated-workstation 2

 

Fig. 2 Task allocation of a parallel two-sided disassembly line 

In addition, different product models may have different cycle times, and it is difficult to satisfy the time constraints for a 

common station. Therefore, a method of the least common multiple (LCM) was introduced (Gökçen et al., 2006). This method 
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adopts the common CT as a uniform cycle. The specific methods are as follows: (a) Determine the LCM of the line CTs. (b) 

Obtain D1 and D2 by dividing both CTs by the LCM value. (c) Multiply D1 and D2 by the processing time of each task on lines 1 

and 2, respectively. (d) Select the LCM as the common CT of the lines. 

Considering the abovementioned constraints, an MIP model is developed for parallel two-sided disassembly lines. 

Recycling factories focus on the benefits, efficiency, and harmfulness of disassembly. Consequently, the optimization objectives 

of PTDLBP in this paper are to minimize the weighted line length, load balance, and hazard index. The following statements are 

assumed in this paper. 

 Each line can disassemble different products. 

 Each disassembly line may have a different CT. 

 The precedence diagrams for each product model are known. 

 The tasks performed are deterministic and operate within a known time and harmfulness coefficient. 

 Workers moving times in stations are ignored. 

 Parallel tasks and parallel stations cannot be permitted. 

3.2 Mathematical model 

The notations used in the mathematical model proposed in this paper can be summarized as follows:  

i, j, s: Disassembly task indexes 
Lh: The hth line. h = {1, 2, ... , H} 
k: Parallel mated-workstations index; 2 separate stations and h - 1 common station form parallel mated-workstations 
n: Number of disassembly tasks for all lines 
m: Number of available parallel mated-workstations 
I: Disassembly task index set for all lines 
M: Parallel mated-workstations index set 
P: Station of the mated-workstations, P = {p |1, 2, …, H + 1}; p = 1 for the left separate station of line 1, p = H + 1 for the 

right separate station of line h, p = h (h={2, 3, … H}) for the common station of between line h-1 and line h 
Rty: Set of R-type tasks 
Lty: Set of L-type tasks 
ti: Processing time of disassembly task i 
di: Demand index of disassembly task i; if the task has a demand attribute, di is a natural number, otherwise di = 0 
hi: Hazard index of disassembly task i; if the task has a hazard attribute, hi = 1, otherwise hi = 0 
CT: Common cycle time of the disassembly line 
Aij: Priority matrix for disassembly tasks, Aij = [aij]n×n; if aij=1, task i is an immediately preceding task for task j 
 : A large real number, CT n    

wi: Start time of task i, wi≥0 
xp 

ik: Task assignment variable; if task i is assigned to the p-side of mated-workstations k, xp 
ik = 1, otherwise, xp 

ik = 0  
p
ijkz : Disassembly sequence variable; if tasks i and j are assigned to the p-side of mated-workstations k and task i is assigned 

before task j, 1p
ijkz  , otherwise, 0p

ijkz   

Sk: Parallel mated-workstations variable; if mated-workstations k is open, Sk = 1, otherwise, Sk = 0 
p

kU :  Station variables; if station p of mated-workstations k is open, 1p
kU  , otherwise, 0p

kU   

Objective: 

1 1 2
1 1
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Subject to: 

1

1,
m

p
ik

k p

x i
 

  
P

I  (4) 
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ikx i p k    I P M  (19) 

{0,1},1 ; ;p
ijkz i j n p k       P M  (20) 

{0,1},kS k   M  (21) 

{0,1}, ;p
kU k p   M P  (22) 

The three primary objectives that we focus on are formulated in Eqs. (1)–(3). Eq. (1) indicates the minimum number of 

weighted sums of mated-workstations (line length) and stations. With reference to Kucukkoc (2020), γ1 and γ2 are set to 100 and 

1, respectively. Eq. (2) represents the idle index to balance the workload at each mated-workstation. This objective function is 

calculated using the total task time in the mated-workstations rather than in the stations, which reduces the line length while 

balancing the idle time (Zhang et al., 2022). Eq. (3) attempts to minimize the harmfulness of the disassembly; hazardous parts 

should be disassembled as early as possible to reduce the impact on the environment and workers' health. Eq. (4) constraints each 

task to be assigned to a certain station. Eq. (5) restricts tasks to being assigned to specific lines. Eqs. (6) and (7) address the 

direction constraints, R-type tasks to the right, and L-type tasks to the left. Eqs. (8) and (9) describe the mated-workstation, 

including limiting the number range of mated-workstations and opening mated-workstations in turn. Eqs. (10) and (11) address 

the processing time of each task and define the start and end times of tasks. Eqs. (12) and (13) establish linkages between p
ikx and

p
ijkz . Eq. (14) must be satisfied between the front and back tasks assigned to the same station. Eq. (15) ensures that the priority 

constraint is satisfied. Eqs. (16)–(18) set up a corresponding relationship between xp 
ik, U

p 
k , and Sk. Each open mated-workstation 

and station should be assigned to at least one task, and the number of tasks allocated should not exceed the total number of tasks. 

Eqs. (19)–(22) introduce various decision variables. 

