
tobias vinçon

D ATA - I N T E N S I V E S Y S T E M S O N M O D E R N
H A R D WA R E

D ATA - I N T E N S I V E S Y S T E M S O N M O D E R N H A R D WA R E

leveraging near-data processing to counter the growth of data

Doctoral thesis
by Tobias Vinçon, M.Sc.

from Leinfelden, Germany

submitted in fulfilment of the requirements for the
degree of Doctor of Engineering (Dr.-Ing.)

Computer Science Department
Technische Universität Darmstadt

Reviewers
Prof. Dr-Ing. Andreas Koch

Prof. Dr. Jens Teubner

Further Supervisors
Prof. Dr-Ing. Ilia Petrov

Date of the oral exam
December 8, 2022

Darmstadt, 2022

Tobias Vinçon: Data-intensive Systems on Modern Hardware, Leveraging
Near-Data Processing to Counter the Growth of Data
Technische Universität Darmstadt
Data of the oral exam: December 8, 2022

Please cite this work as:
URN: urn:nbn:de:tuda-tuprints-230162
URL: https://tuprints.ulb.tu-darmstadt.de

This document is provided by TUprints,
The publication Service of the Technische Universität Darmstadt
https://tuprints.ulb.tu-darmstadt.de

This work is licensed under a Creative
Commons “Attribution-NonCommercial-
NoDerivatives 4.0 International” license.

urn:nbn:de:tuda-tuprints-230162
https://tuprints.ulb.tu-darmstadt.de
https://tuprints.ulb.tu-darmstadt.de
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

E R K L Ä R U N G E N L AU T P R O M O T I O N S O R D N U N G

§8 Abs. 1 lit. c PromO

Ich versichere hiermit, dass die elektronische Version meiner Dis-
sertation mit der schriftlichen Version übereinstimmt.

§8 Abs. 1 lit. d PromO

Ich versichere hiermit, dass zu einem vorherigen Zeitpunkt noch
keine Promotion versucht wurde. In diesem Fall sind nähere Angaben
über Zeitpunkt, Hochschule, Dissertationsthema und Ergebnis dieses
Versuchs mitzuteilen.

§9 Abs. 1 PromO

Ich versichere hiermit, dass die vorliegende Dissertation selbstständig
und nur unter Verwendung der angegebenen Quellen verfasst wurde.

§9 Abs. 2 PromO

Die Arbeit hat bisher noch nicht zu Prüfungszwecken gedient.

Darmstadt, October 21, 2022

Tobias Vinçon

A B S T R A C T

Over the last decades, a tremendous change toward using information
technology in almost every daily routine of our lives can be perceived
in our society, entailing an incredible growth of data collected day-by-
day on Web, IoT, and AI applications.

At the same time, magneto-mechanical HDDs are being replaced
by semiconductor storage such as SSDs, equipped with modern Non-
Volatile Memories, like Flash, which yield significantly faster access
latencies and higher levels of parallelism. Likewise, the execution
speed of processing units increased considerably as nowadays server
architectures comprise up to multiple hundreds of independently
working CPU cores along with a variety of specialized computing
co-processors such as GPUs or FPGAs.

However, the burden of moving the continuously growing data to
the best fitting processing unit is inherently linked to today’s computer
architecture that is based on the data-to-code paradigm. In the light
of Amdahl’s Law, this leads to the conclusion that even with today’s
powerful processing units, the speedup of systems is limited since the
fraction of parallel work is largely I/O-bound.

Therefore, throughout this cumulative dissertation, we investigate
the paradigm shift toward code-to-data, formally known as Near-Data
Processing (NDP), which relieves the contention on the I/O bus by
offloading processing to intelligent computational storage devices,
where the data is originally located.

Firstly, we identified Native Storage Management as the essential
foundation for NDP due to its direct control of physical storage man-
agement within the database. Upon this, the interface is extended to
propagate address mapping information and to invoke NDP func-
tionality on the storage device. As the former can become very large,
we introduce Physical Page Pointers as one novel NDP abstraction for
self-contained immutable database objects.

Secondly, the on-device navigation and interpretation of data are
elaborated. Therefore, we introduce cross-layer Parsers and Accessors
as another NDP abstraction that can be executed on the heteroge-
neous processing capabilities of modern computational storage de-
vices. Thereby, the compute placement and resource configuration
per NDP request is identified as a major performance criteria. Our
experimental evaluation shows an improvement in the execution du-
rations of 1.4× to 2.7× compared to traditional systems. Moreover,
we propose a framework for the automatic generation of Parsers and
Accessors on FPGAs to ease their application in NDP.

vii

Thirdly, we investigate the interplay of NDP and modern workload
characteristics like HTAP. Therefore, we present different offloading
models and focus on an intervention-free execution. By propagating
the Shared State with the latest modifications of the database to the
computational storage device, it is able to process data with trans-
actional guarantees. Thus, we achieve to extend the design space of
HTAP with NDP by providing a solution that optimizes for perfor-
mance isolation, data freshness, and the reduction of data transfers. In
contrast to traditional systems, we experience no significant drop in
performance when an OLAP query is invoked but a steady and 30%
faster throughput.

Lastly, in-situ result-set management and consumption as well as NDP
pipelines are proposed to achieve flexibility in processing data on
heterogeneous hardware. As those produce final and intermediary
results, we continue investigating their management and identified
that an on-device materialization comes at a low cost but enables
novel consumption modes and reuse semantics. Thereby, we achieve
significant performance improvements of up to 400× by reusing once
materialized results multiple times.

viii

Z U S A M M E N FA S S U N G

Über die letzten Jahrzehnte erkennt man in dem täglichen Leben un-
serer Gesellschaft eine gewaltige Veränderung hin zu der Nutzung
von Informationstechnologie, welche einen enormen Anstieg an ge-
sammelten Daten aus Web, IoT und KI Applikationen nach sich zieht.

Zeitgleich werden magnet-mechanische HDDs durch Halbleiterspei-
cher wie SSDs ersetzt, welche durch ihren modernen nicht-flüchtigen
Speicher signifikant schnellere Zugriffszeiten als auch einen höheren
Parallelismus aufweisen. Ebenfalls steigt die Ausführungsgeschwin-
digkeit der Recheneinheiten erheblich, da heutige Serverarchitekturen
bis zu mehreren Hundert unabhängig arbeitenden CPU Kernen zu-
sammen mit einer Vielzahl an spezialisierten Co-Prozessoren wie
GPUs oder FPGAs aufweisen.

Allerdings ist die Belastung durch die Übertragung der stetig wach-
senden Daten hin zu den bestmöglichen Verarbeitungseinheiten inhä-
rent an die heutige Computerarchitektur gekoppelt, welche auf dem
Prinzip Daten-bei-Verarbeitungseinheit basiert. Unter Berücksichtigung
des Prinzips von Amdahl lässt sich schlussfolgern, dass selbst mit
den heutigen leistungsstarken Recheneinheiten eine Beschleunigung
der Systeme limitiert ist, da der Anteil an zu parallelisierender Arbeit
stark an I/O gebunden ist.

Im Rahmen dieser kumulativen Dissertation untersuchen wir daher
den Wechsel zum Verarbeitungseinheit-zu-Daten Prinzip, bekannt als
Near-Data Processing (NDP), welches die Belastung vom I/O Bus
nimmt, indem die Verarbeitung auf intelligente rechengestützte Spei-
chergeräte ausgelagert wird, wo sich die Daten ursprünglich befinden.

Zunächst identifizieren wir Native Storage Management als essenziel-
ler Grundbaustein für NDP, da es direkt den physikalischen Speicher-
bereich zentral innerhalb der Datenbank verwaltet. Darauf aufbauend
wird die Schnittstelle zum Versenden von Adressverwaltungsinfor-
mationen und um Aufrufmöglichkeiten von NDP Funktionalitäten
erweitert. Da das Erstere sehr groß werden kann, führen wir Physical
Page Pointers als eine neuartige NDP Abstraktion für abgeschlossene,
unveränderbare Datenbankobjekte ein.

Zum Zweiten wird die Navigation und Interpretation von Daten
auf dem Gerät ausgearbeitet. Dabei führen wir schichtübergreifende
Parsers und Accessors als eine weitere NDP Abstraktion ein, welche auf
den heterogenen Verarbeitungsmöglichkeiten von modernen rechen-
fähigen Speichergeräten ausgeführt werden können. Dadurch ist die
Platzierung der Verarbeitung und die Konfiguration der Ressourcen
pro NDP Anfrage als ein wesentliches Leistungskriterium identifiziert
worden. Unsere experimentelle Evaluierung ergibt eine Verbesserung
der Ausführungszeit von 1, 4× bis zu 2, 7× verglichen mit traditio-

ix

nellen Systemen. Darüber hinaus schlagen wir ein Framework zur
automatischen Generierung von Parsers und Accessors für FPGAs vor,
um deren Anwendung in NDP zu vereinfachen.

Zum Dritten untersuchen wir das Zusammenspiel von NDP und
modernen Arbeitslastcharakteristiken wie HTAP. Dafür präsentieren
wir verschiedene Auslagerungsmodelle und fokussieren auf eine un-
unterbrochene Ausführung. Durch das Verschicken des Shared State mit
den jüngsten Änderungen der Datenbank an das rechengestützte Spei-
chergerät ist dieses in der Lage, Daten mit transaktionalen Garantien
zu verarbeiten. Somit erreichen wir auch eine Erweiterung des HTAP
Gestaltungsraums durch NDP, indem wir eine Lösung aufzeigen,
die sowohl auf Leistungsisolation, Neuheitswert der Daten als auch
die Reduktion von Datenübertragungen optimiert. Im Gegensatz zu
traditionellen Systemen erleben wir keinen signifikanten Leistungs-
rückgang, wenn eine OLAP Anfrage aufgerufen wird, sondern einen
stabilen und 30% schnelleren Durchsatz.

Zuletzt schlagen wir in-situ Ergebnisverwaltung und -Konsum sowie
NDP Pipelines zur flexiblen Datenverarbeitung auf heterogener Hard-
ware vor. Da diese End- als auch Zwischenergebnisse produzieren,
untersuchen wir deren Verwaltung und identifizieren, dass eine Ma-
terialisierung auf dem Gerät mit nur geringen Kosten verknüpft ist,
aber neuartige Konsummodelle und Semantiken in der Wiederver-
wendung ermöglicht. Durch die mehrfache Wiederverwendung von
einmal materialisierten Ergebnisse erreichen wir eine signifikante Leis-
tungsverbesserung von bis zu 400×.

x

P U B L I C AT I O N S

The following publications are a substantial part of this cumulative
dissertation and are included in Chapter 8 to Chapter 16:

P1 [73] – Ilia Petrov, Andreas Koch, Sergey
Hardock, Tobias Vincon, and Christian Riegger.
“Native Storage Techniques for Data Manage-
ment.” In: Proc. ICDE (2019)

Chapter 8

P2 [92] – T. Vincon, S. Hardock, C. Riegger, J. Op-
permann, A. Koch, and I. Petrov. “NoFTL-KV:
Tackling Write-Amplification on KV-Stores with
Native Storage Management.” In: Proc. EDBT.
2018

Chapter 9

P3 [100] – Tobias Vinçon, Sergey Hardock, Chris-
tian Riegger, Andreas Koch, and Ilia Petrov. “na-
tiveNDP: Processing Big Data Analytics on Na-
tive Storage Nodes.” In: 2019

Chapter 10

P4 [93] – Tobias Vincon, Arthur Bernhardt, Lukas
Weber, Andreas Koch, and Ilia Petrov. “On
the Necessity of Explicit Cross-Layer Data For-
mats in Near-Data Processing Systems.” In: Proc.
HardBD @ ICDE 2020. 2020

Chapter 11

P5 [98] – Tobias Vincon, Lukas Weber, Arthur Bern-
hardt, Andreas Koch, and Ilia Petrov. “nKV:
Near-Data Processing with KV-Stores on Native
Computational Storage.” In: Proc. DaMoN. 2020

Chapter 12

P6 [99] – Tobias Vincon, Lukas Weber, Arthur Bern-
hardt, Christian Riegger, Sergey Hardock, Chris-
tian Knoedler, Florian Stock, Leonardo Solis-
Vasquez, Sajjad Tamimi, Andreas Koch, and Ilia
Petrov. “nKV in Action: Accelerating KV-Stores
on Native Computational Storage with Near-
Data Processing.” In: PVLDB 12 (2020)

Chapter 13

P7 [101] – Lukas Weber, Lukas Sommer, Leonardo
Solis-Vasquez, Tobias Vincon, Christian
Knoedler, Arthur Bernhardt, Ilia Petrov, and
Andreas Koch. “A Framework for the Automatic
Generation of FPGA-based Near-Data Process-
ing Accelerators in Smart Storage Systems.” In:
Proc. RAW@IPDPS (2021)

Chapter 14

xi

P8 [95] – Tobias Vincon, Christian Knödler,
Leonardo Solis-Vasquez, Arthur Bernhardt, Saj-
jad Tamimi, Lukas Weber, Florian Stock, An-
dreas Koch, and Ilia Petrov. “Near-Data Pro-
cessing in Database Systems on Native Compu-
tational Storage under HTAP Workloads.” In:
PVLDB 15 (2022)

Chapter 15

P9 [94] – Tobias Vincon, Christian Knödler, Arthur
Bernhardt, Leonardo Solis-Vasquez, Lukas We-
ber, Andreas Koch, and Ilia Petrov. “Result-Set
Management for NDP Operations on Smart Stor-
age.” In: Proc. DaMoN. 2022

Chapter 16

In addition, the author of this thesis has contributed to the following
peer-reviewed publications:

P10 [17] – Justus Bogner, Carolin Dehner, Tobias Vincon, and
Ilia Petrov. “Real time charging database benchmarking.”
In: Proceedings of the 17th International Conference on Infor-
mation Integration and Web-based Applications and Services,
iiWAS 2015, Brussels, Belgium, December 11-13, 2015. Ed.
by Gabriele Anderst-Kotsis and Maria Indrawan-Santiago.
ACM, 2015, p. 78. isbn: 978-1-4503-3491-4. doi: 10.1145/
2837185.2837258. url: http://doi.acm.org/10.1145/
2837185.2837258

P11 [96] – Tobias Vincon and Ilia Petrov. “Near Data Processing
within Column-Oriented DBMSs for High Performance
Analysis.” In: June 2016. doi: 10.13140/RG.2.1.1596.5687

P12 [97] – Tobias Vincon, Ilia Petrov, and Christian Thies. “cIPT:
Shift of Image Processing Technologies to Column-Oriented
Databases.” In: New Trends in Databases and Information Sys-
tems. Springer International Publishing, 2016. isbn: 978-3-
319-44066-8

P13 [80] – Christian Riegger, Tobias Vincon, and Ilia Petrov.
“Write-Optimized Indexing with Partitioned b-Trees.” In:
Proceedings of the 19th International Conference on Informa-
tion Integration and Web-Based Applications and Services. ii-
WAS ’17. Salzburg, Austria: Association for Computing
Machinery, 2017, pp. 296–300. isbn: 9781450352994. doi:
10.1145/3151759.3151814. url: https://doi.org/10.
1145/3151759.3151814

xii

https://doi.org/10.1145/2837185.2837258
https://doi.org/10.1145/2837185.2837258
http://doi.acm.org/10.1145/2837185.2837258
http://doi.acm.org/10.1145/2837185.2837258
https://doi.org/10.13140/RG.2.1.1596.5687
https://doi.org/10.1145/3151759.3151814
https://doi.org/10.1145/3151759.3151814
https://doi.org/10.1145/3151759.3151814

P14 [79] – Christian Riegger, Tobias Vincon, and Ilia Petrov.
“Multi-Version Indexing and Modern Hardware Technolo-
gies: A Survey of Present Indexing Approaches.” In: Pro-
ceedings of the 19th International Conference on Information
Integration and Web-Based Applications and Services. iiWAS
’17. Salzburg, Austria: Association for Computing Machin-
ery, 2017, pp. 266–275. isbn: 9781450352994. doi: 10.1145/
3151759 . 3151779. url: https : / / doi . org / 10 . 1145 /

3151759.3151779

P15 [81] – Christian Riegger, Tobias Vincon, and Ilia Petrov.
“Efficient Data and Indexing Structure for Blockchains
in Enterprise Systems.” In: Proceedings of the 20th Interna-
tional Conference on Information Integration and Web-Based
Applications and Services. iiWAS2018. Yogyakarta, Indonesia:
Association for Computing Machinery, 2018, pp. 173–182.
isbn: 9781450364799. doi: 10.1145/3282373.3282402. url:
https://doi.org/10.1145/3282373.3282402

P16 [43] – Sergey Hardock, Andreas Koch, Tobias Vincon, and
Ilia Petrov. “IPA-IDX: In-Place Appends for B-Tree Indices.”
In: Proceedings of the 15th International Workshop on Data
Management on New Hardware. DaMoN’19. Amsterdam,
Netherlands: Association for Computing Machinery, 2019.
isbn: 9781450368018. doi: 10.1145/3329785.3329929. url:
https://doi.org/10.1145/3329785.3329929

P17 [82] – Christian Riegger, Tobias Vincon, and Ilia Petrov. “In-
dexing Large Updatable Datasets in Multi-Version Database
Management Systems.” In: Proceedings of the 23rd Inter-
national Database Applications and Engineering Symposium.
IDEAS ’19. Athens, Greece: Association for Computing Ma-
chinery, 2019. isbn: 9781450362498. doi: 10.1145/3331076.
3331118. url: https : / / doi . org / 10 . 1145 / 3331076 .

3331118

P18 [83] – Christian Riegger, Tobias Vinçon, Robert Gottstein,
and Ilia Petrov. “MV-PBT: Multi-version indexing for large
datasets and HTap workloads.” In: Adv. Database Tech-
nol. - EDBT. Vol. 2020-March. 2020, pp. 217–228. isbn:
9783893180837

xiii

https://doi.org/10.1145/3151759.3151779
https://doi.org/10.1145/3151759.3151779
https://doi.org/10.1145/3151759.3151779
https://doi.org/10.1145/3151759.3151779
https://doi.org/10.1145/3282373.3282402
https://doi.org/10.1145/3282373.3282402
https://doi.org/10.1145/3329785.3329929
https://doi.org/10.1145/3329785.3329929
https://doi.org/10.1145/3331076.3331118
https://doi.org/10.1145/3331076.3331118
https://doi.org/10.1145/3331076.3331118
https://doi.org/10.1145/3331076.3331118

P19 [58] – Christian Knoedler, Tobias Vincon, Arthur Bernhardt,
Lukas Weber, Leonardo Solis-Vasquez, Ilia Petrov, and An-
dreas Koch. “A cost model for NDP-aware query optimiza-
tion for KV-stores.” In: Proc. DAMON (2021)

P20 [13] – Arthur Bernhardt, Sajjad Tamimi, Florian Stock,
Carsten Heinz, Christian Knoedler Tobias Vinçon, Andreas
Koch, and Ilia Petrov. “neoDBMS: In-situ Snapshots for
Multi-Version DBMS on Native Computational Storage.”
In: Proc. ICDE (2022)

P21 [14] – Arthur Bernhardt, Sajjad Tamimi, Florian Stock,
Andreas Koch, Tobias Vincon, and Ilia Petrov. “Cache-
Coherent Shared Locking for Transactionally Consistent
Updates in Near-Data Processing DBMS on Smart Stor-
age.” In: Proc. EDBT. 2022

xiv

Knowledge is in the end based on acknowledgment.

— Ludwig Wittgenstein, 1969 in [104]

A C K N O W L E D G M E N T S

As Ludwig Wittgenstein already stated in 1969, knowledge is in the
end based on acknowledgment. Hence, I would like to thank all
people and institutions that have contributed to the success of the
publications, which are part of this present cumulative dissertation,
and beyond. Furthermore, I would like to emphasize my gratitude
toward a dedicated set of people who supported me extraordinarily
along my journey.

First and foremost, I would like to mention my two PhD advisors
Prof. Dr.-Ing. Ilia Petrov and Prof. Dr.-Ing. Andreas Koch, who gave
me guidance in all regards throughout my entire PhD. Beginning
with my Master’s thesis, Prof. Dr.-Ing. Ilia Petrov assisted and ad-
vised me in an early stage in the area of database architectures and
data-intensive systems. Thereby, he arose my interest in academic
research and introduced me to all necessary methods and concepts
to discover, elaborate, and publish scientific findings about Near-data
processing. Prof. Dr.-Ing. Andreas Koch supported me in all kinds
of questions regarding modern hardware aspects. His nearly unlim-
ited knowledge about computer architectures and hardware-specific
properties allowed me to investigate concepts properly.

Moreover, I would like to thank the supporting institutions: HAW
Promotion, Herman Hollerith Zentrum, Hochschule Reutlingen, and
Technical University of Darmstadt. In particular, my thanks goes to the
other PhD students and Post-Docs for their extensive support in the
publications, discussions, and unavoidable night shifts before some
submissions.

Even though this thesis cannot be categorized as "industrial", I
would like to speak out my gratitude to all colleagues and managers
of Hewlett Packard Enterprise (HPE), DXC Technology, and Bosch for
having confidence in my self-organization and the open discussions,
while I worked part-time. Special thanks goes to Bernd Brennenstuhl,
and his successor Daniel Kroell, from the HPE DualStudy program
for initiating an industrial PhD program as well as providing financial
support.

Lastly, my sincere gratitude goes to all my close friends and family
that gave me moral support during the time of the PhD and motivated
me in not getting discouraged by any backlash. Primarily, I’m incredi-
bly grateful to my own little family and especially my wife, Denise,
on whom I always could rely, who brought me joy along the entire
journey, and always kept me motivated, even after rejections.

xv

C O N T E N T S

i Synopsis
1 introduction 3

2 today’s challenges 7

2.1 The Need to Change System Paradigms 7

2.2 The Shift toward Near-Data-Processing 9

2.3 Trends and Factors . 12

2.3.1 Workload . 12

2.3.2 Architecture . 13

2.3.3 Abstractions and Interfaces 13

2.3.4 Hardware . 15

2.4 Central Research Question 15

3 storage management for ndp 17

3.1 Physical Storage Management in Databases 18

3.2 Extending Native Storage with NDP 21

3.3 Reducing Address Information Volume 23

4 on-device navigation and data interpretation 27

4.1 The Necessity for Cross-Layer Parsers and Accessors . 28

4.2 Leveraging Heterogeneous Processing Capabilities . . 30

4.3 Automation of NDP Accelerator Creation 32

5 ndp offloading models 35

5.1 Types of NDP Offloading Models 36

5.2 Propagating the Shared State 38

5.3 Data Freshness and Transactional Consistency 38

6 ndp execution and result-set handling 43

6.1 Execution Modes . 44

6.2 NDP Pipelines . 45

6.3 Final and Intermediary Result-Set Handling 46

6.4 Communication Protocol and State Machine 49

7 conclusion and outlook 51

7.1 Conclusion . 51

7.2 The NDP Problem Space and Future Work 53

bibliography 54

ii NDP Abstractions for Physical Storage Management
8 native storage techniques for data management 67

8.1 Outline . 67

8.2 Native Storage and Data Management 68

8.2.1 Architectural Approaches and Techniques . . . 69

8.2.2 Interfaces . 70

8.2.3 Abstractions . 71

xvii

xviii contents

8.2.4 System Integration 72

8.2.5 Reconfigurability 73

8.2.6 In-Storage Processing 73

8.2.7 Data Management on Native Storage 74

8.3 Biographies of the presenters 74

References . 74

9 noftl-kv : tackling write-amplification with na-
tive storage 79

9.1 Introduction . 80

9.2 Related Work . 82

9.3 NoFTL-KV: native storage KV-Store 82

9.4 Experimental Evaluation 84

9.5 Conclusion . 88

References . 88

10 nativendp : big data analytics on native storage 91

10.1 Introduction . 92

10.2 Related Work . 93

10.3 nativeNDP Framework 95

10.3.1 System Stack . 95

10.3.2 Interfaces and Abstractions 97

10.4 Experimental Evaluation 98

10.4.1 Datasets and Operations 98

10.4.2 Experimental Setup 98

10.4.3 Experiment 1 – Baseline 100

10.4.4 Experiment 2 – Pushdown Cluster 100

10.4.5 Experiment 3 – Pushdown NDP Device 101

10.5 Conclusion . 102

References . 103

iii On-Device Navigation and Data Interpretation
11 cross-layer data formats in near-data processing107

11.1 Introduction . 108

11.2 Conceptional Background 110

11.2.1 Near-Data Processing 110

11.2.2 NDP Operation Types in Databases 110

11.2.3 Structural Elements: Formats and Layouts . . . 111

11.2.4 Structural Elements in Databases 113

11.3 Pushing down Operations with Format 115

11.3.1 The ImageProcessor 115

11.3.2 Testbed . 117

11.3.3 Evaluation . 117

11.4 Conclusion . 119

11.5 Related Work . 119

References . 120

12 nkv : near-data processing with kv-stores 123

12.1 Introduction . 124

contents xix

12.2 Background . 126

12.3 Architecture of nKV . 128

12.3.1 NDP Interface Extensions 129

12.3.2 In-situ Data Access and Interpretation 130

12.3.3 Operations and Algorithms 131

12.3.4 Data Consistency, Database Maintenance and NDP132

12.3.5 Result Set Handling 132

12.4 Hardware-Architecture 132

12.5 Hardware-Acceleration 133

12.6 Evaluation . 137

12.6.1 Low-level Flash Properties 137

12.6.2 Experiment 1: Lean Native Stack 138

12.6.3 Experiment 2: Data Transfer Reduction 138

12.6.4 Experiment 3: Native Computational Storage . 140

12.6.5 Experiment 4: Execution Parallelism 140

12.7 Related Work . 141

12.8 Conclusion . 142

References . 142

13 nkv in action : accelerating kv-stores with ndp 145

13.1 Introduction . 145

13.2 Architecture of nKV . 147

13.3 Demonstration Walk-through 149

13.3.1 Walk-Through . 149

13.4 Related Work . 151

13.5 Conclusion . 151

References . 151

14 automatic generation of near-data processing

accelerators 155

14.1 Introduction . 156

14.2 Motivation . 157

14.3 Near-Data Processing Background 158

14.3.1 Background: Key-Value Stores 158

14.3.2 nKV: Near-Data Processing Architecture 159

14.4 Near-Data Processing Accelerator Generation 160

14.4.1 NDP Accelerator Architecture Template 161

14.4.2 Automatic Generation of NDP Accelerators . . 162

14.4.3 Automatic Generation of the Software Interface 166

14.5 Evaluation . 167

14.6 Related Work . 170

14.7 Conclusion & Outlook 172

References . 172

iv NDP Offloading Models
15 near-data processing under htap workload 177

15.1 Introduction . 178

15.2 Background and Related Work 181

xx contents

15.2.1 HTAP Workload and Systems 181

15.2.2 Near-Data Processing 183

15.2.3 Native Storage 184

15.2.4 Update-aware NDP Systems 184

15.3 Update-Aware NDP Architecture 185

15.3.1 Shared State and NDP Execution Model 186

15.3.2 NDP Transaction Management 189

15.3.3 NDP Interface . 192

15.3.4 Parsers and Accessors 192

15.3.5 Software and Hardware-based NDP 194

15.3.6 NDP Pipelines and Operations 194

15.3.7 Result-Set Handling 196

15.4 Experimental Evaluation 197

15.5 Conclusions and Future Work 206

References . 206

v NDP Execution and Result-Set Management
16 result-set management for ndp on smart storage 215

16.1 Introduction . 215

16.2 In-situ Materialization 217

16.3 System Design . 220

16.4 Experimental Evaluation 221

References . 225

L I S T O F F I G U R E S

Figure 1.1 Thesis structure. 5

Figure 2.1 Growing data size and Amdahl’s Law. 8

Figure 2.2 Shift from data-to-code to code-to-data. 11

Figure 2.3 Different HTAP Architectures. 13

Figure 2.4 Storage abstractions along the I/O stack. . . . 14

Figure 3.1 Architectural guidebook. 17

Figure 3.2 Differences of HDDs and SSDs. 19

Figure 3.3 Sharing of address mappings. 21

Figure 3.4 Physical Page Pointer as novel abstraction . . . 23

Figure 4.1 Architectural guidebook. 27

Figure 4.2 Parsers and Accessors. 29

Figure 4.3 Heterogeneous Processing Capabilities. 30

Figure 4.4 Experimental Results. 31

Figure 5.1 Architectural guidebook. 35

Figure 5.2 Offloading Models. 37

Figure 5.3 Extending the HTAP Solution Space. 39

Figure 5.4 Experimantal Results. 40

Figure 6.1 Architectural guidebook. 43

Figure 6.2 NDP Pipelines. 46

Figure 6.3 Ways of Result-set Handling 47

Figure 6.4 Experimental Results. 48

Figure 7.1 Considered NDP Problem Space 53

Figure 8.1 DBMS storage alternatives 68

Figure 9.1 Write-Amplification along a traditional I/O stack 81

Figure 9.2 NoFTL-KV: Design of a deep integration . . . 83

Figure 9.3 Results. 85

Figure 9.4 Results. 86

Figure 9.5 Results. 87

Figure 9.6 Experimental evaluation of NoFTL-KV 87

Figure 10.1 Different options to execute analytical operations. 93

Figure 10.2 The high-level architecture. 95

Figure 10.3 Execution time for varying dataset sizes. . . . 99

Figure 10.4 Detailed execution time analysis. 101

Figure 10.5 Transfer sizes from Device-To-Host 102

Figure 11.1 Necessary format and layout information. . . . 108

Figure 11.2 Different NDP operation types. 110

Figure 11.3 Formats and Layouts. 112

Figure 11.4 Representation of Format and Layouts. 114

Figure 11.5 DBMS page layouts. 115

Figure 11.6 The simple NDP-ImageProcessor application. . 116

Figure 11.7 The Cosmos OpenSSD board. 117

xxi

xxii list of figures

Figure 11.8 Experimental results. 118

Figure 11.9 Experimental results. 119

Figure 12.1 Different Stacks. 124

Figure 12.2 Conceptual organization multi-level LSM-Trees. 127

Figure 12.3 Architecture of nKV. 128

Figure 12.4 In-situ access and data interpretation. 130

Figure 12.5 Cosmos+ Architecture. 134

Figure 12.6 The overall Microarchitecture. 135

Figure 12.7 Break-Down of Execution Times. 136

Figure 12.8 GET execution times. 139

Figure 12.9 SCAN execution times. 139

Figure 12.10 Betweenness centrality execution times. 140

Figure 12.11 Betweenness centrality execution times. 141

Figure 13.1 Different Stacks. 146

Figure 13.2 Architecture of nKV. 147

Figure 13.3 In-situ access and data interpretation. 153

Figure 13.4 COSMOS+ and the Demonstration Setup. . . . 153

Figure 13.5 Interactive GUI. 153

Figure 13.6 Betweenness Centrality results. 154

Figure 13.7 GET Latencies on different stacks. 154

Figure 13.8 SCAN performance. 154

Figure 14.1 Comparison of traditional KV-store. 160

Figure 14.2 Overall system architecture. 161

Figure 14.3 Architectural template. 162

Figure 14.4 Example Code. 163

Figure 14.5 Internal structure of the Filtering Unit. 165

Figure 14.6 Snippet from the generated software-interface. 167

Figure 14.7 Execution times of the GET and SCAN. 168

Figure 14.8 Out-of-Context Slice Utilization. 170

Figure 14.9 Out-of-Context Slice Utilization. 171

Figure 15.1 State-of-the-art HTAP architectures. 178

Figure 15.2 Update-aware NDP executes OLAP operations. 180

Figure 15.3 Storage organization. 185

Figure 15.4 Transactionally consistent in-situ processing. . 187

Figure 15.5 Delta Buffer. 188

Figure 15.6 NDP Transaction. 190

Figure 15.7 NDP Transaction. 191

Figure 15.8 In-situ snapshot creation. 191

Figure 15.9 Physical Page Pointers. 193

Figure 15.10 NDP-pipelines. 196

Figure 15.11 System Setup. 198

Figure 15.12 LinkBench with HTAP extension. 199

Figure 15.13 OLAP performance. 200

Figure 15.14 CPU performance. 200

Figure 15.15 Executing BC as OLAP workload. 201

Figure 15.16 System performance behaviour. 202

Figure 15.17 Processing BC. 203

Figure 15.18 Fresh data with low overheads. 204

Figure 15.19 Accessing most recent tuple version. 204

Figure 16.1 State-of-the-art approaches. 217

Figure 16.2 NDP Pipelines can materialize results. 218

Figure 16.3 On-device filtering of data. 222

Figure 16.4 Interleaved pipelining and materialization . . . 223

Figure 16.5 Reuse of materialized results. 224

L I S T O F TA B L E S

Table 9.1 Results. 85

Table 10.1 Synthetically generated datasets. 99

Table 12.1 FPGA-Resource Utilization. 136

Table 12.2 Flash Latencies and Bandwidth. 138

Table 14.1 FPGA Resource Utilization. 169

A C R O N Y M S

AI Artificial Intelligence

ALU Arithmetic Logic Unit

ASIC Application-specific Integrated Circuit

BC Betweenness Centrality

BRAM Block Random Access Memory

CCIX Cache Coherent Interconnect for Accelerators

CPU Central Processing Unit

CXL Compute Express Link

DBMS Database Management System

DMA Direct Memory Access

DRAM Dynamic Random Access Memory

DSP Digital Signal Processor

FLOPS Floating Point Operations Per Second

FPGA Field Programmable Gate Array

FTL Flash Translation Layer

GC Garbage Collector

xxiii

xxiv acronyms

GPU Graphics Processing Unit

HBM High Bandwidth Memory

HDD Hard Disk Drive

HDL Hardware Description Language

HLS High-Level Synthesis

HTAP Hybrid Transactional/Analytical Processing

IDC Industrial Development Corporation

ISA Instruction Set Architecture

IoT Internet of Things

LBA Logical Block Address

LSM Log-Structured Merge

LUT LookUp Table

MIMD Multiple Instructions, Multiple Data

ML Machine Learning

NDP Near-Data Processing

NVMe NVM express

NVM Non-Volatile Memory

OLAP Online Analytical Processing

OLTP Online Transactional Processing

PBA Physical Block Address

PCB Printed Circuit Board

PCIe Peripheral Component Interconnect express

PCM Phase Change Memory

PPP Physical Page Pointer

RDMA Remote Direct Memory Access

RTL Register Transfer Level

SAS Serial Attached SCSI

SATA Serial Advanced Technology Attachment

SIMD Single Instruction, Multiple Data

SISD Single Instruction, Single Data

SSD Solid State Drive

SST Sorted String Table

STT-MRAM Spin-Transfer Torque Magnetoresistive RAM

SoC System on Chip

Part I

S Y N O P S I S

1
I N T R O D U C T I O N

Over the last decades, a tremendous change toward using information
technology in almost every daily routine of our lives can be perceived
in our society. Together, the amount of data collected day-by-day
on Web, Internet of Things (IoT), and Artificial Intelligence (AI) ap-
plications continuously grow with an ever-increasing speed, almost
surpassing the exponential increase of Jim Gray’s investigations [90]
in 2006. At the same time, the need to derive insights from those data
collections about customer behavior or analyze the performance of pro-
cesses and products became indispensable to the classical transactional
processing in such systems.

