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Abstract: Gait recognition is one of the most promising biometric technologies that can identify
individuals at a long distance. From observation, we find that there are differences in the length
of the gait cycle and the quality of each frame in the sequence. In this paper, we propose a novel
gait recognition framework to analyze human gait. On the one hand, we designed the Multi-scale
Temporal Aggregation (MTA) module that models temporal and aggregate contextual information
with different scales, on the other hand, we introduce the Metric-based Frame Attention Mechanism
(MFAM) to re-weight each frame by the importance score, which calculates using the distance
between frame-level features and sequence-level features. We evaluate our model on two of the
most popular public datasets, CASIA-B and OU-MVLP. For normal walking, the rank-1 accuracies
on the two datasets are 97.6% and 90.1%, respectively. In complex scenarios, the proposed method
achieves accuracies of 94.8% and 84.9% on CASIA-B under bag-carrying and coat-wearing walking
conditions. The results show that our method achieves the top level among state-of-the-art methods.

Keywords: gait recognition; temporal modeling; key frame; frame attention mechanism

1. Introduction

Nowadays, gait recognition plays a significant role in personal identification, and
different from other biometrics such as the face, fingerprint, and iris, the human gait is the
only one that can be captured in long-distance conditions and the recognition process does
not need the subject’s cooperation. Therefore, with the popularization of video surveillance
equipment, gait recognition technology has broad applications in crime prevention, forensic
identification, and social security. However, in real-world scenarios, the performance of gait
recognition suffers from many conditions such as changing clothing, carrying conditions,
and the camera’s viewpoint.

Recently, lots of deep convolutional neural-network-based methods have been pro-
posed to address these issues. Zhang et al. [1] proposed a new auto-encoder framework
to explicitly separate posture and appearance features from RGB images and then used
LSTMs to model the temporal changes of gait sequence. Chao et al. [2] hypothesized that
the appearance of a silhouette contains position information and the sequence information
of gait was unnecessary for recognition, so they proposed a novel network named GaitSet
that regarded gait silhouettes as a set to extract temporal information. Fan et al. [3] em-
ployed partial features for a human body description and proposed a new model named
GaitPart, which focuses on the short-range temporal features rather than the redundant
long-range features for gait cycles. Li et al. [4] enhanced the fine-grained learning of human
partial features by segmenting and associating adjacent body parts from top to bottom.
Lin et al. [5] assumed that the representations based on global information often neglect the
details of the gait frame, while local region-based descriptors cannot capture the relations
among neighboring regions, and thus designed a new global and local feature extraction
module to address this issue.
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These previous methods [3,4] extract fine-grained features from human body parts
and model short-term motion patterns, effectively improving the performance of gait recog-
nition models. However, from observation, we find that the differences in the pedestrian
walking speed and camera frame rate have resulted in inconsistent frame length of the gait
cycle (as shown in Figure 1), and thus the single temporal modeling approach cannot adapt
to the diversity of motion.
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Furthermore, unlike face recognition [6,7], fingerprint recognition [8,9], etc., which
extracts identity information from a single image, gait recognition technology is based
on video sequences. In the early days, most methods [10–12] fused sequence features by
generating template images. In recent years, video sequence-based methods [2–5] aggregate
sequence-level features by simple temporal pooling of frame-level features; however, this
adaptive fusion method ignores the differences in the quality of frames (as shown in
Figure 1), which affects the performance of the gait recognition model in various scenarios.

To alleviate these issues, we propose a novel gait recognition framework, which
consists of two well-designed novel components, namely Multi-scale Temporal Aggre-
gation (MTA) and Metric-based Frame Attention Mechanism (MFAM). MTA aggregates
multi-scale context information through gait temporal modeling. MFAM calculates the
importance score of each frame according to the Euclidean distance between it and the
aggregated sequence features.

In summary, the major works of this paper are as follows:

(1) We propose the Multi-scale Temporal Aggregation module, which models gait tempo-
ral information in multiple scales, to accommodate diverse representations of motion;

(2) We introduce the Metric-based Frame Attention Mechanism, which assigns weights to
each frame with an importance score calculated by the distance between frame-level
features and sequence-level features;

(3) The proposed method has been evaluated on the widely used CASIA-B [13] and
OU-MVLP [14] gait benchmark datasets. The experimental results of our method
achieve high recognition accuracies under cross-view and various walking conditions.

2. Related Work
2.1. Gait Recognition

Existing gait recognition methods can be divided into two main categories: model-
based [15,16] and sequence-based [17–20]. Model-based methods use the structure or
motion model of the human body, such as gait period, stride scale, joint angle trajectories,
etc. Liao et al. [21]. used the pose estimation method to extract 2D pose key points and
extracted spatiotemporal invariant features from the gait pose, which effectively improved
the performance of the network. Later, Liao et al. [22] assumed that the 3D pose defined
by 3D coordinates was constant, and combined them with human pose priors, such as
the motion relationship of the upper and lower limbs, motion trajectories, etc., to extract
gait features, which improved the accuracy of the algorithm in the scene of changing
perspectives. Model-based methods are not sensitive to changes in covariates such as
viewing angle and clothing; however, the model-based method’s recognition accuracy
depends on the performance of pose estimation algorithms [23,24].
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Early sequence-based methods usually compress the frame sequence into a gait tem-
plate image (such as Gait Energy Image (GEI) [10], gait entropy image (GEnI) [11], period
energy image (PEI) [12], etc.), and then extract gait features from the template image. The
similarity between features is measured by machine learning algorithms, and finally, a
label is assigned to each template image by some classifiers. Recently, due to the good
performance of deep learning in various image processing tasks, Thomas et al. [25] applied
3D CNN to capture robust spatial–temporal gait features in multiple views; however, tradi-
tional 3D CNNs require fixed-length gait sequences for classification and thus are not able
to address different lengths of videos directly. Chao et al. [2] regarded the gait silhouette
sequence as a set and propose a new network named GaitSet to learn identity information
from the set. The GaitSet model improves the recognition rate in various scenarios and
ensures flexibility and effectiveness. Hajra et al. [26] utilize gait dynamics for gait feature
extraction and the spatiotemporal power spectral gait features are utilized for a quadratic
support vector machine classifier for gait recognition.