D
ow

nloaded from
 https://academ

ic.oup.com
/jcde/advance-article/doi/10.1093/jcde/qw

ac134/6901509 by guest on 17 D
ecem

ber 2022



O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

 

4. Improved moth-flame optimization algorithm 

This section introduces the improved MFO-based approach, called the IMFO, which is proposed to solve the PTDLBP. The 

MFO algorithm (Mirjalili, 2015) is a swarm intelligence optimization method, and its working flow simulates the behavior of 

moths plunging into a flame. The algorithm has a simple structure and fewer parameters and is designed to solve continuous 

optimization problems. However, it has also been successfully adopted to solve combinatorial optimization, such as permutation-

based problems (Helmi & Alenany, 2020). Considering its effective application in other discrete optimization problems and no 

application in the DLBP area, we attempt to design the MFO algorithm for solving DLBPs for the first time. The flow chart of 

the IMFO algorithm is shown in Fig. 3, where the dotted box indicates the restart strategy flow. The algorithmic details are given 

in the sections that follow. 

Start

End

Input the parameters of 
problem and algorithm 

Initialize the moth 
population 

Determine the 
number of flames 

Iter = 1

Each moth randomly 
selects a flame to 

move

Each moth moves 
toward each flame

Generate flame 
population

Need to restart

Generate a new moth 
population 

Generate a flame 
population from the 

new moth population

NQ<Nflame
Each moth moves 
toward each flame

Update the current 
population

Update the current population, 
and add  non-inferior solutions 

of the previous generation

Filter the Pareto optimal solutions 
and update external files

Iter ≤ Max_iterIter = Iter + 1

Restart strategy

YN

N

Y

N

Y

 
Fig. 3 Flow chart of the IMFO algorithm 

4.1. Encoding  

Because of the discreteness of the PTDLBP, this paper adopts real coding. The initial solutions are generated randomly 

under priority constraint conditions to ensure the diversity of the population. First, multiple product priority relationship matrices 

are obtained through merging. Fig. 4 shows a combined priority matrix for the two unprocessed products. TP[i, j] = 1 indicates 

that task i is the immediate task of task j. The red dotted box indicates the priority relation matrix for a product with six tasks, 

and the blue dotted box indicates the priority relation matrix for a product with four tasks. The priority matrix of more products 

can be combined according to this rule. Individual initialization is implemented using Algorithm 1. 
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TP =

Task   1   2   3   4   5   6   7   8   9  10
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10

0   1   0   1   1   0   0   0   0   0
0   0   0   0   0   0   0   0   0   0
0   0   0   0   0   0   0   0   0   0
0   0   1   0   0   0   0   0   0   0
0   0   0   0   0   0   0   0   0   0
0   0   0   0   0   0   0   0   0   0
0   0   0   0   0   0   0   0   0   0
0   0   0   0   0   0   0   0   1   0
0   0   0   0   0   0   0   0   0   0
0   0   0   0   0   0   1   1   0   0

TPA

TPB

0

0

1

6

2

4

5

3

10

7

8

9

Product A

Product B

 

Fig. 4 Combined priority matrices for parallel two-sided disassembly lines 

Algorithm 1: Initialize individual generation 
Input:     number of all tasks (T_SIZE), priority relation array (TP) 
Output:    initial population (individual) 
1 i = 1;  
2 individual = zeros(1, T_SIZE); 
3 While i ≤ T_SIZE 
4 Randomly select a zero vector s in column vectors of TP column vector s with a zero 

vector in TP and set individual (i) = s; // Randomly select a task s with no predecessors 
and set task s as the ith position of the individual; 

5 Set all elements in row s in TP to 0, and elements in column s in TP to 1; // Relax the 
priority constraint of task s and prevent task s from being selected again; 

6  i = i + 1; 
7 End While 

4.2. Decoding 

There is no information on the direction of task assignment in the coding method, which must be considered during 

decoding. A two-stage heuristic decoding method is adopted in this paper. The aim of the first-stage decoding is to assign tasks to 

each mated-workstation. At this stage, the tasks are assigned according to the disassembly priority sequence. First, the line to 

which a task belongs is determined; therefore, the task can only be assigned to the corresponding line. Subsequently, the 

disassembly direction of the task is determined, and the allocation position is further limited. Finally, the time available for this 

task is calculated in the latest open mated-workstation. Available_time = CT · k – max (Elapsed_time1, Elapsed_time2), where k 

represents the current mated-workstation index and Elapsed_Time 1 indicates the end time of the latest task in the current station. 

Elapsed_Time 2 represents the end time of the last immediately preceding task assigned to the other side of the line. Note that for 

E-type tasks, priority is assigned to the side with more available time. If both sides have the same available time, they are 

assigned to separate stations. If the available time is insufficient for disassembly, then open a new mated-workstation. 

Many deficiencies may be observed based on the first stage of the decoding method, such as the unbalanced workload of 

tasks or redundancy of stations. Therefore, we optimize the solution of the first stage in the second stage. Tasks in each mated-

workstation are reassembled and assigned separately to unbalanced assignment problems, which effectively reduces the number 

of open stations for the first-stage allocation scheme. The heuristic method for the two parallel lines is illustrated in Algorithm 2 

as follows. 
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(a) Unoptimized decoding scheme 

 

(b) Optimized decoding scheme 

Fig. 5 Decoding optimization 

 

 