At the same time, the hardware of today’s computer architectures is
subject to rapid changes in technologies, properties, and performance
characteristics. For instance, advances in the semiconductor industry
have created storage technologies like Flash and Non-Volatile Mem-
ory (NVM) that are capable of: (1) persisting and accessing data at
rates at least 100 to 105 times faster than classical mechanical storage
media and (2) providing high levels of parallelism. With a high yield
in manufacturing and low production costs, such storage technologies
provide an economical way of storing Tera to Petabytes of data in con-
trast to in-memory solutions. Similarly, a variety of novel processing
units besides classical Central Processing Units (CPUs) have become
widespread in today’s server architectures and cloud offerings. While
the number of CPU cores in a single host system can easily reach
multiple hundreds (4 to 8 sockets with 72 Cores for x86, or 128 ARM
Cores), Field Programmable Gate Arrays (FPGAs) provide the ability to
build custom hardware that is partially reconfigurable during runtime.
With the latter, even Multiple Instructions, Multiple Data (MIMD) can
be facilitated and flexible, scalable, and elastic operation pipelines
enable new possibilities to process data.

However, the burden of moving data toward the best fitting process-
ing unit is inherently linked to today’s computer architecture that is
based on the data-to-code paradigm. Thus, the continuously growing
data has to be transferred from the storage to the compute to be pro-
cessed there. Consequently, today’s systems have several drawbacks.
Firstly, the on-device bandwidth of the interconnected storage chips
(e. g., Flash) cannot be fully-leveraged despite the fact that it is an
order of magnitude higher than the bus between host and device. Sec-
ondly, the high clock frequency and parallel processing capabilities of
modern CPUs cannot perform to their full potential as data movement
entails I/O bus contention and stalling. Thirdly, with common hybrid

3

4 introduction

workloads, such data transfers cause also a high buffer pollution in the
memory of the host system as processed datasets usually exceed their
resource limits. Especially analytical queries process both, the latest
modifications as hot data as well as the very large cold portion of the
storage devices. Lastly, the overall power consumption of a system
suffers from either the high amount of data movement or oversized
in-memory configurations.

Nevertheless, by shifting the system paradigm toward code-to-data,
i. e., pushing the processing as close as possible to the storage where
the data is located, several benefits can be achieved. Firstly, the already
available on-device hardware characteristics can be fully leveraged
e. g., significantly higher on-device bandwidths and parallelism. Sec-
ondly, storage devices based on processing units of relatively low
computing capabilities, such as embedded platforms equipped with
simple ARM-Cores, can be utilized to perform simple filtering and
calculations to reduce data movement, and thus, relieve the I/O bus
contention. Thirdly, also fully-fledged processing pipelines can be off-
loaded to the storage device to gain significant performance benefits
by utilizing the full set of available heterogeneous compute capabil-
ities. Lastly, those aspects will not only improve the robustness of
data-intensive systems but also provide an economically friendly way
of processing large amounts of data, especially as storage like Flash is
considerably cheaper than main memory.

While the fundamental concepts of Near-Data Processing (NDP)
have already been studied in the early 80s, its revision is being mainly
triggered by the advances in semiconductor technology. Contrary
to early approaches, nowadays manufacturing processes allow to
economically place processing units close to storage technologies,
establishing modern intelligent computational storage devices. These
reach from simple Solid State Drives (SSDs) with lightweight ARM
processors up to enterprise-grade hardware equipped with large NVMs

and several processing units such as CPUs, Graphics Processing Units
(GPUs), or FPGAs.

Within this work, we discuss the beforementioned key aspects of
NDP for data-intensive systems on modern computational storage
devices. The following list presents the main contributions:

overview We investigate and provide an in-depth overview of the
relevant aspects of NDP in the context of data-intensive systems
and modern hardware.
See Contributions: C1.1 C2.1 C2.3 C3.1 C4.1

concepts & abstractions We propose novel concepts, abstrac-
tions, and interfaces for shifting processing from the host to a
computational storage device.
See Contributions: C1.2 C1.3 C2.2 C2.4 C3.3 C4.2

introduction 5

opportunities We propose new data processing opportunities like
transactionally consistent NDP pipelines in Hybrid Transaction-
al/Analytical Processing (HTAP) workloads or in-situ reuse of
intermediary results on computational storage devices with het-
erogeneous processing units.
See Contributions: C2.5 C3.2 C4.3 C4.4

effects We evaluate and demonstrate the effect of NDP on the perfor-
mance, robustness, and power consumption of a data-intensive
system.
See Contributions: C2.2 C2.4 C3.4 C4.3 C4.5

As outlined in Figure 1.1, we discuss the challenge in-depth, give
background information, and introduce the Central Research Question
CRQ in the next Chapter 2, followed by elaborating why physical
storage management is essential for efficient NDP in Chapter 3. Thereby,
we introduce proper abstractions and interface definitions according
to the Research Question RQ1 . Likewise, Part ii provides insights on
those aspects on basis of the Publications P1 P2 P3 of this cumulative
dissertation.

Chapter 1

Introduction

Chapter 2

Today’s Challenges

Chapter 3 Chapter 4 Chapter 5 Chapter 6

Chapter 7:

Conclusion and Outlook

Part ii

P1 P2 P3
Part iii Part iv Part v

P4 P5 P6 P7 P8 P9

Reading Flow
Legend

References

C4.1 C4.2 C4.3 C4.4 C4.5C3.1 C3.2 C3.3 C3.4C2.1 C2.2 C2.3 C2.4 C2.5C1.1 C1.2 C1.3

RQ1 RQ2 RQ3 RQ4

CRQ

Research Question Contribution Publication

Storage
Management

for NDP

On-Device Navigation

and Data Interpretation

NDP

Offloading

NDP Execution and

Result-Set Managment

Figure 1.1: Structure and reading flow of this thesis.

Chapter 4 continuous to utilize these interfaces and abstractions and
explores on-device navigation and data interpretation (see Research
Question RQ2). Thereby, the concept of Parsers and Accessors as
well as the usage of heterogeneous hardware for NDP are discussed,
supported by Publications P4 P5 P6 P7 in Part iii.

Novel interaction and offloading models for NDP are evaluated in
the Research Question RQ3 . Thus, Chapter 5 and Publication P8

of Part iv discuss different types of NDP offloading and propose the
Shared State as a concept for supporting transactionally consistent
NDP executions in Database Management Systems (DBMSs).

6 introduction

Lastly, we look into the NDP execution and result-set management
in Chapter 6. Various ways of executing NDP are presented before
we discuss NDP pipelines in-depth. Moreover, final and intermediary
result-set handling is evaluated and an NDP finite state machine is
proposed. Substantiated by the Publication P9 of Part v, the final
Research Question RQ4 is examined. We conclude this thesis in
Chapter 7 by summarizing the beforementioned contributions and
exploring the problem space of NDP for data-intensive systems to give
an outlook on future work.

2
T O D AY ’ S C H A L L E N G E S

In Chapter 1 we motivated the shift toward NDP and provided a
first glimpse into the main drivers and expectable benefits. In this
part, a detailed investigation of today’s challenges is provided by
first, discussing Amdahl’s Law in light of the steady data growth in
Section 2.1. Secondly, Section 2.2 describes how modern hardware can
be employed to solve the challenge with NDP and gives background
information about it. Moreover, governing trends in data-intensive
systems that affect NDP are outlined in Section 2.3 which leads to the
Central Research Question CRQ in Section 2.4.

2.1 the need to change system paradigms

Today’s society creates impressive amounts of data. With the advent
of the internet and especially the mobile phone, web, and social me-
dia platforms have become part of our daily lives. Nowadays, these
collect data from their users in volumes of multiple thousand Giga- or
even Petabytes per day. Widely-known examples are Facebook (500+
TB data created per day in 2012 [24]), Instagram (95 million shared
photos and videos per day in 2021 [65]), Twitter (500 million tweets
per day in 2013 [16]), and Youtube (500 hours of videos uploaded per
minute in 2020 [89]). In addition, IoT applications became mainstream
with connected smart devices such as building technology, e-Bikes,
vacuum robots, mowers, or simple light blubs, to just name a few.
Equipped with various sensors, they produce tons of data stored in
cloud infrastructures, ready for being analyzed. Likewise, advances in
camera and satellite technology improve the resolution and recording
frequency of images e. g., in astronomy, and thus, increase the rate at
which data is growing. According to the Industrial Development Cor-
poration (IDC) and [49], the overall worldwide creation and processing
of data comprise up to 97 Zettabytes in 2022.

The amount of scientific data is doubling every year.

— Alex Szalay and Jim Gray, 2006 in [90]

Already in 2006, Jim Gray and Alex Szalay perceived this rapidly
growing amount of data and predicted an exponential growth for
the future [90] as demonstrated in Figure 2.1. Today, data growth
is subject to various research [23, 46, 63], and even though a large
portion of the data volumes mentioned in those statistics may only
be transient, it is reasonable to assume that just the persisted volume
grows exponentially today.

7

8 today’s challenges

2 4 6 8

Data

Years

Pe
rs

is
te

d
D

at
a

Si
ze

20 40 60
1

1.5

2

2.5

3

f=10% f=30%
f=50% f=70%

Number of Processors

Sp
ee

du
p

Figure 2.1: While the data size is continuously growing at an exponential
rate (left), its processing is limited due to Amdahl’s Law (right).
The speed-up heavily depends on the fraction of time that the
improved part is actually used but most of the time is spent on
moving the data to any processing unit.

To cope with the increasing data volumes, the semiconductor indus-
try firstly improved the performance of its processors by increasing
the clock frequency [84]. For example, the clock frequency of CPUs

improved from less than 0.5 GHz in the early 90s up to around 4 GHz
in 2004, when they reached their peak. Unfortunately, with higher
clock frequency, the heat development and power consumption in-
crease similarly. Heat dissipation became one major issue and the
relation between processing speed and power consumption was not
economically beneficial anymore. Consequently, the semiconductor
industry moved away from its designs of single-processor models with
high cycle rates per second but rather focused on combining multiple
lower-clocked processing units that work in parallel. By distributing
the work across these cores, it is possible to significantly boost the
number of performed instructions per second without jeopardizing
the heat dissipation.

Today’s manufacturing processes allow CPUs to comprise per socket
up 72 cores in models of the x86 family [50] and even 128 cores
in ARM-based models [25]. Multiplied by the number of sockets in
todays server architectures, a single host instance can easily reach 512

cores. Moreover, GPUs have recently entered the data centers as highly
parallel processing units. With their Single Instruction, Multiple Data
(SIMD) instructions, they are specialized for algorithms that process
large data blocks in parallel and achieve more than 1014 Floating Point
Operations Per Second (FLOPS) [69].

2.2 the shift toward near-data-processing 9

Yet, such processing units imply that the data processing can be
partitioned evenly across the cores to avoid any bottlenecks in a single
core. This leads us to one of Amdahl’s laws for balanced systems [4,
47] which is also seen as a basic rule of thumb in data engineering [39].
It states that by parallelizing a single part of the work, the overall
performance improvement is limited by the fraction of time that the
improved part is actually used (see Equation 2.1).

S =
1

(1− f) + f
k

where f = fraction of work in faster mode,

k = speedup while in faster mode or number of cores

(2.1)

In Figure 2.1, we show sample speedups in relation to the number
of cores for various factions f according to Amdahl’s law. Depending
on the parallel portion, the speedup increases significantly with 4 to
32 cores but stagnates beyond this number of parallelism approaching
asymptotically a theoretical limit. However, perfectly parallelizing
an algorithm is almost impossible in practice and can often only
be applied in theoretical considerations. But even more importantly,
with the exponential increase in data [90] described above, we cannot
expect to have the entire data already in the memory or caches of the
processing units anymore, but rather require to read it from persistent
storage devices such as SSDs. Consequently, the time spent for I/O is
also included in f.

However, most of the time, data-intensive systems become I/O- Key Insight: The
theoretical speedup of
Amdahl’s law is hurt
by the I/O boundness
of today’s data-
intensive systems.

bound due to the scarce bandwidth of today’s interconnects and
transfer protocols. For instance, with Serial Advanced Technology
Attachment (SATA) - 0.6 GB/s, Serial Attached SCSI (SAS) - 1.5 GB/s,
or Peripheral Component Interconnect express (PCIe) - 32 GB/s, the
data cannot be moved to the powerful processing units as fast as
they can execute operations. As a consequence, the processing cores
are blocked by the I/O and have to wait for new data to continue
processing. In the end, such stalling has a negative impact on f, and
thus, hurts the speedup of the entire system.

To sum up, even though modern processing units can process data
with incredible levels of parallelism, the constant increase in the vol-
ume of data requires today’s computer architectures to store it on
storage devices and fetch it prior to processing. Thus, systems have
become I/O-bound, harming the theoretical speedup for parallel pro-
cessing units as described by Amdahl [4].

2.2 the shift toward near-data-processing

To date, the majority of computer architectures embrace a data-to-code

paradigm that requires transferring all data from the different levels of

10 today’s challenges

the storage hierarchy over bus systems to one of the processing units.
Only after the data is available, instructions can be performed on it. As
discussed in Section 2.1, such a paradigm can profit from the highly
parallel processing units as long as most of the data is already close
to them, e. g., using in-memory computing. And even in such cases,
today’s data-intensive systems struggle with the memory wall [107].
Additionally, with the continuously increasing data volumes, most of
those systems cannot expect to have most of the dataset in memory
without immense investments in expensive memory.

However, instead of moving all data from the storage device to the
processing units, one can also shift the paradigm toward code-to-data,
formally known as Near-Data Processing (NDP), or in-situ processing.
Thus, the key idea is to offload processing to a compute unit that
is as close as possible to the storage where the data is physically
located and circumvent the burden of costly data transfers. While this
paradigm is also applicable in main memory systems to circumvent
the Von Neumann bottleneck [10], this thesis considers mainly the
connection to and data transfers from mass storage.

Already in the early 80s and 90s, the concept of in-situ process-
ing was investigated and can be traced back to David DeWitt who
proposed database machines [18, 30]. Experimenting with magneto-
mechanical storage devices, processors were equipped on either the
tracks or the moving heads. Thus, for the first time, processing could
be directly performed on mass storage and data movement be reduced.
Unfortunately, several drawbacks were limiting factors: e. g., the low
I/O bandwidth and parallelism at that time, and the high costs of
manufacturing such proprietary hardware.

As this is not surprising, given the fact that those storage devices
are limited by mechanical moving parts, the idea was adapted with
advances in the semiconductor industry. First prominent approaches
emerged in the late 1990s like ActiveDisc [1], IDISK [53], and Active
storage/disk [78] followed by Smart SSDs [31, 86] in 2013.

Today, the semiconductor industry provides novel ways of combin-
ing powerful processing elements close to modern storage technologies
with tremendously high bandwidths and parallelism. For instance,
the on-device interconnect can nowadays achieve an aggregated data
transfer rate of up to 2.4 GB/s for a single Flash chip [66]. Considering
that multiple of those independent chips are used, we can expect a
sustainable bandwidth of 19.2 GB/s and even 38.4 GB/s with 8 and 16

chips per module, respectively. But, as if that was not enough, modern
computational storage devices can easily fit 2 [88] to 4 [75] of such
modules on a single Printed Circuit Board (PCB), providing an overall
bandwidth of 153.6 GB/s.

Likewise, FPGAs became popular besides the traditional CPUs and
GPUs. Even though FPGAs support building elastic processing pipelines,
their advantage is in providing low but also deterministic latencies

2.2 the shift toward near-data-processing 11

Passive Storage Computational Storage

Data-to-Code Code-to-Data

Host Host

Memory Memory

Processing Processing

Flash/NVMFlash/NVM

read pushdown

Figure 2.2: Near-data Processing entails a paradigm shift: From a data-to-
code toward a code-to-data.

as well as low jitter. Once deployed, a hardware model continuously Key Insight:
Heterogeneous
compute hardware,
appropriate for
different types of
operations, is
available on
computational
storage devices.

produces the same output in equal time, given that the input data and
start conditions are similar. In contrast to fixed-function Application-
specific Integrated Circuits (ASICs), FPGAs can be reprogrammed, some-
times even partially. Thus, deployed hardware models or portions of
it can adapt to changing data formats or workloads. With almost a
million LookUp Tables (LUTs), several Gb of Block Random Access
Memory (BRAM) and multiple specialized logic elements like Digital
Signal Processors (DSPs) or AI tiles, nowadays FPGAs are capable of
performing highly complex algorithms.

In addition, via modern 3D-Stacking, it became economically feasi-
ble to combine a variety of processing units on the same chip, namely
System on Chip (SoC). These also include large caches or storage tech-
nologies such as High Bandwidth Memory (HBM). Additionally, such
chips can be integrated on a PCB with mass storage technologies such
as Flash, building the foundation for modern computational storage
devices required for efficient NDP.

With those computational storage devices also a multitude of novel
approaches, besides the one considered in this thesis, was proposed
focussing on a variety of specific challenges, e. g., IBEX [105, 106],
Minerva [29], Willow [86], BlueDBM [67], JAFAR [9, 108], Kanzi [45],
ISP [56], YourSQL [52], Biscuit [41], PapyrusKV [55], DoppioDB [3, 87],
Caribou [51], Batched Writes [32], BlockNDP [11], and PolarDB [22].

In general, nowadays computational storage devices enable a shift
toward NDP. With various types of processing power close to stor-
age, such devices are predestined to offload even complex process-
ing pipelines (see Chapter 4). In this manner, they can leverage the
on-device bandwidth which outperforms mass storage interconnect
protocols like PCIe 3.0 x16 with 15.75 GB/s or PCIe 4.0 x16 with 31.5

12 today’s challenges

GB/s. Consequently, NDP provides an efficient solution to either pre-Key Insight:
Advances in the
hardware enable

sophisticated
computational

storage devices but
their proper

integration into
data-intensive

systems is subject to
research.

or fully process the massive amounts of raw data collected nowadays,
by limiting the data movement between the storage device and the
host to only qualifying data, and thereby, relieving today’s bus sys-
tems. Depending on the offloaded processing, this useful data equates
to either: (a) the final results, (b) just a necessary subset of the data, or
(c) the raw data transformed to improve later processing steps on the
host. Moreover, NDP offers multiple new opportunities, as discussed
in Chapter 5 and 6, in particular for data-intensive systems.

2.3 trends and factors in today’s data-intensive sys-
tems

In addition to the possibility offered by computational storage de-
vices to shift processing closer to the storage where data is located,
several trends and factors in database and system architectures can
be perceived that affect the application of NDP in the context of this
thesis.

2.3.1 Workload

Besides the rapid increase in data volume discussed before, the work-
load on data-intensive systems is also constantly evolving as applica-
tions change. Driven by trends from the web and mobile platforms,
data comes in different shapes and sizes nowadays, reaching from
simple key-value pairs, over graphs and relational models, to com-
pletely unstructured image and video recordings. Likewise, the update
frequencies of data records increased significantly as more and more
users operate on such platforms, putting pressure on today’s concur-
rency controls.

Moreover, the urge to gain insights from operational data entails
Hybrid Transactional/Analytical Processing (HTAP). Instead of having
only highly frequent transactions that read, write, and modify the
dataset as in classical Online Transactional Processing (OLTP) scenarios,
HTAP combines them with long-running transactions from Online Ana-
lytical Processing (OLAP) workloads. In practice, such HTAP workloads
can be found in various applications that require analyzing the data
of a productive system in near real-time like social media networks orKey Insight: Modern

workloads comprise
OLTP and OLAP

that compete for
resources on the host.

enterprise resource planning systems.
Thereby, transactions are typically performed on a hot part of the

data while OLAP queries usually process large parts of, or even the
entire data, as shown in Figure 2.3. As a consequence, both workloads
compete for resources such as buffers or processing units.

In Chapter 5 and Part iv we discuss how NDP improves the robust-
ness in the execution of such HTAP workloads by offloading OLAP

queries to the computational storage device.

2.3 trends and factors 13

Passive Storage

Unified

Engine

Passive Storage

Trans.

Engine

Analytical

Engine

HTAP

OLTP OLAP

HTAP

OLTP OLAP

Unified Storage Decoupled Storage

D
a
ta

E
x
c
h
a
n
g
e

Figure 2.3: Today’s architectures of data-intensive systems for HTAP can be
divided into Unified Storage and Decoupled Storage Systems.

2.3.2 Architecture

In parallel to the evolving workloads, changes in database architectures
are also investigated. For instance, in order to adequately perform
HTAP workloads several systems were proposed in the industry [33,
36, 60, 61, 76] and academia [2, 5, 7, 8, 19, 40, 54, 57, 62, 64, 68, 77, 85].

These can be categorized into unified storage systems that introduce
a single database engine to process both types of workloads (OLTP and
OLAP), and decoupled storage systems that foresee one engine per
workload operating on a single passive storage (see Figure 2.3). In the
latter, recurring data exchange procedures transfer data from the OLTP

to the OLAP engine to provide the freshest data in the analytical trans-
actions. In this manner, the systems are optimized on different aspects
such as data freshness, data consistency, data transfers, performance
isolation, or memory pollution.

The extent to which NDP can be part of the solution space, and
optimize in those aspects, is discussed in Chapter 5 as well as in the
respective Publication P8 .

2.3.3 Abstractions and Interfaces

Over the past years, several abstractions have been established to en-
capsulate a certain functionality or behavior within computer systems
and especially in DBMS. Interfaces are responsible to define the way
to interact with those abstractions. In particular, the access to storage
devices is subject to multiple layers of abstractions and interfaces that
have to be revised with NDP.

As presented in Figure 2.4, database architectures employ several
general abstractions for their internal storage management. A database

14 today’s challenges

could have multiple tablespaces for its segments like tables, indices,
and others. Extents are used as entities of allocation whenever new
space is required. In some cases, those extents are further subdivided
into blocks.

Flash PageFlash Page

FileFile

DBMS

Passive Storage

B
lo

c
k

D
e

v
ic

e

L
a

y
e

r

F
T

L
T

a
b

le
s
p
a
c
e Table Index ...

Extent

Extent

...

File

...

Page

Offset=0
Page

Offset=4K
...

Sector

LBA=0x01
...

Sector

LBA=0x02

Flash Page

...

Info Hiding

Info Hiding

Info Hiding

Figure 2.4: Databases organize their data
in several abstractions like Ta-
blespaces, Database Objects, and
Extents. Those are further subdi-
vided along the I/O Stack until
they are physically stored on the
storage device. Yet, every abstrac-
tion also introduces information
hiding.

While those abstractions
occur in slightly different
variations for each DBMS,
at some point they all rely
on the commonly known
files of operating systems.
Files represent a virtually
contiguous memory space
that can be expanded al-
most without any limita-
tions. Under the hood, file
systems are responsible to
manage those chunks of
data, often referred to as
pages. In most file sys-
tems, the size of such
pages can be configured
but usually comprise 4 KB.
Within the block device
layer of the operating sys-
tem, these pages are subdi-
vided into sectors of a size
of 512 Bytes each and are
assigned to Logical Block
Addresses (LBAs). Depend-
ing on the interface of the
storage device, these sec-
tors are gathered and sent

via a single request to the device. Once there, the Flash Translation
Layer (FTL) takes over the responsibility to finally place the data in a
physical location of the underlying storage technology, thereby map-
ping a Physical Block Address (PBA) to the LBA.

Similarly, the interface of a certain abstraction matches its given
purpose, but hides the complexity of underlying structures. E.g., one
can read, write, and modify files to any extent without worrying about
the physical storage management of this data. While this opens the
possibility to exchange certain layers of abstraction without consider-
ing the backward compatibility, this also masks essential properties of
the underlying levels. For instance, the interface of files is consistent
when changing from magneto-mechanical disks with cylinders, tracks,
and sectors to Flash-based SSDs with dies, planes, and pages. Yet, as

2.4 central research question 15

already described in Section 2.2, NVMs like Flash have fundamentally
different properties than magneto-mechanical disks.

Consequently, to fully leverage the properties of todays storage tech- Key Insight:
Abstractions and
interfaces of today’s
I/O stack introduce
information hiding
that prevents direct
processing on lower
layers.

nologies, abstractions and interfaces have to adapt. In particular, when
moving processing toward storage, such levels of abstraction become
a serious issue as they introduce information hiding. In Chapter 3, we
will focus on those aspects and provide solution proposals to enable
NDP which can exploit the benefits of NVMs like high bandwidth and
parallelism.

2.3.4 Hardware

In Section 2.2, we already described that FPGAs entered data centers
recently. In contrast to CPUs and GPUs, they are not based on a classical
Instruction Set Architecture (ISA) but on various building hardware
blocks, such as LUTs, which are interconnected with reconfigurable
wires to perform even complex operations. Consequently, the exe-
cutable code is no longer any machine code with instructions that are
processed by an Arithmetic Logic Unit (ALU) but rather a bitstream
with a binary bit pattern to configure the FPGA architecture when
being programmed.

While FPGAs provide a high potential to highly parallelize and ac-
celerate processing logic, the development process for the required
bitstreams is quite tedious. Most commonly, the first step is to define
the Register Transfer Level (RTL) design using a Hardware Description
Language (HDL) like VHDL or Verilog. Alternatively, modern design
entry approaches such as High-Level Synthesis (HLS) can be used to
model the behavior of an FPGA in a more abstract and productive
manner from a developer’s perspective. In both cases, the subsequent
synthesis aims to optimize the logic according to several design con-
straints such as the FPGA area, clock frequency, power consumption,
or reliability. In the final place and route step, the location and wiring
of logic elements are created considering the layout limitation of the
target FPGA.

Besides the complex design entry with HDLs, as well as the time- Key Insight: Even
though FPGAs offer
a promising potential
to accelerate NDP,
its development is
cumbersome.

consuming synthesis, placing, and routing, the debugging and testing
using simulations make developments even more time-consuming and
error-prone. As a consequence, when utilizing FPGAs as accelerators in
NDP, especially with changing workloads, novel ways of automation
are required. In Chapter 4 we discuss first proposals of automation.

2.4 central research question

Considering all the background introduced here about the current
system architecture along with its drawbacks regarding processing
large ever-growing amounts of data with modern storage and process-

16 today’s challenges

ing technologies, and the overview of today’s trends and factors in
data-intensive systems, the overarching Central Research Question of
this work is:

central research question – CRQ

» How can architectures of data-intensive systems leverage near-data
processing to cope with today’s hybrid workloads and increasing dataset
size while addressing the challenges of today’s computer architectures? «

The following chapters of this thesis will investigate different aspects
of an answer, and provide more profound details about the challenges,
solution proposals, and contributions.

3
S T O R A G E M A N A G E M E N T F O R N D P

With modern computational storage devices, the technology for per-
sisting data is also changing from magneto-mechanical moving disks
to Non-Volatile Memorys (NVMs) like Flash. To reach the full potential
of NDP, their physical characteristics, like access speed and patterns,
parallelism, and interfaces must be leveraged.

research question – RQ1

» Which novel abstractions are necessary to extend the native storage
interface for NDP? «

Heterogenous Processing Units

NDP Call

DBMS

C
o

m
p

.
S

to
ra

g
e

NDP Pipeline

Persistent Data

...... ...

Storage Manager

Execution Engine

Parsers/Accessors

Considered in ChapterLegend

Result-Set Mgmt

Figure 3.1: Architectural guidebook.

Thus, we investigate the Re-
search Question RQ1 by
revisiting the physical storage
management of modern stor-
age technologies and setting it
into the context of databases.
Thereby, we elaborate interfaces
toward and on the device it-
self. Moreover, necessary ab-
stractions to issue and process
NDP calls are established. Figure
3.1 shows the areas considered
within a database as an architec-
tural guidebook. The main con-
tributions presented in this chap-
ter are:

C1.1 Elaboration of drawbacks of today’s storage management
and the introduction of physical storage management for
NDP.

C1.2 Proposal of an interface to shift processing to computational
storage devices.

C1.3 Introduction of necessary abstractions for NDP like Physical
Page Pointers.