2.2. Temporal Modeling

In the literature, GaitSet considered a gait sequence as an unordered set consisting of
independent frames, which ensures the flexibility of the model but limits the application
efficiency of temporal information. To extract temporal features of gait, 1D temporal convo-
lution and LSTM are usually used for gait temporal modeling. Fan et al. [3] believed that
each part of the human body has its own unique motion pattern, and uses one-dimensional
convolution to extract local short-range temporal features. Zhang et al. [1] used an LSTM
network to achieve long-short temporal modeling of gait. Lin et al. [5] assumed that the
set pooling operation [2,3] will bring the loss of spatial information, and thus proposed a
novel local temporal aggregation operation to aggregate local temporal information.

The LSTM-based method [1,19] preserves unnecessary temporal constraints and is
computationally expensive. The short-term modeling method improves recognition ac-
curacy to a certain extent. However, the single-time modeling method cannot adapt to
the complexity of motion and the change of realistic factors. Therefore, we propose the
Multi-scale Temporal Aggregation module to aggregate temporal features from multiple
different scales, so that the model can adapt to the diversity of motion.

2.3. Key Frame in Sequence

Compared with images, videos are richer in spatiotemporal information. However,
there is too much redundant information in sequence, so extracting the information of
key frames is crucial for many tasks. In the person re-identification task, Song et al. [27]
propose an RQEN model, which judges the quality of pictures and reduces the importance
of poor-quality frames. Ding et al. [28] propose a new key frame extraction method, frame
difference and cluster (FDC), that integrates the idea of K-means clustering. To obtain more
discriminative gait features, Wang et al. [29] propose a feature extraction algorithm based
on local gait energy image (LGEI) and calculate LGEIs for each key frame. Li et al. [4]
propose a residual frame attention mechanism (RFAM) module to highlight the key frames
of sequences based on the slice features to extract the key frames from each body part.

Current gait recognition methods usually aggregate frame-level features into sequence
features with adaptive temporal pooling, which ignores the importance of differences
between frames. Therefore, we propose the Metric-based Frame Attention Mechanism
(MFAM) module, which scores the importance of each frame by measuring the distance be-
tween sequence-level features and frame-level features, and then generates an appropriate
sequence-level representation in a weighted summation manner to highlight key frames
within the sequence.

3. Proposed Method

In this section, we first overview the framework of the proposed method. Then
introduce the Multi-scale Temporal Aggregation (MTA) and the Metric-based Frame At-
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tention Mechanism (MFAM). Finally, we introduce the details of training and testing. The
framework of the proposed algorithm is shown in Figure 2.
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Figure 2. Overview of the gait recognition framework. The Multi-scale Temporal Aggregation
(MTA) module extracts contextual information at different temporal scales. The Metric-based Frame
Attention Mechanism (MFAM) is employed to highlight key frames in sequences. The TP and GeM
represent the Temporal Pooling and Generalized-Mean pooling, respectively.

3.1. Overview

As shown in Figure 2, the input of the framework is a sequence of gait silhouettes,
which has a dimension of C ∗ T ∗ H ∗W, where C represents the number of channels for the
input frame, T represents the frame number of sequences, and H, W represent the height
and width dimensions, respectively. In the framework, a 3D convolution is used to extract
shallow features from the original input sequence, and the extracted shallow features
dimensions are C1 ∗ T ∗ H ∗W. Then, the Multi-scale Temporal Aggregation (MTA) module
is designed with several parallel temporal convolutional layers, which aggregate temporal
features from multiple different scales. The output dimensions of the MTA module are
C1 ∗ T1 ∗ H ∗W. After that, the encoder network is used to extract frame-level features
which are denoted as Ft(t ∈ 1, 2, . . . , T1) with the dimension of C2 ∗ H1 ∗W1. In this paper,
we adopt the GLFE proposed by Lin et al. [5] as the encoder. Specifically, the encoder
consists of a global feature extraction branch and a local feature extraction branch, each
containing 3 convolutional layers. There is a pooling layer after the first convolutional layer.
The features of the two branches are fused using an addition or concatenation operation,
and the concatenation operation is only performed after the last layer of convolution.

Then, we employ two parallel branches to process frame-level features separately.
On the one hand, temporal pooling (TP) operation is adopted to aggregate frame-level
features into a sequence-level feature which is denoted as F and with the dimension of
C2 ∗ H1 ∗W1. Similar operations were commonly used in [2–4]. Then, in order to reduce
the redundancy of data, the Generalized-Mean pooling (GeM) [5] operation is used to map
the sequence-level feature (F) into 1D feature vector (denoted as S with the dimension
of C2 ∗ K). On the other hand, the GeM operations are also used directly to reduce data
redundancy for frame-level features.