Algorithm 2: Mated-workstation optimization 
Input: task_Assigned_Matrix (Decoding scheme of the mated-workstation obtained in the first stage), task_Data (Priority relation matrix 
and disassembly task information), S (Disassembly sequence) 
Output: task_Assigned_Matrix (Optimized decoding scheme of one mated-workstation) 
// Each line is divided into left and right sides and two lines have a total of four sides. 
//—————————————————————————————————————————————————————— 
1  If tasks on each line can be assigned to the common station and satisfy time and direction constraints 
2      Do assign all tasks to the common station and update allocation results 
        Return 
3  End If 
//—————————————————————————————————————————————————————— 
4  If three sides have tasks 
5      If tasks in the line with tasks on both sides can be assigned to the same side and satisfy time and direction constraints 
6          Do assign the tasks in the line with tasks on both sides to the same side and update task_Assigned_Matrix 
7          Return 
8      End If 
9      If tasks of the line with tasks on one side can be assigned to the same side and satisfy direction constraints 
10        For i = 0 : Ne // Ne refers to the number of E-type tasks of the common station for line with tasks on both sides 
10              Do assign all tasks of the line with tasks on one side to the common station and assign the first i E-type tasks of the common 

station for line with tasks on both sides to the other side. Subsequently, assign them in sequence according to the order of S 
11               If assigned solutions satisfy time constraints 
12                   Do update task_Assigned_Matrix 
13                   Return 
14              End If 
15        End For 
16    End If 
17 End If 
//—————————————————————————————————————————————————————— 
18 If four sides have tasks 
19     If tasks in each line can be assigned to a separate station and satisfy time and direction constraints 
20           Do update task_Assigned_Matrix 
21           Return 
22     End If 
23     For h = 1 : 2 
24            If tasks in line h can be assigned to the common station 
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25                For i = 0 : Ne // Ne refers to the number of E-type tasks of the common station for line opposite to line h  
26                       Do assign all tasks of the line h to the common station and the first i E-type tasks of the common station for line opposite to 

line h to the other side in sequence according to the order of S 
27                       If assigned solutions satisfy time constraints 
28                           Do update task_Assigned_Matrix 
29                           Return 
30                      End If 
31                 End For 
32           End If 
33     End For 
34 End If 

 

Fig. 5 depicts the visualization effect of the method. Fig. 5a shows a disassembly scheme obtained using the first stage 

decoding, and Fig. 5b shows the optimized scheme. Twelve stations are opened in the non-optimized decoding scheme, and only 

seven stations are opened in the optimized decoding scheme. This significantly improves the decoding effect. The entire 

decoding scheme flow is shown in Fig. 6, where S is the disassembly sequence, i is the index of the disassembly sequence, m is 

the number of mated-workstations, and RThp is the remaining available time in the side p of line h, where p = 1 refers to the right 

side and p = 2 refers to the left side. 

Start

Choose task i in 
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sequence S
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Open a new 

mated-workstation
m = m + 1

Assign task i to 
the right side of 
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Fig. 6 Decoding process 
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4.3 Initialization of population 

In the proposed MFO algorithm, moths represent the main body for spiral flight, while flames represent the best position the 

moths have found thus far. The moth population is set as an m × n matrix, and the array OM is adopted to store the fitness value 

corresponding to M. Similarly, the flame population F is initialized as a matrix of m × n, and the array OF is adopted to store the 

fitness value corresponding to F, expressions as shown in Eqs. (23) and (24), where m indicates the number of moths and n 

indicates problem scales. The initial M and OM are obtained by initializing (Section 4.1) and decoding (Section 4.2). The Pareto 

solution set of the OM is stored in F. If the size of F is less than m, positions are randomly generated to fill in F and update OF. 

11 12 1 11 12 1

21 22 2 21 22 2

1 2 1 2

,

n n

n n

m m mn m m mn

M M M F F F

M M M F F F
M F

M M M F F F

   
   
    
   
   
   

 
 

       
 

 (23) 

   1 2 1 2,
T T

m mOM OM OM OM OF OF OF OF    (24) 

4.4 Location update mechanism 

This section introduces the location update mechanism of the proposed MFO algorithm, including moths-to-flame and flame 

renewal. Moths are phototactic. While searching for a light at night, they determine their next flight by calculating their relative 

position to the light (frequently the moonlight). When encountering a close light such as a flame, the moth cannot fly along a 

straight line but moves along a spiral track to reach the flame. During the optimization process, if a better location is determined, 

the corresponding flame is updated, which prevents MFO from losing the current optimal solution during operation. 

I. Moths-to-flame 

Moths fly toward the flame following a logarithmic spiral function, and the mathematical description is shown in Eq. (25). 

 cos 2bt
i i jM D e t F     (25) 

where Mi represents the ith moth, Fj is the jth flame, Di is the distance between moth i and flame j, b is a constant for defining 

the shape of the helix, and t is a random number between [-1, 1]. 

The moth-to-flame method in MFO is similar to the bubble-net feeding method in whale optimization algorithms. 

Mathematical formulas apply only to continuity problems. For a discrete DLBP, a three-point crossover and single-point 

mutation were adopted to simulate this process by Zhang et al. (2022). The detailed algorithm flow as shown in Algorithm 3 and 

the process is shown schematically in Fig. 7. 

Algorithm 3: Moth-to-flame method 
% Phase I: Three-point crossover 
1 Select two candidate Flame and Moth. 
2 Randomly generate three different natural numbers between [1, n + 1], which divide 

the sequence into four parts. 
3 Two different natural numbers are randomly selected between [1, 4], which 

determine the crossed segments. 
4 Rearrange the elements in the cross sequences of the Moth in the order of the Flame, 

and the previous fragment is replaced with the changed fragment. Similarly, the 
same operation is performed on the segments to be crossed in the Flame. 