17

18 storage management for ndp

The corresponding publications are:

P1 [73] – “Native Storage Techniques for Data Man-
agement”

Chapter 8

P2 [92] – “NoFTL-KV: Tackling Write-Amplification
on KV-Stores with Native Storage Management”

Chapter 9

P3 [100] – “nativeNDP: Processing Big Data Analyt-
ics on Native Storage Nodes”

Chapter 10

P8 [95] – “Near-Data Processing in Database Sys-
tems on Native Computational Storage under
HTAP Workloads”

Chapter 15

3.1 physical storage management in databases

For decades, industry and academia have been constantly trying to
optimize data-intensive systems to fully leverage the bandwidth and
parallelism of the storage tier. While some systems started to provide
proprietary filesystems [71] or even operate on raw storage [48, 72] to
interact with devices, most of today’s data-intensive systems utilize the
widely known abstraction of files as a foundation, which is also very
common in almost every operating system. The latter has a crucial
advantage, as files resemble an almost ever-expandable contiguous
logical memory space that can be modified in place without any con-
siderations. Thereby, they provide a flexible abstraction for databases
while encapsulating the complexity of the underlying physical storage
management. Moreover, this allows to seamlessly swap lower levels
of the I/O stack, such as necessary kernel modules of the operating
system, the bus interconnection to the device, or even the storage
technology itself, without adapting the DBMS.

However, by swapping some of those layers, the expected behavior
and performance are changing tremendously as the internal properties
of those layers likewise differ. In particular storage technologies have
been subject to a fundamental change over the last decades with the
advances in the semiconductor industry. In Figure 3.2, we sketch a
broad overview and comparison of the major integral parts of tradi-
tional Hard Disk Drives (HDDs) and modern SSDs or computational
storage devices that are equipped with Flash as NVM.

HDDs comprise heads that read and write data from and to a track
on one of the multiple fastly-rotating cylinders. Therefore, to access a
specific sector, the cylinders have to be rotated to that certain section
and the head has to be positioned to the associated track. Not surpris-
ingly, the corresponding seek time to access random sectors heavily
depends on the current position of the mechanical parts of the HDD

and consequently, is significantly higher than accessing sequential
sectors. Moreover, the internal parallelism is limited to the number of
heads.

3.1 physical storage management in databases 19

HDD SSD (Flash)

Sector (512 bytes)

Cylinder

Track
Die #1 Die #2

...

Plane Block Page

Die #N

... ...

..
.

Controller Controller Controller

Module #1 Module #N

Figure 3.2: The composition of traditional HDDs differs significantly from
those of SSDs. Similarly, access latencies and patterns, operation
parallelism, and wear-out differ as well.

In contrast, NVMs of SSDs or computational storage devices, like
Flash, consist of special semiconductors that can persistently store a
specific state. Those semiconductors are packaged in dies that can
be accessed independently of each other with their associated con-
troller. Often, computational storage devices comprise even multiple
modules (e. g., SO-DIMMs) that have 8 to 16 dies equipped [75, 88],
resulting in a substantial on-device access parallelism. Internally, dies
are further subdivided into planes that allow again some operations
to be issued in parallel, also known as multi-plane operations. Lastly,
within a plane, the pages as the smallest physically accessible unit
are arranged in blocks. Accesses of the same operation take the same
time, irrespectively whether the access pattern is random or sequen-
tial. However, NVMs differ from magneto-mechanical disks in having
highly variable access latencies per operation. In particular, with SSDs,
writing a page takes an order of magnitude longer than reading one
but is still around 100× faster than HDDs. Another idiosyncrasy is
that pages, once written, cannot be subject to another write operation
until the block, they are belonging to, is erased. In consequence, all
other valid pages of the same block are either erased or have to be
copied to another block beforehand which entails a significant write
amplification [42]. Unfortunately, the number of erase cycles per block
is limited in such technologies as the semiconductors wear out. To pro-
vide block-device compatibility in that every page can be overwritten,
but still expand the lifetime of modern SSDs, highly complex FTLs are
responsible on the device for talking erase-before-overwrite, equaliz-
ing the block erase counts (wear-leveling) and managing the physical
placement of the data and thereby, maintaining the logical-to-physical
address mapping.

In general, NVMs of SSDs provide significantly higher bandwidths Key Insight: Modern
storage technologies
differ fundamentally
from traditional
HDDs and require a
proper management.

and levels of parallelism in contrast to traditional HDDs. To take advan-
tage of those benefits, their interface requires a careful data placement
to issue operations on parallel operating units (e. g., dies and planes)

20 storage management for ndp

and to mitigate the wear-out by reducing block erases. Moreover, ap-
plications have to adapt to the operation-specific access latencies and
storage granularities (e. g., blocks and pages) C1.1 .

But even with the latest FTLs, filesystems are not able to exposeKey Insight: Using a
backward-compatible
I/O stack on modern

SSDs cannot
leverage their actual

performance.

all of the beforementioned important properties of SSDs. Quite the
contrary, precious on-device processing resources are employed to
mimic backward-compatible interface abstractions like LBAs but could
be utilized for reasonable NDP instead. Consequently, applications
cannot fully leverage characteristics such as the bandwidth of the
Flash chips. Even worse, with all these compatibility layers between
the DBMS and the device, a significant write amplification of up to 19×
can be observed [42, 92].

To counter this, modern approaches like Native Storage [42, 44, 73]
provide the ability to directly issue storage commands like PAGE_READ,
PAGE_WRITE, or ERASE_BLOCK against a physical entity (physical Page
or Block) of the device. As a consequence, the database (1) has direct
control over the storage without any intermediate layers of abstrac-
tions, (2) is able to integrate the properties of the underlying storage
into the data placement, and (3) can adapt to workload characteristics
e. g., for scheduling the Garbage Collector (GC). In Publication P1

we give an overview of the architectural approaches and techniques,
describing how interfaces and abstractions have to be adapted accord-
ing to the design of modern storage technologies, and how these can
be integrated into database systems. In Publication P2 we present
NoFTL-KV, an integration of Native Storage Management into the
widely known RocksDB [74]. We investigated the concept of Regions
[44] in the context of KV-Stores that are suitable for modern insert
and update intensive workloads, represented by Linkbench [6] in
the experimental evaluation. Overall, we improve the transactional
throughput by 33% while reducing the response times of queries by
up to 2.3× with NoFTL-KV. Moreover, with the sophisticated possi-
bilities of Native Storage Management, to place data aligned with the
internal database abstractions, the write-amplification is reduced to
1
19 th which, in fact, improves the endurance of SSDs C1.1 .

Besides these remarkable performance benefits for DBMSs, NativeKey Insight: While
several layers of the

traditional I/O stack
provide high

flexibility, they also
cause information

hiding.

Storage Management provides another essential advantage over the
traditional I/O stack, in particular for NDP. Having multiple layers
of abstraction results in a number of logical-to-logical and logical-to-
physical address mappings (see Figure 2.4). For instance, the offset
in a file is mapped to a certain block of the filesystem which, in
turn, is mapped to several LBAs. In the on-device FTL, these LBAs

are assigned to specific PBAs as already discussed in Section 2.3.3.
Gathering those mappings across the levels of the access stack during
runtime is highly complex, or sometimes even impossible as interfaces
are missing. Yet, this information is crucial for NDP to navigate through
the physical location of database objects. Utilizing Native Storage

3.2 extending native storage with ndp 21

management moves the entire address mapping management into the
storage manager of the database, and thus, builds a single point of
truth for it. Consequently, NDP operations can access the most recent
mapping information prior to execution and use it on-device. Thus,
several ways for sharing are possible, which are discussed in the next
section.

3.2 extending native storage with ndp

Prior to an NDP execution, a variety of information must be present on
the device. On the one hand, this includes execution-specific param-
eters like the type of operation and its arguments, and on the other Key Insight: Address

mapping information
of database objects
must be present
on-device prior to
NDP executions.

hand, information about the data being processed like its logical-to-
physical address mapping or format definitions, as shown in Figure 3.3.
The necessity of the latter will be discussed in detail in Chapter 4.
Likewise, this information is extended even further with the ability
to perform even transactionally consistent NDP executions, as we
elaborated in Chapter 5. While the operation-specific information is
obviously part of the NDP call, the remainder can be shared in various
ways.

Native Storage Manager

S
h

a
re

d
 M

e
m

o
ry

Computational Storage Device

NDP Call Piggybacked with I/O

Computational Storage Device

Shared Memory

Address

Mapping

Format

Definition

NDP Call

Native Storage Manager

Execution Engine

NDP Call

Native Storage Manager

Execution Engine

I/O

NDP Call

Execution Engine

Computational Storage Device

Address Mapping

Format Definition

I/O
I/O

...

...

Address

Mapping

Format

Definition

...

Address Mapping

Format Definition

...

Address Mapping

Format Definition

...

A B C

Figure 3.3: The logical-to-physical address mapping of native storage man-
agement is essential for NDP to resolve the location of database
objects on-device. In addition to format definitions, it has to be
present on the device prior to the NDP execution. Thereby, it can
be propagated either (A) as part of the NDP call, (B) piggybacked
with other I/O calls, or (C) exchanged via shared memory.

as part of the ndp call : Probably by far the simplest option is
to extend the interface definition of an NDP command with all
necessary information. On the one hand, this increases the size
of the invocation significantly because address mappings can
become very large with today’s data volumes, as we discuss in
Section 3.3. On the other hand, this does not require any addi-
tional on-device management functionality to keep the informa-
tion in sync. In consequence, especially devices with constrained

22 storage management for ndp

resources benefit, as their memory capacity can be utilized for
intermediary results as discussed in Chapter 6. Moreover, it is
not necessary to push down the entire information, but it rather
can be limited to the specific address mappings and format
definitions required by the actual NDP command. Additionally,
with novel abstractions like the Physical Page Pointer (PPP), dis-
cussed in Section 3.3, the size of the commands can be reduced
even further. Another key benefit is that such propagation can
be realized with existing interconnection protocols like NVM
express (NVMe).

piggy-backing other calls : Another way to continuously prop-
agate the most recent version of address mappings and format
definitions is to piggyback other calls to the device such as read
or write operations. Since those calls usually also entail a change
of the address table, they are suited to directly maintain a redun-
dant version on-device. Likewise, existing standard protocols
like NVMe can be exploited for this. As a consequence, the in-
terface of the NDP command becomes lean, and the data being
transferred prior to the execution is reduced. Low-latency com-
mands from an OLTP workload will profit especially from this
type of information sharing.

via shared memory : Lastly, instead of having a redundant on-
device version, modern cache-coherent protocols like Cache
Coherent Interconnect for Accelerators (CCIX) [26] or Compute
Express Link (CXL) [27] can be used to maintain the address
mapping and format definitions in a shared memory. Changes
to the shared memory from either the host or the device are
synchronized in the background, allowing the remaining calls to
focus on their purpose [91].

Within this thesis, we will focus on the first type of information
sharing. To this end, we extended the concepts of Native Storage
management with a well-defined interface for NDP commands. A first
implementation is proposed in Publication P3 of this thesis, which is
able to shift the processing of simple aggregations on a dataset from
the distributed file system Ceph [103] to NDP-capable devices. Since
then, the interface evolved along with our system nKV that includes
further sophisticated features. In the next Chapters we will tackle for
instance the filtering according to SearchKeyRanges on heterogeneous
hardware P5 P6 (see Chapter 4), the propagation of shared data
and state to fulfil transactional consistency P8 (see Chapter 5), and
execution pipelines or result-set processing P9 (see Chapter 6) C1.2 .

3.3 reducing address information volume 23

3.3 reducing address information volume

As mentioned beforehand, address mapping information can become
huge. For instance, database objects like tables can easily become 1 TB Key Insight: The size

of address mappings
for today’s data
volumes can easily
grow up to multiple
gigabytes.

of data. Assuming that the physical page size is 16 KB, the mapping
table for this single object will end up with 62.5 million entries. Using
64 bit to represent the LBA and PBA, the size of the mapping table will
result in 1 GB. Transferring this with every NDP call will result in a
significant overhead for the data movement and consequently impair
the key idea of relieving the bus system. Moreover, low-latency NDP

invocations will not be feasible.
However, many modern data organizations make use of the append-

based behavior of logging, which in turn, can be utilized to signifi-
cantly reduce the size of mapping tables of database objects. Prominent
examples of append-based structures are Log-Structured Merge (LSM)
Trees [70] or Partitioned B-Trees [38, 83]. The important aspect of those
data organizations is that updates do not appear in place but rather
are appended as a new version of the record. Hence, once written, data
is not updated anymore until its deletion due to GC. While this does
not only benefit the characteristics of wear-prone storage technologies
like Flash, it also ends up in immutable parts of the data organization,
which can have a stable physical location on the device.

..
.

Logical

Representation

Physical

Representation

CN

C0
...

SST1 ...

SST
Data Block Index Block...

Die #1 Die #N

...

S
S

T

Index
PPPBlock

PPPBlock

...

PPPSST

Figure 3.4: Many modern data organizations build on append-based logging
and have immutable parts like data blocks of SSTs. To reduce the
size of logical-to-physical address mappings for NDP calls, the
entries for those immutable parts can be replaced by a Physical
Page Pointer, e. g., references of the data blocks in the index block.

With Native Storage management (see Section 3.1), we are able to
place those immutable parts in certain locations of the storage device.
For instance, Sorted String Tables (SSTs) of LSM Trees have a config-
urable upper bound in their size. Aligning it with the characteristics
of the underlying storage, e. g., multiple Flash blocks, allows mapping
certain physical blocks to the logical object of an SST as depicted in
Figure 3.4. As a consequence, NDP calls do not require a fine-granular

24 storage management for ndp

mapping table of pages anymore, but rather a pointer to the physical
location, like PPPSST in Figure 3.4. This concept of Physical Page
Pointer (PPP) is proposed as one novel abstraction for NDP processing
in Publication P8 C1.3 . Beyond the pointer itself, the respectively
required format and layout for the given structure are discussed in
Chapter 4. The application of PPPs is very versatile. On the one hand,
immutable parts of data organizations can be directly addressed by
NDP calls, avoiding the necessity to synchronize entire address map-
ping tables between the host and the computational storage device.
On the other hand, virtual references, such as offsets in files, can be
replaced with PPPs as shown as PPPBlock in Figure 3.4, which enables
to access internal parts of an immutable object without having its
address mapping. Prerequisites for PPPs are a Native Storage managed
space and that the physical location of the data is guaranteed to be
stable during the lifetime of the object. As a result, self-contained
physical objects can be easily referenced with PPPs.

To quantify the benefit, we can contrast the PPPs approach with
the 1 GB mapping table from the beginning of this section. Assume a
single self-contained SST comprises 100 MB of data, which corresponds
to 50 Flash blocks on the COSMOS+ [88], a wide-spread prototype
board of a computational storage device. Thus, theoretically 10 000 SSTs

would fit on a 1 TB storage space. As a Flash block can be referenced
with a single 64 bit value, the total size of the PPPs is tiny 4 MB instead
of a 1 GB large address mapping table in traditional systems.

» recap : insights and solutions

This chapter elaborated on the drawbacks of today’s widespread
backward-compatible I/O stack, especially with the change from tra-
ditional HDDs to SSDs C1.1 . The key insight is that SSDs do not only
fundamentally differ from HDDs, but also the backward-compatible
I/O stack employed for SSDs hinders leveraging their significantly
higher bandwidths and parallelism. Using Native Storage Manage-
ment instead not only enables to exploit properties of the underly-
ing NVM, it also allows managing the data placement according to
database objects and workload characteristics, as well as introduces a
single logical-to-physical address mapping as a single point of truth
within the storage manager of the database. The deep integration into
the database makes Native Storage Management superior to other
state-of-the-art subsystems like LightNVM [15]. With Native Storage
Management, we can resolve the information hiding due to backward-
compatible I/O stacks. The address mapping table is also essential for
NDP to resolve the location of database objects on-device. Hence, our
investigations reveal that it has to be present on the device prior to the
NDP execution. The proposed interface is defined accordingly C1.2 .
Yet, we also discovered that such address mappings can become very

3.3 reducing address information volume 25

large with today’s amount of data and require novel abstractions like
the Physical Page Pointer (PPP) C1.3 .

In conclusion, by examining Research Question RQ1 , our proposed
general and lightweight interface for NDP is now aware of the on-
device database objects, ensures to access them at full bandwidth
and parallelism, has only a lean set of arguments, and can be easily
mapped to low-level protocols like NVMe, Remote Direct Memory
Access (RDMA), or development frameworks for the integration of
heterogeneous computing platforms, e. g., TaPaSCo [59].

4
O N - D E V I C E N AV I G AT I O N A N D D ATA
I N T E R P R E TAT I O N

In the previous Chapter 3 we introduced Native Storage management
for NDP. However, to process data on a computational storage device,
it is essential to find and extract it according to its given format.

research question – RQ2

» Is in-situ data interpretation and navigation necessary for NDP and
how is data navigated through and interpreted in-situ? «

Heterogenous Processing Units

NDP Call

DBMS

C
o

m
p

.
S

to
ra

g
e

NDP Pipeline

Persistent Data

...... ...

Storage Manager

Execution Engine

Parsers/Accessors

Considered in ChapterLegend

Result-Set Mgmt

Figure 4.1: Architectural guidebook.

By investigating RQ2 we firstly
elaborate on the extent to which
data interpretation and naviga-
tion are required for shifting
a processing task to a storage
device. Secondly, we will fo-
cus on an implementation that
allows leveraging the hetero-
geneous processing capabilities
of modern computational stor-
age devices. Lastly, we discuss
how the burden of hardware de-
velopment, as outlined in Sec-
tion 2.3.4, can be alleviated for
NDP. Figure 4.1 shows the areas
considered within a database as an architectural guidebook. The fol-
lowing main contributions are made in this chapter:

C2.1 Elaboration on cross-layer data formats and layouts in
databases.

C2.2 Introduction of Parsers and Accessors for in-situ navigation
and data-interpretation.

C2.3 Investigation of heterogeneous processing hardware of com-
putational storage devices.

C2.4 Proposal for utilizing heterogeneous hardware with NDP
and improving performance by 1.4× to 2.7×.

C2.5 Proposal of a framework for automatic generation of Parsers
and Accessors on FPGAs to lower the boundaries of
hardware-accelerated NDP.

27

28 on-device navigation and data interpretation

The corresponding publications are:

P4 [93] – “On the Necessity of Explicit Cross-Layer
Data Formats in Near-Data Processing Systems”

Chapter 11

P5 [98] – “nKV: Near-Data Processing with KV-
Stores on Native Computational Storage”

Chapter 12

P6 [99] – “nKV in Action: Accelerating KV-Stores on
Native Computational Storage with Near-Data
Processing”

Chapter 13

P7 [101] – “A Framework for the Automatic Gen-
eration of FPGA-based Near-Data Processing
Accelerators in Smart Storage Systems”

Chapter 14

4.1 the necessity for cross-layer parsers and accessors

In Chapter 3, we established that with Native Storage management, the
database is responsible to place the data at specific physical locations
of the storage device for performance and longevity. Information
necessary for the address resolution is provided to the device (e. g.,
as part of the NDP call), to have it on hand when the processing of an
NDP call starts.

Yet, besides the logical-to-physical address mapping, further infor-
mation about the structure of the data is necessary to extract specific
parts from the physical storage representation of a database object,
e. g., values of a record. In the context of databases, these definitions
are often referred to as layouts and formats which are only present
within the database itself. As a consequence, NDP calls may resolveKey Insight:

Cross-layer layouts
and formats of the

database are required
by the NDP call to

navigate and
interpret the data.

the physical location of a database object on the device, as shown in
Figure 3.4, but are not able to navigate or interpret the data without
those definitions. Yet, by additionally providing this information to
the computational storage device, NDP calls become not only aware
of how to locate the physical location of the data but also of how
to extract the values of a logical attribute by navigating through the
various layers of the data organization and interpreting the different
structures. In the end, on-device data-interpretation and navigation
are necessary ingredients for reducing unnecessary host-to-device
round-trips (e. g., to request a format or layout definition) and a pre-
requisite for an intervention-free offloading model, which will be the
subject of Chapter 5.

Layouts and formats are related to each other as outlined in Publi-
cation P4 . While formats define the contents of a structure, layouts
describe their spatial arrangement within a certain scope e. g., a mem-
ory space. In database architectures, those layouts and formats are
nested, starting with the physical storage organization of database
objects, as depicted in Figure 4.2. For instance, the subdivision of
the components of a LSM tree into SSTs can be seen as a first format

4.1 the necessity for cross-layer parsers and accessors 29

Page Layout

Page Format

Record Layout

Record Format

Field Layout

Field Format

ValueIdentifier

Column
Family Id

Image Id ... Red ...
Sequence
Number

32 bit little-endian

unsigned Integer

Record 1 TrailerRecord 2 Record N

SST 1

Data Block 1 Data Block N
Index
Block

SST n

TrailerRecords

Block
Iterator

P
a

rs
e

r/A
c
c

e
s

s
o

r
P

a
rs

e
r/A

c
c

e
s

s
o

r
P

a
rs

e
r/A

c
c

e
s

s
o

r

R
e
s

u
lt

Data Block 2

Physical Storage

Organisation

32 bit big-endian

unsigned Integer

IndexData

Data Organisation

Layout

Data Organisation

Format

Record
Accessor

Im
a

g
e

 V
a

lu
e

P

a
rs

e
r

S
S

T
 P

a
rs

e
r

B
lo

c
k

 P
a

rs
e

r
R

e
c

o
rd

P

a
rs

e
r

SST
Iterator

KV-Value Storage represenation (MyRocks)Logical

Figure 4.2: Along the hierarchy of physical storage representations there are
multiple format and layout definitions. To navigate within and
interpret the data of those, we propose cross-layer Parsers and
Accessors in P4 .

definition. Proceeding, the format of a SST usually comprises several
data blocks and a single index block. Thereby, the layout of a SST

defines the arrangement within the physical storage. As shown in
Figure 3.4 of Section 3.3, Physical Page Pointers (PPPs) can be used
to efficiently reference those elements. Similarly, further levels like
blocks, pages, records, and fields are expressed by specific layout and
format definitions C2.1 .

In Publication P4 and [102], Parsers and Accessors are proposed as
the matching counterpart of formats and layouts C2.2 . With those,
NDP calls are enabled to navigate and interpret the data of a given
database object on-device. Thereby, the NDP call uses the Accessors
to access the respective sub-structures until it reaches the necessary
level of abstraction for its processing purpose. For instance, to process
a simple COUNT(*) it is not required to access any specific field within
a record but sufficient to count the records themselves. However,
whenever a specific structure like AVG(Img.Red) of Figure 4.2 has to
be interpreted, the NDP call uses its Parsers to extract the semantical
meaning. For instance, to process a numerical field to calculate a SUM,
an NDP call can use a Parser to extract the value that could be either
big- or little-endian encoded.

As those Parsers and Accessors are also part of the different layers
of a DBMS, we argue for having cross-layer Parsers and Accessors
[93, 102]. Yet, even though the functional behavior might be identical,
their implementations may vary since it has to be adapted to the
characteristics of the given processing unit. Within the next section,
we will discuss how the concept of Parsers and Accessors behaves

30 on-device navigation and data interpretation

together with the heterogeneous processing capabilities of modern
computational storage devices.

4.2 leveraging heterogeneous processing capabilities

Section 2.3.4 already discussed that hardware is subject to rapid
change. Besides storage technologies, today’s processing units are
available with diverse properties. While traditional scalar processing
units optimize for executing Single Instruction, Single Data (SISD),
vector processors are capable of executing Single Instruction, Multiple
Data (SIMD). Often both types of Flynn’s taxonomy [34, 35] are com-
bined in modern CPUs. Additionally, there are GPUs as SIMD processors
that have significantly higher data parallelism.

B
u

il
d

in
g

 B
lo

c
k

NAND

Flash

Module

NAND

Flash

Module

SoC: Zynq-7000

Programmable Logic

Processing System

NAND

Flash

Controller

NVMe

Controller

Parser &

Accessor
...

ARM Core 0 ARM Core 1

Parser &

Accessor
...

Flash

Mgmt

NVMe

Mgmt

DRAM

E
x

t.
 P

C
Ie

 C
o

n
n

e
c

to
r

C
o

s
m

o
s

+
 O

p
e

n
S

S
D

Get/

Scan/...

Get/

Scan/...

Compute Placement

Figure 4.3: Computational storage devices comprise a variety of hetero-
geneous processing capabilities. For instance, the Cosmos+
OpenSSD, which is mainly used in the publications of this thesis,
is equipped with an SoC Xilinx/AMD Zynq 7000 with two ARM
cores as Processing System and an FPGA as the Programmable
Logic.

Yet, all of those processing units can not be considered separatelyKey Insight: Modern
computational
storage devices

comprise a multitude
of processing units

with different
characteristics.

anymore as modern packaging techniques in the semiconductor in-
dustry are capable of combining those economically on a single chip.
Usually referred to as a System on Chip (SoC), they are equipped with
storage and memory on the PCB of a computational storage device.
For instance, Figure 4.3 shows the Cosmos+ OpenSSD [28, 88] and its
building block diagram as used in the experimental evaluations of this
thesis. By executing operations on a SoC one can decide which pro-

4.2 leveraging heterogeneous processing capabilities 31

cessing unit fits best for the given algorithm but also have to consider
balancing the load equally.

8

5.68
6.34

Blk NDP:SW
NDP:SW+HW

0

1

2

3

4

5

6

7

8

Get

Ex
ec

ut
io

n
Ti

m
e

[m
s]

6.96

4.81

3.35

Blk NDP:SW
NDP:SW+HW

0

1

2

3

4

5

6

7

Scan

Ex
ec

ut
io

n
Ti

m
e

[s
] 476.12

400.56
374.81

3 5 7
0

100

200

300

400

BC HW-Instances

Ex
ec

ut
io

n
Ti

m
e

[s
]

Figure 4.4: In Publication P5 , Get, Scan, and BC requests are executed on
a traditional block device stack (Blk), as purely software-based
NDP (NDP:SW), and with FPGA support (NDP:SW+HW). While
the execution time of some of these operations degrades with
hardware support (Get), others profit significantly by leveraging
multiple hardware instances running in parallel on the FPGA
(Scan and BC).

Modern computational storage devices are equipped with SoCs,
providing NDP the capability to dynamically place the computation
on these heterogeneous SoC processing units C2.3 . In Publication P5

as well as in Publication P6 , we investigate the benefits of offloading
NDP executions to different kinds of processing units on real hardware.
By this, we achieved improving the execution latencies of simple
GET requests by 1.4× and SCAN requests on the values by 2×, when
executing them as NDP in software in contrast to traditional systems
employing a block device stack, as shown in Figure 4.4. More complex
algorithms, like Betweenness Centrality (BC) [21], have improved even
2.7×, when executed in a hybrid hardware-software co-design C2.4 .
In our experimental evaluation, we identified that there is no one-size-
fits-all, but rather different processing units perform best under given
settings for NDP. For example, using FPGAs to execute a low-latency Key Insight: With

the heterogeneous
processing
capabilities of SoCs
NDP can be
accelerated, but the
performance highly
depends on the
utilized processing
unit for a given
setting.

request like GET is not efficient since the high initialization costs cannot
be amortized by the higher execution parallelism as data has to be
read sequentially. However, performing data-intensive operations like
BC on an FPGA outperforms pure CPU-based implementations, as it
can exploit the parallelism by interleaving the execution and fetching
of new data [98, 99]. Additionally, we can scale up the parallelism by
employing multiple hardware instances, as shown in Figure 4.4, and
thus, improve the execution time even further.

However, executing NDP calls on heterogeneous processing units
also requires that Parsers and Accessors, presented in Section 4.1, are
present on the device for those (see Figure 4.3). Yet, in particular, for

32 on-device navigation and data interpretation

FPGAs their development is extremely cumbersome as we will discuss
in Section 4.3.

4.3 automation of ndp accelerator creation

Due to the fact that today’s computational storage devices comprise
heterogeneous hardware, NDP calls can be executed on various pro-
cessing units. Especially FPGAs offer significant potential to accelerate
data-intensive workloads as pointed out in Section 4.2.

However, a major drawback is today’s cumbersome developmentKey Insight:
FPGA-accelerated
NDP is beneficial

but cumbersome due
to the tedious

development process.

process of FPGA accelerators via HDL-based design entry, as outlined
in Section 2.3.4. While the effort might be appropriate for a single static
application, in the context of databases several Parsers and Accessors
have to be developed for the different abstractions like Blocks, Pages,
or Fields. Additionally, this is multiplied by the number of schemas,
hence, the number of database objects with different record formats. To
significantly reduce the effort spent in implementing NDP accelerators,
and thus, ease their integration, their creation has to be automated.

In Publication P7 , we propose a framework for the automatic
generation of FPGA-based NDP accelerators, whose performance is
similar to a manually optimized version C2.5 . Thereby, we are able
to lower the barrier in integrating hardware acceleration in NDP.

» recap : insights and solutions

On top of the findings from the previous chapter, we detected and
elaborated the cross-layer layouts and formats of databases as a key
necessity for NDP to navigate and interpret the physical data C2.1 . In
contrast to past NDP research [9, 51, 105, 106, 108], which process data
in-situ with simplistic or relatively static parsers, we argue for flexible
Parsers and Accessors that are conveniently aligned to Formats and
Layouts of traditional databases as novel NDP abstractions. They have
to be present on-device prior to processing data but can adapt to
schema evolution C2.2 . Moreover, our research in the technology of
modern computational storage devices reveals that those comprise a
multitude of different processing capabilities that can be utilized to
accelerate NDP C2.3 . In contrast to related work, which focussed on a
single processing unit [9, 41, 105, 106, 108], we discovered that a careful
compute placement of a given logic on a specific processing unit is
key for leveraging the full potential. By this, we achieve to accelerate
simple queries by 1.4× to 2× and complex analytical algorithms, like
BC, by even 2.7× in contrast to traditional systems relying on a block
device stack C2.4 . However, we also identified the tedious and
cumbersome development process of FPGA-based accelerators as a
barrier to the application in NDP. Thus, we propose a framework

4.3 automation of ndp accelerator creation 33

for the automatic generation of Parsers and Accessors on FPGAs as a
novelty C2.5 .

In summary, investigating Research Question RQ2 resulted in a
clear approach to process data on-device while leveraging the bene-
fits of the available heterogeneous processing capabilities of modern
computational storage devices.

5
N D P O F F L O A D I N G M O D E L S

In the previous Chapters 3 and 4 we outlined the prerequisites for
NDP to access the data and process it on-device. Within this chapter
we will set the focus on the following research question:

research question – RQ3

» How do novel interaction and offloading models for NDP-storage
impact DBMS architectures? «

Heterogenous Processing Units

NDP Call

DBMS

C
o

m
p

.
S

to
ra

g
e

NDP Pipeline

Persistent Data

...... ...

Storage Manager

Execution Engine

Parsers/Accessors

Considered in ChapterLegend

Result-Set Mgmt

Figure 5.1: Architectural guidebook.

With RQ3 we investigate the inter-
play of NDP and modern work-
load characteristics like HTAP, as
presented in Section 2.3.1. We
first give an overview of the dif-
ferent types of offloading mod-
els for NDP and discuss to what
extent DBMS have to be adapted
accordingly. Likewise, we dis-
cuss the extension of the solu-
tion space for today’s DBMS ar-
chitectures that are outlined in
Section 2.3.2 to deal with HTAP

workloads. As a foundation, we
present the concept of transac-
tional NDP and focus on a snapshot-based approach. Moreover, we
provide more details on the necessary Shared State and its propaga-
tion toward the computational storage device. Lastly, we elaborate
on the data freshness and transactional consistency aspects gained by
an intervention-free execution. Figure 5.1 shows the areas considered
within a database as an architectural guidebook. Thus, we make the
following main contributions in this chapter:

C3.1 Definition of novel approaches to offload processing to com-
putational storage devices.