Finally, the Metric-based Frame Attention Mechanism (MFAM) is designed to calculate
the importance score for each frame and thus re-weight for all frames; the weighted
features are encoded into high-dimensional vectors using several separate FC layers as
gait representations.

3.2. Multi-Scale Temporal Aggregation

As discussed in Section 2.2, existing methods [2–4] either only focus on spatial model-
ing and thus ignore the inter-frame dependence, or focus on the short-term features of gait
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cycles, which cannot adapt to the changes of complex motion and environmental factors.
Therefore, we designed the Multi-scale Temporal Aggregation (MTA) module, which aims
at aggregating contextual information at different scales.

As shown in Figure 3, the input of MTA module has a dimension of C1 ∗ T ∗ H ∗W,
which represents the number of channels, sequence length, and size of each frame, respec-
tively. In order to capture the temporal features with different scales, which are denoted
as Ts, Tm, and Tl , respectively, MTA employs three parallel convolutions, which adopt
different sizes of the kernel. The specific parameter settings of the convolutional layers are
shown in Table 1, especially, the three convolutions stride are all three.
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eral parallel convolutions and slides on sequence dimensions to obtain the features at different scales.

Table 1. The structure of MTA.

kernel_1 kernel_2 kernel_3

kernel_size (3,1,1) (5,1,1) (7,1,1)
padding (0,0,0) (1,0,0) (2,0,0)

After that, MTA applies information flowing from small scale to large scale among
temporal features by average pooling (avg), and the formula is as follows:

T′s = Ts

T′m = avg(Ts, Tm)

T′l = avg(Ts, Tm, Tl)

(1)

Finally, MTA adopts max pooling (max) to aggregate context information at different scales.

T′ = max
(
T′s , T′m, T′l

)
(2)

Based on the MTA module, the model aggregates context information of different time
scales, provides multiple time receptive fields through information exchange and fusion
between features, and can effectively adapt to the diverse expression of human motion.

3.3. Metric-Based Frame Attention Mechanism

The rich spatiotemporal features in video sequences provide more discriminative
information for recognition tasks; however, redundant information in videos will also affect
recognition accuracy. Therefore, researchers [4,27–29] focus on extracting key information
from videos to improve the performance of the model. In this paper, we obtained the
importance score of each frame by calculating the similarity between frame-level features
and sequence-level features obtained by temporal pooling, and then weighted each frame
and aggregated it into sequence features.

As shown in Figure 4, the input of MFAM module can divide into a frame-level
feature vector and sequence-level feature vector, with dimensions of C2 ∗ T1 ∗ K and C2 ∗ K,
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respectively, where C2 represents the number of channels, T2 represents the sequence length,
and K represents the number of preset body parts.
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Figure 4. The structure of Metric-based Frame Attention Mechanism (MFAM). pt and P repre-
sent a set of human body parts feature vectors with frame-level features (st) and sequence-level
features (S), respectively.

In order to assess the importance of each frame, MFAM first calculates the Euclidean
distance between frame-level feature vectors and sequence-level feature vectors and uses
max-min normalized processing of the numeric distance. Then, we take the negative of
these numeric distances and apply the sigmoid activation function to capture the score
(denoted as wt) of each frame. The score of each frame is calculated as follows:

Dt =||pt − P||2

wt = σ
(
− Dt−min(Dt)

max(Dt)−min(Dt)

) (3)

where σ represents the sigmoid function and min and max represent the minimum and
maximum scores, respectively.

After that, all frames are weighted by the importance score, and the re-weight frame-
level features (denoted as p′t) are aggregated into re-weight sequence-level features (de-
noted as P′) by temporal pooling (TP). In this paper, temporal pooling module employs
global max pooling (GAP) operation to aggregate features. The calculation processes are as
follows:

p′t = wt ∗ pt

P′ = GAP(p′t)
(4)

Finally, MFAM fuses the initial sequence-level features with weighted sequence-level
features as the final sequence-level features (denoted as Pf use).

Pf use = P + P′ (5)

3.4. Training and Testing

During the training stage, we input a gait sequence into the network and obtained the
gait feature descriptors; the batch size of the input training data is p ∗ k, where p represents
the number of persons and k represents the number of training samples of each person in
the batch. Then, the Batch All (BA+) triplet loss [30] and cross-entropy loss are employed
to optimize the model.

During the Testing Stage, the test dataset is divided into gallery set and probe set, and
we input the whole gait sequences into the network to generate gait feature descriptors. To
calculate rank-1 accuracy, the gallery set is regarded as the standard view to be retrieved,
and the descriptors of the probe are used to match the descriptors from the gallery view
based on the average Euclidean distance.
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4. Experimental Results
4.1. Dataset

We use two open databases, CASIA-B [13] and OU-MVLP [14], to evaluate the perfor-
mance of the proposed method.

CASIA-B. Contains the gait sequences of 124 subjects, CASIA-B is a widely applied gait
dataset, and each subject contains 3 walking conditions and 11 views (0◦~180◦, with an interval
of 18◦). The walking condition contains normal (NM) (six sequences per subject), walking
with a bag (BG) (two sequences per subject), and wearing a coat or jacket (CL) (two sequences
per subject). In other words, each subject contains 11 × (6 + 2 + 2) = 110 sequences. As there
is no official partition of training and test sets of this dataset, we conduct large-sample
training (LT), medium-sample training (MT), and small-sample training (ST) according
to Chao et al. [2] During the testing stage, the first four sequences of the NM condition
(NM#1–4) are stored in the gallery set and the remaining six sequences (NM#5–6, BG#1–2
and Cl#1–2) are stored in the probe set.