5 Two new moths are generated. 
% Phase II: Single-point mutation 
6 Randomly select one mutation task between [1, n] and determine the position of the 

nearest immediately succeeding task and immediately preceding task of chosen one.  
7 Randomly insert the chosen task to one position. 

D
ow

nloaded from
 https://academ

ic.oup.com
/jcde/advance-article/doi/10.1093/jcde/qw

ac134/6901509 by guest on 17 D
ecem

ber 2022



O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

 

7 4 2 9

5

Flame

7 4 5 9 2 3 6 1 10 8

New_moth1

2 9 5 8 10

Moth

8 6 2 1 3 7 4 10 9 5

New_moth2

2 3 1 5 9Three-point 
crossover

7 4 2 9 5 3 6 1 8 10

7 4 2 9 6 1 8 10

8 6 2 3 1 7 4 10 5 9

5 6 3 1 8 10

18 6 2 3 7 4 5 9

8 6 2 3 1 10 7 4 5 9

New_moth3 New_moth4

Single-point 

mutation

 

Fig. 7 Moth-to-flame method 

When Nq < Nf (Nq indicates the size of the non-inferior set, Nf represents the number of flames), each moth randomly selects 

a flame and moves toward it. When Nq ≥ Nf, each moth moves toward each flame. To prevent excessive quantity, let Nq = n if the 

size of the non-inferior set exceeds n, where n indicates the problem size. This operation increases the optimizing speed in the 

early period of the algorithm and effectively improves the search performance in the late period of the algorithm. 

II. Update flames 

After filtering the non-inferior solutions for new moth populations generated, the results are stored in an external file (non-

inferior set). The first Nf solutions with the largest crowding distance from the external files are selected as the next generation of 

the flame population. If Nq < Nf, NQ - NF flames are randomly generated to fill the flame population according to the method 

described in Section 4.1. 

To ensure the convergence of the algorithm, the MFO algorithm gradually abandons flames with poor adaptability during 

the iteration process, and only one flame remains. The moths eventually gather near this flame. This process is described by Eq. 

(26).  

1moth
flame moth

N
N round N l

T

    
 

 (26) 

where Nflame represents the number of flames, Nmoth represents the number of moths, l indicates the number of iterations, and 

T indicates the maximum permission iterative number. 

Considering the multi-objective nature of the DLBP, the real Pareto frontier consists of several non-inferior solutions. Only 

one flame left in the final iteration will cause the algorithm to fall into the local optimum. Therefore, we improved Eq. (26) based 

on the previous basis. In the initial stage of evolution, the number of flames decreases gradually with the iteration process. When 

the number of flames is less than that of non-inferior solutions in the external file, Nf = Nq. The Pareto optimal solution is retained 

as a new generation of the flame population. The modified formula for this process is given by Eq. (27). 

1
flame Q

flame

Q flame Q

N
round N l N N

TN

N N N

         
  

 (27) 

4.5 Improvement of MFO 

The flames in the proposed MFO algorithm represent the best solution for the population. However, the moth-to-flame 

method may result in unwanted rapid convergence which causes the algorithm to fall into a local optimum. Therefore, a restart 

strategy is proposed to solve this problem. When the searching process has a trend of stagnation, the restart strategy is adopted 

for the flame. The non-inferior set Q of each generation is recorded; if Q remains constant for five generations, a new moth 

population and its corresponding new flame population are generated randomly to replace the current flame population. 
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Subsequently, during the moths-to-flame phase, the location update operation is performed by the previous moths and the newly 

generated flame. To guarantee optimal solutions and efficient frontiers, the algorithm mixes the new population with the previous 

generation of the non-inferior set for Pareto screening. 

5. Model verification and example analysis 

All the methods were tested in a running environment with Intel (R) Core (TM) i5-9400 CPU @2.90 GHz with 16 GB 

RAM in Windows 10. Each algorithm was coded and run in MATLAB2018b. As described in Section 5.1, the proposed model is 

verified using the Gurobi exact solver. Currently, no research was conducted on parallel two-sided disassembly line problems; 

therefore, the proposed algorithm was evaluated using two scenarios of DLBP and TDLBP (Sections 5.2, and 5.3, respectively). 

These problems assumed a different form in decoding methods compared with PTDLBP in this study but were essentially the 

same for the optimizing process. The effectiveness of the algorithm was determined from the results described above. Finally, the 

proposed algorithm was used to solve PTDLBP and compared with other algorithms, including the classical algorithm for the 

genetic algorithm, the latest published improved whale optimization algorithm, and the unmodified MFO algorithm (Section 

5.4). 