C3.2 Concepts for intervention-free NDP execution with transac-
tional guarantees.

C3.3 Extension of the solution space of HTAP by providing an
architecture that is capable of NDP with the most recent
data.

C3.4 Evaluation of the benefits by shifting processing to a com-
putational storage device, achieving 30% performance im-
provements while reducing the power consumption by 26%.

35

36 ndp offloading models

The corresponding publication is:

P8 [95] – “Near-Data Processing in Database Sys-
tems on Native Computational Storage under
HTAP Workloads”

Chapter 15

5.1 types of ndp offloading models

When issuing an NDP call to a computational storage device, its argu-
ments comprise the logical-to-physical address mapping as well as
information about formats and layouts to navigate and interpret the
static data on the device, as we discussed in Section 4.1. However, this
is only sufficient as long as we can guarantee that no concurrent trans-
action has modified the data at the same time. Past NDP approaches
assumed a read-only static dataset [9, 67, 105, 106, 108]. Nevertheless,
this assumption is not valid for all cases, especially in OLTP and HTAP

setups. Consequently, the offloading model for NDP transaction has toKey Insight: NDP is
not limited to

read-only setups but
can also be applied in

workloads with
frequent updates.

ensure that the transactionally consistent result is computed on-device.
To facilitate this, the host and the computational storage device have to
exchange further information like concurrently running transactions
or modified records located in the database buffer. In the following,
we will list and elaborate on the different types of possible offload
models that are depicted in Figure 5.2 C3.1 .

fire and busy wait : The first type of offloading model is to just is-
sue the NDP transaction to the computational storage device and
continuously poll for its return, as shown in Figure 5.2.A. This
can occur either if the NDP transaction has been completed or if
it requires more information from the host. For instance, after
an NDP transaction has processed the persisted data on-device,
it requests the latest committed updates from concurrent trans-
actions of the host. While the implementation is very simplistic,
it has the major drawback that the host requires one thread to
actively wait for the return of the NDP transaction, and thus,
cannot utilize it for parallel OLTP processing. In the worst case,
this will end up in a high number of context switches that impair
performance.

async . execution and interrupt : One way to improve this be-
havior is by switching to an asynchronous execution model.
Thereby, the host issues the NDP transaction to the computa-
tional storage device in a similar manner but does not actively
wait for any return as depicted in Figure 5.2.B. On the contrary,
the host can utilize its waiting (i. e., idling) cycles for parallel
OLTP processing. Whenever the device requires to communi-
cate with the host, it sends an interrupt to break the current
processing, which adds additional execution time.

5.1 types of ndp offloading models 37

Computational Storage

Fire &
Busy Wait

Async. Exec. &
Interrupt

Host Host

Intervention-free Cooperative

A B

C D

Computational Storage

Computational Storage

Host Host

Computational Storage

Shared Memory

NDP Tx NDP Tx

Modifications of other Tx Modifications of other Tx

NDP Tx NDP Tx

Modifications of other Tx

Modifications of other Tx

Figure 5.2: There exist several offloading models that can ensure transactional
guarantees for NDP queries. (A) The host is actively waiting for
the NDP to return, (B) the communication is based on interrupts,
(C) all necessary data is gathered prior to the NDP execution, or
(D) utilizing a shared memory to exchange data.

intervention-free : Since every interaction between the host and
the computational storage device leads to an intervention in the
processing on both sides, we argue to avoid any unnecessary
round-trips. However, as we discuss in Chapter 6, there are cases
where communication is required. For instance, for final result
transferring or for overall device management. Consequently, the
NDP transaction is issued in an intervention-free manner, shown
in Figure 5.2.C. To apply such an offloading model, all relevant
information about concurrent transactions has to be gathered
and attached as additional attributes to the NDP transaction
prior to its execution. This Shared State, as we propose it in
Publication P8 , builds the foundation and will be presented in
detail in Chapter 5.2.

cooperative : Instead of sending the Shared State with the NDP

transaction to the device, also modern protocols like CCIX [26]
or CXL [27], enabling cache-coherence for shared virtual memo-
ries, can be used to exchange the information [91]. As shown in
Figure 5.2.D, this provides the advantage that the NDP transac-

38 ndp offloading models

tion itself becomes lean while no interrupting handshakes are
necessary between host and computational storage device.

In general, with all listed offloading models it is possible to process
the most recent data from the host on the device, and thus, can ensure
transactional consistency. In the remainder of this thesis, we will focus
on the INTERVENTION-FREE offloading model.

5.2 propagating the shared state

As explained in Section 5.1, the Shared State is the necessary foun-
dation to ensure transactional consistent NDP execution. One part
of this Shared State comprises the most recent data of transactions
committed immediately before starting the NDP operation. Especially,Key Insight: For a

transactionally
consistent execution,

NDP requires the
latest modifications

from the host
– the Shared State.

with modern workload characteristics like HTAP (see Section 2.3.1), we
can expect that the most recent modifications on the data, frequently
triggered by the OLTP-part of the workload, still resides in the database
buffer. Those modifications are not immediately flushed to the storage
device, and thus, constitute the reminder to the much larger cold
data on-device for a transactionally consistent snapshot. The other
part of the Shared State comprises database-specific modifications on
mapping tables, status, and system information as well as auxiliary
data structures e. g., for version management.

Those modifications are spread across various data structures of
today’s database architectures. As a consequence, it becomes cumber-
some or sometimes even impossible to gather them. Nevertheless, in
Publication P8 , we propose the Delta Buffer as a simple solution to
collect all modifications. Thereby, these modifications are appended
as replacements records in the Delta Buffer so that newer versions
always overwrite older versions.

After the Shared State becomes available on the device, by using
the previously presented INTERVENTION-FREE offloading model of Sec-
tion 5.1, the NDP transaction is able to construct a transactionally
consistent snapshot in-situ, and thus, can easily process the most
recent data of other transactions by accessing the Delta Buffer C3.2 .

5.3 data freshness and transactional consistency

Data freshness became an important property in the context of HTAP

workloads [20, 77]. As discussed in Section 2.3.1, modern applicationsKey Insight: Past
approaches tackling
HTAP suffer either

in a steady
performance or

ensuring a high data
freshness.

require gaining analytical insights about the data that is rapidly modi-
fied in parallel by the foreground workload. Consequently, OLAP and
OLTP queries either fight for the same resources on a single unified
engine or are separated, with a continuously-running data exchange
process in between, as depicted in Figure 5.3.A/B. While the first ap-
proach trades off a loss in performance against a higher data freshness

5.3 data freshness and transactional consistency 39

Passive Storage

Unified Engine

Passive Storage

Trans.

Engine

Analytical

Engine

HTAP

OLTP OLAP
HTAP

OLTP OLAP

Computational

Storage

HTAP
OLTP OLAP

NDP Engine

Current HTAP Design Space NDP Extension

Unified Storage Decoupled Storage Computational Storage

Data
Freshness

Perf.
Isolation

Data Transfer
Reduction

Data
Freshness

Perf.
Isolation

Data
Freshness

Perf.
Isolation

Data Transfer
Reduction

Data Transfer
Reduction

N
D

P

D
a
ta

E
x
c
h
a
n
g
e

A B C

Figure 5.3: Besides (A) having a single unified engine to process OLTP and
OLAP queries, and (B) having separate engines for both types
of workload, we propose NDP as an extension of the solution
space that improves the performance isolation while reducing
data transfers and ensuring a high data freshness.

rate, the latter ensures a robust OLTP performance by including the
most recent data in the analytical queries.

But with NDP as a novel extension for the HTAP problem space,
we can optimize on both dimensions at the same time, as shown in
Figure 5.3.C. In particular, with the previously mentioned offloading
models of Section 5.1, and the Shared State of Section 5.2, as well as
the contributions of Publication P8 a transactional consistent execution
of NDP transactions can be guaranteed C3.3 .

In our experimental evaluation of Publication P8 , we execute
a modified HTAP version of LinkBench [6] on our system. The sys-
tem stack is set with two alternative configurations: the first one as
traditional Block I/O stack, and the second one, with the previously
described INTERVENTION-FREE offloading model, as Update-aware NDP

stack. While the first performs OLTP and OLAP workload on the host,
the latter shifts the processing of data-intensive long-running analyti-
cal queries to the computational storage device. As shown in Figure
5.4, we prove our expectation that, with the execution of an OLAP

query a traditional Block I/O stack, the system throughput rapidly
degrades and remains significantly lower during its execution. After
its completion, it takes a considerable amount of time to remain the
original performance, as the database buffer was highly polluted by
the cold data of the analytical query. In contrast, with the Update-
aware NDP stack, we improve the throughput in general by leveraging
the previously discussed concepts of Native Storage Management of
Chapter 3. But even more importantly, we ensure a steady and 30%

40 ndp offloading models

Injection
of OLAP Tx

DBMS serves
OLAP+OLTP

OLAP as NDP,
DBMS serves OLTP

Buffer
adjustment

Figure 5.4: In Publication P8 , we compare the execution of an HTAP work-
load on the traditional Block I/O stack with the Update-aware
NDP utilizing an intervention-free offloading model. While the
traditional stack suffers as OLTP and OLAP compete for resources
and pollute their data locality in the buffer, the Update-aware
NDP stack achieves steady and 30% faster performance.

faster performance by having an INTERVENTION-FREE NDP execution
of the OLAP query with transactional guarantees. Notably, the CPU
utilization on the host stays constant, as no waiting time is spent for
reading the large cold datasets, and the database buffer on the host
does not suffer from any pollution. Lastly, by significantly reducing
the data movement between host and device, and by leveraging the on-
device processing capabilities, the energy consumption can be reduced
by 28% C3.4 .

» recap : insights and solutions

In addition to the insights of the previous chapters, we discussed
how novel interaction and offloading models for NDP impact DBMS

architectures, and thus, investigated Research Question RQ3 . Firstly, we
identified that NDP is not limited to the read-only scenarios that have
been presented by past approaches [9, 11, 41, 67, 105, 106, 108]. Novel
approaches of offloading NDP to computational storage devices and
facilitating the exchange of the most recent modifications and status
information of concurrent transactions are required C3.1 . Focusing the
research on concepts for attaining a transactionally consistent snapshot
on-device to support transactional guarantees for in-situ processing,
we identified the Shared State as a set of necessary information to
be gathered prior to an NDP execution. Furthermore, we propose the
Delta Buffer that gathers all those modifications in an append-based
manner and can easily be shared with the computational storage
device C3.2 . Novel offloading models like INTERVENTION-FREE

and COOPERATIVE avoid costly device-to-host round-trips. Moreover,
by elaborating the HTAP problem space, we detected that current
approaches either optimize for performance isolation or data freshness.

5.3 data freshness and transactional consistency 41

However, with transactionally consistent NDP transactions, we not only
optimize for both but also reduce the data transfers between host and
storage device C3.3 . By this, we achieve an overall performance
improvement of 30% while reducing the power consumption per
transaction by 26% in contrast to a traditional Block I/O stack C3.4 .

So far, the NDP approach of this thesis is capable of resolving the
physical data on-device (Chapter 3), navigating and interpreting it
(Chapter 4), as well as ensuring transactional guarantees by using
offloading models to exchange the Shared State between host and
device.

6
N D P E X E C U T I O N A N D R E S U LT- S E T H A N D L I N G

Lastly, we focus on the NDP execution and its final as well as in-
termediary result-set management. While the previously discussed
abstractions for storage management of Chapter 3, Parsers and Ac-
cessors for navigation and interpretation of Chapter 4, as well as the
offloading model of Chapter 5 build the prerequisites, we will have a
deeper look into the following Research Question RQ4 in the following
sections:

research question – RQ4

» Is in-situ result-set handling necessary for NDP? «

Heterogenous Processing Units

NDP Call

DBMS

C
o

m
p

.
S

to
ra

g
e

NDP Pipeline

Persistent Data

...... ...

Storage Manager

Execution Engine

Parsers/Accessors

Considered in ChapterLegend

Result-Set Mgmt

Figure 6.1: Architectural guidebook.

We elaborate on a number of
possibilities to execute NDP on
a computational storage device.
The main focus of this thesis is
on NDP pipelines as one execu-
tion mode, which we discuss in
more detail. Moreover, with NDP

pipelines the need for manag-
ing intermediary as well as fi-
nal result-sets arises, for which
we introduce necessary concepts.
Lastly, we present an NDP fi-
nite state machine as one ap-
proach to coordinate processing
and result-set management on-
device. Figure 6.1 shows the areas discussed within a database as an
architectural guidebook. Thereby, the following main contributions
are made in this Chapter:

C4.1 Overview of NDP execution modes with a focus on NDP
pipelines.

C4.2 Introduction of in-situ result-set management in the context
of NDP pipelines.

C4.3 Introduction of the reuse of in-situ materialized results with-
out significant overhead, improving execution durations by
up to 400×.

C4.4 Enhancement of fault tolerance by reuse of materialized
results e. g., in complex pipelines.

C4.5 Introduction of the orchestration of interleaved NDP
pipeline execution on computational storage devices.

43

44 ndp execution and result-set handling

The corresponding publications are:

P8 [95] – “Near-Data Processing in Database Sys-
tems on Native Computational Storage under
HTAP Workloads”

Chapter 15

P9 [94] – “Result-Set Management for NDP Opera-
tions on Smart Storage”

Chapter 16

6.1 execution modes

From the previous chapters, we know that NDP calls can be issued
to the computational storage device in parallel to other workloads
on the host. With the correct offloading model all information for
an intervention-free processing is available on the device, including
logical-to-physical address mappings, format and layout information
as well as the most recent modifications from the host. Yet, there are
multiple modes an NDP call can be executed. In the following list, we
describe a number of them.

task-based : Firstly, an NDP call can reflect a single task that is
executed at once. While its internal complexity can vary from
simple tasks like filtering, to more sophisticated operations like
sorting or even support matrix computation, the behavior seen by
the caller is quite simple. The processing of an NDP task is started
with all necessary parameters, and ends either successfully, or
with some kind of error. For instance, [41] proposes a framework
for NDP that defines SSDlets as simple programs that can be
executed either on the host or on-device. Thereby, those SSDlets
can be interconnected via ports to move data between them
and allow implementations of more complex algorithms like
MapReduce. In general, the orchestration of NDP tasks is simple.
Yet, with their relatively static behavior, they cannot be used in
every scenario, e. g., a stream of data.

stream-based : Another approach is inspired by network packet
processing and attaches data processing to data movement. Thus,
the key difference to the task-based execution mode is that
the stream-based approach assumes a continuous stream of
data. While this is very common for network environments
and streaming-based applications like Kafka, it can be also ap-
plied to storage devices. For instance, [11] proposes a backward-
compatible solution to introduce NDP along the traditional re-
quests to a storage device. It is triggered by a read or write
request to the device, which entails a data movement. While the
data is transmitted, it is transformed on the way according to a
given NDP operation e. g., filtering.

6.2 ndp pipelines 45

pipeline-based Lastly, we propose the pipeline-based NDP execu-
tion in Publication P8 of Chapter 15 that combines parts of
the previously discussed execution modes. A pipeline consists
of multiple interconnected operands, similar to the task of the
task-based execution mode. However, data is streamed through
those operands according to a given execution tree. Thereby, the
pipeline-based execution mode partially resembles the classical
volcano-style execution of many databases [37].

Depending on the surrounding conditions of the system architecture
one of the previously presented execution modes fits best C4.1 . For
the context of this thesis, we set the focus on NDP pipelines, which are
described in detail in the next section.

6.2 ndp pipelines

NDP pipelines are proposed in Publication P8 . They are defined as
a demand-pull pipeline that is split into multiple operators. Each
operator sequentially processes a block of data, and thus, the pipeline
operates in a block-at-a-time manner. Whenever an operator finishes
processing an input block, it demands from the preceding operator
to provide the next block. Yet, the input of an operator can comprise
outputs of multiple preceding operators. Thus, an NDP pipeline is not
a single concatenation of operators but resembles an execution tree
that may involve classical pipeline-breakers as well-known in DBMS

and depicted in Figure 6.2 C4.1 . The goals of such an NDP pipeline
are either to reduce the overall device-to-host data transfers, or to
transform data into an adequate format for further processing, e. g.,
optimized for bandwidth utilization or Direct Memory Access (DMA)
transfers.

An operator itself processes the data record by record whereas
the applied transformation logic can vary. As in classical database
systems, an NDP pipeline usually starts with a simple Scan operator
followed by a Selection (σ) that filters the data according to some
criteria. Subsequently, a Join (▷◁), Group By, Sorting or any other
user-defined function like Betweenness Centrality (BC) can be applied,
as we evaluate in more detail in Publication P8 . [58] elaborated that
in such NDP pipelines a Projection (π) should be executed as early
as possible, also called early-projection, to reduce the data movement
as soon as possible in the execution tree.

Between two operators there is a buffer phase that handles inter- Key Insight: NDP
pipelines provide a
flexible way of
processing data
in-situ and leverage
the heterogeneous
processing
capabilities.

mediary results, which we discuss in Section 6.3. Each buffer phase
uses a memory space, configurable in its size, to cache the outputs
of the operators. This not only allows to process larger chunks of
data in a row but also can be aligned to characteristics of underlying
storage technologies, like Flash pages, which is of high importance as
presented in Section 3.1. Moreover, it enables to execute operators on

46 ndp execution and result-set handling

C
o

m
p

u
ta

ti
o

n
a
l
S

to
ra

g
e

σattr1 <= ?ScanT2

Intermediate

Result2

Intermediate

Result1

πattr1,...

Final Results

Group By
attr1

SpillingData

Intermediate

Result4

Intermediate Results

NDP_Pipeline: #1

Persistent Data

σattr1 <= ?ScanT1

Intermediate

Result2

Intermediate

Result1

⋈T1.attr2

= T2.attr3

Intermediate

Result3

πattr1,...

πattr1,...

Control FlowLegend Data Flow

Figure 6.2: As part of this thesis, we propose NDP Pipelines as flexible
demand-pull pipelines of operators that cache their intermediaries
in buffer phases. This allows the execution of the operators on any
of the heterogeneous processing capabilities. Moreover, operators
can utilize persistent storage to materialize intermediary results
and also spill data.

the best-fitting processing element, described in Section 4.2, without
changing the NDP pipeline.

6.3 final and intermediary result-set handling

NDP pipelines, as presented in the previous Section 6.2, produce final
but also intermediary results, which have to be managed. In partic-Key Insight: NDP

pipelines produce
final and

intermediary results
that need to be

managed.

ular, the latter have the characteristic that they have to be processed
on-device. As a consequence, the computational storage device has
to navigate within their layouts and interpret their formats similar
to the original data of the database. Hence, the concept of Parsers
and Accessors of Chapter 4 can be reused, but also have to be en-
hanced for writing out results in an expected format. In Publication
P9 , we revisit these concepts and extend them with result-set specific
implementations.

Furthermore, we elaborate on the efficiency of transferring the final
result-set to the host. Several approaches besides the well-known Block
I/O are possible, as depicted in Figure 6.3.

block-level ndp : One approach to avoid reading pages that are
discarded later by the execution engine, is to discard those pages
already on-device. Thus, introducing NDP processing on block-

6.3 final and intermediary result-set handling 47

BEGIN TRANSACTION TX1:

 SELECT attr1,... FROM tbl1,… WHERE attr1 <= ?
COMMIT;

Control Flow

Legend

Data Flow

DBMS

C
o

m
p

u
ta

ti
o

n
a
l
S

to
ra

g
e

σattr1 <= ?Scan

Intermediate

Result2

Intermediate

Result1

πattr1,...

Persistent Data

Storage Manager NDP_EXECREAD_PAGES

Result Set Retrieval

Option C:
Tuple-based

Option D:
Blocks of Tuples

DBMS Exec:

tbl1 → σattr1 <= ? → πattr1,...

Option A:
Block I/O

Option A:
Block I/O

Option B:
Block NDP
Option B:
Block NDP

Block

Filtering

NDP Pipeline:

tbl1 → σattr1 <= ? → πattr1,...

Figure 6.3: Results can be transferred from a storage device in several ways:
(A) By using the traditional Block I/O, (B) by filtering some of
the unnecessary pages on-device as Block NDP, (C) as an NDP
pipeline tuple by tuple, or (D) even gathering multiple tuples in a
block and transferring it as one.

level granularity (Figure 6.3, Option B), allows filtering the phys-
ical pages according to some criteria and transfer only the match-
ing (e. g., BlockNDP [11, 12]). As a consequence, the bus system
bandwidth is only spent for reading pages containing at least
some relevant data. However, the physical pages also might com-
prise multiple records, sometimes even in different arrangements
that constitute data unnecessary for the execution engine. Hence,
the bus is still not fully leveraged efficiently.

tuple-based ndp : With NDP, it becomes viable to execute por-
tions of a query execution plan, comprising multiple operators,
on-device as discussed in the previous Section 6.2. Such NDP

pipelines aim for reducing the overall data movement up to the
host. One approach for transferring the data is to send them
tuple by tuple (Figure 6.3, Option C), similar to a volcano-style
execution engine [37]. This clearly eases the integration into
volcano-style DBMS, and also allows for transferring only rele-

48 ndp execution and result-set handling

vant data. Unfortunately, this also entails a heavy communication
overhead, especially with state-of-the-art bandwidth-optimized
bus systems (PCIe) and protocols (NVMe), as shown in Publication
P9 .

blocks of tuples : To fully optimize the storage bus utilization by
firstly transferring only relevant data, and secondly leveraging
the bus and database engine properties, we propose an approach
that can batch multiple result tuples into transfer units/blocks.
In our approach, the size of these units can be configured from
very small, to achieve a tuple-based behavior, up to very large,
to align with present bus or system optimized settings, similar
to the buffers between operands of NDP pipelines. Therefore,
a pre-allocated set of on-device address locations is used and
assigned to a certain format of tuples. Tuples are appended until
the configured size is reached before the block is transferred.

Depending on the available I/O bus and system setup, one of the
previously discussed final result-set handling techniques is beneficial.
For instance, in the evaluation of Publication P9 , we showed that
transferring larger result-set blocks improves the performance by
up to 27% for computational storage devices interconnected with a
PCIe/NVMe communication C4.2 .

0 20 40 60 80 100
0

10

20

30

40

50

60

70

Native (baseline)
NDP Immediate Consume
NDP Materialize + Deferred Consume

Selectivity [%]

Ex
ec

ut
io

n
D

ur
at

io
n

[s
]

1 2 3
0

20
40
60
80

100
120
140
160
180

Native
NDP
NDP Materialize No Consume

Reuse Host
Reuse On-Device

Reuse Runs

Ex
ec

ut
io

n
D

ur
at

io
n

[s
]

Figure 6.4: In Publication P9 , the effects of consumption modes and reuse
semantics on the execution performance of query are investigated.
Clearly, on-device materialization comes at a low cost and can be
reused to gain significant performance improvements.

However, with NDP result-set management, it is also possible toKey Insight:
On-device

materialization of
final or intermediary

results introduces
novel consumption

modes and reuse
semantics.

materialize any kind of result-set (intermediary and final) on the
storage device to reuse it in further recurring processings or to utilize
large DMA transfers to improve data transfer rates. As a consequence,
not only the processing of intermediary and final results is possible
anymore but it also opens the way for novel concepts in terms of
the Consumption Mode and Reuse Semantics. For instance, instead of

6.4 communication protocol and state machine 49

immediately consuming the results of an NDP pipeline (immediate
consumption), they can be materialized and consumed to a later point
in time (deferred consumption) and reused multiple times. C4.3 In
the experimental evaluation of Publication P9 , we elaborated the
effects of those concepts on the performance of the query SELECT id,

type,...FROM nodetable WHERE type <= ?. Figure 6.4 presents the
numbers for the immediate and deferred consumption modes (left)
and the multiple reuse of materialized data (right). The evaluation
shows the marginal overhead of materializing results, and a significant
performance improvement of 95% for reusing them on the host, and
even 73− 400× for reusing them on-device. Especially the latter also
benefits complex analytical calculations, which repeatedly require a
pre-processed dataset and thus, increase the fault tolerance of such
complex pipelines C4.4 .

6.4 communication protocol and state machine

Besides the processing and result-set management, the orchestration
of both on a computational storage device has not yet been deeply
studied. In Publication P9 , we propose a communication protocol Key Insight: The

on-device
orchestration of
NDP and result-set
management is
essential to transfer
results while
processing.

that allows having necessary interactions with a host system, but
avoids any unnecessary data transfers or costly roundtrips. Thereby,
an NDP Slot can be reserved on-device as a single managing data
structure for an entire NDP pipeline. In case a communication with
the host is required, e. g., to transfer final results or to solve any
resource constraint on the device, a Host Interaction is assigned to
the NDP Slot that keeps all relevant information.

The NDP Slots and Host Interactions are orchestrated in an on-
device finite state machine that can leverage today’s widely-used
multi-core processing units (see Section 2.3.4). Therefore, the finite
state machine is split into a Managing Core that is responsible to
coordinate the host-device communication and storage management,
as well as multiple Processing Cores, which execute the NDP pipelines
described in Section 6.2. A shared memory between Managing and
Processing Cores allows for exchanging information. Combined with
the NDP Slots and Host Interactions, this not only allows compu-
tational storage devices to process multiple NDP pipelines at once,
but also paves the way for an interleaved pipeline execution where
batches of final result-sets are transmitted to the host while new ones
are continuously produced C4.5 . This improves execution times by
up to 30%, as shown in the experimental evaluation of Chapter 16.

» recap : insights and solutions

Last but not least, we investigated in-situ result-set handling for NDP

in Research Question RQ4 . We firstly elaborated on different NDP

50 ndp execution and result-set handling

execution modes and identified NDP pipelines to be a flexible way of
processing data in-situ, while leveraging the heterogeneous processing
capabilities. In contrast, related work [11, 41] C4.1 either has a rela-
tively static behavior or transfers data, not required in any subsequent
processing. By introducing novel in-situ final and intermediary result
set handling, we determined that the concrete implementation heavily
depends on the I/O bus and system setup.

For NVMe communication over PCIe we achieved to improve the
performance by up to 27% by transferring larger result-set blocks C4.2

. Additionally, our research has revealed that with on-device material-
ization, novel consumption modes and reuse semantics are feasible,
and thereby, improved previous research on NDP query processing
[105, 106]. In our experimental evaluation we speed-up execution dura-
tions by up to 400× C4.3 . Furthermore, reusing final or intermediary
results also enhances the fault tolerance of complex pipelines, as they
can be directly accessed, which is of high importance for analytical
workloads with recurring calculations C4.4 . Investigations have
shown that its orchestration in combination with the processing is es-
sential to fully-leverage computational storage devices. Our proposed,
interleaved NDP pipelines are managed by an on-device finite state
machine and can process data while transferring the first results to
the host, improving performance by up to 30% C4.4 .

Recapitulating, in the work of this thesis we investigated Near-
Data Processing (NDP) for data-intensive systems by elaborating the
physical storage management (Chapter 3) and on-device processing
(Chapter 4), studying offloading models and transactional consistent
NDP execution (Chapter 5) and finalized it with exploring the in-situ
result-set management and its overall orchestration.

7
C O N C L U S I O N A N D O U T L O O K

7.1 conclusion

Over the last decades, we observe an ever-increasing growth of data
volume due to trends like Social Media, IoT, or scientific applications,
which has to be managed by DBMSs. To keep the transactional through-
put and execution times steady or even improve them, highly parallel
processing units, like multi-core CPUs, and tremendously fast storage
technologies, like NVM, are equipped in today’s data-intensive systems.
Yet, according to Amdahl’s Law [4], the overall speedup of a system
highly depends on the fraction of time the part, supported by that
modern hardware, is actually used. Thus, we cannot fully leverage the
increasingly fast processing units, as today’s computer architecture
easily become I/O bound.

Throughout the course of this thesis, we investigate the Central Re-
search Question CRQ , elaborate novel concepts, and propose solutions
for several aspects of an alternative computer architecture approach:
With Near-Data Processing (NDP), we shift from a data-to-code to-
ward a code-to-data paradigm.

First, we challenge today’s storage management in Chapter 3 and
conclude that due to its multi-layer approach, storage technologies
might be easily exchangeable but they also introduce information
hiding, which impairs processing on the device C1.1 . We believe
to have found an essential prerequisite for NDP with Native Storage
Management and investigate novel abstractions to extend the interface,
according to Research Question RQ1 . The Publications P1 P2 P3 of Part ii
present initial approaches of the NDP interface extension, which is
continuously extended with further features over the remainder of this
thesis C1.2 . Moreover, we introduce Physical Page Pointers (PPPs) as
one novel abstraction to tremendously reduce the exchange of logical-
to-physical mapping information between host and device, and avoid
expensive device-to-host round-trips for address resolution C1.3 .
Overall, the foundation for on-device data processing is established.

Second, we address the problem of on-device navigation and in-
terpretation as Research Question RQ2 in Chapter 4 and provide
Publications P4 P5 P6 P7 in Part iii. Cross-layer data formats and
layouts of databases are studied C2.1 and the concept of Parsers
and Accessors as a solution is proposed C2.2 to avoid any costly
host-device round-trips. Moreover, we investigate the utilization of
heterogeneous processing hardware from modern computational stor-
age devices C2.3 and achieve performance improvements of 1.4×

51

52 conclusion and outlook

to 2.7× by executing portions of simple queries on an FPGA C2.4 .
Thereby, the compute placement per NDP invocation and the hardware-
software co-design play important roles. Yet, as the development of
such accelerators is quite cumbersome, we also propose a frame-
work to automatically generate those and lower the boundaries for
hardware-accelerated NDP C2.5 . By this, we are now able to not
only resolve data on-device but also to leverage the heterogeneous
processing capabilities to navigate and interpret it.

Third, we focus on offloading models and their impact on the DBMS

architectures in Research Question RQ3 . Hence, in Chapter 5, we
present an overview on novel ways to offload processing to NDP-
capable devices C3.1 . The concept of an intervention-free transaction
execution of snapshot-based NDP is introduced in the Publication P8

as an indispensable prerequisite for processing frequently updating
datasets on-device C3.2 . In particular, with respect to modern work-
loads like HTAP, this concept allows to process the most recent data
on-device, and thus, provides even transactional guarantees C3.3 . The
experimental evaluation has shown that a performance improvement
of up to 30% is possible while reducing the power consumption by
26% C3.4 . In general, our NDP approaches are now capable of process-
ing the most recent data from the host as well as the large cold data
persisted on the device with the available heterogeneous processing
units of computational storage devices.

Lastly, we study possible NDP execution modes in Chapter 6 and
propose NDP pipelines as flexible way of on-device data processing
C4.1 . According to Research Question RQ4 , we also have a look at their
result-set management C4.2 . We introduce concepts for on-device
materialization, which pave the way for novel concepts of consumption
modes and reuse semantics. With those, we improve the execution
times by up to 400× in the evaluation of the Publication P9 in Part v
C4.3 . Likewise, we enhance the fault tolerance of complex queries
as intermediate results can be easily accessed multiple times C4.4 ,
e. g., in analytics, Machine Learning (ML), or complex applications.
Moreover, the orchestration of processing and result handling on
computational storage devices is investigated and interleaved NDP

pipeline execution is proposed to transfer final results in parallel to
processing on-device C4.5 .

To recapitulate, we elaborate on Near-Data Processing (NDP) for
data-intensive systems and propose valuable concepts and abstractions
along all necessary phases of data processing in the context of this
thesis – from reading the physical data, over leveraging heterogeneous
processing capabilities, to navigate and interpret data. We propose
novel offloading modes to ensure even transactional guarantees, and
close by presenting the management of final and intermediate result-
sets.