OU-MVLP. Contains the gait sequences of 10307 subjects, OU-MVLP is so far the
world’s largest public gait dataset, and each subject contains two sequences (#00 and #01),
with fourteen views (0◦, 15◦, . . . , 90◦, 180◦, 195◦, . . . , 270◦) for each sequence. The
sequences are divided into training and test sets by subjects (5153 subjects for training and
5154 subjects for testing). During the testing stage, sequences with index #01 are kept in a
gallery and those with index #00 are used as probes.

4.2. Training and Testing Details

In all the experiments, the silhouettes are directly provided by the datasets and are
aligned by the method proposed by Takemura et al. [14] and resized to the size of 64 × 44.
In the training stage, we choose Adam [31] as an optimizer and set the margin in Batch
All (BA+) triplet loss to 0.2. For CASIA-B, the batch size parameters P and K are set to
8 and 10. In the setting of ST, MT, and LT, the epoch number is set to 60 K, 80 K, and
80 K, respectively, and the learning rate is set to 1 × 10−4. For OUMVLP, the batch size
parameters P and K are set to 32 and 10, respectively, and the epoch number is set to 250 K.
The learning rate is first set to 1 × 10−4, and reset to 1 × 10−5 and 5 × 10−6 after 180 K and
230 K iterations, respectively.

4.3. Comparison with State-of-the-Art Methods
4.3.1. Experimental Results on CASIA-B Dataset

In order to verify the efficacy and superiority of our method, we compare the per-
formance of our model with other state-of-the-art gait recognition models, including
CNN-LB [32], MGAN [33], GaitSet [2], GaitSlice [4], and GaitGL [5] on the CASIA-B gait
dataset based on the rank-1 accuracy. The experimental results are shown in Tables 2–4,
and Figure 5. Except for ours, other results are directly taken from their original papers.
All the results are averaged on the 11 gallery views and the identical views are excluded.
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Table 2. Averaged rank-1 accuracies on CASIA-B under LT setting, excluding identical-view cases.

Gallery NM#1-4 0◦–180◦
Mean

Probe 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦

NM#5-6

CNN-LB 82.6 90.3 96.1 94.3 90.1 87.4 89.9 94.0 94.7 91.3 78.5 89.9
GaitSet 90.8 97.9 99.4 96.9 93.6 91.7 95.0 97.8 98.9 96.8 85.8 95.0

GaitSlice 95.5 99.2 99.6 99.0 94.4 92.5 95.0 98.1 99.7 98.3 92.9 96.7
GaitGL 96.0 98.3 99.0 97.9 96.9 95.4 97.0 98.9 99.3 98.8 94.0 97.4
Ours 96.7 98.6 98.9 98.0 96.7 95.4 97.2 98.7 99.2 98.7 95.2 97.6

BG#1-2

CNN-LB 64.2 80.6 82.7 76.9 64.8 63.1 68.0 76.9 82.2 75.4 61.3 72.4
GaitSet 83.8 91.2 91.8 88.8 83.3 81.0 84.1 90.0 92.2 94.4 79.0 87.2

GaitSlice 90.2 96.4 96.1 94.9 89.3 85.0 90.9 94.5 96.3 95.0 88.1 92.4
GaitGL 92.6 96.6 96.8 95.5 93.5 89.3 92.2 96.5 98.2 96.9 91.5 94.5
Ours 93.9 96.5 96.8 95.9 93.5 89.6 92.5 97.0 98.0 96.8 91.9 94.8

CL#1-2

CNN-LB 37.7 57.2 66.6 61.1 55.2 54.6 55.2 59.1 58.9 48.8 39.4 54.0
GaitSet 61.4 75.4 80.7 77.3 72.1 70.1 71.5 73.5 73.5 68.4 50.0 70.4

GaitSlice 75.6 87.0 88.9 86.5 80.5 77.5 79.1 84.0 84.8 83.6 70.1 81.6
GaitGL 76.6 90.0 90.3 87.1 84.5 79.0 84.1 87.0 87.3 84.4 69.5 83.6
Ours 78.0 90.0 91.6 88.5 84.6 79.8 84.7 88.2 88.2 86.4 73.4 84.9

Table 3. Averaged rank-1 accuracies on CASIA-B under MT setting, excluding identical-view cases.

Gallery NM#1-4 0◦–180◦
Mean

Probe 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦

NM#5-6

MGAN 54.9 65.9 72.1 74.8 71.1 65.7 70.0 75.6 76.2 68.6 53.8 68.1
GaitSet 86.8 95.2 98.0 94.5 91.5 89.1 91.1 95.0 97.4 93.7 80.2 92.0

GaitSlice 92.2 97.3 98.9 98.4 94.2 90.3 94.2 97.5 99.2 96.6 89.4 95.3
GaitGL 93.9 97.6 98.8 97.3 95.2 92.7 95.6 98.1 98.5 96.5 91.2 95.9
Ours 94.1 97.8 99.1 97.2 95.3 92.5 95.7 98.1 98.8 96.7 91.5 96.1

BG#1-2

MGAN 48.5 58.5 59.7 58.0 53.7 49.8 54.0 61.3 59.5 55.9 43.1 54.7
GaitSet 79.9 89.8 91.2 86.7 81.6 76.7 81.0 88.2 90.3 88.5 73.0 84.3