5.1 Model verification 

In this section, 2P8 and 2P10 examples (Kucukkoc, 2020) are combined as test examples. To verify the validity of the model 

and algorithm, Gurobi 9.0 was used to be solved using the MIP model developed and IMFO was used to solve the same problems 

simultaneously. The number of iterations was 100, and the population size was 50. The algorithm automatically ran 10 times. The 

results of Gurobi and a random run of the algorithm are listed in Table 1. In addition, the mean and variance of the best value of 

each objective in each non-inferior solution set were also recorded for 10 solving processes. 
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Table 1  

Results of Gurobi and the IMFO algorithm for solving PTDLBP 

Test problem 
(Line I – Line II) 

CT # 
Gurobi  IMFO 

f1 f2 f3  f1 f2 f3 

2P8-2P10 

40-40 

1 409 - -  411 6604 40 
2 - 6604 -  409 6924 40 

3 - 
 

40  410 6684 40 

Avg. - - -  409 6604 40 

S.D. - - -  0.0 0.0 0.0 

40-60 

1 407 - -  410 107541 120 

2 - 107401 -  409 107541 148 

3 - - 46  408 107401 166 

4 - - -   408 107613 46 

5 - - -  410 107561 46 

6 - - -  407 116361 46 

7 - - -  407 116281 166 

 8 - - -  407 115621 286 

 Avg. - - -  407 107401 46 

 S.D. - - -  0.0 0.0 0.0 

60-60 

1 306 - -  306 19994 60 

2 - 16428 -  306 16470 83 

3 - - 23  307 16428 23 

4 - - -  306 20114 23 

  Avg. - - -  306 16428 23 

  S.D. - - -  0.0 0.0 0.0 

*Best results indicated in bold          

This section describes the verification of the correctness of the model. Table 1 shows that the Pareto solution set obtained by 

IMFO included each objective optimal value obtained by Gurobi. The means and variances of the best values indicated that each 

calculation result included the optimal solutions. These results demonstrated the accuracy of the model and effectiveness of the 

algorithm. Note that the exact solver can only obtain a single-objective optimal solution for small-scale problems, which is a 

method to solve the problem. However, accurately obtaining solutions in a reasonable time is a challenge for large-scale 

problems. In addition, DLBPs belong to multi-objective problems, and Gurobi can only obtain the optimal value of a single 

objective. The decision goals of the DLBP interact or even conflict with one another. There are almost no absolute optimal 

solutions with multiple objectives. Obtaining solutions approaching the true Pareto front is also the key to this problem. Thus, an 

effective multi-objective meta-heuristic algorithm was necessary for the problems considered. Fig. 8 shows an example of the 

corresponding scheme of the single-objective optimal solutions obtained by the algorithm, where Fig. 8a is for the objectives of 

the weighted line length and hazard index, and Fig. 8b is for the objective of the idle index. 

 
(a) Minimum weighted line length f1 = 407 and minimum hazard index f3 = 46 

D
ow

nloaded from
 https://academ

ic.oup.com
/jcde/advance-article/doi/10.1093/jcde/qw

ac134/6901509 by guest on 17 D
ecem

ber 2022



O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

 

 

(b) Minimum weighted index f2 =107401 

Fig. 8 Single objective optimal solution of 2P8-2P10 with 40-60 CT 

5.2 Case study 1 

This section solves the large-scale DLBP instance of 52 parts, and specific information was adapted from Ding et al. (2009). 

For P52, the optimization objectives of the problem included the unsmooth index (FNsmooth), idle rate (Fidle), and disassembly cost 

(Fcost). The results of ant colony optimization (ACO) (Ding et al., 2009), multi-objective bacterial foraging optimization (MBFO) 

(Yang et al., 2016), ant colony and genetic algorithm (ACGA) (Zhang et al., 2018), artificial fish swarm algorithm (AFSA) 

(Zhang et al., 2017), improved cat swarm optimization algorithm, (ICSO) (Zou et al., 2017), and genetic algorithm/simulated 

annealing (GASA) (Wang et al., 2017) are shown in Fig. 9. The parameters of compared algorithms are available in the relevant 

literature, and the solution results are obtained from their research. For IMFO, considering that there were only two parameters of 

the IMFO algorithm, i.e. the number of iterations and population size, the higher the two values, the better the result, but the 

longer the run time. Based on the synthesis considerations of algorithm performance and time cost, the parameter as follows: 

Max_iter = 1000, Moth_num = 100. The number of final output solutions is limited to 10. The proposed IMFO algorithm was run 

independently 10 times with an average run time of 138.2 s. The results are shown in Fig. 9, where Fig. 9a–c show the 

maximum, minimum, and mean values of each objective in the Pareto optimal solution set obtained by each algorithm. Except 

for the ACO, all Fidle values obtained using other algorithms were 0.0579; therefore, a 2D coordinate system was constructed 

with FNsmooth and Fcost as the coordinate axes (Fig. 9d). Table 2 describes the scheme obtained using the IMFO. 

From the simulation results, the effect solution performance of the proposed IMFO could be observed. Fig. 9a－c show that 

the IMFO obtained the best optimum value of 0.0001 for FNsmooth, 124.686 for Fcost, and 0.0579 for Fidle. Note that the IMFO 

obtained a higher maximum and average value than the other algorithms for FNsmooth, which did not mean a bad convergent effect 

of the IMFO. This was because when the Fidle of schemes is the same, FNsmooth is in competition with Fcost in the Pareto front, 

which means one objective improves at the expense of the other. Widely distributed solutions result in a higher average. 