7.2 the ndp problem space and future work 53

7.2 the ndp problem space and future work

The major aspects of NDP for data-intensive systems are investigated
and presented in this work. Yet, there is a lot more to explore in the
broad range of NDP for future work. Summarized in Figure 7.1, there
are interesting areas.

Memory
Technology

Database
Storage Manager

Processing Unit

Applications

Database
Workloads

Database
Transactions

Database
Executor/Optimizer

Query
OLTP

OLAP
HTAP

DRAM
Flash

NVM

HBM

Hint

Cost Model

Self Learning

Considered in this thesis

ML

Figure 7.1: Throughout the course of this thesis, the fundamentals of the
problem space for NDP in data-intensive systems are investigated.
Yet, there is a lot more to explore.

For instance, new advances in the semiconductor industry broaden
the spectrum of storage and memory technologies. While Dynamic
Random Access Memory (DRAM) and Flash memories capture a charge
for writing data and detect the voltage when reading, novel technolo-
gies like Phase Change Memory (PCM), Spin-Transfer Torque Magne-
toresistive RAM (STT-MRAM), or memristors are categorized as resistive
memory. They need to have a pulsing current to write data but use
the resistance for reading, which in turn, allows a higher density than
DRAM, due to the large resistance ranges. In addition, they support
byte-addressable accesses, which require new concepts for managing
the large address space. With access latencies of up to 250 ns, they
position themselves between DRAM and Flash in the memory hierarchy.
Similarly, advances in 3D-Stacking of semiconductor memories yield
extremely parallel technologies like HBM. As all of those memories
can be closely combined with processing units, they are promising
candidates to further improve NDP.

Moreover, this thesis has not deeply considered other processing
units than CPUs and FPGAs. However, GPUs or ASICs have broad adop-
tion in data centers and provide novel processing characteristics that
have to be investigated in the context of NDP. Likewise, the utilization
of FPGAs is addressed only on a superficial level in this thesis, and can
be extended with other applications like ML.

54 bibliography

In addition, it can be anticipated that computational storage devices
will have a low-latency and cache-coherent interface, like CCIX [26] or
CXL [27], besides the traditional high-bandwidth PCIe interconnect. In
the context of offloading models and transactional consistency for NDP

executions we already scratched the surface of cooperative transaction
handling. Nevertheless, such modern shared memory architectures
and protocols build the foundation for shared locking tables, and thus,
extend the research area in terms of NDP that can also update the
dataset on-device.

Furthermore, the storage manager of databases can be further im-
proved by applying NDP. In particular storage maintenance operations
are promising candidates as they constitute a significant amount in
the data transfers between the storage device and host. For instance,
compactions of append-based data structures, like LSM trees, could be
executed completely asynchronously in-situ, relieving the processing
units of the host as well as the bus system.

Lastly, the close linkage between NDP and the database executor
or optimizer is not yet exhaustively investigated. First studies have
shown the necessity for an adequate cost model that considers data
movement between the device and host [58]. Another consideration
could be to integrate NDP in the context of self-learning databases by
utilizing ML to schedule processing in-situ.

B I B L I O G R A P H Y

[1] Anurag Acharya, Mustafa Uysal, and Joel Saltz. “Active Disks:
Programming Model, Algorithms and Evaluation.” In: Proc.
ASPLOS. San Jose, California, USA, 1998. isbn: 1-58113-107-0.

[2] Ioannis Alagiannis, Stratos Idreos, and Anastasia Ailamaki.
“H2O.” In: Proc. SIGMOD. 2014, pp. 1103–1114. isbn: 9781450323765.
doi: 10.1145/2588555.2610502. url: http://15721.courses.
cs . cmu . edu / spring2018 / papers / 10 - storage / h2o . pdf %

20http://dl.acm.org/citation.cfm?doid=2588555.2610502.

[3] Gustavo Alonso, Timothy Roscoe, David Cock, Mohsen Ewaida,
Kaan Kara, Dario Korolija, David Sidler, and Zeke Wang. “Tack-
ling Hardware/Software co-design from a database perspec-
tive.” In: Proc. CIDR. 2020.

[4] Gene M. Amdahl. “Validity of the Single Processor Approach
to Achieving Large Scale Computing Capabilities.” In: Proceed-
ings of the April 18-20, 1967, Spring Joint Computer Conference.
AFIPS ’67 (Spring). Atlantic City, New Jersey: Association for
Computing Machinery, 1967, pp. 483–485. isbn: 9781450378956.
doi: 10.1145/1465482.1465560. url: https://doi.org/10.
1145/1465482.1465560.

[5] Raja Appuswamy, Manos Karpathiotakis, Danica Porobic, and
Anastasia Ailamaki. “The case for heterogeneous HTAP.” In:
Proc. CIDR. 2017.

[6] Timothy G. Armstrong, Vamsi Ponnekanti, Dhruba Borthakur,
and Mark Callaghan. “LinkBench: A Database Benchmark
Based on the Facebook Social Graph.” In: Proc. SIGMOD. 2013.
isbn: 978-1-4503-2037-5.

[7] Vaibhav Arora, Faisal Nawab, Divyakant Agrawal, and Amr
El Abbadi. “Janus: A Hybrid Scalable Multi-Representation
Cloud Datastore.” In: IEEE Trans. Knowl. Data Eng. 30.4 (2018),
pp. 689–702. issn: 10414347. doi: 10.1109/TKDE.2017.2773607.

[8] Joy Arulraj, Andrew Pavlo, and Prashanth Menon. “Bridg-
ing the archipelago between row-stores and column-stores
for hybrid workloads.” In: Proc. SIGMOD. Vol. 26-June-20.
2016, pp. 583–598. isbn: 9781450335317. doi: 10.1145/2882903.
2915231. url: http://dx.doi.org/10.1145/2882903.2915231.

[9] Oreoluwatomiwa O. Babarinsa and Stratos Idreos. “JAFAR :
Near-Data Processing for Databases.” In: 2015.

55

https://doi.org/10.1145/2588555.2610502
http://15721.courses.cs.cmu.edu/spring2018/papers/10-storage/h2o.pdf%20http://dl.acm.org/citation.cfm?doid=2588555.2610502
http://15721.courses.cs.cmu.edu/spring2018/papers/10-storage/h2o.pdf%20http://dl.acm.org/citation.cfm?doid=2588555.2610502
http://15721.courses.cs.cmu.edu/spring2018/papers/10-storage/h2o.pdf%20http://dl.acm.org/citation.cfm?doid=2588555.2610502
https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1109/TKDE.2017.2773607
https://doi.org/10.1145/2882903.2915231
https://doi.org/10.1145/2882903.2915231
http://dx.doi.org/10.1145/2882903.2915231

56 bibliography

[10] John Backus. “Can Programming Be Liberated from the von
Neumann Style? A Functional Style and Its Algebra of Pro-
grams.” In: Commun. ACM 21.8 (Aug. 1978), pp. 613–641. issn:
0001-0782. doi: 10.1145/359576.359579. url: https://doi.
org/10.1145/359576.359579.

[11] Antonio Barbalace, Martin Decky, Javier Picorel, and Pramod
Bhatotia. “BlockNDP: Block-storage near data processing.”
In: Proc. Middlew. 2020, pp. 8–15. isbn: 9781450382014. doi:
10.1145/3429357.3430519. url: https://doi.org/10.1145/
3429357.3430519.

[12] Antonio Barbalace and Jaeyoung Do. “Computational Storage:
Where Are We Today?” In: 11th Conference on Innovative Data
Systems Research, CIDR 2021, Virtual Event, January 11-15, 2021,
Online Proceedings. www.cidrdb.org, 2021.

[13] Arthur Bernhardt, Sajjad Tamimi, Florian Stock, Carsten Heinz,
Christian Knoedler Tobias Vinçon, Andreas Koch, and Ilia
Petrov. “neoDBMS: In-situ Snapshots for Multi-Version DBMS
on Native Computational Storage.” In: Proc. ICDE (2022).

[14] Arthur Bernhardt, Sajjad Tamimi, Florian Stock, Andreas Koch,
Tobias Vincon, and Ilia Petrov. “Cache-Coherent Shared Lock-
ing for Transactionally Consistent Updates in Near-Data Pro-
cessing DBMS on Smart Storage.” In: Proc. EDBT. 2022.

[15] Matias Bjørling, Javier Gonzalez, and Philippe Bonnet. “Light-
NVM: The Linux Open-Channel SSD Subsystem.” In: 2017.

[16] Twitter Engineering Blog. New Tweets per second record, and how!
url: https://blog.twitter.com/engineering/en_us/a/
2013/new-tweets-per-second-record-and-how.

[17] Justus Bogner, Carolin Dehner, Tobias Vincon, and Ilia Petrov.
“Real time charging database benchmarking.” In: Proceedings
of the 17th International Conference on Information Integration and
Web-based Applications and Services, iiWAS 2015, Brussels, Belgium,
December 11-13, 2015. Ed. by Gabriele Anderst-Kotsis and Maria
Indrawan-Santiago. ACM, 2015, p. 78. isbn: 978-1-4503-3491-4.
doi: 10.1145/2837185.2837258. url: http://doi.acm.org/10.
1145/2837185.2837258.

[18] Haran Boral and David J. DeWitt. “Parallel Architectures for
Database Systems.” In: Database Machines. Ed. by A. R. Hurson,
L. L. Miller, and S. H. Pakzad. Springer Berlin Heidelberg, 1989.
Chap. Database Machines: An Idea Whose Time Has Passed?
A Critique of the Future of Database Machines, pp. 11–28. isbn:
0-8186-8838-6.

https://doi.org/10.1145/359576.359579
https://doi.org/10.1145/359576.359579
https://doi.org/10.1145/359576.359579
https://doi.org/10.1145/3429357.3430519
https://doi.org/10.1145/3429357.3430519
https://doi.org/10.1145/3429357.3430519
https://blog.twitter.com/engineering/en_us/a/2013/new-tweets-per-second-record-and-how
https://blog.twitter.com/engineering/en_us/a/2013/new-tweets-per-second-record-and-how
https://doi.org/10.1145/2837185.2837258
http://doi.acm.org/10.1145/2837185.2837258
http://doi.acm.org/10.1145/2837185.2837258

bibliography 57

[19] Amirali Boroumand, Saugata Ghose, Geraldo F. Oliveira, and
Onur Mutlu. “Polynesia: Enabling Effective Hybrid Transac-
tional/Analytical Databases with Specialized Hardware/Soft-
ware Co-Design.” In: CoRR abs/2103.00798 (2021). arXiv: 2103.
00798. url: https://arxiv.org/abs/2103.00798.

[20] Mokrane Bouzeghoub and Verónika Peralta. “A Framework
for Analysis of Data Freshness.” In: In Proc. IQIS (2004).

[21] Ulrik Brandes. “A Faster Algorithm for Betweenness Central-
ity.” In: Journal of Mathematical Sociology (2001).

[22] Wei Cao et al. “POLARDB meets computational storage: Effi-
ciently support analytical workloads in cloud-native relational
database.” In: Proc. FAST. 2020, pp. 29–41.

[23] CL Philip Chen and Chun-Yang Zhang. “Data-intensive appli-
cations, challenges, techniques and technologies: A survey on
Big Data.” In: Information sciences 275 (2014), pp. 314–347.

[24] CNET. Facebook processes more than 500 TB of data daily. url:
https : / / www . cnet . com / tech / services - and - software /

facebook-processes-more-than-500-tb-of-data-daily/.

[25] Ampere Computing. Ampere Altra 128 Core ARM. url: https:
//d1o0i0v5q5lp8h.cloudfront.net/ampere/live/assets/

documents/Altra_Max_Rev_A1_DS_v1.05_20220728.pdf.

[26] CCIX Consortium. CCIX. url: https://www.ccixconsortium.
com/.

[27] CXL Consortium. CXL. url: https://www.computeexpresslink.
org/.

[28] COSMOS Project Documentation. http://www.openssd-project.
org/wiki/Cosmos_OpenSSD_Technical_Resources. OpenSSD
Project. Jan. 2019.

[29] Arup De, Maya Gokhale, Steven Swanson, and et. al et. “Min-
erva: Accelerating Data Analysis in Next-Generation SSDs.” In:
Proc. FCCM. 2013.

[30] David DeWitt and Jim Gray. “Parallel Database Systems: The
Future of High Performance Database Systems.” In: Commun.
ACM 35.6 (June 1992), pp. 85–98. issn: 0001-0782.

[31] Jaeyoung Do, Yang-Suk Kee, Jignesh M. Patel, Chanik Park,
Kwanghyun Park, and David J. DeWitt. “Query processing on
smart SSDs.” In: Proc. SIGMOD (2013), p. 1221. issn: 07308078.
doi: 10.1145/2463676.2465295. url: http://dl.acm.org/
citation.cfm?doid=2463676.2465295.

https://arxiv.org/abs/2103.00798
https://arxiv.org/abs/2103.00798
https://arxiv.org/abs/2103.00798
https://www.cnet.com/tech/services-and-software/facebook-processes-more-than-500-tb-of-data-daily/
https://www.cnet.com/tech/services-and-software/facebook-processes-more-than-500-tb-of-data-daily/
https://d1o0i0v5q5lp8h.cloudfront.net/ampere/live/assets/documents/Altra_Max_Rev_A1_DS_v1.05_20220728.pdf
https://d1o0i0v5q5lp8h.cloudfront.net/ampere/live/assets/documents/Altra_Max_Rev_A1_DS_v1.05_20220728.pdf
https://d1o0i0v5q5lp8h.cloudfront.net/ampere/live/assets/documents/Altra_Max_Rev_A1_DS_v1.05_20220728.pdf
https://www.ccixconsortium.com/
https://www.ccixconsortium.com/
https://www.computeexpresslink.org/
https://www.computeexpresslink.org/
http://www.openssd-project.org/wiki/Cosmos_OpenSSD_Technical_Resources
http://www.openssd-project.org/wiki/Cosmos_OpenSSD_Technical_Resources
https://doi.org/10.1145/2463676.2465295
http://dl.acm.org/citation.cfm?doid=2463676.2465295
http://dl.acm.org/citation.cfm?doid=2463676.2465295

58 bibliography

[32] Jaeyoung Do, David Lomet, and Ivan Luiz Picoli. “Improv-
ing CPU I/O performance via SSD controller FTL support
for batched writes.” In: Proc. SIGMOD. 2019. doi: 10.1145/
3329785.3329925. url: https://doi.org/10.1145/3329785.
3329925.

[33] Franz Färber, Norman May, Wolfgang Lehner, Philipp Große,
Ingo Müller, Hannes Rauhe, and Jonathan Dees. “The SAP
HANA Database – An Architecture Overview.” In: IEEE Data
Eng. Bull. 35.1 (2012), pp. 28–33. url: http://dblp.uni-trier.
de/db/journals/debu/debu35.html%7B%5C#%7DFarberMLGMRD12%

7B%5C%%7D5Cnhttp://sites.computer.org/debull/A12mar/

issue1.htm.

[34] Michael J. Flynn. Very High-Speed Computing Systems. 1966. doi:
10.1109/PROC.1966.5273.

[35] Michael J. Flynn. “Some computer organizations and their
effectiveness.” In: IEEE Transactions on Computers C-21 (9 1972),
pp. 948–960. issn: 00189340. doi: 10.1109/TC.1972.5009071.

[36] Anil K Goel, Jeffrey Pound, Nathan Auch, Peter Bumbulis,
Scott MacLean, Franz Färber, Francis Gropengiesser, Christian
Mathis, Thomas Bodner, and Wolfgang Lehner. “Towards scal-
able real-time analytics: An architecture for scale-out of OLxP
workloads.” In: Proc. VLDB Endow. Vol. 8. 12. 2015, pp. 1716–
1727. doi: 10.14778/2824032.2824069.

[37] Goetz Graefe. “Volcano-An Extensible and Parallel Query Eval-
uation System.” In: IEEE TRANSACTIONS ON KNOWLEDGE
AND DATA ENGINEERING 6 (1 1994).

[38] Goetz Graefe. “Partitioned B-trees-a user’s guide.” In: In Proc.
BTW (2003).

[39] Jim Gray and Prashant J. Shenoy. “Rules of Thumb in Data
Engineering.” In: Proc. ICDE. 2000, p. 3.

[40] Martin Grund, Jens Krüger, Hasso Plattner, Alexander Zeier,
Philippe Cudre-Mauroux, and Samuel Madden. “HYRISE-A
main memory hybrid storage engine.” In: Proc. VLDB Endow.
4.2 (2010), pp. 105–116. issn: 21508097. doi: 10.14778/1921071.
1921077.

[41] Boncheol Gu, Andre S. Yoon, and et al. et. “Biscuit: A Frame-
work for Near-Data Processing of Big Data Workloads.” In:
Proc. ISCA. June 2016.

[42] Sergej Hardock, Ilia Petrov, Robert Gottstein, and Alejandro
Buchmann. “NoFTL: Database Systems on FTL-less Flash Stor-
age.” In: Proc. VLDB Endow. (2013).

https://doi.org/10.1145/3329785.3329925
https://doi.org/10.1145/3329785.3329925
https://doi.org/10.1145/3329785.3329925
https://doi.org/10.1145/3329785.3329925
http://dblp.uni-trier.de/db/journals/debu/debu35.html%7B%5C#%7DFarberMLGMRD12%7B%5C%%7D5Cnhttp://sites.computer.org/debull/A12mar/issue1.htm
http://dblp.uni-trier.de/db/journals/debu/debu35.html%7B%5C#%7DFarberMLGMRD12%7B%5C%%7D5Cnhttp://sites.computer.org/debull/A12mar/issue1.htm
http://dblp.uni-trier.de/db/journals/debu/debu35.html%7B%5C#%7DFarberMLGMRD12%7B%5C%%7D5Cnhttp://sites.computer.org/debull/A12mar/issue1.htm
http://dblp.uni-trier.de/db/journals/debu/debu35.html%7B%5C#%7DFarberMLGMRD12%7B%5C%%7D5Cnhttp://sites.computer.org/debull/A12mar/issue1.htm
https://doi.org/10.1109/PROC.1966.5273
https://doi.org/10.1109/TC.1972.5009071
https://doi.org/10.14778/2824032.2824069
https://doi.org/10.14778/1921071.1921077
https://doi.org/10.14778/1921071.1921077

bibliography 59

[43] Sergey Hardock, Andreas Koch, Tobias Vincon, and Ilia Petrov.
“IPA-IDX: In-Place Appends for B-Tree Indices.” In: Proceedings
of the 15th International Workshop on Data Management on New
Hardware. DaMoN’19. Amsterdam, Netherlands: Association
for Computing Machinery, 2019. isbn: 9781450368018. doi:
10.1145/3329785.3329929. url: https://doi.org/10.1145/
3329785.3329929.

[44] Sergey Hardock, Ilia Petrov, Robert Gottstein, and Alejandro P.
Buchmann. “Revisiting DBMS Space Management for Native
Flash.” In: Proc. EDBT. 2016.

[45] Masoud Hemmatpour, Mohammad Sadoghi, and et al. “Kanzi:
A Distributed, In-memory Key-Value Store.” In: Proc. Middlew.
2016.

[46] Martin Hilbert and Priscila López. “The world’s technological
capacity to store, communicate, and compute information.” In:
science 332.6025 (2011), pp. 60–65.

[47] Mark D Hill and Michael R Marty. “Amdahl’s Law in the
Multicore Era.” In: Computer 41.7 (July 2008), pp. 33–38. issn:
0018-9162. doi: 10.1109/MC.2008.209.

[48] IBM. DB2 Databases on RAW. url: https://www.ibm.com/docs/
en/db2/9.7?topic=creation-attaching-dms-direct-disk-

access-devices.

[49] IDC and Statista. Worlwide Data Created. url: https://www.
statista.com/statistics/871513/worldwide-data-created/.

[50] Intel. Intel Xeon Phi 72 Core. url: https://ark.intel.com/
content/www/de/de/ark/products/95830/intel-xeon-phi-

processor-7290-16gb-1-50-ghz-72-core.html.

[51] Zsolt István, David Sidler, and Gustavo Alonso. “Caribou: In-
telligent Distributed Storage.” In: Proc. VLDB. 2017.

[52] Insoon Jo, Duck-ho Bae, and et al. et. “YourSQL : A High-
Performance Database System Leveraging In-Storage Comput-
ing.” In: Proc. VLDB. 2016.

[53] Kimberly Keeton, David A. Patterson, and Joseph M. Heller-
stein. “A Case for Intelligent Disks (IDISKs).” In: SIGMOD Rec.
(1998).

[54] Alfons Kemper and Thomas Neumann. “HyPer: A hybrid
OLTP&OLAP main memory database system based on virtual
memory snapshots.” In: Proc. ICDE. 2011, pp. 195–206. isbn:
9781424489589. doi: 10.1109/ICDE.2011.5767867.

[55] Jungwon Kim and et al. “PapyrusKV: A High-performance
Parallel Key-value Store for Distributed NVM Architectures.”
In: Proc. SC. 2017.

https://doi.org/10.1145/3329785.3329929
https://doi.org/10.1145/3329785.3329929
https://doi.org/10.1145/3329785.3329929
https://doi.org/10.1109/MC.2008.209
https://www.ibm.com/docs/en/db2/9.7?topic=creation-attaching-dms-direct-disk-access-devices
https://www.ibm.com/docs/en/db2/9.7?topic=creation-attaching-dms-direct-disk-access-devices
https://www.ibm.com/docs/en/db2/9.7?topic=creation-attaching-dms-direct-disk-access-devices
https://www.statista.com/statistics/871513/worldwide-data-created/
https://www.statista.com/statistics/871513/worldwide-data-created/
https://ark.intel.com/content/www/de/de/ark/products/95830/intel-xeon-phi-processor-7290-16gb-1-50-ghz-72-core.html
https://ark.intel.com/content/www/de/de/ark/products/95830/intel-xeon-phi-processor-7290-16gb-1-50-ghz-72-core.html
https://ark.intel.com/content/www/de/de/ark/products/95830/intel-xeon-phi-processor-7290-16gb-1-50-ghz-72-core.html
https://doi.org/10.1109/ICDE.2011.5767867

60 bibliography

[56] Sungchan Kim, Hyunok Oh, Chanik Park, Sangyeun Cho, Sang-
Won Lee, and Bongki Moon. “In-storage processing of database
scans and joins.” In: Inf. Sci. 327 (Jan. 2016), pp. 183–200. issn:
00200255. doi: 10 . 1016 / j . ins . 2015 . 07 . 056. url: http :

//dx.doi.org/10.1016/j.ins.2015.07.056%20https://

linkinghub.elsevier.com/retrieve/pii/S0020025515006003.

[57] Hideaki Kimura, Alkis Simitsis, and Kevin Wilkinson. “Janus:
Transactional processing of navigational and analytical graph
queries on many-core servers.” In: Proc. CIDR. 2017.

[58] Christian Knoedler, Tobias Vincon, Arthur Bernhardt, Lukas
Weber, Leonardo Solis-Vasquez, Ilia Petrov, and Andreas Koch.
“A cost model for NDP-aware query optimization for KV-
stores.” In: Proc. DAMON (2021).

[59] Jens Korinth, Jaco Hofmann, Carsten Heinz, and Andreas Koch.
“The TaPaSCo Open-Source Toolflow for the Automated Com-
position of Task-Based Parallel Reconfigurable Computing Sys-
tems.” In: Applied Reconfigurable Computing. 2019.

[60] Tirthankar Lahiri et al. “Oracle Database In-Memory: A dual
format in-memory database.” In: Proc. - Int. Conf. Data Eng.
2015-May (2015), pp. 1253–1258. issn: 10844627. doi: 10.1109/
ICDE.2015.7113373.

[61] Per Åke Larson, Adrian Birka, Eric N Hanson, Weiyun Huang,
Michal Nowakiewicz, and Vassilis Papadimos. “Real-time an-
alytical processing with SQL server.” In: Proc. VLDB Endow.
Vol. 8. 12. 2015, pp. 1740–1751. doi: 10.14778/2824032.2824071.

[62] Juchang Lee, Wook Shin Han, Hyoung Jun Na, Chang Gyoo
Park, Kyu Hwan Kim, Deok Hoe Kim, Joo Yeon Lee, Sang
Kyun Cha, and Seung Hyun Moon. “Parallel replication across
formats for scaling out mixed OLTP/OLAP workloads in main-
memory databases.” In: VLDB J. 27.3 (2018), pp. 421–444. issn:
0949877X. doi: 10.1007/s00778-018-0503-z.

[63] Clifford Lynch. “Big Data: How do your data grow?” In: Nature
455 (Oct. 2008), pp. 28–9. doi: 10.1038/455028a.

[64] Darko Makreshanski, Jana Giceva, Claude Barthels, and Gus-
tavo Alonso. “BatchDB: Efficient isolated execution of hybrid
OLTP+OLAP workloads for interactive applications.” In: Proc.
SIGMOD. Vol. Part F1277. 2017, pp. 37–50. isbn: 9781450341974.
doi: 10.1145/3035918.3035959. url: http://dx.doi.org/10.
1145/3035918.3035959.

[65] Bernard Marr and Co. How Much Data Do We Create Every
Day? The Mind-Blowing Stats Everyone Should Read. url: https:
//bernardmarr.com/how-much-data-do-we-create-every-

day-the-mind-blowing-stats-everyone-should-read/.

https://doi.org/10.1016/j.ins.2015.07.056
http://dx.doi.org/10.1016/j.ins.2015.07.056%20https://linkinghub.elsevier.com/retrieve/pii/S0020025515006003
http://dx.doi.org/10.1016/j.ins.2015.07.056%20https://linkinghub.elsevier.com/retrieve/pii/S0020025515006003
http://dx.doi.org/10.1016/j.ins.2015.07.056%20https://linkinghub.elsevier.com/retrieve/pii/S0020025515006003
https://doi.org/10.1109/ICDE.2015.7113373
https://doi.org/10.1109/ICDE.2015.7113373
https://doi.org/10.14778/2824032.2824071
https://doi.org/10.1007/s00778-018-0503-z
https://doi.org/10.1038/455028a
https://doi.org/10.1145/3035918.3035959
http://dx.doi.org/10.1145/3035918.3035959
http://dx.doi.org/10.1145/3035918.3035959
https://bernardmarr.com/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/
https://bernardmarr.com/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/
https://bernardmarr.com/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/

bibliography 61

[66] Micron. 232-Layer NAND. url: https://investors.micron.
com/news-releases/news-release-details/micron-ships-

worlds-first-232-layer-nand-extends-technology.

[67] Sang-woo Jun Ming, Arvind, and et al. “BlueDBM: An Appli-
ance for Big Data Analytics.” In: Proc. ISCA (2015).

[68] Tobias Mühlbauer, Wolf Rödiger, Angelika Reiser, Alfons Kem-
per, and Thomas Neumann. “ScyPer: a hybrid OLTP&OLAP
distributed main memory database system for scalable real-
time analytics.” In: Datenbanksysteme für Business, Technologie
und Web (BTW) 2044. Ed. by Volker Markl, Gunter Saake, Kai-
Uwe Sattler, Gregor Hackenbroich, Bernhard Mitschang, Theo
Härder, and Veit Köppen. Bonn: Gesellschaft für Informatik
e.V., 2013, pp. 499–502.

[69] Nvidia. Nvidia Titan V. url: https://www.nvidia.com/en-
us/titan/titan-v/.

[70] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth
O’Neil. “The log-structured merge-tree (LSM-tree).” In: Acta
Inform. 33.4 (June 1996), pp. 351–385. issn: 0001-5903.

[71] Oralce. Oracle Cluster File System. url: https://docs.oracle.
com / cd / B19306 _ 01 / install . 102 / b14203 / storage . htm #

RILIN1024.

[72] Oralce. Oracle Databases on RAW. url: https://docs.oracle.
com / cd / B19306 _ 01 / install . 102 / b14203 / storage . htm #

RILIN1072.

[73] Ilia Petrov, Andreas Koch, Sergey Hardock, Tobias Vincon,
and Christian Riegger. “Native Storage Techniques for Data
Management.” In: Proc. ICDE (2019).

[74] Meta Platforms. RocksDB. url: http://rocksdb.org/.

[75] prodesign. prodesign HAWK. url: https://www.prodesign-
fpga-acceleration.com/products/prodesign-hawk-vc1902-

acceleration-card.

[76] Vijayshankar Raman, Gopi Attaluri, and Ronald Barber. “DB2

with BLU Acceleration: So much more than just a column
store.” In: Proc. VLDB 6.11 (2013), pp. 1080–1091. issn: 2150-
8097. doi: 10.14778/2536222.2536233. url: https://researcher.
watson.ibm.com/researcher/files/us-ipandis/vldb13db2blu.

pdf%20http://dl.acm.org/citation.cfm?id=2536233.

[77] Aunn Raza, Periklis Chrysogelos, Angelos Christos Anadiotis,
and Anastasia Ailamaki. “Adaptive HTAP through Elastic Re-
source Scheduling.” In: Proc. SIGMOD. SIGMOD ’20. Portland,
OR, USA, 2020, pp. 2043–2054.

https://investors.micron.com/news-releases/news-release-details/micron-ships-worlds-first-232-layer-nand-extends-technology
https://investors.micron.com/news-releases/news-release-details/micron-ships-worlds-first-232-layer-nand-extends-technology
https://investors.micron.com/news-releases/news-release-details/micron-ships-worlds-first-232-layer-nand-extends-technology
https://www.nvidia.com/en-us/titan/titan-v/
https://www.nvidia.com/en-us/titan/titan-v/
https://docs.oracle.com/cd/B19306_01/install.102/b14203/storage.htm#RILIN1024
https://docs.oracle.com/cd/B19306_01/install.102/b14203/storage.htm#RILIN1024
https://docs.oracle.com/cd/B19306_01/install.102/b14203/storage.htm#RILIN1024
https://docs.oracle.com/cd/B19306_01/install.102/b14203/storage.htm#RILIN1072
https://docs.oracle.com/cd/B19306_01/install.102/b14203/storage.htm#RILIN1072
https://docs.oracle.com/cd/B19306_01/install.102/b14203/storage.htm#RILIN1072
http://rocksdb.org/
https://www.prodesign-fpga-acceleration.com/products/prodesign-hawk-vc1902-acceleration-card
https://www.prodesign-fpga-acceleration.com/products/prodesign-hawk-vc1902-acceleration-card
https://www.prodesign-fpga-acceleration.com/products/prodesign-hawk-vc1902-acceleration-card
https://doi.org/10.14778/2536222.2536233
https://researcher.watson.ibm.com/researcher/files/us-ipandis/vldb13db2blu.pdf%20http://dl.acm.org/citation.cfm?id=2536233
https://researcher.watson.ibm.com/researcher/files/us-ipandis/vldb13db2blu.pdf%20http://dl.acm.org/citation.cfm?id=2536233
https://researcher.watson.ibm.com/researcher/files/us-ipandis/vldb13db2blu.pdf%20http://dl.acm.org/citation.cfm?id=2536233

62 bibliography

[78] Erik Riedel, Garth A. Gibson, and Christos Faloutsos. “Active
Storage for Large-Scale Data Mining and Multimedia.” In: Proc.
VLDB. 1998.

[79] Christian Riegger, Tobias Vincon, and Ilia Petrov. “Multi-Version
Indexing and Modern Hardware Technologies: A Survey of
Present Indexing Approaches.” In: Proceedings of the 19th In-
ternational Conference on Information Integration and Web-Based
Applications and Services. iiWAS ’17. Salzburg, Austria: Asso-
ciation for Computing Machinery, 2017, pp. 266–275. isbn:
9781450352994. doi: 10.1145/3151759.3151779. url: https:
//doi.org/10.1145/3151759.3151779.