GaitSlice 85.2 92.2 95.3 94.2 87.8 83.8 87.1 93.1 93.4 91.6 80.9 89.5
GaitGL 88.5 95.1 95.9 94.2 91.5 85.4 89.0 95.4 97.4 94.3 86.3 92.1
Ours 88.7 94.6 96.4 94.6 90.5 86.0 89.3 95.5 97.8 95.0 86.9 92.3

CL#1-2

MGAN 3.1 34.5 36.3 33.3 32.9 32.7 34.2 37.6 33.7 26.7 21.0 31.5
GaitSet 52.0 66.0 72.8 69.3 63.1 61.2 63.5 66.5 67.5 60.0 45.9 62.5

GaitSlice 63.9 78.9 82.9 81.7 74.5 70.1 73.4 77.5 77.5 73.7 62.5 74.2
GaitGL 70.7 83.2 87.1 84.7 78.2 71.3 78.0 83.7 83.6 77.1 63.1 78.3
Ours 71.9 85.0 88.3 86.7 78.7 74.7 79.8 83.8 85.4 80.6 65.2 80.0

Table 4. Averaged rank-1 accuracies on CASIA-B under ST setting, excluding identical-view cases.

Gallery NM#1-4 0◦–180◦
Mean

Probe 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦

NM#5-6

CNN-LB 54.8 - - 77.8 - 64.9 - 76.1 - - - 68.4
GaitSet 64.6 83.3 90.4 86.5 80.2 75.5 80.3 86.0 87.1 81.4 59.6 79.5

GaitSlice 75.7 84.5 92.3 91.3 82.8 77.1 83.1 89.3 91.0 86.2 71.4 84.1
GaitGL 77.0 87.8 93.9 92.7 83.9 78.7 84.7 91.5 92.5 89.3 74.4 86.0
Ours 77.4 87.6 94.0 92.8 83.9 78.8 84.6 91.7 92.6 89.5 74.8 86.2

BG#1-2

GaitSet 55.8 70.5 76.9 75.5 69.7 63.4 68.0 75.8 76.2 70.7 52.5 68.6
GaitSlice 67.8 75.0 81.7 82.6 73.8 66.3 73.3 80.6 80.1 75.5 62.1 74.4
GaitGL 68.1 81.2 87.7 84.9 76.3 70.5 76.1 84.5 87.0 83.6 65.0 78.6
Ours 68.8 79.9 86.8 84.9 77.4 71.4 76.4 84.2 87.3 84.4 67.2 78.9

CL#1-2

GaitSet 29.4 43.1 49.5 48.7 42.3 40.3 44.9 47.4 43.0 35.7 25.6 40.9
GaitSlice 42.9 55.7 62.2 59.1 54.9 51.3 55.6 55.9 53.6 48.4 35.4 52.3
GaitGL 46.9 58.7 66.6 65.4 58.3 54.1 59.5 62.7 61.3 57.1 40.6 57.4
Ours 47.9 60.2 68.7 68.2 61.8 58.0 63.4 66.3 63.6 59.4 43.0 60.0
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Figure 5. Average rank-1 recognition accuracy of our method compared to other state-of-the-art gait
recognition models on CASIA-B under three partition settings.

As can be seen from Table 2, our model obtains very nice results by using LT. Under the
three walking conditions NM, BG, and CL, the average recognition accuracy reached 97.6%,
94.7%, and 84.9%, which outperformed GaitGL [5] by 0.2%, 0.3%, and 1.3%, respectively.
Comparison results show that the biggest breakthrough of our method is to improve
recognition accuracy under CL conditions. Due to the presence of occlusion, the recognition
rate of the existing models under CL conditions is low, but in our method, the acquisition
of key frames reduces the interference of redundant information, and thus improves the
recognition accuracy.

From Tables 3 and 4, it can be seen that under ST and MT settings, compared with
existing methods, our model does not achieve an absolute advantage in NM and BG
conditions. However, in the CL condition, our model has an average recognition accuracy
of 80.0%(MT) and 60.0%(ST), and when compared with the best-performing GaitGL [5],
the recognition accuracy is improved by 1.7%(MT) and 2.6%(ST).

Moreover, compared with other views, the existing models have the lowest recognition
rate in the view of 0◦ and 180◦ due to excessive interference information. In this paper,
our method improves the recognition rate in most views, especially at 0◦ and 180◦. For
example, compared with GaitGL, the recognition rate in the three walking conditions was
improved by 1.2%, 0.4%, and 3.9%, respectively, in the 180◦ view and LT setting.

In summary, the results of the comparative analysis show that our model outperforms
the existing gait recognition models in the LT, MT, and ST settings, especially in complex
application scenarios (such as coat-wearing walking conditions and the view of 0◦ and
180◦); this demonstrates the effectiveness and superiority of our model.
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4.3.2. Experimental Results on OU-MVLP Dataset

In order to verify the generalization of the proposed method, we further evaluate the
performance of our method on the OUMVLP dataset. As shown in Table 5, compared
with the existing models (including GEINet [34], GaitSet [2], GaitPart [3], GaitSlice [4], and
GaitGL [5]), our model achieves the highest accuracy in various views. Especially in the
view with less discriminative information and too much redundant information, such as
0◦, 90◦, 180◦, and 270◦. The comparative analysis results on the OU-MVLP dataset show
that our model has good generalization.

Table 5. Averaged rank-1 accuracies on OU-MVLP, excluding identical-view cases.