However, this proves the diversity and wide spread of solutions to some extent. As shown in Fig. 9d, the solution obtained by 

IMFO completely dominated all the solutions obtained using the other algorithms. In summary, IMFO exhibited superiority in 

the convergence and distribution of large-scale problems for P52. 
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(a) FNsmooth (b) Fcost 

  
(c) Fidle (d) Pareto frontier of seven algorithms 

Fig. 9 Solution results of seven algorithms for P52 

Table 2  

Solutions for P52 of DLBP 

No. Disassembly sequence Fidle FNsmooth Fcost 

1 
(18,21,29,33,36,3)→(2,4,14,11,28,15,31,32,37,47,46)→(1,12,23,30)→(9,25,26)→(27,34
,22,35,24,42,49,51)→(7,8,13,10,16,38,17,39,40,41,43,44,45,50,48,52)→(5,6,19,20) 

0.0579 0.3048 124.686 

2 
(18,21,29,33,36,3)→(2,4,14,11,28,15,31,32,37,47,46)→(1,12,30,42)→(9,25,26)→(23,27
,34,22,35,24,49,51)→(7,8,13,10,16,38,17,39,40,41,43,44,45,50,48,52)→(5,6,19,20) 

0.0579 0.3033 124.710 

3 
(18,21,33,36,3,47)→(2,4,28,15,29,14,11,31,32,37,46)→(1,12,23,30)→(9,25,26)→(27,34
,22,35,24,42,49,51)→(7,8,13,10,16,38,17,39,40,41,43,44,45,50,48,52)→(5,6,19,20) 

0.0579 0.2435 124.776 

4 
(18,21,33,36,3,42)→(4,28,15,29,14,11,31,32,37,47,46)→(1,12,30,34)→(9,25,26)→(2,22
,23,27,35,24,49,51)→(7,8,13,10,16,38,17,39,40,41,43,44,45,50,48,52)→(5,6,19,20) 

0.0579 0.2177 124.800 

5 
(18,21,33,36,3,42)→(4,28,15,29,14,11,31,32,16,37,47,46)→(1,12,25)→(9,26,30)→(23,2
7,34,22,35,24,49,51)→(2,7,8,13,10,38,17,39,40,41,43,44,45,50,48,52)→(5,6,19,20) 

0.0579 0.1215 125.922 

6 
(4,18,28,15,29,14,31,32,42)→(21,11,33,36,3,23,16)→(1,12,47,46,30)→(9,25,26)→(27,3
4,22,35,24,37,49,51)→(2,7,8,13,10,38,17,39,40,41,43,44,45,50,48,52)→(5,6,19,20) 

0.0579 0.0855 126.420 

7 
(4,21,28,15,32,33,36)→(3,2,27,29,14,31,37,42,47)→(1,25,26)→(9,12,46,30)→(18,11,16
,19,23,43,44,45,49,51,40,52)→(34,22,7,35,24,8,13,10,38,41,50,48)→(5,6,17,20,39) 

0.0579 0.0008 130.764 

8 
(21,28,15,27,33,36,47)→(3,2,4,29,14,31,32,37,42)→(1,12,25,45)→(9,18,26,46,43)→ 
(30,11,16,19,23,49,34,51,40)→(22,7,35,24,8,13,10,38,41,44,50,48,52)→(5,6,17,20,39) 

0.0579 0.0004 137.940 

9 
(4,26,32,33,36)→(3,18,28,15,29,14,31,37,42)→(1,2,21,25,47)→(9,12,27,45,46,43)→ 
(30,11,16,19,23,44,49,51,40,52)→(34,22,7,35,24,8,13,10,38,41,50,48)→(5,6,17,20,39) 

0.0579 0.0002 147.600 

10 
(4,18,28,15,29,31,32,36)→(3,14,26,37,42,33)→(1,2,21,25,47)→(9,12,27,45,46,49)→(19
,11,16,23,30,34,43,51,40)→(22,7,35,24,8,13,10,38,41,44,50,48,52)→(5,6,17,20,39) 

0.0579 0.0001 150.756 

 

5.3 Case study 2 

This section describes tests of the TDLBPs. Zou et al., (2018) cited a 25-scale refrigerator disassembly scenario with four 

optimization objectives: number of mated-stations, idle indicator, demand indicator, and hazard indicator. The comparison 

algorithm in this test included the bat algorithm (BA) (Zou et al., 2018) and improved differential evolution (IDE) (Xie et al., 
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2021). Comprehensively considering the operational effect and running time comprehensively, the parameters were set as 

follows: Max_iter = 1000 and Moth_num = 100. No external file size was set because of the excessive number of Pareto 

solutions in this example. CT was set to 740 s. The algorithm ran independently 10 times. An average of 176.6 non-inferior 

solutions were obtained with an average runtime of 140.86 s. One of the 10 random results was selected, and eight non-inferior 

solutions were selected from the results. The results of the compared algorithm are taken from the corresponding literature. 

Detailed results are presented in Table 3. 

Table 3  

Solutions for 2P25 of TDLBP 

 
f1 f2 f3 f4 

Pareto 
Front  

f1 f2 f3 f4 
Pareto 
Front  

f1 f2 f3 f4 
Pareto 
Front 

BA 

6 5907 461 42 Y 

IDE 

5 765 520 42 N 

IMFO 

5 713 469 33 Y 

6 6359 445 36 Y 5 849 500 42 N 5 721 486 28 Y 

6 8757 517 25 N 5 1495 482 37 N 6 8229 475 25 Y 

7 16859 454 34 N 6 7651 524 33 N 7 16509 446 26 Y 

7 19657 481 26 N 6 8167 479 32 N 8 27493 469 22 Y 

8 28533 485 24 N 7 16507 447 39 N 9 42003 413 29 Y 

9 48711 433 34 N 9 42447 429 34 N 10 60263 407 30 Y 

9 51679 435 30 N 9 43271 413 33 N 10 57923 405 35 Y 

* Best results in bold 

 