[80] Christian Riegger, Tobias Vincon, and Ilia Petrov. “Write-Optimized
Indexing with Partitioned b-Trees.” In: Proceedings of the 19th
International Conference on Information Integration and Web-Based
Applications and Services. iiWAS ’17. Salzburg, Austria: Asso-
ciation for Computing Machinery, 2017, pp. 296–300. isbn:
9781450352994. doi: 10.1145/3151759.3151814. url: https:
//doi.org/10.1145/3151759.3151814.

[81] Christian Riegger, Tobias Vincon, and Ilia Petrov. “Efficient
Data and Indexing Structure for Blockchains in Enterprise
Systems.” In: Proceedings of the 20th International Conference on
Information Integration and Web-Based Applications and Services.
iiWAS2018. Yogyakarta, Indonesia: Association for Computing
Machinery, 2018, pp. 173–182. isbn: 9781450364799. doi: 10.
1145/3282373.3282402. url: https://doi.org/10.1145/
3282373.3282402.

[82] Christian Riegger, Tobias Vincon, and Ilia Petrov. “Indexing
Large Updatable Datasets in Multi-Version Database Manage-
ment Systems.” In: Proceedings of the 23rd International Database
Applications and Engineering Symposium. IDEAS ’19. Athens,
Greece: Association for Computing Machinery, 2019. isbn:
9781450362498. doi: 10.1145/3331076.3331118. url: https:
//doi.org/10.1145/3331076.3331118.

[83] Christian Riegger, Tobias Vinçon, Robert Gottstein, and Ilia
Petrov. “MV-PBT: Multi-version indexing for large datasets and
HTap workloads.” In: Adv. Database Technol. - EDBT. Vol. 2020-
March. 2020, pp. 217–228. isbn: 9783893180837.

[84] Philip E. Ross. “Why CPU Frequency Stalled.” In: IEEE Spec-
trum 45.4 (2008), pp. 72–72. doi: 10.1109/MSPEC.2008.4476447.

[85] Mohammad Sadoghi, Souvik Bhattacherjee, Bishwaranjan Bhat-
tacharjee, and Mustafa Canim. “L-Store: A real-time OLTP and
OLAP system.” In: Proc. EDBT. Vol. 2018-March. 2018, pp. 540–
551. isbn: 9783893180783. doi: 10.5441/002/edbt.2018.65.
arXiv: 1601.04084.

https://doi.org/10.1145/3151759.3151779
https://doi.org/10.1145/3151759.3151779
https://doi.org/10.1145/3151759.3151779
https://doi.org/10.1145/3151759.3151814
https://doi.org/10.1145/3151759.3151814
https://doi.org/10.1145/3151759.3151814
https://doi.org/10.1145/3282373.3282402
https://doi.org/10.1145/3282373.3282402
https://doi.org/10.1145/3282373.3282402
https://doi.org/10.1145/3282373.3282402
https://doi.org/10.1145/3331076.3331118
https://doi.org/10.1145/3331076.3331118
https://doi.org/10.1145/3331076.3331118
https://doi.org/10.1109/MSPEC.2008.4476447
https://doi.org/10.5441/002/edbt.2018.65
https://arxiv.org/abs/1601.04084

bibliography 63

[86] Sudharsan Seshadri, Steven Swanson, and et al. “Willow: A
User-Programmable SSD.” In: USENIX, OSDI (2014).

[87] David Sidler, Zsolt Istvan, Muhsen Owaida, Kaan Kara, and
Gustavo Alonso. “DoppioDB: A Hardware Accelerated Database.”
In: Proc. SIGMOD. 2017.

[88] Yong Ho Song, Sanghyuk Jung, Sang-Won Lee, and Jin-Soo
Kim. “Cosmos+ OpenSSD: A NVMe-based Open Source SSD
Platform.” In: Flash Memory Summit (2016).

[89] Statista. Hours of video uploaded to YouTube every minute as of
February 2020. url: https://www.statista.com/statistics/
259477 / hours - of - video - uploaded - to - youtube - every -

minute/.

[90] Alex Szalay and Jim Gray. “Science In An Exponential World.”
In: Nature 440.23 (Mar. 2006). url: https://www.microsoft.
com/en-us/research/publication/science-in-an-exponential-

world/.

[91] Sajjad Tamimi, Florian Stock, Andreas Koch, Arthur Bernhardt,
and Ilia Petrov. “An Evaluation of Using CCIX for Cache-
Coherent Host-FPGA Interfacing.” In: Proc. FCCM. 2022.

[92] T. Vincon, S. Hardock, C. Riegger, J. Oppermann, A. Koch,
and I. Petrov. “NoFTL-KV: Tackling Write-Amplification on
KV-Stores with Native Storage Management.” In: Proc. EDBT.
2018.

[93] Tobias Vincon, Arthur Bernhardt, Lukas Weber, Andreas Koch,
and Ilia Petrov. “On the Necessity of Explicit Cross-Layer Data
Formats in Near-Data Processing Systems.” In: Proc. HardBD @
ICDE 2020. 2020.

[94] Tobias Vincon, Christian Knödler, Arthur Bernhardt, Leonardo
Solis-Vasquez, Lukas Weber, Andreas Koch, and Ilia Petrov.
“Result-Set Management for NDP Operations on Smart Stor-
age.” In: Proc. DaMoN. 2022.

[95] Tobias Vincon, Christian Knödler, Leonardo Solis-Vasquez,
Arthur Bernhardt, Sajjad Tamimi, Lukas Weber, Florian Stock,
Andreas Koch, and Ilia Petrov. “Near-Data Processing in Database
Systems on Native Computational Storage under HTAP Work-
loads.” In: PVLDB 15 (2022).

[96] Tobias Vincon and Ilia Petrov. “Near Data Processing within
Column-Oriented DBMSs for High Performance Analysis.” In:
June 2016. doi: 10.13140/RG.2.1.1596.5687.

[97] Tobias Vincon, Ilia Petrov, and Christian Thies. “cIPT: Shift of
Image Processing Technologies to Column-Oriented Databases.”
In: New Trends in Databases and Information Systems. Springer
International Publishing, 2016. isbn: 978-3-319-44066-8.

https://www.statista.com/statistics/259477/hours-of-video-uploaded-to-youtube-every-minute/
https://www.statista.com/statistics/259477/hours-of-video-uploaded-to-youtube-every-minute/
https://www.statista.com/statistics/259477/hours-of-video-uploaded-to-youtube-every-minute/
https://www.microsoft.com/en-us/research/publication/science-in-an-exponential-world/
https://www.microsoft.com/en-us/research/publication/science-in-an-exponential-world/
https://www.microsoft.com/en-us/research/publication/science-in-an-exponential-world/
https://doi.org/10.13140/RG.2.1.1596.5687

64 bibliography

[98] Tobias Vincon, Lukas Weber, Arthur Bernhardt, Andreas Koch,
and Ilia Petrov. “nKV: Near-Data Processing with KV-Stores
on Native Computational Storage.” In: Proc. DaMoN. 2020.

[99] Tobias Vincon et al. “nKV in Action: Accelerating KV-Stores on
Native Computational Storage with Near-Data Processing.” In:
PVLDB 12 (2020).

[100] Tobias Vinçon, Sergey Hardock, Christian Riegger, Andreas
Koch, and Ilia Petrov. “nativeNDP: Processing Big Data Ana-
lytics on Native Storage Nodes.” In: 2019.

[101] Lukas Weber, Lukas Sommer, Leonardo Solis-Vasquez, Tobias
Vincon, Christian Knoedler, Arthur Bernhardt, Ilia Petrov, and
Andreas Koch. “A Framework for the Automatic Generation
of FPGA-based Near-Data Processing Accelerators in Smart
Storage Systems.” In: Proc. RAW@IPDPS (2021).

[102] Lukas Weber, Tobias Vinçon, Christian Knödler, Leonardo Solis-
Vasquez, Arthur Bernhardt, Ilia Petrov, and Andreas Koch. “On
the necessity of explicit cross-layer data formats in near-data
processing systems.” In: Distributed and Parallel Databases (2021).

[103] Sage A Weil, Scott A Brandt, Ethan L Miller, Darrell D E Long,
and Carlos Maltzahn. “Ceph: A Scalable, High-Performance
Distributed File System.” In: In Proc. OSDI (2006).

[104] Ludwig Wittgenstein. On Certainty. New York and London:
Harper Torchbooks, 1969.

[105] Louis Woods, Zsolt István, and Gustavo Alonso. “Ibex: An
Intelligent Storage Engine with Support for Advanced SQL
Offloading.” In: Proc. VLDB (2014).

[106] Louis Woods, J. Teubner, and G. Alonso. “Less Watts, More Per-
formance: An Intelligent Storage Engine for Data Appliances.”
In: Proc. SIGMOD. 2013.

[107] Wm. A. Wulf and Sally A. McKee. “Hitting the Memory Wall:
Implications of the Obvious.” In: SIGARCH Comput. Archit.
News 23.1 (Mar. 1995), pp. 20–24. issn: 0163-5964. doi: 10.

1145/216585.216588. url: https://doi.org/10.1145/216585.
216588.

[108] Sam Xi, O. Babarinsa, M. Athanassoulis, and S. Idreos. “Be-
yond the Wall: Near-Data Processing for Databases.” In: Proc.
DAMON (2015).

https://doi.org/10.1145/216585.216588
https://doi.org/10.1145/216585.216588
https://doi.org/10.1145/216585.216588
https://doi.org/10.1145/216585.216588

Part II

N D P A B S T R A C T I O N S F O R P H Y S I C A L S T O R A G E
M A N A G E M E N T

8
N AT I V E S T O R A G E T E C H N I Q U E S F O R D ATA
M A N A G E M E N T

bibliographic information

The content of this chapter has previously been published in the work
"Native Storage Techniques for Data Management" by Ilia Petrov, Andreas
Koch, Sergey Hardock, Tobias Vinçon and Christian Riegger in 2019

IEEE 35th International Conference on Data Engineering (ICDE). The
contribution of the author of this thesis is summarized as follows.

» As the corresponding author, Tobias Vinçon has contributed with the
development of native storage abstractions and the implementation details
of NoFTL in KV Stores. To the same extent, Sergey Hardock supported in
the discussions on native storage techniques and provided implementations
details of NoFTL in traditional relational databases. Ilia Petrov was respon-
sible for the foundational concepts of native storage and the manuscript’s
text with feedback from all authors including Andreas Koch and Christian
Riegger. «

abstract

In the present tutorial we perform a cross-cut analysis of database
storage management from the perspective of modern storage tech-
nologies. We argue that neither the design of modern DBMS, nor the
architecture of modern storage technologies are aligned with each
other. Moreover, the majority of the systems rely on a complex multi-
layer and compatibility-oriented storage stack. The result is needlessly
suboptimal DBMS performance, inefficient utilization, or significant
write amplification due to outdated abstractions and interfaces. In
the present tutorial we focus on the concept of native storage, which
is storage operated without intermediate abstraction layers over an
open native storage interface and is directly controlled by the DBMS.
We cover the following aspects of native storage: (i) architectural ap-
proaches and techniques; (ii) interfaces; (iii) storage abstractions; (iv)
DBMS/system integration; (v) in-storage processing.

8.1 outline

In the present tutorial we examine the influence of native storage on
data-intensive systems and data management. We begin with a suc-
cinct description of the concept of native storage and a brief summary

67

68 native storage techniques for data management

Storage Mgr.

File System

Block Device
Support (Kernel)

SS
D PSM

NVM/NAND

Storage Mgr.
Raw

Block Device
Support (Kernel)

SS
D PSM

NVM/NAND

Storage Mgr.

SS
D

NVM/NAND

(a) ‚cooked’ Storage (b) RAW Storage (c) Native Storage

DB/App.DBMSDBMS

Phys.Storage
Management

 Legacy Block Device
 Interface (BDI)

READ(LogicalAddress)
WRITE(LogicalAddress)

Native/Open interface
-PhysicalAddress/Addr.-Mapping
-Application Specific Code
-Transact. semantics, Atomicity
-Reconfiguration

Figure 8.1: DBMS storage alternatives: (a) Traditional ’cooked’ DBMS storage;
(b) DBMS on RAW volumes/devices; (c) DBMS on Native Storage

of the characteristics of modern storage technologies. The main focus
of this tutorial is on their influence on different aspects of data man-
agement. Firstly, we describe different architectural approaches and
techniques for defining and using native storage. Existing native stor-
age systems pursue different goals and result in various architectural
blueprints. These range from small sensor data or graph processing to
enterprise scenarios and in-storage processing. Secondly, we present a
cross-cut analysis of different proposals for native storage interfaces.
These are very different from the currently dominating compatibility
block-device interface. Thirdly, novel storage abstractions are needed
with open native storage interfaces in place. Fourthly, we analyze the
different approaches for system integration of native storage and na-
tive storage interfaces. Last but not least, having considered all these
aspects in isolation we provide a wrap-up in terms of data manage-
ment techniques for native storage. The target audience is database
researchers and practitioners with interests in storage management on
modern storage hardware.

8.2 native storage and data management

Over the last decade we witnessed several important breakthroughs in
storage technologies: Flash and Flash SSDs have become omnipresent
as database storage; Non-Volatile Memories (e.g., PCM or Intel/Mi-
cron’s 3D XPoint) are gradually becoming real. Although these have
very different characteristics from old-fashioned magnetic HDD stor-
age, they are still treated as fast replacements and are embedded in
a classical “cooked” storage stack. This typically comprises multiple
layers: a low-level compatibility translation layer (typically running on-
device), a block-device, OS kernel support, and a file system [10, 22].
In fact, file-systems are considered part of the NVM I/O stack even
for non-volatile main-memory settings [1, 29]. Even though a compati-

8.2 native storage and data management 69

bility stack fosters proliferation of modern storage technologies and
simplifies systems development, it has a number of disadvantages [3,
5, 14, 23]: (i) performance lags and underutilization of SSD resources
([6, 10, 14, 30] report lags of several times); (ii) no cross-layer optimiza-
tions due to layered abstractions and information hiding as well as
the rigidness of compatibility interfaces; (iii) I/O (write-/read-) ampli-
fication of several times in terms of size and count, leading to lower
performance and faster wear [14, 21]; (iv) functional redundancy along
the I/O stack [10, 21]; (v) inability to configure the semiconductor
storage adaptively (depending on the application or the workload)
[2, 22, 26]. In fact, with all of the above in place, [22] reports that
only 40% of the raw Flash bandwidth is delivered to applications and
that to achieve high performance only, 50%-70% of the raw capacity
is effectively available to applications (the rest is reserved for write
handling and error correction).

8.2.1 Architectural Approaches and Techniques

In pursuit of a better I/O stack design, the use of alternative archi-
tectural blueprints seem unavoidable [3, 5, 23]. Opening up storage
confronts systems and applications with different physical/low-level
abstractions, evolving interfaces, and the question of how to distribute
physical storage management along the stack. Physical storage man-
agement – PSM (e.g. FTL for Flash SSDs) encompasses: (i) the logical-
to-physical address mapping (L2PAM); (ii) wear-levelling; (iii) error
correction (ECC) and bad-block management; (iv) physical metadata
management, (v) physical garbage collection and storage optimiza-
tions; and (vi) write management. In a traditional I/O stack, PSM
is typically performed on-device, hidden behind the compatibility
block-device interface.

Various native storage architectures exist. LightNVM and open-
channel SSDs envisage a host-based, shared L2PAM table and handle
physical metadata management, GC and write optimizations, as well
as wear-levelling, on the host as part of the LightNVM subsystem.
BlueDBM [16] and NoFTL [10] likewise assume a native storage, which
however is extensible. NoFTL [10] and NoFTL-KV [28] have proposed
open native storage and follow the approach of deep database integra-
tion, which explores coherent integration of PSM in different modules
of the DBMS and investigates algorithmic improvements and cross-
layer optimizations. Architecturally, native storage can be realized as
host-based storage [10, 28] or distributed storage [13, 16, 25].

Early proposals for an I/O stack redesign gravitate around the con-
cept of bimodal [5] or multi-modal storage. Under bimodal storage[5] if the
DBMS issues “constrained” I/O patterns, i.e. no in-place updates and
no random writes, the SSD uses a minimal FTL, while for all “uncon-
strained” I/O patterns, the SSD switches to traditional full-scale FTL

70 native storage techniques for data management

[20]. Application Managed Flash (AMF) [19] explores append-based
storage management over an extended block-device interface under
a novel append-based file system. AMF explores the architectural
coupling of free space management to physical GC, in the same time
leaving ECC, bad-block management, and wear leveling on device. [17,
21, 30] assume partial exposure of the mapping (which still resides
on device) to applications. Their design goals are to handle storage
virtualization [30], storage management for append-mostly systems
[21], or to explore transactional atomicity [17]. Some complementary
aspects of native storage architectures are reconfigurability and intelli-
gent storage/In-Storage Processing (ISP) [7, 8, 15, 18, 24, 27, 31, 32]. In-situ
execution of data processing operations minimizes data movement,
leverages internal storage characteristics (parallelism, bandwidth, on-
device CPU/FPGA), to achieve performance improvement of several
times as well as better resource and energy efficiency.

8.2.2 Interfaces

Current hardware and software interfaces to memory and storage are
rudimentary. Such interfaces: (i) have limited support for parallelism
and concurrency, hence they limit system bandwidth and through-
put; (ii) are relatively rigid with limited extensibility mechanisms; (iii)
have only a limited set of capabilities and expose outdated abstrac-
tions. Building on top of such outdated abstractions demands layers
of backwards compatibility, which prevent algorithms and system
architectures from efficiently using modern storage technologies as
their true characteristics are masked. On the hardware level, for in-
stance, the traditional RAS/CAS DRAM architecture offers limited
parallelism, while increasing the number of DIMMs per channel typi-
cally decreases performance. Similar behavior is exhibited by SATA.
Block Device Interfaces (BDI) and block I/O are ubiquitous, yet they
are a major bottleneck [3, 23] as they do not match the properties of
modern storage technologies and require: immutable logical addresses;
fixed I/O granularity; a rigid set of operations, mainly read/write;
symmetric and wear-proof storage.

The basic native storage interface typically comprises READ_PAGE,
WRITE_PAGE and ERASE_BLOCK commands [4, 10, 16]. These are
defined on physical addresses. Since overwriting is an issue on modern
storage technologies (wear, erase-before-overwrite), physical addresses
need to change. This is a stark contrast to the BDI commands that
rely on immutable logical addresses (LBA), and raises the issue of
logical-to-physical address mapping (L2PAM). Various extensions to
the basic interface are proposed by different systems. LightNVM [4],
for example, suggests that the above are vectored commands, i.e. they
take sets or ranges of physical addresses as arguments, instead of a
single address. NoFTL [10] suggests extensions such as write_delta

8.2 native storage and data management 71

for writes of sub-page granularity, copyback to reduce data transfers
incurred by the garbage collector, or get_addr_table to speed-up L2PAM
table recovery.

I/O atomicity is an open issue in the traditional I/O stack, but it
becomes viable with native storage and modern storage technologies.
The key is the ability to control the L2PAM table and GC so that old
physical pages and their address mapping entries are retained, while
new contents are being written on a different physical location. Only if
the write sequence succeeds as a whole the old address mappings are
completely and atomically replaced with the new ones. I/O atomicity
has inspired various architectural designs regarding copy-on-write
(CoW) storage management and logging. [23] introduced a new I/O
primitive “atomic-write”, however without support for concurrency.
[17] suggests transaction-awareness, allowing the DBMS to notify
the SSD about the beginning and end of transactions. The SHARE
[21] interface to Flash targets atomicity and CoW and proposes the
share(LogicalAddr1, LogicalAddr2) command to allow two logical
page numbers to be mapped on the same physical page. SHARE is
defined to be a variant of TRIM that has also been explored in ANViL
[30] predecessors called ptrim().

Another aspect is the management of the logical-to-physical address
mapping. With native storage it can be: (a) host- or device resident,
depending on the available resources; (b) completely exposed (and
managed by the application), or partially exposed (through special
commands) but managed by PSM. [4, 10, 16] assume full exposure
and host-based L2PAM table management. [10] investigates full DBMS
integration. [17, 21, 30] assume partial exposure of the mapping (which
still resides on device) to applications. This yields new commands and
abstractions. ANViL [30] considers exposing the logical-to-physical
address mapping table to applications and proposes commands such
as clone(), move() or delete().

In-Storage Processing (ISP), targets the execution of application/sys-
tem specific functionality in-situ, and is an additional factor for in-
terface extensions. [8] defines a new session-based DBMS-SmartSSD
communication protocol, comprising operations like OPEN, CLOSE,
GET, and a set of APIs for on-device functionality, such as Command
API, Thread API, Data API and Memory API. Willow [25] proposes
similar concepts for a user-programmable SSD. IBEX [31, 32] investi-
gates a DB-record based interface.

8.2.3 Abstractions

As an open native storage interface replaces traditional BDI, the differ-
ent physical organization of native storage is exposed to the DBMS.
Typically, native storage comprises chips, channels, the on-device con-
troller, and its resources. Adapting storage management and data

72 native storage techniques for data management

processing for this type of organization is non-trivial. Therefore there
is a pressing need for new storage abstractions that ease the DBMS
integration of native storage.

AMF [19] assumes flash blocks and contiguous segments. Segments
are introduced as a unit of allocation and physical distribution to
achieve better bandwidth. More importantly AMF segments need to
be explicitly deallocated by TRIM to physically reclaim the occupied
space. A segment is subdivided into sectors that are a unit of I/O. As
AMF targets append-based storage, a sector can never be overwritten
(unless the whole segment is deallocated).

NoFTL introduces the concepts of regions and groups to manage
native storage [12]. A NoFTL region comprises a set of physical chips
and data channels as well as physical storage management strategies,
such as address management, garbage collection and data placement.
Regions are coupled to standard DBMS logical storage structures
such as segments or tablespaces. A storage device is thus viewed and
maintained by the DBMS as a set of regions. Every database object
is then assigned to a certain region based on its properties, while
every region can hold multiple objects (i.e. one-to-many relationship).
Groups [12] serve as means to improve hot/cold data separation and
thus decrease unnecessary GC activity, reduce erases and improve
performance and longevity.

ANViL [30] proposes the snapshot at the level of a volume or a file as
a native storage abstraction. A snapshot allows to checkpoint the state
of a file/volume with little space and performance overhead, as only
mapping entries are cloned. ANViL [30] also introduces deduplication
as an abstraction based on range cloning that identifies and collapses
identical blocks.

8.2.4 System Integration

There are different approaches to integrate native storage and physical
storage management (PSM) into the DBMS or other applications. We
distinguish partial integration and deep integration. Many approaches
offer non-intrusive partial integration of native storage and rely on
multi-modal native storage interfaces. Such systems tend to preserve
existing I/O interface, however they also incorporate new features as
extensions. Systems such as AMF [19], SHARE [21], XFTL [17] repre-
sent partial integration. Some of the advantages are the high degree of
reuse, proliferation, and low implementation footprint. Furthermore,
some of the native storage systems such as BlueDBM [16] or ANViL
[30] offer multi-modal interfaces, leaving it to application to decide on
the use.

Systems such as [10, 33] support deep integration, i.e. the PSM is
coherently integrated into different modules of the system. The key
insight is that deep integration results in a surprisingly simple and

8.2 native storage and data management 73

lightweight implementation. This is the case, since many DBMS sub-
systems already implement similar functionality, which only needs to
be leveraged and extended for deep integration.

8.2.5 Reconfigurability

Storage built on top of semiconductor storage technologies can be
dynamically reconfigured depending on the workload. This type of
reconfigurability can be applied on various levels: physical storage; on-
device controller/processor; native storage abstractions. [2, 26] explore
reconfigurability in compatibility storage settings, whereas [22, 25]
consider native storage. For native storage abstractions, NoFTL [9] offers
an advisor to derive region properties from I/O access patterns to
different DB-objects and an offline transformer. On the level of physical
semiconductor memory it is possible to configure an MLC Flash chip in
SLC mode, to achieve near-SLC performance and endurance properties
on that chip. With the recently introduced QLC Flash transitions from
QLC to TLC to MLC and SLC may be envisaged. NoFTL [9, 11] has
the ability to perform this reconfiguration on the level of a region for a
single DB-Object in pseudo-SLC, MLC or TLC modes.

8.2.6 In-Storage Processing

The ability to execute application/system specific functionality in-situ
(In-Storage Processing – ISP) is a very relevant trend and a revival of past
ActiveDisc/DatabaseMachines efforts. [8] is one of the first works to
explore offloading parts of data processing on Smart SSDs, indicating
the potential of significant performance improvements of up to 2.7x
and energy savings of up to 3x. [8] defines a new session-based DBMS-
SmartSSD communication protocol, comprising operations like OPEN,
CLOSE, GET, and a set of APIs for on-device functionality, such as
Command API, Thread API, Data API and Memory API. Willow [25]
proposes similar concepts for a user-programmable SSD. [8] identifies
two research questions: (i) how can ISP handle the problem of on-
device processing in the presence of a more recent version of the data
in the buffer; and (ii) what is the efficiency of operation pushdown in
the presence of large main memories.

The initial ideas of [8] have recently been extended in a complemen-
tary approach called In-Storage Processing/Computing [15, 18, 24]. [18]
demonstrates a performance improvement of 5x and 47x for scans and
joins on embedded CPUs. Further approaches stress the importance of
in-situ analytical processing on on-device stream processors or embed-
ded CPUs [7, 27]. Still, all of the above target read-only ISP, assuming
that the on-device data is immutable.

IBEX investigates how data processing on FPGAs can be used as
explicit co-processors, or implicitly as part of an intelligent storage

74 native storage techniques for data management

system [31]. IBEX exploits reconfigurable computing and the capabili-
ties of custom-hardware to accelerate certain database operations. Yet,
operations are not performed in-situ as data and results need to be
transferred form storage to the FPGA and vice versa.

8.2.7 Data Management on Native Storage

In this part of the tutorial we provide a brief overview on recent
solutions in the industry and academia for architecting, organizing,
and utilizing native storage. The two major directions here are (i)
the utilization of storage-specific out-of-place update strategy, as well
as (ii) usage of database semantics for optimizations in FTL (e.g.,
reconfigurable SSDs).

8.3 biographies of the presenters

Ilia Petrov is a professor at Reutlingen University, Germany and a
head of the Data Management Lab. His research focus is on data man-
agement on modern hardware. He holds a Ph.D. from the University
of Erlangen-Nürnberg.

Andreas Koch is a professor at the Technische Universität Darm-
stadt, Germany and head of the Embedded Systems and Applications
Group (ESA). His research interests are in the area of specialized
computing systems ranging from low power embedded systems up to
accelerators for data-center high-performance computers.

Sergej Hardock is a Ph.D. student at the Databases and Distributed
Systems Group at the Technische Universität Darmstadt, Germany.
His research interests are in database systems on modern hardware,
native Flash database storage, lean Flash-aware database systems.

Tobias Vincon is a Ph.D. student at the Data Management Lab at
Reutlingen University, Germany and at the Technische Universität
Darmstadt. His research interests are in database systems on modern
hardware and Near-Data Processing.

Christian Riegger is a Ph.D. student at the Data Management Lab at
Reutlingen University, Germany. His research interests are on indexing
large datasets with high-bandwidth continuous insertions.

references

[1] Joy Arulraj, Andrew Pavlo, and Subramanya R. Dulloor. “Let’s
Talk About Storage & Recovery Methods for Non-Volatile Mem-
ory Database Systems.” In: Proc. SIGMOD. 2015.

[2] Andrew Birrell, Michael Isard, Chuck Thacker, and Ted Wobber.
“A Design for High-performance Flash Disks.” In: SIGOPS Oper.
Syst. Rev. (2007).

8.3 references 75

[3] Matias Bjørling, Philippe Bonnet, Luc Bouganim, and Niv
Dayan. “The Necessary Death of the Block Device Interface.”
In: Proc. CIDR. 2013.

[4] Matias Bjørling, Javier González, and Philippe Bonnet. “Light-
NVM: The Linux Open-channel SSD Subsystem.” In: Proc.
USENIX/FAST. 2017.

[5] Philippe Bonnet and et al. “Flash Device Support for Database
Management.” In: Proc. CIDR. 2011.

[6] Feng Chen, Binbing Hou, and Rubao Lee. “Internal Parallelism
of Flash Memory-Based Solid-State Drives.” In: ACM ToS 12.3
(2016).

[7] Sangyeun Cho, Chanik Park, Hyunok Oh, and et al. “Active
Disk Meets Flash: A Case for Intelligent SSDs.” In: Proc. ICS.
2013.

[8] Jaeyoung Do, Yang-Suk Kee, Jignesh M. Patel, David J. DeWitt,
and et. al. “Query Processing on Smart SSDs: Opportunities
and Challenges.” In: Proc. SIGMOD. 2013.

[9] S. Hardock, I. Petrov, R. Gottstein, and A. Buchmann. “Selective
In-Place Appends for Real: Reducing Erases on Wear-prone
DBMS Storage.” In: Proc. ICDE. 2017.

[10] Sergej Hardock, Ilia Petrov, Robert Gottstein, and Alejandro
Buchmann. “NoFTL: Database Systems on FTL-less Flash Stor-
age.” In: Proc. VLDB 6.12 (2013).

[11] Sergey Hardock, Ilia Petrov, Robert Gottstein, and Alejandro
Buchmann. “From In-Place Updates to In-Place Appends: Re-
visiting Out-of-Place Updates on Flash.” In: Proc. SIGMOD.
2017.

[12] Sergey Hardock, Ilia Petrov, Robert Gottstein, and Alejandro P.
Buchmann. “Revisiting DBMS Space Management for Native
Flash.” In: Proc. EDBT. 2016.

[13] Zsolt István, David Sidler, and Gustavo Alonso. “Caribou: In-
telligent Distributed Storage.” In: Proc. VLDB Endow. (2017).

[14] Sooman Jeong, Kisung Lee, Seongjin Lee, Seoungbum Son, and
Youjip Won. “I/O Stack Optimization for Smartphones.” In:
Proc. USENIX/ATC. 2013.

[15] Insoon Jo, Duck-Ho Bae, Andre S. Yoon, and et al. “YourSQL:
A High-performance Database System Leveraging In-storage
Computing.” In: Proc. VLDB (2016).

[16] Sang-Woo Jun, Ming Liu, Sungjin Lee, Arvind, and et al.
“BlueDBM: Distributed Flash Storage for Big Data Analytics.”
In: ACM TOCS 34.3 (2016).

76 native storage techniques for data management

[17] Woon-Hak Kang, Sang-Won Lee, Bongki Moon, Gi-Hwan Oh,
and Changwoo Min. “X-FTL: Transactional FTL for SQLite
Databases.” In: Proc. SIGMOD. 2013.

[18] Sungchan Kim, Hyunok Oh, and et al. “In-storage Processing
of Database Scans and Joins.” In: Inf. Sci. (2016).

[19] Sungjin Lee, Ming Liu, Sangwoo Jun, Shuotao Xu, Jihong Kim,
and Arvind Arvind. “Application-managed Flash.” In: Proc.
USENIX/FAST. 2016.

[20] Dongzhe Ma, Jianhua Feng, and Guoliang Li. “A Survey of
Address Translation Technologies for Flash Memories.” In:
ACM Comput. Surv. 46.3 (2014).

[21] Gihwan Oh, Chiyoung Seo, Sang-Won Lee, and et al. “SHARE
Interface in Flash Storage for Relational and NoSQL Databases.”
In: Proc. SIGMOD. 2016.

[22] Jian Ouyang, Shiding Lin, Song Jiang, and et al. “SDF: Software-
defined Flash for Web-scale Internet Storage Systems.” In: Proc.
ASPLOS. 2014.