All 14 Gallery Views

0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦ 180◦ 195◦ 210◦ 225◦ 240◦ 255◦ 270◦ Mean

GEINet 11.4 29.1 41.5 45.5 39.5 41.8 38.9 14.9 33.1 43.2 45.6 39.4 40.5 36.3 35.8
GaitSet 79.5 87.9 89.9 90.2 88.1 88.7 87.8 81.7 86.7 89.0 89.3 87.2 87.8 86.2 87.1
GaitPart 82.6 88.9 90.8 91.0 89.7 89.9 89.5 85.2 88.1 90.0 90.1 89.0 89.1 88.2 88.7
GaitSlice 84.1 89.0 91.2 91.6 90.6 89.9 89.8 85.7 89.3 90.6 90.7 89.8 89.6 88.5 89.3
GaitGL 84.9 90.2 91.1 91.5 91.1 90.8 90.3 88.5 88.6 90.3 90.4 89.6 89.5 88.8 89.7
Ours 86.3 90.8 91.3 91.6 91.2 91.0 90.7 89.4 89.5 90.5 90.6 90.0 89.8 89.3 90.1

4.4. Ablation Experiment

To verify the effectiveness of MTA and MFAM in the proposed framework, several
ablation studies with various settings will be conducted on CASIA-B. In MTA, we study the
influence of different size convolution on the model performance. In MFAM, we studied
the influence of different distance measurement methods and different data normalization
methods on the recognition rate. The experimental results and analysis are as follows.

4.4.1. Efficacy of MTA

In order to aggregate context information with different scales and adapt the model to
complex human motion patterns, we introduced the Multi-scale Temporal Aggregation
module in the proposed method. To analyze the appropriate parameter setting in MTA
operation, three controlled experiments are conducted in experiment Group A.

As shown in Table 6, to verify the effectiveness of the MTA module, we design the
comparison experiment by implementing methods with different convolutional strategies
on the LT setting. Specifically, experiments A-a, b, and c only adopted one convolution
kernel with different sizes, and the comparison results with experiment A-d demonstrates
the effectiveness of aggregating multi-scale contextual information operations. In addition,
the comparison of experiments A-a, b, and c show that the expansion of the convolu-
tion size in MTA will lead to a decrease in the recognition accuracy of the model in
complex scenes. Therefore, we choose the parameter settings in experiment A-b as the
convolution combination.

Table 6. Ablation experiments for Multi-scale Temporal Aggregation. Control condition: the different
convolutional combination strategies.

Group A kernel_1 kernel_2 kernel_3 NM BG CL

a (3,1,1) - - 97.5 94.5 84.5
b - (5,1,1) - 97.5 94.6 84.2
c - - (7,1,1) 97.7 94.5 84.1
d (3,1,1) (5,1,1) (7,1,1) 97.6 94.8 84.9

4.4.2. Efficacy of MFAM

Video sequences are rich in semantic information but they also bring too many redun-
dant features. In this paper, we introduced the Metric-based Frame Attention Mechanism
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to extract key frame features from sequences. As discussed in Section 3.3, MFAM calculates
the importance score of each frame by measuring the Euclidean distance between frame-
level features and sequence-level features. To analyze the rationality of the MFAM using
Euclidean distance to calculate the importance score, we employ cosine similarity instead
of Euclidean distance, as follows:

Dt =
pt· P
|pt|·|P|

(6)

Moreover, normalization of the data can eliminate the undesirable effects caused by
odd sample data. In this section, we introduced the Z-score normalized processing of the
numeric distance, the formula is expressed as:

D′t =
Dt − µ

σ
(7)

where µ and σ represent the mean and variance of the numerics, respectively.
As shown in Table 7, to verify the effectiveness of the MFAM module, we design

the comparison experiment by implementing methods with different importance score
calculation strategies on the LT setting.

Table 7. Ablation experiments for Metric-based Frame Attention Mechanism. Control condition: the
different data normalization methods and different distance metric strategies. DE and DC: represent
the Euclidean distance and cosine similarity, respectively. Nm and Nz: represent the max-min
normalized and Z-score normalized, respectively.

Distance Normalization NM BG CL

DE
Nm 97.6 94.8 84.9
Nz 97.7 94.6 84.3

DC
Nm 97.5 94.7 84.2
Nz 97.6 94.6 84.2

On the one hand, the comparison shows that employing Euclidean distance to measure
the similarity between features is conducive to obtaining better performance of the model.
This is because the model employs Euclidean distance as the accuracy evaluation standard.
On the other hand, the comparison results of different data normalization methods show
that a Z-score normalized is only applicable to NM scenarios. In complex application
scenarios such as BG and CL, max-min normalized shows superior recognition accuracy.
Therefore, we chose the combination of Euclidean distance and max-min normalized to
calculate the importance score of each frame.

4.5. Practicality Experiments

In real-world settings, it may be difficult to acquire a sufficient number of frames for
gait recognition. To verify the practicability of the proposed model, we select a certain
number of frames for each subject during the testing phase.

As shown in Table 8, we selected different numbers of frames as input. The results
show that the model achieves accuracies of 57.4%, 50.4%, and 33.2% in the three walking
conditions when inputting 10 frames. This is because the model uses an encoder composed
of 3D convolutions. When the input frame is insufficient, it is difficult for the model to
extract gait temporal features. When the input reaches 30 frames, the model recognition
accuracies also achieve 94.5%, 90.1%, and 76.6%. When the input exceeds 70 frames, the
model recognition accuracy also tends to be stable.
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Table 8. The result when the number of input frames is different. Results are rank-1 accuracies (%)
averaged on all 11 views, excluding identical-view cases.