Fig. 10 Space distribution diagram of the Pareto optimal solutions of the three algorithms for 2P25 

Fig. 10 depicts the space distribution of the Pareto optimal solutions of the three algorithms, where the radius size of the 

circle corresponds to the value of f1. The numerical results of 2P25 proved that the IMFO algorithm provided a better value of 

extreme values for each target. The 24 solutions determined using the three algorithms were filtered using the Pareto method and 

a total of 10 solutions were obtained. All 8 solutions obtained using the IMFO belonged to the Pareto front. Two solutions 

computed using the BA method were non-dominated to solutions solved using the IMFO, and the schemes obtained using IDE 

methods were all inferior to those obtained using the IMFO. We can conclude that the proposed IMFO exhibited a better 

performance than the BA and IDE algorithms in two-sided disassembly line scenarios. 

5.4 Experimental tests and results for the PTDLBP 

This section presents the calculation results for the PTDLBP. As the PTDLBP is a new field for researchers, no directly 
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available datasets were available for this study. Therefore, we combined four two-sided examples (2p8, 2p10, 2p24, and 2p25) 

for the experimental test. 2p8, 2p10, and 2p25 was cited from (Kucukkoc, 2020) and 2p24 was adapted from (Liang et al., 2021). 

For comparison, the same problems were also solved using the unmodified MFO algorithm, improved whale optimization 

algorithm (IWOA) (Zhang et al., 2022) published recently, and the classical NSGA-Ⅱ. The MFO had no restart strategy 

compared with the IMFO. To ensure fairness in comparison, the same running environment and individual update operations 

were adopted for the four algorithms, i.e. three-point crossover and single-point mutation. The external file capacity was set to 

10, and the running time was set as the termination criterion. Through numerous tests on each algorithm, the final algorithm 

parameter settings and stop criterion were as follows, where the Max_iter is set in IMFO and MFO because of algorithm 

structure, which means they might have an early termination before the time limit. 

Algorithms Size Stop criterion Parameter 
IMFO 

2p8-2p10 
2p10-2p10 

100 s 

N = 50, Max_iter =100 
MFO N = 50, Max_iter =100 
IWOA N = 50, Pd = 0.8 
NSGA-II N = 50, Pc = 0.9, Pm = 0.3 
    
IMFO 

2p10-2p25 300 s 

N = 80, Max_iter =300 
MFO N = 80, Max_iter =300 
IWOA N = 80, Pd = 0.8 
NSGA-II N = 80, Pc = 0.9, Pm = 0.3 
    
IMFO 

2p24-2p24 
2p24-2p25 
2p25-2p25 

500 s 

N = 100, Max_iter =500 
MFO N = 100, Max_iter =500 
IWOA N = 100, Pd = 0.8 
NSGA-II N = 100, Pc = 0.9, Pm = 0.3 

Table 4  

Calculation results for small- and medium-size examples 

Method 

Problem 2p8-2p10  2p10-2p10  2p10-2p25 

Index 1 2 3  4 5 6  7 8 9 

CT 40-40 40-60 60-60  40-40 40-60 60-60  40-40 40-60 60-60 

IMFO 

Avg GD 2.17  22.94  6.66   8.82  153.97  32.32   25.77  1135.98  260.76  
Best GD 0.00  4.61  0.00   0.00  30.47  4.87   9.08  76.61  7.43  
Avg SP 93.96  181.58  37.32   56.61  2243.20  1339.78   766.40  5340.26  3020.14  
Best SP 92.37  46.80  27.40   6.10  284.34  41.36   157.07  1400.82  0.00  

     
 

   
 

   

MFO 

Avg GD 2.17  30.45  8.24   15.88  266.28  64.50   72.67  1446.40  551.31  
Best GD 0.00  5.14  0.00   0.00  30.57  0.89   12.99  150.10  5.06  
Avg SP 93.96  163.47  32.82   101.08  3837.31  1379.69   822.85  5513.71  3476.34  
Best SP 92.37  60.66  30.21   31.24  283.96  39.51   119.08  919.47  0.00  

     
 

   
 

   

IWOA 

Avg GD 15.10  612.99  32.60   22.42  847.15  76.22   73.04  4850.28  519.36  
Best GD 0.00  30.00  4.50   0.00  48.10  0.61   11.45  111.44  10.05  
Avg SP 89.85  1646.31  80.96   111.35  2515.30  1440.78   500.53  2683.23  2194.66  
Best SP 12.88  30.11  27.40   40.68  109.60  44.59   80.70  1306.49  0.00  

             

NSGA-II 

Avg GD 328.02  2696.10  883.78   1703.56  4596.00  579.32   215.38  3165.94  610.95  
Best GD 116.57  463.13  53.55   60.65  1000.24  92.62   21.94  135.63  19.26  
Avg SP 233.17  3154.68  435.24   1837.52  6759.07  777.56   1043.54  6597.90  3274.95  
Best SP 0.00  448.87  107.49   0.00  1415.22  240.50   70.09  1300.70  0.00  

*Best Avg. indicated in bold 
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Table 5  