[23] Xiangyong Ouyang, David W. Nellans, Robert Wipfel, and
David Flynn. “Beyond block I/O: Rethinking traditional stor-
age primitives.” In: Proc. HPCA. 2011.

[24] Samsung. In storage computing. 2015. url: http://www.flashmemorysummit.
com/English/Collaterals/Proceedings/%5C%5C2015/20150813%

5C_S301D%5C_Ki.pdf (visited on 10/08/2018).

[25] Sudharsan Seshadri, Mark Gahagan, and et al. “Willow: A
User-programmable SSD.” In: Proc. OSDI. 2014.

[26] Ji-Yong Shin, Zeng-Lin Xia, and et al. “FTL Design Exploration
in Reconfigurable High-performance SSD for Server Applica-
tions.” In: Proc. ICS. 2009.

[27] Devesh Tiwari, Simona Boboila, and et al. “Active Flash: To-
wards Energy-efficient, In-situ Data Analytics on Extreme-scale
Machines.” In: Proc. FAST. 2013.

[28] Tobias Vincon, Sergey Hardock, Christian Riegger, Julian Op-
permann, Andreas Koch, and Ilia Petrov. “NoFTL-KV: Tackling
Write-Amplification on KV-Stores with Native Storage Manage-
ment.” In: Proc. EDBT. 2018.

[29] Haris Volos, Sanketh Nalli, Sankarlingam Panneerselvam, and
et al. “Aerie: Flexible File-system Interfaces to Storage-class
Memory.” In: Proc. EuroSys. 2014.

[30] Zev Weiss, Sriram Subramanian, Swaminathan Sundararaman,
Nisha Talagala, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. “ANViL: Advanced Virtualization for Modern
Non-volatile Memory Devices.” In: Proc. USENIX/FAST. 2015.

http://www.flashmemorysummit.com/English/Collaterals/Proceedings/%5C%5C2015/20150813%5C_S301D%5C_Ki.pdf
http://www.flashmemorysummit.com/English/Collaterals/Proceedings/%5C%5C2015/20150813%5C_S301D%5C_Ki.pdf
http://www.flashmemorysummit.com/English/Collaterals/Proceedings/%5C%5C2015/20150813%5C_S301D%5C_Ki.pdf

8.3 references 77

[31] Louis Woods, Zsolt István, and Gustavo Alonso. “Ibex: An
Intelligent Storage Engine with Support for Advanced SQL
Offloading.” In: Proc. VLDB (2014).

[32] Louis Woods, Jens Teubner, and Gustavo Alonso. “Less Watts,
More Performance: An Intelligent Storage Engine for Data
Appliances.” In: Proc. SIGMOD. 2013.

[33] Shuotao Xu, Sungjin Lee, Sang-Woo Jun, Ming Liu, Jamey
Hicks, and Arvind. “Bluecache: A Scalable Distributed Flash-
based Key-value Store.” In: Proc. VLDB. 2016.

9
N O F T L - K V: TA C K L I N G W R I T E - A M P L I F I C AT I O N O N
K V- S T O R E S W I T H N AT I V E S T O R A G E
M A N A G E M E N T

bibliographic information

The content of this chapter has previously been published in the
work "NoFTL-KV: Tackling Write-Amplification on KV-Stores with Native
Storage Management" by Tobias Vinçon, Sergey Hardock, Christian
Riegger, Julian Oppermann, Andreas Koch and Ilia Petrov in 2018 21st
International Conference on Extending Database Technology (EDBT).
The contribution of the author of this thesis is summarized as follows.

» As the corresponding and leading author, Tobias Vinçon was responsible
for the design and implementation of NoFTL-KV with essential support
from Sergey Hardock. Moreover, the experimental evaluation was executed
by him and supervised by Ilia Petrov. Likewise, he was in charge of the the
text with intensive feedback from all authors including Christian Riegger,
Julian Oppermann and Andreas Koch. «

abstract

Modern persistent Key/Value stores are designed to meet the demand
for high transactional throughput and high data-ingestion rates. Still,
they rely on backwards-compatible storage stack and abstractions
to ease space management, foster seamless proliferation and system
integration. Their dependence on the traditional I/O stack has negative
impact on performance, causes unacceptably high write-amplification,
and limits the storage longevity.

In the present paper we present NoFTL-KV, an approach that results
in a lean I/O stack, integrating physical storage management natively
in the Key/Value store. NoFTL-KV eliminates backwards compatibility,
allowing the Key/Value store to directly consume the characteristics
of modern storage technologies. NoFTL-KV is implemented under
RocksDB. The performance evaluation under LinkBench shows that
NoFTL-KV improves transactional throughput by 33%, while response
times improve up to 2.3x. Furthermore, NoFTL-KV reduces write-
amplification 19x and improves storage longevity by imately the same
factor.

79

80 noftl-kv : tackling write-amplification with native storage

9.1 introduction

Over the last decade, various specialized DBMSs have been intensively
investigated to meet the demand of new workloads, applications or
data models. Persistent Key/Value stores (KV-stores) are specialized
for high-throughput and predominantly update-intensive, OLTP-style
workloads.

KV-stores exhibit a characteristic lightweight architecture, simplifying
the deployment and integration process for large infrastructures and
lowering maintenance demand in production. Scalability is intrinsically
supported in terms of partitioning and distribution schemes, making
KV-stores an excellent choice for current data-center architectures.
The simplicity of their interface (with put and get) as well as data
model matches wide range of modern insert and update intensive
applications running high-throughput OLTP-style workloads. Last but
not least, the ability to serve as DB-Engines in traditional and modern
NoSQL databases (e.g. MyRocks[13] or MongoRocks), allows for the
integration as meta stores into applications and distributed file systems
(e.g. Ceph[10]), or serve as a backend for OLTP services.

Persistent KV-stores leverage the properties of modern hardware
due to the lean architecture, interface and flexibility, yet native hard-
ware support is rare. The majority of such KV-stores rely on backwards-
compatible storage, to ease administration and foster proliferation.
Furthermore, the use of file systems simplifies space management,
support for various storage architectures and the embedding in exist-
ing data center environments. The underlying assumptions are that: (1)
files and file-based I/O are the appropriate storage abstractions, and (2) use of
standard/compatibility interfaces (and abstractions) on each individual layer
of the I/O stack does not harm performance.

The traditional I/O stack was developed with the characteristics
of HDDs in mind, with the block-device interface, block I/O oper-
ations and files as abstractions. New storage technologies such as
Non-Volatile Memories or Flash exhibit very different characteristics.
However, to utilize them, persistent KV-stores require multiple layers
of backwards compatibility, having a negative impact on performance
and longevity. (1) Hardware resources are not fully exploited because
of the hardware-oblivious abstractions. (2) DBMS access patterns result
in suboptimal physical I/O patterns due to the presence of multiple
abstraction layers along the critical I/O path. (3) KV-store information
about the current workload cannot be used for better physical data
placement. (4) Functionality along this critical I/O path is redundant.
Significant write-amplification and suboptimal performance are the
inevitable consequences.

To verify the above claims we perform an experiment under RocksDB
running LinkBench and measure the end-to-end write-amplification
along a backwards-compatible, file-system based stack. The results

9.1 introduction 81

File System/Kernel

Fl
as

h
D

ev
ic

e

Flash Management
(FTL)

Flash MemoryFlash MemoryFlash Memory

Storage Manager
Storage Manager,

Transaction Manager,...

Flash Management

19x
Write

Amplification

Fl
as

h
D

ev
ic

e

Flash MemoryFlash MemoryFlash Memory

(a) cooked stack (b) NoFTL KV stack

KV Store NoFTL KV

Figure 9.1: Write-Amplification along a traditional I/O stack in contrast to
NoFTL-KV.

(Fig. 9.3) indicate a 19x physical write volume increase, lower perfor-
mance and longevity.

In this paper we present NoFTL-KV (Fig. 16.1), an approach that
avoids backwards compatibility and targets the above disadvantages
by controlling the underlying physical storage directly. NoFTL-KV
integrates physical storage (Flash) management natively in the KV-
store. Subsequently, it opens up ways for workload adaptability within
the storage layer and new abstractions for native storage.
The main contributions of this paper are:

(1) The extension of the concept of native storage management (NoFTL)
to persistent KV-stores. We show that by coherently integrating
address mapping, data placement, GC and free space management
into the KV-store, storage characteristics, on-device parallelism and
wear-leveling are addressed.

(2) NoFTL-KV is implemented under RocksDB.

(3) The performance evaluation under LinkBench[1] shows that NoFTL-
KV improves the transactional throughput by 33%, while the re-
sponse times improve up to 2.3x. Furthermore, NoFTL-KV improves
physical storage management. In terms of write efficiency, NoFTL-
KV performs 87% less physical page writes (including maintenance
I/O and GC). Moreover, NoFTL-KV performs 19x less erases, im-
proving the endurance by approximately the same factor.

The rest of the paper is structured as follows. NoFTL-KV and the
integration into RocksDB are described in Section 9.3. Experimental
results are discussed in Section 15.4. We conclude in Section 9.5.

82 noftl-kv : tackling write-amplification with native storage

9.2 related work

Modern workloads (Social Media, Big Data or IoT) not only have
become write-intensive and require high sequential throughput, but
also demand low latencies [16]. Read- and Write-Amplification are major
performance factors [16].

These can either be approached by utilising compression to decrease
I/O in general [5] or by aligning better with the characteristics of
modern storage devices. The latter is addressed in terms of either
new data structures [3, 4, 19], or new software interfaces [2] as well
as Flash interface extensions [9, 12, 14]. However, neither of those
takes the issues with the cooked stack into account. [6] and [7] present a
full integration of native storage support within traditional DBMS. A
few lightweight KV-stores address the concept of direct native storage
integration [8, 15, 17, 18] by moving the entire KV-store onto the device.
Yet, physical storage management is only partially addressed.

With NoFTL-KV we address the deep integration of native storage
management to tackle all issues regarding the traditional cooked
stack while avoiding to overload the device controller with database
functionality and maintaining a mature KV-store.

9.3 noftl-kv : native storage kv-store

We investigate the concept of native storage management and NoFTL
under persistent KV-stores to address and evaluate the above men-
tioned claims. RocksDB exhibits an append-only I/O pattern for var-
ious write-intensive workloads, because of its LSM-Tree-based per-
sistent storage. LSM-trees perform regular compactions to remove
old records, to ensure optimal tree structure and to perform hot-cold-
separation. Compactions reorganize levels of the LSM-Tree, removing
updated or deleted KV-Pairs, at regular intervals or given a certain
threshold. As a consequence, frequently changing data is placed in
the upper levels of the LSM-Tree, while the lower levels contain the
cold data.

Under NoFTL-KV we pursue coherent integration of Flash man-
agement into existing modules of the KV-store as shown in Fig. 9.2.
Firstly, NoFTL-KV has direct control over hardware resources through
a native storage interface (NSI). NSI allows the DBMS to operate
with I/O operations, in granularity and with addressing schemes
supported by the the underlying storage technology. Furthermore,
NSI eliminates the need to support backwards compatibility. Secondly,
we revisit hardware-oblivious abstractions and propose using physical
storage abstractions such as Regions to: (a) reduce read/write amplifi-
cation along the I/O path, (b) utilize available I/O parallelism more
efficiently, (c) provide better hot-cold data separation to (d) improve
space management and (e) increase longevity.

9.3 noftl-kv : native storage kv-store 83

Moreover, unnecessary DBMS data transfers can be reduced by push-
ing tasks down to the storage device. For instance, parts of garbage
collection and compaction can be planned by the NoFTL-KV storage
manager for certain Regions, but are executed onto the device to re-
duce I/O contention and data transfers. Likewise, queries, i.e scans,
can be pushed down and executed on the storage device. Especially
in combination with Regions, such queries can profit by the involved
address mapping and level of on-device-parallelism. Also worth to
mention is that processors on such storage devices usually exhibits
the characteristics of common co-processor (ASIC or FPGA). These are
perfectly aligned to the characteristics of modern storage technology
(Flash, NVM) e.g. in respect to parallelism.

 Native Storage Interface

D
ev

ic
e

C
trl Chip 1 Chip 2

H
ar

dw
ar

e

Chip X...

N
oF

TL
 K

V

Storage Manager
(LSM-Tree)

Log
Manager

Buffer
Manager

GC
(Compaction)

NoFTL Architecture

...

R
eg

io
n

M
an

ag
er

Region 1 Region 2
...

Region N

Read/Write Data
on Chip

Storage Manager

tr
ig

ge
r G

C

Read/Write Data

C
om

m
an

d
Pu

sh
do

w
n

NoFTL KV

Figure 9.2: NoFTL-KV: Design of a deep integration of the NoFTL concept
within an entire KV-store for native storage management

By integrating address mapping into the storage manager of the
KV-store, the latter gets control over the physical data placement on
Flash. Hence, the KV-store can utilize available information about data
semantics, statistics and the access pattern (e.g., desired level of I/O
parallelism) to perform efficient placement. Individual levels of the
LSM-Tree can be physically separated on different chips to improve
I/O throughput and parallelism since I/O-heavy compaction jobs do
not block the entire device. Consequently, new storage abstractions
can be defined besides files.

We introduce Regions as physical storage abstractions spanning
multiple chips/dies (i.e. parallel unit of the storage device). They
can be effectively optimized for different access patterns (sequential,
random, append) of various KV-store components (e.g. Levels of LSM-
Tree and Log Manager). Regions allow for flexible physical storage

84 noftl-kv : tackling write-amplification with native storage

management as the parameters of hot-cold data separation, garbage
collection etc. are part of the definition. The level of supported I/O
parallelism per Region can be defined in terms of the number of
chips/dies it spans or whether these run in pseudo SLC, MLC or TLC
Flash mode. Region definitions are not static, but can evolve over time
to reflect properties of the workload.

CREATE REGION rgBlockMapping (

MAX_CHIPS=4, MAX_CHANNELS=4,..., ADDR_MAPPING=BLOCK,

NAND_MODE=MLC, ...);

CREATE TABLESPACE MyRocks.tblBlock (

REGION=rgBlockMapping, UNIFORM EXTENT SIZE 128K);

CREATE TABLE MyRocks.nodetable(...)

TABLESPACE MyRocks.tblBlock;

Furthermore, the functional redundancy along the cooked I/O stack is
reduced. While, the file-system and the FTL distort the append-based
access pattern and amplify the read/write data volume, NoFTL-KV
simplifies the critical I/O path, exhibits a physically sequential I/O
pattern, and offers better physical storage management. Consequently,
write-amplification is significantly reduced. Similarly, the integration
of the garbage collection within the compaction process of the LSM-
Tree, allows for elimination of the time and resource-expensive merges
common for traditional FTL-based SSDs. As a result, the KV-store
is able to trigger the GC only when necessary and under the cur-
rent workload. Higher longevity through less block erases and better
throughput are the consequence.

9.4 experimental evaluation

Testbed. Our testbed comprises a server equipped with an Intel Xeon
E5-1620 v3 3.50 GHz CPU-core, 32GB RAM and an Intel DC 3600 SSD
under Ubuntu 12.04 LTS, kernel 3.13.0.

The Flash storage device for the NoFTL-KV data is emulated by
our real-time Flash Simulator[6], which is running as a kernel module.
Configured with common latencies for reads, writes, and erases of
current SLC NAND Flash it is able to simulate a modern enterprise
SSD with either block- or char-device interfaces. For the block device,
FASTer[11] is utilised as FTL with an over-provisioning area of 14%.
In our setup, the simulator consumes 24 GB of memory to emulate
an SSD of the same capacity with 256 pages (4KB) on 24576 blocks.
The level of parallelism (emulated NAND chips/dies) is limited by
the number of hardware threads. For our experiments we configured
NoFTL-KV to only store RocksDB LSM-Tree files on the emulated
device and the remaining files on the Intel DC 3600 formatted with an
ext4 file system.

LinkBench. The experimental evaluation is performed using LinkBench[1],
which is an OLTP-style workload on large updatable graphs. Under

9.4 experimental evaluation 85

LinkBench the working data set size is an order of magnitude larger
than the database buffer. The request phase of LinkBench comprises
common graph queries like adding, getting, counting, deleting, updat-
ing nodes or edges on the graph. The experimental dataset is a graph
of 15M nodes (initial), amounting to 15GB raw data. The number of
requests and duration vary depending on the experiment. The baseline
utilises the same configuration (ext3, 4KB blocksize, active journal) for
MyRocks with RocksDB, hereinafter referred to as RocksDB.

Figure 9.3: Amount of data written by the DB, FS and FTL during the load
and request phases of LinkBench shows the write-amplification
of RocksDB in contrast to NoFTL-KV

262626 26

251

383

111111 13

138

211

Load Request

NoFTL KV RocksDB NoFTL KV RocksDB
0

100

200

300

400

W
rit

te
n

D
at

a
[G

B
yt

e]

FTL FS DB

Table 9.1: Number of logical page writes of the DB’s compaction and physical
page writes of the device over 10 request phases demonstrates
write-amplification and inconsistent logical to physical page write
ratio.

NoFTL-KV RocksDB Speedup

Mean StDev Mean StDev

GC Calls 1 3 4769 2434

GC Page Write 0 0 1932263 737453

Block Erase 1127 3564 21389 7792 18.98x

Write-Amplification. To measure write amplification, hooks are
placed in the storage engine of RocksDB (DB), the file system (FS),
and the Flash emulator (FTL), i.e., in all layers along the I/O path. The
number of requests is limited to 1M per thread with sufficient time
(10h) to be executed completely. This ensures that, at the end, both
variants have executed the same number of operations. The results

86 noftl-kv : tackling write-amplification with native storage

Figure 9.4: Throughput: The average number of executed operations over the
last 7 request phases demonstrates that NoFTL-KV outperforms
RocksDB

71
393

4

20
4

26
7

38
7

50
8

23
6

30
9

7910
4

40
21

52
69

10
2613

45

4255

63
688

3

58
576
7

0

2000

4000

6000

ADD LINK

ADD NODE

COUNT LINK

DELETE LINK

DELETE NODE

GET LINKS LIST

GET NODE

MULTIGET LINK

UPDATE LINK

UPDATE NODE

M
ea

n
O

P
 c

ou
nt

 [k
O

P
]

NoFTL KV RocksDB

(Fig. 9.3) for NoFTL-KV and the baseline RocksDB represent average
values of multiple runs.

Not surprisingly, the significant write amplification of the cooked
stack becomes evident. The 26 GB of raw data, bulk-loaded during the
load phase, swells up by more than 14 times to 383 GB. On top of that,
the file system adds about 225 GB and the FTL increases this again
by 132 GB. During the request phase, the disadvantages of the cooked
I/O stack become even more visible. The average write-amplification
here is more than 19x. This creates enormous I/O overhead, which is
clearly reflected by the metrics to follow.

Throughput. The mean number of executed operations and their
errors for every operation type is shown in Fig. 9.4. NoFTL-KV outper-
forms RocksDB in every type of query. This is because of the smaller
data volume to be written, and the better utilisation of available Flash
parallelism. The workload of LinkBench has a high write-intensity
over the complete duration. Consequently, the throughput increases
about 31% accross all operation types. The performance stability across
different runs, indicated by the error bars increases by an order of
magnitude.

Response Time. To investigate the impact on response time for
common operations, we perform further experiments with 1M requests
per thread. Fig. 9.5 shows the average duration, while the error bars
indicate the standard deviation.

9.4 experimental evaluation 87

Figure 9.5: Response Time (the lower the better): Average operation latencies
and std. dev. are better and more stable under NoFTL-KV vs.
RocksDB

1.
92

1.
91

0.
94

0.
94

1.
01

0.
6

1.
32

1.
17

0.
8

0.
68

1.
69

1.
37

1.
74

0.
79

1.
64

1.
31

1.
93

1.
92

1.
37

1.
21

0

1

2

ADD LINK

ADD NODE

COUNT LINK

DELETE LINK

DELETE NODE

GET LINKS LIST

GET NODE

MULTIGET LINK

UPDATE LINK

UPDATE NODE

M
ea

n
O

P
 D

ur
at

io
n

[m
s]

NoFTL KV RocksDB

Figure 9.6: Results of the experimental evaluation of NoFTL-KV using
LinkBench

One can clearly see that the latency is lower under NoFTL-KV.
Especially reading operations like GetNode(), GetLinksList(), and Multi-
getLink() perform significantly better. This is even more relevant, since
about 22% of these could not be served by database buffer (cache
miss rate) and are read from the persistent device. On the other hand,
inserting and updating operations like AddNode(), AddLink(), and Up-
dateLink() complete directly after pushing the data into an in-memory
buffer and the WAL. This buffer is persistet only after a compaction,
which is not taken into account for the operation latency. This explains
the similar performance for both RocksDB and NoFTL-KV. The only
exception is UpdateNode(), which might result in multiple gets that are
slower with the traditional I/O stack.

Erases and Longevity. Write-amplification on Flash devices in-
evitably leads to more physical Flash erases, which has negative
impact on device longevity. Table 9.1 captures the GC activity in terms
of physical page writes and block erases during the benchmark runs
of the previous experiment.

RocksDB performs almost 19 times the physical block erases than
NoFTL-KV, which is primarily due to (i) the journal of the file system,
which doubles Flash page writes, and (ii) FASTer’s hybrid address

88 noftl-kv : tackling write-amplification with native storage

mapping scheme. It is worth noting that the erase overhead of FASTer
would also be present in other FTLs, which utilize hybrid address
translation (common for current SSDs). As soon as the so-called log
block area of the device runs out of space, the GC kicks in and merges
the updated data with the corresponding Flash blocks in the data block
area. Each of those merges requires multiple page migrations (on-
device write amplification), and one or two erase operations (partial
or full merges). NoFTL-KV is configured to use BLM, which matches
the append-only LSM-Tree based storage management of RocksDB.

9.5 conclusion

In the present paper we propose NoFTL-KV, an approach that re-
sults in a lean I/O stack, integrating physical storage management
natively in the Key/Value store. NoFTL-KV eliminates backwards
compatibility, allowing the Key/Value store to directly exploit the
characteristics of modern storage technologies. NoFTL-KV is imple-
mented under RocksDB and evaluated using LinkBench. The trans-
actional throughput improves by 33%, while response times improve
up to 2.3x. Furthermore, NoFTL-KV reduces write-amplification 19x
and improves endurance. In addition, our current integration on the
file-based LSM-Tree can be further improved by a deeper integration
into the KV-store’s data structure in future work to gain additional
performance improvements.

references

[1] Timothy G. Armstrong, Vamsi Ponnekanti, Dhruba Borthakur,
and Mark Callaghan. “LinkBench: A Database Benchmark
Based on the Facebook Social Graph.” In: Proc. SIGMOD 2013.

[2] Matias Bjørling, Javier Gonzalez, and Philippe Bonnet. “Light-
NVM: The Linux Open-Channel SSD Subsystem.” In: Proc.
FAST 2017.

[3] Niv Dayan, Philippe Bonnet, and Stratos Idreos. “GeckoFTL:
Scalable Flash Translation Techniques For Very Large Flash
Devices.” In: Proc. SIGMOD 2016.

[4] Biplob Debnath, Sudipta Sengupta, and Jin Li. “SkimpyStash:
RAM Space Skimpy Key-value Store on Flash-based Storage.”
In: Proc. SIGMOD 2011.

[5] Siying Dong, Mark Callaghan, Leonidas Galanis, Dhruba Borthakur,
Tony Savor, and Michael Strum. “Optimizing Space Amplifica-
tion in RocksDB.” In: Proc. CIDR 2017.

[6] Sergej Hardock, Ilia Petrov, Robert Gottstein, and Alejandro
Buchmann. “NoFTL: Database Systems on FTL-less Flash Stor-
age.” In: Proc. VLDB 2013.

9.5 references 89

[7] Sergey Hardock and Ilia Petrov and Robert Gottstein and Ale-
jandro P. Buchmann. “NoFTL for Real: Databases on Real Na-
tive Flash Storage.” In: Proc EDBT 2015.

[8] Y. Jin, H. W. Tseng, Y. Papakonstantinou, and S. Swanson.
“KAML: A Flexible, High-Performance Key-Value SSD.” In: In
Proc. HPCA 2017.

[9] Woon-Hak Kang, Sang-Won Lee, Bongki Moon, Gi-Hwan Oh,
and Changwoo Min. “X-FTL: Transactional FTL for SQLite
Databases.” In: Proc. SIGMOD 2013.

[10] Dong-Yun Lee, Kisik Jeong, Sang-Hoon Han, Jin-Soo Kim, Joo-
Young Hwang, and Sangyeun Cho. “Understanding Write Be-
haviors of Storage Backends in Ceph Object Store.” In: Proc.
MSST 2017.

[11] S. P. Lim, S. W. Lee, and B. Moon. “FASTer FTL for Enterprise-
Class Flash Memory SSDs.” In: Proc. SNAPI 2010.

[12] Leonardo Marmol, Swaminathan Sundararaman, Nisha Tala-
gala, and Raju Rangaswami. “NVMKV: A Scalable, Lightweight,
FTL-aware Key-value Store.” In: Proc. ATC 2015.

[13] Yoshinori Matsunobu. “InnoDB to MyRocks Migration in Main
MySQL Database at Facebook.” In: Proc. SREcon 2017.

[14] Gihwan Oh, Chiyoung Seo, Ravi Mayuram, Yang-Suk Kee,
and Sang-Won Lee. “SHARE Interface in Flash Storage for
Relational and NoSQL Databases.” In: Proc. SIGMOD 2016.

[15] Samsung. In: Flash Memory Summit, 2017. url: http://www.
samsung.com/semiconductor/global/file/insight/2017/

08/Samsung_Key_Value_SSD_enables_High_Performance_

Scaling-0.pdf.

[16] Russell Sears and Raghu Ramakrishnan. “bLSM: A General
Purpose Log Structured Merge Tree.” In: Proc. SIGMOD 2012.

[17] Sudharsan Seshadri, Mark Gahagan, Sundaram Bhaskaran,
Trevor Bunker, Arup De, Yanqin Jin, Yang Liu, and Steven
Swanson. “Willow: A User-Programmable SSD.” In: Proc. OSDI
2014.

[18] Shuotao Xu, Sungjin Lee, Sang-Woo Jun, Ming Liu, Jamey
Hicks, and Arvind. “Bluecache: A Scalable Distributed Flash-
based Key-value Store.” In: Proc. VLDB 2016.

[19] Jiacheng Zhang, Jiwu Shu, and Youyou Lu. “ParaFS: A Log-
structured File System to Exploit the Internal Parallelism of
Flash Devices.” In: Proc. ATC 2016.

http://www.samsung.com/semiconductor/global/file/insight/2017/08/Samsung_Key_Value_SSD_enables_High_Performance_Scaling-0.pdf
http://www.samsung.com/semiconductor/global/file/insight/2017/08/Samsung_Key_Value_SSD_enables_High_Performance_Scaling-0.pdf
http://www.samsung.com/semiconductor/global/file/insight/2017/08/Samsung_Key_Value_SSD_enables_High_Performance_Scaling-0.pdf
http://www.samsung.com/semiconductor/global/file/insight/2017/08/Samsung_Key_Value_SSD_enables_High_Performance_Scaling-0.pdf

10
N AT I V E N D P : P R O C E S S I N G B I G D ATA A N A LY T I C S
O N N AT I V E S T O R A G E N O D E S

bibliographic information

The content of this chapter has previously been published in the work
"nativeNDP: Processing Big Data Analytics on Native Storage Nodes" by
Tobias Vinçon, Sergey Hardock, Christian Riegger, Andreas Koch and
Ilia Petrov in 2019 Advances in Databases and Information Systems
(ADBIS). The contribution of the author of this thesis is summarized
as follows.

» As the corresponding and leading author, Tobias Vinçon was responsible
for the integration of NoFTL-KV into the widespread cluster file system
Ceph. Moreover, he designed the client application and was in charge of
configuring the entire system stack as well as executing the experimental
evaluation. With constructive feedback from Sergey Hardock, Christian
Riegger, Andreas Koch and Ilia Petrov the manuscript was written by him.
«

abstract

Data analytics tasks on large datasets are computationally-intensive
and often demand the compute power of cluster environments. Yet,
data cleansing, preparation, dataset characterization and statistics or
metrics computation steps are frequent. These are mostly performed
ad hoc, in an explorative manner and mandate low response times. But,
such steps are I/O intensive and typically very slow due to low data
locality, inadequate interfaces and abstractions along the stack. These
typically result in prohibitively expensive scans of the full dataset and
transformations on interface boundaries.

In this paper, we examine R as analytical tool, managing large
persistent datasets in Ceph, a wide-spread cluster file-system. We
propose nativeNDP – a framework for Near-Data Processing that pushes
down primitive R tasks and executes them in-situ, directly within the
storage device of a cluster-node. Across a range of data sizes, we show
that nativeNDP is more than an order of magnitude faster than other
pushdown alternatives.

91

92 nativendp : big data analytics on native storage

10.1 introduction

Modern datasets are large, with near-linear growth, driven by devel-
opments in IoT, social media, cloud or mobile platforms. Analytical
operations and ML workloads result therefore in massive and some-
times repetitive scans of the entire dataset. Furthermore, data prepara-
tion and cleansing cause expensive transformations, due to varying
abstractions along the analytical stack. For example, our experiments
show that computing a simple sum on a scientific dataset in R takes
1% of the total time, while the remaining 99% are spent for I/O and
CSV format conversion.

Such data transfers, shuffling data across the memory hierarchy,
have a negative impact on performance and scalability, and incur low
resource efficiency and high energy consumption. The root cause for
this phenomenon lies in the typically low data locality as well as in
traditional system architectures and algorithms, designed according
to the data-to-code principle. It requires data to be transferred to the
computing units to be processed, which is inherently bounded by
the von Neumann bottleneck. The negative impact is amplified by the
slowdown of Moore’s Law and the end of Dennard Scaling. The limited
performance and scalability is especially painful for nodes of high-
performance cluster environments with sufficient processing power to
support computationally-intensive analytics.

Luckily, recent technological developments help to counter these
drawbacks. Firstly, hardware vendors can fabricate combinations of stor-
age and compute elements at reasonable costs. Secondly, this trend covers
virtually all levels of the memory hierarchy (e.g. IBM’s AMC for
Processing-in-Memory, or Micron’s HMC). Thirdly, the device-internal
bandwidth and parallelism significantly exceed the external ones
(Device-To-Host), for non-volatile semiconductor (NVM, Flash) stor-
age devices.

Such intelligent storage allows for Near-Data Processing (NDP) of
analytics operations, i.e. such operations are executed in-situ, close to
where data is physically stored and transfer just the result sets, without
moving the raw data. This results in a code-to-data architecture.

Analytical operations are diverse and range from complex algo-
rithms to basic mathematical, statistical or algebraic operations. In
this paper, we present execution options for basic operations in nodes
of clustered environments as shown in Figure 16.1: (1) The compu-
tation is within the client and the cluster node is used as part of a
traditional distributed file system; (2) The operation is transmitted
to the cluster and processed within the cluster node itself; (3) The
operation is executed in-situ, within the NDP devices of the cluster’s
node. The investigated operations are simple, yet they clearly give
evidence for the NDP effects on internal bandwidth and the ease of
system and network buses. The execution of more extensive operations

10.2 related work 93

Analytical Tool

C
lie

nt
C

lu
st

er
/

C
lu

st
e

r
FS

N
o

d
e

 H
a

rd
w

ar
e

Analytical Tool Analytical Tool

File Ops.
Read/Write

Object Store Ops.
Get/Put

NDP Pushdown

N
o

d
e

n

Node 1

Node 2 Node n

Node 1

Node 2

2

N
o

d
e

n

Node 1

Node 2

21

H
o

st

Processor

N
D

P
 D

ev
ic

e

Processor

Flash MemoryFlash Memory
Storage

3

Compute

C
om

pu
te

Compute

Baseline Pushdown Cluster Pushdown NDP Dev

3

Figure 10.1: Three different options to execute analytical operations on a
cluster environment. (1) Baseline: Execute on the client; (2) Push-
down Cluster: Execute on a cluster’s node; (3) Pushdown NDP
Device: Execute on the NDP Device of a cluster’s node

like betweenness centrality within graphs or clustering and k-nearest
neighbor searches are planed for future work.