Number of Frames NM BG CL

10 57.4 50.4 33.2
20 86.3 80.1 60.8
30 94.5 90.1 76.6
50 96.9 93.4 82.5
70 97.4 94.3 83.5

100 97.5 94.5 83.9

4.6. Portability Experiments

It is worth noting that our MFAM operation can be used in some state-of-the-art gait
recognition models [2–5]. In the GaitSlice model proposed by Li et al., the RFAM module is
designed to calculate the importance score of each frame by the frame attention network.
To compare the performance differences between the two attention mechanisms, three
controlled experiments are conducted. In the experiments, we use the experimental results
of the GaitSlice [4] model (denoted as GaitSlice* and achieves accuracies of 96.6%, 91.7%,
and 80.7%, respectively, under three walking conditions) with the RFAM module removed
as the baseline.

As shown in Figure 6, under the action of a single RFAM module, the recognition
rates of the three walking scenarios are increased by 0.06%, 0.71%, and 0.86%, respectively.
Under the action of our MFAM module, the recognition rates are increased by 0.16%, 0.75%,
and 1.13%, which outperform RFAM by 0.1%, 0.04%, and 0.27%, respectively. Under the
joint action of the two attention modules, the recognition rate is increased by 0.25%, 0.81%,
and 1.28%, respectively. The above results demonstrate the effectiveness and superiority of
our proposed MFAM operation.
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Figure 6. Performance comparison experiment between MFAM and RFAM. Results are improve-
ment compared to baseline (GaitSlice*) of rank-1 accuracies without view variation, excluding the
identical-view cases. (a) Accuracy improvement of introducing RFAM (b); Accuracy improvement of
introducing MFAM; (c) Accuracy improvement of introducing MFAM and RFAM.

4.7. Visualization

In order to better understand the role of the MFAM module, the importance scores
of several frames are given in Figure 7. It is worth noting that we horizontally divide the
human body into 32 parts in the model, then calculate each part’s importance score. For the
convenience of illustration, the average of the importance scores of the adjacent eight parts
is calculated in Figure 7. In other words, we show the weights of the four parts of the human
body. It can be seen from Figure 7 that the importance scores of each frame in the sequence
are different, indicating that the frames contain different degrees of semantic information.
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5. Conclusions

In this paper, we propose a new gait recognition framework, which models gait
temporal features and highlights the key frames in the sequence to improve recognition
accuracy. Specifically, the proposed MTA module extracts multi-scale context information
through parallel convolution and carries out information exchange and fusion, so that
the model can adapt to the changes of complex motion and realistic factors. In MFAM,
the importance score of each frame is calculated by the distance between frame-level
features and sequence-level features. After that, more discriminative gait features are
extracted by reweighting key frames for each frame. Finally, experiments are conducted
on the widely adopted public databases, CASIA-B and OUMVLP, which experimentally
demonstrate the superiority of the proposed method. Nevertheless, the CASIA-B and OU-
MVLP datasets were collected in an indoor environment. Although they include different
walking conditions such as viewing angles, clothing, and carrying objects, there are still
differences with the pedestrian data under real conditions. In future work, the model will
be optimized for the dataset collected in the open environment.
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8. Öztürk, H.İ.; Selbes, B.; Artan, Y. MinNet: Minutia Patch Embedding Network for Automated Latent Fingerprint Recognition. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022;
pp. 1627–1635.

9. Chen, S.; Guo, Z.; Li, X.; Yang, D. Query2Set: Single-to-Multiple Partial Fingerprint Recognition Based on Attention Mechanism.
IEEE Trans. Inf. Secur. 2022, 17, 1243–1253. [CrossRef]

10. Han, J.; Bhanu, B. Individual recognition using gait energy image. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 28, 316–322.
[CrossRef] [PubMed]

11. Bashir, K.; Xiang, T.; Gong, S. Gait recognition using gait entropy image. In Proceedings of the 3rd International Conference on
Imaging for Crime Detection and Prevention (ICDP 2009), London, UK, 3 December 2009.

12. Wang, C.; Zhang, J.; Wang, L.; Pu, J.; Yuan, X. Human identification using temporal information preserving gait template. IEEE
Trans. Pattern Anal. Mach. Intell. 2011, 34, 2164–2176. [CrossRef] [PubMed]

13. Yu, S.; Tan, D.; Tan, T. A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition.
In Proceedings of the 18th International Conference on Pattern Recognition (ICPR’06), Hong Kong, China, 20–24 August 2006;
Volume 4, pp. 441–444.

14. Takemura, N.; Makihara, Y.; Muramatsu, D.; Echigo, T.; Yagi, Y. Multi-view large population gait dataset and its performance
evaluation for crossview gait recognition. IPSJ Trans. Comput. Vis. Appl. 2018, 10, 4. [CrossRef]

15. Rong, Z.; Vogler, C.; Metaxas, D. Human Gait Recognition. In Proceedings of the Conference on Computer Vision & Pattern
Recognition Workshop, Washington, DC, USA, 27 June–2 July 2004.

16. Hong, C.; Yu, J.; Tao, D.; Wang, M. Image-based three-dimensional human pose recovery by multiview locality-sensitive sparse
retrieval. IEEE Trans. Ind. Electron. 2014, 62, 3742–3751.