Calculation results for large-size examples 

Method 

Problem 2p24-2p24  2p24-2p25  2p25-2p25 

Index 10 11 12  13 14 15  16 17 18 

CT 30-30 30-40 40-40  30-30 30-40 40-40  40-40 40-60 60-60 

IMFO 

Avg GD 22.72  634.30  24.71   63.98  304.57  150.40   678.60  65.98  20.97  
Best GD 1.53  135.71  1.09   10.69  19.25  48.55   2.63  22.73  4.63  
Avg SP 79.42  651.55  39.59   371.46  1807.63  435.54   53.14  1312.29  50.26  
Best SP 5.23  198.84  17.15   23.64  503.18  64.17   6.26  601.29  9.32  

  
    

   
 

   

MFO 

Avg GD 46.74  826.30  29.66   65.32  3336.87  177.34   1168.85  116.71  25.90  
Best GD 7.54  103.33  8.54   12.20  70.40  6.74   5.31  16.01  13.93  
Avg SP 108.70  3063.78  67.76   222.50  1159.33  188.34   555.11  2529.55  53.16  
Best SP 16.84  346.32  22.61   34.48  580.41  9.05   7.91  1731.52  14.56  

  
    

   
 

   

IWOA 

Avg GD 229.92  1012.49  24.26   75.78  1754.71  267.17   497.22  118.69  46.61  
Best GD 6.17  591.25  8.29   19.77  78.65  8.24   7.22  69.12  2.08  
Avg SP 447.92  2598.00  55.39   101.80  5684.16  689.62   640.76  999.02  84.51  
Best SP 16.34  970.87  15.99   15.07  493.33  50.63   0.00  564.66  15.49  

             

NSGA-II 

Avg GD 388.82  251.86  778.50   64.43  8094.29  238.85   2531.77  2477.18  382.69  
Best GD 11.91  35.40  37.82   8.25  346.66  41.59   2133.06  94.11  15.10  
Avg SP 492.13  2058.99  1093.35   416.49  6777.53  1482.19   1819.89  1430.92  1058.56  
Best SP 23.54  246.90  17.54   30.80  648.00  89.13   95.41  509.83  7.05  

*Best Avg. in bold 

 

Fig. 11 Proportion of average GD obtained using four algorithms 

 
Fig. 12 Proportion of average SP obtained using four algorithms 
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To effectively evaluate the quality of non-inferior solutions to multi-objective problems, this paper introduces two different 

evaluation indexes to evaluate the performance of the algorithm: generational distance (GD) (Wang et al., 2021) and spacing (SP) 

metric (Liang et al., 2021). GD evaluates the convergence of the pareto set, and SP evaluates the diversity. All algorithms solved 

six scale problems with different CTs. Table 4 and Table 5 show the average and best values of the evaluation indexes obtained 

using each algorithm for different sizes. 

As shown in Table 4, for small- and medium-scale problems, IMFO obtained the minimum average GD for each scenario 

than compared algorithms. For dispersibility, the proposed IMFO algorithm was superior to the other algorithms for 6 of the 9 

scenarios. For large-scale problem experiments (see Table 5), the results obtained using the IMFO were better than the other 

three algorithms in GD and SP, where 7 of the 9 examples had optimal average GDs, and 5 of the 9 examples obtained optimal 

average SPs. The proportions of the average GDs and SPs obtained using the four algorithms are shown in Fig. 11 and Fig. 12, 

where the proportion of the average GDs is formulated by (  
1

, IMFO,MFO, IWOA, NSGA-II
n

i i
i

GD GD i


 ), and similarly for 

the SPs. 

In conclusion, the experimental data of PTDLBPs indicated that the proposed IMFO is significantly superior to the four 

compared algorithms in terms of search capability. Compared with the unmodified algorithm, the improved MFO obtained a 

solution set with a better GD, and the restart strategy improves the convergence performance of the MFO algorithm to a certain 

extent. 

6. Conclusion 

Two-sided disassembly lines have been extensively used in practical applications. Optimizing multiple two-sided 

disassembly lines effectively integrates the advantages of two-sided and parallel layouts. In this paper, a PTDLBP with fixed 

common stations is presented. Considering the weighted line length, line balance, and harmfulness of production lines, an MIP 

model is provided to describe the proposed problem. The newly constructed model is available for optimally solving small-sized 

instances using the Gurobi solver. An improved moth-flame algorithm is proposed to solve the PTDLBP problem. Two-stage 

decoding is adopted to effectively obtain the disassembly scheme, and the restart strategy improves the search capability and 

avoids the algorithm falling into the local optimum by replacing the optimal solution with a random solution. 

The accuracy of the model and the effectiveness of the algorithm were verified using the results of small-scale scenarios 

using Gurobi and the IMFO method. Two classic DLBP instances were tested for comparison, and the results of the experiment 

demonstrated that the algorithm is reliable against DLBPs and TDLBP for different scales. For PTDLBP, several two-sided 

instances were combined, and a comparative study statistically confirmed the superiority of the IMFO in terms of the 

convergence and comprehensiveness compared with the improved whale optimization algorithm, non-dominated sorting genetic 

algorithm-II, and MFO algorithm without a restart strategy. 

Meanwhile, in future research, parallel two-sided disassembly line problems can be expanded to different application 

domains, such as parallel two-sided disassembly line problems with optional common stations, complex constraints, or sequence 

dependence. In addition, more complex constraints such as AND/OR precedence relation and comprehensive evaluation 

indicators for the disassembly lines can be developed. The proposed algorithm can be applied to other combinatorial optimization 

problems, such as scheduling problems and freight site assignment optimization. 
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