17. Huang, Z.; Xue, D.; Shen, X.; Tian, X.; Li, H.; Huang, J.; Hua, X.-S. 3D local convolutional neural networks for gait recognition. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp.
14920–14929.

18. Hou, S.; Cao, C.; Liu, X.; Huang, Y. Gait lateral network: Learning discriminative and compact representations for gait recognition.
In Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2020; pp. 382–398.

19. Zhang, Z.; Tran, L.; Yin, X.; Atoum, Y.O.; Wan, J.; Wang, N.; Liu, X. Gait recognition via disentangled representation learning. In
Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA,
15–20 June 2019.

20. Qin, H.; Chen, Z.; Guo, Q.; Wu, Q.J.; Lu, M. RPNet: Gait Recognition with Relationships between Each Body-Parts. IEEE Trans.
Circuits Syst. Video Technol. 2021, 32, 2990–3000. [CrossRef]

21. Liao, R.; Cao, C.; Garcia, E.B.; Yu, S.; Huang, Y. Pose-based temporal-spatial network (PTSN) for gait recognition with carrying
and clothing variations. In Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2017.

22. Liao, R.; Yu, S.; An, W.; Huang, Y. A model-based gait recognition method with body pose and human prior knowledge. Pattern
Recognit. 2020, 98, 107069. [CrossRef]

23. Cao, Z.; Simon, T.; Wei, S.-E.; Sheikh, Y. Realtime multi-person 2d pose estimation using part affinity fields. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7291–7299.

24. Guler, R.A.; Neverova, N.; Kokkinos, I. DensePose: Dense human pose estimation in the wild. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7297–7306.

25. Wolf, T.; Babaee, M.; Rigoll, G. Multi-view gait recognition using 3d convolutional neural networks. In Proceedings of the 2016
IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 4165–4169.

26. Masood, H.; Farooq, H. Utilizing Spatio Temporal Gait Pattern and Quadratic SVM for Gait Recognition. Electronics 2022, 11,
2386. [CrossRef]

27. Song, G.; Leng, B.; Liu, Y.; Hetang, C.; Cai, S. Region-based Quality Estimation Network for Large-scale Person Re-identification.
arXiv preprint 2017, arXiv:1711.08766. [CrossRef]

28. Ding, Y.; Hou, S.; Yang, X.; Du, W.; Wang, C.; Yin, G. Key Frame Extraction Based on Frame Difference and Cluster
for Person Re-identification. In Proceedings of the IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced
& Trusted Computing, Scalable Computing & Communications, Internet of People and Smart City Innovation (Smart-
World/SCALCOM/UIC/ATC/IOP/SCI), Atlanta, GA, USA, 18–21 October 2021; pp. 573–578.

29. Wang, X.; Feng, S.; Yan, W.Q. Human Gait Recognition Based on Self-Adaptive Hidden Markov Model. IEEE/ACM Trans. Comput.
Biol. Bioinform. 2021, 18, 963–972. [CrossRef] [PubMed]

30. Hermans, A.; Beyer, L.; Leibe, B. In defense of the triplet loss for person re-identification. arXiv 2017, arXiv:1703.07737.
31. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
32. Wu, Z.; Huang, Y.; Wang, L.; Wang, X.; Tan, T. A comprehensive study on cross-view gait based human identification with deep

CNNs. IEEE TPAMI 2017, 39, 209–226. [CrossRef] [PubMed]

http://doi.org/10.1109/TIFS.2022.3159151
http://doi.org/10.1109/TPAMI.2006.38
http://www.ncbi.nlm.nih.gov/pubmed/16468626
http://doi.org/10.1109/TPAMI.2011.260
http://www.ncbi.nlm.nih.gov/pubmed/22201053
http://doi.org/10.1186/s41074-018-0039-6
http://doi.org/10.1109/TCSVT.2021.3095290
http://doi.org/10.1016/j.patcog.2019.107069
http://doi.org/10.3390/electronics11152386
http://doi.org/10.1609/aaai.v32i1.12305
http://doi.org/10.1109/TCBB.2019.2951146
http://www.ncbi.nlm.nih.gov/pubmed/31689202
http://doi.org/10.1109/TPAMI.2016.2545669
http://www.ncbi.nlm.nih.gov/pubmed/27019478


Electronics 2022, 11, 4177 15 of 15

33. He, Y.; Zhang, J.; Shan, H.; Wang, L. Multi-task GANs for view-specific feature learning in gait recognition. IEEE TIFS 2019, 14,
102–113. [CrossRef]

34. Shiraga, K.; Makihara, Y.; Muramatsu, D.; Echigo, T.; Yagi, Y. GEINet: View-invariant gait recognition using a convolutional
neural network. In Proceedings of the 2016 international conference on biometrics (ICB), Halmstad, Sweden, 13–16 June 2016;
pp. 1–8.

http://doi.org/10.1109/TIFS.2018.2844819

	Introduction 
	Related Work 
	Gait Recognition 
	Temporal Modeling 
	Key Frame in Sequence 

	Proposed Method 
	Overview 
	Multi-Scale Temporal Aggregation 
	Metric-Based Frame Attention Mechanism 
	Training and Testing 

	Experimental Results 
	Dataset 
	Training and Testing Details 
	Comparison with State-of-the-Art Methods 
	Experimental Results on CASIA-B Dataset 
	Experimental Results on OU-MVLP Dataset 

	Ablation Experiment 
	Efficacy of MTA 
	Efficacy of MFAM 

	Practicality Experiments 
	Portability Experiments 
	Visualization 

	Conclusions 
	References