The main contributions of this paper are:
• End-to-end integration of NDP interfaces throughout the entire

system stack
• The performance evaluation shows improvements of NDP opera-

tion pushdown of at least 10x
• Analysis of the impact of and necessity for NDP-based abstractions

and interfaces.
• We identify the following aspects as the main drawbacks to im-

plementing NDP: Interfaces; Abstractions; Result-Set consumption
semantics; Data Layout and NDP Toolchain

The rest of the paper is structured as follows. Section 13.2 presents the
architecture of nativeNDP. In Section 10.4 we discuss the experimental
design and performance evaluation. We conclude in Section 13.5.

10.2 related work

The concept of Near-Data Processing is not new. Historically it is deeply
rooted in database machines [2, 5], developed in the 1970 and 1980s. [2]

94 nativendp : big data analytics on native storage

discuss approaches such as processor-per-track or processor-per-head
as an early attempt to combine magneto-mechanical storage and sim-
ple computing elements to process data directly on mass storage and
to reduce data transfers. Besides reliance on proprietary and costly
hardware, the I/O bandwidth and parallelism are claimed to be the
limiting factor to justify parallel DBMS [2]. While this conclusion is not
surprising, given the characteristics of magnetic/mechanical storage
combined with Amdahl’s balanced systems law [7], it is revised with
modern technologies. Modern semi-conductor storage technologies
(NVM, Flash) are offering high raw bandwidth and high levels of
parallelism. [2] also raises the issue of temporal locality in database
applications, which has already been questioned earlier and is con-
sidered to be low in modern workloads, causing unnecessary data
transfers. Near-Data Processing presents an opportunity to address it.

The concept of Active Disk emerged toward the end of the 1990s. It
is most prominently represented by systems such as: Active Disk [1],
IDISK [12], and Active storage/disk [15]. While database machines
attempted to execute fixed primitive access operations, Active Disk
targets executing application-specific code on the drive. Active stor-
age [15] relies on processor-per-disk architecture. It yields significant
performance benefits for I/O bound scans in terms of bandwidth, par-
allelism and reduction of data transfers. IDISK [12], assume a higher
complexity of data processing operations compared to [15] and tar-
gets mainly analytical workloads and business intelligence and DSS
systems. Active Disc [1] targets an architecture based on on-device
processors and pushdown of custom data-processing operations. [1]
focuses on programming models and explores a streaming-based pro-
gramming model, expressing data intensive operations, as so called
disklets, which are pushed down and executed on the disk processor.

With the latest trend of applying different compute units, besides
CPUs, to accelerate database workloads, a more intelligent FPGA-
based storage engine for databases has been demonstrated with Ibex
[19]. It focuses mainly on the implementation of classical database
operations on reprogrammable compute units to satisfy their charac-
teristics, such as parallelism and bandwidth. A completely distributed
storage layer, targeting NDP on DRAM over the network, is presented
by Caribou [10]. Its shared-data model is replicated from the master
to the respective replica nodes using Zookeeper’s atomic broadcast.
Utilizing bitmaps, Caribou is able to scan datasets with FPGAs only
by the limiting factor of the selection itself (low selectivity) or the
network (high selectivity). Moreover, [3, 4, 8, 14] investigate further
host-to-device interfaces for general-purpose applications or specific
workloads.

However, previous research focused mainly either on the concrete
implementation of the reconfigurable hardware, or on single device
instances. In this paper, we attempt to combine both topics and focus

10.3 nativendp framework 95

on the abstraction and interfaces necessary to complete an efficient
NDP pushdown.

10.3 nativendp framework

The architecture shown in Figure 10.2 presents a bird’s eye view of the
essential components, interfaces, and abstractions of the nativeNDP
framework. An analytical client executes an R script, triggering an
analytical operation (filtering, simple computation - SUM, AVG, STD-
DEV, or a clustering algorithm). It can be processed on different levels
of the system stack:

• directly in R (Figure 16.1–baseline). This is a classical approach,
which can be done with out of the box software, requiring little
overhead. The downside is that the complete dataset needs to
be transferred through the stack causing excessive data transfers
and posing significant memory pressure on the client.

• within a Cluster node (Figure 16.1–pushdown cluster). The same
function can be offloaded to the HPC cluster system and dis-
tributed across nodes. Hence the compute and data transfer load
can be reduced, but not eliminated as such data transfers are
performed locally on a node.

• on the Storage Device (Figure 16.1–pushdown NDP dev). With NDP,
the operations are offloaded directly on the device, utilizing
the internal bandwidth, parallelism and compute resources to
reduce data transfers and improve latency.

Client NDP DeviceCluster

Plugin Node 1

Node n

Flash MemoryFlash Memory

Storage Manager

Node 2

Object

Object

CSV to DF

File I/O

N
at

iv
e

St

o
ra

ge

In
te

rf
ac

e

P
u

t/
G

e
t

R
e

co
rd

B
lo

ck
 I/

O

N
D

P

In
te

rf
ac

e

N
D

P

In
te

rf
ac

e

Storage
Manager

Get/Put
Object

Abstractions

NDP
Device

R Script

DataFrame

B
lo

ck
 I/

O

B
lo

ck
 I/

O

Processing
Element
(FPGA)

Storage
(NVM)

P
ar

ti
ti

o
n

in
g/

R
e

p
lic

a
ti

o
n

Fi
le

In

te
rf

ac
e

O
b

je
ct

In

te
rf

a
ce

N
D

P
In

te
rf

ac
e

1

2

3

Figure 10.2: The high-level architecture showing the applied interfaces and
data abstractions along the access path for the three compared
experiments: baseline, pushdown cluster node, and pushdown
device

10.3.1 System Stack

In the following we describe the layers of the analytical stack in more
detail.

96 nativendp : big data analytics on native storage

Client: We utilize R as one of the most popular client software
for analytical and statistical computation. To interact with the Ceph
cluster and the underlaying layers, we designed a custom R plugin,
RCeph. It uses the RADOS API [18] to connect to the cluster and is
able to issue specific commands with following features:

put/get of files/objects : To facilitate the first scenario, presented
in Figure 16.1, the dataset file has to be retrievable from the clus-
ter. Therefore, the standard file I/O API is reused. However, the
transfer of results from the second and third scenario necessi-
tates further interfaces such as RADOS’s provided Object API as
explained in Section 10.3.2.

pushdown of domain-specific operations : This feature is mainly
addressed with the second and third scenario, where domain-
specific operations, usually executed within the client, are pushed
down to either a cluster’s node or even throughout the node’s
storage engine to the NDP Device. I.e. such domain-specific
operations comprise R-native operations on their storage abstrac-
tion DataFrame or could even be extended to small algorithmic
expressions.

format conversion : As interfaces and abstractions of lower levels
often rely on backwards compatibility in nowadays complex sys-
tems, format conversions of the results or CSV-encoded files and
objects into the R-specific abstraction DataFrame are necessary.

The RCeph is complied using Rcpp [6] to a plugin package and can
be installed, loaded, and applied within the R runtime environment
of the client.

Cluster: To process todays datasets with analytical or statistical work-
loads in an acceptable time, both data and calculation are distributed
over a cluster environment. This becomes even more crucial with
focus on high performance in particular. To simplify low latency data
accesses, distributed file systems are applied in such environments
nowadays. Therefore, Ceph [17], which is a wide-spread solution
for clustered environments, builds the foundation of the nativeNDP
framework. Its purpose is to efficiently manage a variety of nodes
within a cluster environment. Thereby, stored files are striped across
small objects, grouped into placement groups and distributed on these
nodes to ensure scalability and high reliability. Its flexible architec-
ture comprises various components and provides interfaces for object,
block and file I/O. Internally, exchangeable storage engines are re-
sponsible to manage the reads and writes to secondary storage. One
of its most recent storage backends is called BlueStore and utilizes
RocksDB as an internal KV-Store.

10.3 nativendp framework 97

Storage Manager: We replaced the internal KV-Store of BlueStore
with our own native storage engine NoFTL-KV [16]. Hereby, hardware
characteristics, like in-parallel accessible flash chips of the storage
device, are known by NoFTL-KV, which in turn is able to efficiently
leverage those. Consequently, the physical location of persisted data is
defined by the KV-Store itself rather than any Flash Translation Layer
(FTL) of a conventional stack. This opens the opportunity to issue
commands directly on the physical locations throughout NoFTL-KV
and to streamline low-level interfaces along the entire access path.

NDP Device: Devices are emulated by our own storage-type SCM
Simulator, based on [9]. Running as a kernel module it provides the
ability to delay read and write request depending on its emulated
physical locations by utilizing the accurate kernel timer functions. As
a consequence, reads or writes across physical page borders claim
respectively multiple I/O latencies. For the experimental evaluation,
the simulator is instrumented with realistic storage-type SCM latencies
from [11]. Moreover, by its flexible design it allows us to extend it with
the necessary NDP interface.

10.3.2 Interfaces and Abstractions

The first, most commonly applied interface is the traditional file I/O
(Figure 10.2.1). It abstracts the cluster as a large file system, storing its
data distributed on multiple nodes. A partitioning and/or replication
layer takes care of the internal data placement on various nodes.
Instead of the KV-Store the conventional Block I/O is used to issue
reads and writes to the NDP Device. This also involves any kind of
Flash-Translation-Layer on the device itself to reduce the wear on a
single storage cell and consequently ensure longevity of the entire
device.

Secondly, a modern object interface offered by RADOS [18] (Figure
10.2.2) can be utilized to put/get objects on the cluster. This abstraction
might comprise single or multiple records of a file, or the result set
of a pushed down user defined function executed on the respective
node. Since the cluster handles data placement, it can transparently
execute such algorithms in parallel with the full processing power of
the node’s servers if the operations are data independent. Within the
lower levels, depending on the storage manager, one can either exploit
the conventional Block I/O to access the NDP Device or leverage
NoFTL-KV’s Native Storage Interface.

Thirdly, an NDP pushdown necessitates a different kind of inter-
face definition (Figure 10.2.3). The NDP execution of application-
specific operations requires open interfaces. These should support
NDP of application-specific abstractions such as DataFrame for R. Con-
sequently, these interfaces and abstractions mandate flexibility, since

98 nativendp : big data analytics on native storage

various result types of the application logic on the device must be
transferred back to the client. Expensive format conversion along the
system stack can be avoided almost entirely. Yet, an extensive toolchain
and NDP framework support is required, beginning from the analyti-
cal tool to the employed hardware devices in the cluster. Utilizing the
processing elements near-storage (e.g. FPGA), the internal, on-device
parallelism and bandwidth can be fully leveraged. For instance, [13]
projects of up to 50 GB/s, while the workload on slower buses (e.g.
PCIe 2.0 ≈ 6.4 GB/s) in the system is eased by reducing transfer
volumes (i.e. resultset ≪ rawdata).

10.4 experimental evaluation

To compare the different execution options on the presented system
stack and evaluate their bottlenecks, we conduct three experiments
aligned to the scenarios of Figure 16.1.

10.4.1 Datasets and Operations

To ensure the comparability of the scenarios, datasets and operations
are predefined. The datasets are created synthetically as CSV files with
random numbers, with varying rows and columns from 1k to 10k.
When stored in the KV-Store, each cell of the CSV file is identifiable
by an auto-generated key with the structure:

[object_name].[column_index].[row_index]

Inevitably, this is bloating out the raw file size by approximately
16x-17x but enables to access cells by this unique id. Alternatively,
depending on the workload, an arrangement per row or per column is
likewise feasible. Table 10.1 summarizes the properties of each dataset
for the present experiments.

The operations performed in all experiments is independent of the
data distribution and constitutes a typical data science application -
calculation of the sum or the average over a given column (Because of
the marginal differences only sum is shown further on). The final result
set comprises a 32-byte integer value and some additional status data.
We leave the implementation of further analytical and/or statistical
operations open for future work.

10.4.2 Experimental Setup

The server, nativeNDP is evaluated on, is equipped with four Intel
Xeon x7560 8-core CPUs clocked at 2.26 GHz, 1TB DRAM running
Debian 4.9, kernel 4.9.0. The NDP storage device is emulated by
our real-time NVM Simulator, extended with an NDP interface and

10.4 experimental evaluation 99

Table 10.1: Synthetically generated datasets for the experi-
ments. The raw CSV file size is according the Key-
Value format bloated out.

Dataset KV Pairs CSV Size KV Size Bloating
Ratio

[MB] [MB]

1k/1k 1 000 000 2.8 44 15.9

2k/2k 4 000 000 12 182 15.2

4k/4k 16 000 000 45 738 16.4

6k/6k 36 000 000 101 1 668 16.5

8k/8k 64 000 000 178 2 971 16.7

10k/10k 100 000 000 278 4 649 16.7

functionality. I/O and pushdown operations are handled internally
with the storage-type SCM latencies [11].

Since the main target is to evaluate the streamlining of NDP inter-
faces and abstractions, interferences caused by data distribution or
multi-node communication have to be avoided. Therefore, the Ceph
cluster is set up with a single object store node. This allows conducting
experiments along a clean stack and measuring execution and transfer
size for each architectural layer individually.

2 1

5 3 1

1
8

12

1

38

26

2

66

42

4

10
6

70

6

1 3

12

1

25

2

42

3

69

5

1 2 3 5

0

20

40

60

80

100

120

① ② ③ ① ② ③ ① ② ③ ① ② ③ ① ② ③ ① ② ③

1k/1k 2k/2k 4k/4k 6k/6k 8k/8k 10k/10k

E
x
e
c
u
ti
o
n
 t

im
e
 [
s]

R Ceph Device

Figure 10.3: Execution time for varying dataset sizes shows the performance
impact of data transfers/volume, and the improvement through
NDP.

100 nativendp : big data analytics on native storage

10.4.3 Experiment 1 – Baseline

The first experiment utilizes the Ceph cluster in the most common
and conventional way - as a file system (Figure 10.2.1). Therefore, the
file abstractions, interfaces, and subsequently Block I/O are used to
retrieve the entire file. The sum over the 10th column is calculated in
R by calling readCSVDataFrame of RCeph and caching the resulting
DataFrame into the R runtime environment. Here, R’s capabilities can
be used to filter the DataFrame on the respective column and perform
the arithmetic operation.

sum <- sum(RCeph::readCSVDataFrame(o_name)[col_id])

This experiment defines the baseline for any improvements of na-
tiveNDP. However, it exemplifies multiple drawbacks yielding in a
significant performance degradation. Firstly, the entire file has to be
read via block I/O, even though only a small portion of it, the 10th
column, is necessary to be processed by the operation (Figure 10.5).
Secondly, the latency and bandwidth limitations of the network in-
terconnect between the R host and the Ceph cluster, contribute to
additional delays to the R processing. The significantly higher transfer
size of Host-To-Client, illustrated in Figure 10.5, leads inevitably to a
slower request duration. Additionally, as R DataFrames do not support
any streaming algorithmic, the processing has to idle until the entire
dataset is retrieved from Ceph. Thirdly, additional compute-intensive
format conversions along multiple interface boundaries are necessary
to create R DataFrames, which increase delays even further. For exam-
ple the "R - parse_time" is 95% of the total time as shown in Figure 10.4.
Moreover, such format conversions are directly depending on the data
size, which is subsequently affected by the large Host-To-Client trans-
fer size. Lastly, client systems often comprise limited hardware (e.g.
notebook or workstation), while typical working sets can range from
tens to hundreds of gigabytes. Thus, processing the whole dataset is
not always possible without any performance degrading swapping to
disk.

These drawbacks lead to a significantly higher total execution time
for the calculation in general, as shown in Figure 10.3 (at least 10x).

In total, the baseline experiment results in the lowest performance
for all datasets, which is mainly caused by the time spent in trans-
fer and conversion of the CSV object into the R-specific data type
DataFrame ("R - parse_time" Figure 10.4).

10.4.4 Experiment 2 – Pushdown Cluster

For the second experiment, Ceph’s advanced object interface is ex-
tended to execute a user defined function. It queries the KV-Pairs of the
respective dataset from NoFTL-KV of the Storage Manager by filtering

10.4 experimental evaluation 101

1
0
6

70

6

1
0
1

0
.0
0
0
1

0
.0
0
0
3

69

5 5

0
.1
30
8

. .

4
.7
0
1
8

0

20

40

60

80

100

120

① ② ③

10k/10k

E
x
e
c
u
ti
o
n
 t

im
e
 [
s]

R - exec_time_elapsed

R - parse_time

Ceph - exec_time

Device - total_time

Device - process_time

Device - load_time

Figure 10.4: A detailed execution time analysis shows the main bottlenecks
along the analytical stack.

on the 10th column. Thereby, the retrieved values are cumulated (Fig-
ure 10.2.2). In a full-fledged cluster scenario, Ceph will automatically
distribute this algorithm on the respective nodes within the cluster and
aggregate their results afterwards. Obviously, the result size after the
operation pushdown is dramatically smaller than the raw data, which
relieves the network and accelerates subsequent expensive data format
conversions. Hence, the almost non-existing "R - parse_time" (Figure
10.4) and the respective transfer size from Host-To-Client (Figure 10.5).
Both result in an overall performance improvement of up to 30% in
comparison to the baseline (Figure 10.3).

sum <- RCeph::execCmd(o_name, "NDP_CEPH SELECT SUM COLUMN col_id")

Nonetheless, the I/O overhead of reading the entire data from
the storage subsystem, as shown in Figure 10.5 by Device-To-Host,
represents a major bottleneck. Therefore, the time spent in format
conversions within Ceph increases as well. For the largest dataset,
it takes more than 99% of the time. However, it can be avoided by
applying NDP.

10.4.5 Experiment 3 – Pushdown NDP Device

Our last experiment relies on Near-Data Processing (Figure 10.2.3).
Abstractions and interfaces are statically created for the purpose of
filtering on a given column and computing sums to enable a device
pushdown.

sum <- RCeph::execCmd(obj_name,"NDP_DEV SELECT SUM COLUMN col_id")

The NDP pushdown leverages the much higher levels of compute
and I/O parallelism supported by the on-device processing elements

102 nativendp : big data analytics on native storage

1
0
5
 9

0
6

1
76

1
 7

4
9

68
7

0
32

64 1
8
6

64
6

5
2
8

3
1
1
6

34
8
 5

0
0

64 2
91

 5
0
4
 1

2
8

4
 8

75
 1

68
 0

1
6

641
0
5
 9

0
6

1
76

64 64 1
8
6

64
6

5
2
8

64 64 2
91

 5
0
4
 1

2
8

64 64

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

1.00E+10

① ② ③ ① ② ③ ① ② ③

6k/6k 8k/8k 10k/10k

T
ra

n
sf

e
r

S
iz

e
 [
B

y
te

]

Device-To-Host Host-To-Client

Figure 10.5: Transfer sizes from Device-To-Host and Host-To-Client of vary-
ing datasets shows the counteraction of NDP to the von Neumann
bottleneck

(FPGA, GPU) to compute the sum an order of magnitude faster (Figure
10.3). Thereby, transferring data from the storage chips takes most of
the time (Figure 10.4 "Device - load_time"), while the processing is
only about 3% of the total time (Figure 10.4 "Device - process_time").
Not only is the network relieved by this early reduction of volume,
but also the system-wide number of data transfers is significantly
reduced. This is mainly driven by the on-device computation and
result size reduction as shown in Figure 10.5. As this is only possible
with the application-specific abstractions, a push down command must
compulsorily comprise those to apply computation on the device, in-
situ. In R, for instance, DataFrame may be a suitable application-specific
abstraction.

10.5 conclusion

We present nativeNDP, a NDP approach to effectively pushdown ana-
lytical operations to a native storage node of a clustered environment.
The evaluation shows improvements of at least 10x over the baseline.
Besides the known issues with todays computer architectures, we iden-
tify ill-suited interfaces and abstractions along the analytical stack as
major drawbacks of current solutions. Moreover, the necessity to push
down application-specific abstractions, and data layouts interpretable
by the NDP Device is considered a key aspect for a true in-situ process-
ing in complex system stacks. To mitigate format conversions along
interface boundaries of such stacks, a comprehensive but flexible NDP
toolchain is required.

10.5 references 103

references

[1] Anurag Acharya, Mustafa Uysal, and Joel H. Saltz. “Active
Disks: Programming Model, Algorithms and Evaluation.” In:
ASPLOS. 1998.

[2] Haran Boral and David J. DeWitt. “Parallel Architectures for
Database Systems.” In: 1989. Chap. Database Machines: An
Idea Whose Time Has Passed? A Critique of the Future of
Database Machines.

[3] Sangyeun Cho, Chanik Park, Hyunok Oh, Sungchan Kim,
Youngmin Yi, and Gregory R. Ganger. “Active disk meets
flash.” In: Proc. 27th Int. ACM Conf. Int. Conf. Supercomput. - ICS.
ACM Press, 2013, p. 91.

[4] Arup De, Maya Gokhale, Rajesh Gupta, and Steven Swan-
son. “Minerva: Accelerating Data Analysis in Next-Generation
SSDs.” In: 2013 IEEE 21st Annu. Int. Symp. Field-Programmable
Cust. Comput. Mach. IEEE, Apr. 2013, pp. 9–16.

[5] David DeWitt and Jim Gray. “Parallel Database Systems: The
Future of High Performance Database Systems.” In: Commun.
ACM (1992).

[6] Dirk Eddelbuettel. Seamless R and C++ integration with Rcpp.
Springer, 2013.

[7] Jim Gray and Prashant J. Shenoy. “Rules of Thumb in Data
Engineering.” In: Proc. ICDE. 2000, p. 3.

[8] Boncheol Gu et al. “Biscuit: A Framework for Near-Data Pro-
cessing of Big Data Workloads.” In: ACM/IEEE 43rd Annu. Int.
Symp. Comput. Archit. Vol. 8. 6. IEEE, June 2016, pp. 153–165.

[9] Sergej Hardock, Ilia Petrov, Robert Gottstein, and Alejandro
Buchmann. “NoFTL: Database Systems on FTL-less Flash Stor-
age.” In: Proc. VLDB Endow. (2013).

[10] Zsolt István, David Sidler, and Gustavo Alonso. “Caribou.” In:
Proc. VLDB Endow. 10.11 (Aug. 2017), pp. 1202–1213.

[11] ITRS - International Technology Roadmap for Semiconductors Re-
ports. 2014. url: http://www.itrs2.net/itrs-reports.html.

[12] Kimberly Keeton, David A. Patterson, and Joseph M. Heller-
stein. “A Case for Intelligent Disks (IDISKs).” In: SIGMOD Rec.
27.3 (Sept. 1998), pp. 42–52.

[13] Sungchan Kim, Hyunok Oh, Chanik Park, Sangyeun Cho, Sang-
Won Lee, and Bongki Moon. “In-storage processing of database
scans and joins.” In: Inf. Sci. (Ny). 327 (Jan. 2016), pp. 183–200.

[14] Marco Minutoli, Shannon K Kuntz, Antonino Tumeo, and Peter
M Kogge. “Implementing Radix Sort on Emu 1.” In: Work. Near-
Data Process. (2015), pp. 1–6.

http://www.itrs2.net/itrs-reports.html

104 nativendp : big data analytics on native storage

[15] Erik Riedel, Garth A. Gibson, and Christos Faloutsos. “Active
Storage for Large-Scale Data Mining and Multimedia.” In:
Proceedings of the 24rd International Conference on Very Large
Data Bases. VLDB. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1998, pp. 62–73.

[16] Tobias Vinçon, Sergey Hardock, Christian Riegger, Julian Op-
permann, Andreas Koch, and Ilia Petrov. “NoFTL-KV: TacklingWrite-
Amplification on KV-Stores with Native Storage Management.”
In: EDBT. 2018.

[17] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E.
Long, and Carlos Maltzahn. “Ceph: A Scalable, High-performance
Distributed File System.” In: OSDI. 2006.

[18] Sage A. Weil, Andrew W. Leung, Scott A. Brandt, and Carlos
Maltzahn. “RADOS: a scalable, reliable storage service for
petabyte-scale storage clusters.” In: PDSW. 2007.

[19] Louis Woods, Jens Teubner, and Gustavo Alonso. “Less watts,
more performance.” In: Proc. 2013 Int. Conf. Manag. data - SIG-
MOD. New York, New York, USA: ACM Press, 2013, p. 1073.

Part III

O N - D E V I C E N AV I G AT I O N A N D D ATA
I N T E R P R E TAT I O N

11
O N T H E N E C E S S I T Y O F E X P L I C I T C R O S S - L AY E R
D ATA F O R M AT S I N N E A R - D ATA P R O C E S S I N G
S Y S T E M S

bibliographic information

The content of this chapter has previously been published in the
work "On the Necessity of Explicit Cross-Layer Data Formats in Near-
Data Processing Systems" by Tobias Vinçon, Arthur Bernhardt, Lukas
Weber, Andreas Koch and Ilia Petrov in 2020 IEEE 36th International
Conference on Data Engineering (ICDE). The contribution of the
author of this thesis is summarized as follows.

» As the corresponding and leading author, Tobias Vinçon was in charge of
evaluating the foundational principles of explicit cross-layer data formats
for NDP. Therefore, he provided the foundational concepts and extended
the NoFTL-KV implementation with NDP Parsers and Accessors of an
exemplary image processing application. The experimental evaluation on
the COSMOS+ hardware was set up and executed by him. The majority of
the manuscript’s text was written by him with extensive support from the
co-authors Arthur Bernhard, Lukas Weber, Andreas Koch and Ilia Petrov.
«

abstract

Massive data transfers in modern data-intensive systems resulting
from low data-locality and data-to-code system design hurt their
performance and scalability. Near-data processing (NDP) and a shift
to code-to-data designs may represent a viable solution as packaging
combinations of storage and compute elements on the same device
has become viable.

The shift towards NDP system architectures calls for revision of
established principles. Abstractions such as data formats and layouts
typically spread multiple layers in traditional DBMS, the way they
are processed is encapsulated within these layers of abstraction. The
NDP-style processing requires an explicit definition of cross-layer data
formats and accessors to ensure in-situ executions optimally utilizing
the properties of the underlying NDP storage and compute elements.
In this paper, we make the case for such data format definitions
and investigate the performance benefits under NoFTL-KV and the
COSMOS hardware platform.

107

108 cross-layer data formats in near-data processing

11.1 introduction

Besides substantial data ingestion, yielding an exponential increase
in data volumes, modern data-intensive systems perform complex
analytical tasks. To process them, systems trigger massive data transfers
that impair performance and scalability, and hurt resource- and energy-
efficiency. These are partly caused by the scarce system bandwidth
in combination with poor data locality, as well as traditional system
architectures and algorithms requiring data to be transferred from
storage to computing elements for processing (data-to-code).

A shift towards Near-Data Processing (NDP) and code-to-data allows
executing operations in-situ, i.e. as close as possible to the physical
data location, leveraging the much better on-device I/O performance.
This observation is supported by several trends. Firstly, hardware man-
ufacturers can fabricate combinations of storage and compute elements
economically, and package them within the same device. Secondly,
with semiconductor storage technologies (NVM/Flash) the device-
internal bandwidth, parallelism, and access latencies are significantly
better than the external ones (device-to-host). Combined, the two
trends lift major limitations of prior approaches such as ActiveDisks
or Database Machines.

Database

Application

NDP Device

St
or

a
ge

En
gi

ne
D

at
ab

as
e

O

b
je

ct
s

Application Format

Field Format

Data Organisation

Query
NDP

Query

Processing Elements

Page Layout

Record Format

NVM / NAND

Traditional DBMS NDP
DBMS

NDP Processing

NVM / NAND NVM / NAND

Figure 11.1: In contrast to classical queries, NDP operations must have all
necessary format and layout information to execute the respec-
tive operations in-situ without host interaction.

11.1 introduction 109

Knowledge about the data organisation and the ability to interpret the data
format in-situ are essential for performing NDP operations. Interestingly,
NDP-able operations are defined on different levels of a DBMS or the
I/O stack.

1. DB-object- or Page-based like fetch, update, scan or garbage col-
lection;

2. Field/Column- and Record-based such as scan, record-materialization,
selection or aggregation

Each operation type processes data according to the respective for-
mat or layout. Figure 16.1 shows common structures like the Field-
and Record-Format, Data Organisation, and Page Layout, which are
available in almost every classical database. In classical (layered) DBMS
architectures data formats and operations can be viewed as abstractions
defined on the interface boundaries of the DBMS layers, which encap-
sulate their functionality (Figure 16.1). Consequently, in SQL queries,
format definitions of the upper layers are utilized to retrieve and pro-
cess data from the layer bellow. Yet, in NDP-system architectures this is
not possible anymore, as the query or operation is executed in-situ.
Since data formats scattered across different layers of abstraction and
encapsulated within them, and given the typical complexity of the I/O
stack, NDP processing is not possible out of the box. As a result, every
necessary format definition either needs to be available in advance
on-device or it has to be enclosed to the NDP call.

To make the case for explicit cross-layer formats, this paper utilizes
a simple K/V store-based NDP-ImageProcessor application. It naïvely
stores colours of images pixel-by-pixel, and defines a small set of
operations, which can be executed as traditional queries or NDP calls.
The main contributions of this paper are:
• We claim that explicit cross-layer data formats and transparent

definitions of the data organisation are necessary in NDP scenarios.
• We propose a definition for formats and layouts in the context of

Near-data Processing.
• We present an approach to format pushdown in NDP-DBMS.
• We prototyped its strengths with a simple image processing appli-

cation, on NoFTL-KV and the COSMOS OpenSSD as real hardware,
and gain up to 33% performance improvements.

The remainder of this paper is structured as follows: Section 15.2
reviews the basic concepts of NDP and NDP Operations, and provides
detailed conceptional background information about formats and lay-
outs in databases. An illustrative implementation of format pushdown
is presented and evaluated via an ImageProcessor in Section 11.3. We
conclude with Section 13.5 and discuss related work in Section 11.5.

110 cross-layer data formats in near-data processing

11.2 conceptional background

11.2.1 Near-Data Processing

NDP targets executing data processing operations as close as possible
to the actual physical storage location, instead of transferring the
entire raw data to the host. Relevant NDP aspects are:
1. Which operations are NDP-able: only size-reducing or leaf opera-

tion in a QEP or also more general data-intensive operations like
joins or UDFs.

2. Result set: In absence of proper result set management it is manda-
tory that the results of a NDP operations are significantly smaller
than the actual raw dataset that they are operating on.

3. Faster processing: The NDP operations execute faster by leveraging
hardware properties such as parallelism, which are not able to be
utilized by the host.

4. Synchronization-free NDP-executions: NDP may relieve the pres-
sure on the system bus, reducing unnecessary stalls, and making
room for further instructions by reducing the data operations given
that in-situ executions can be performed without interaction with
the host.

11.2.2 NDP Operation Types in Databases

Operations that can been executed on the device are diverse. Inter-
estingly, these frequently build on top of each other, forming a NDP-
operation hierarchy (Figure 11.2).

Data-Organisation-based

Page-based

Record-based

Field-based

D
at

a
In

te
rp

re
ti

o
n

Figure 11.2: Different NDP operation types build upon each other during
the execution.

The lowest level constitutes the on-device Data Organisation methods.
These process in-situ the physical storage segments allotted to a certain
database object, performing full scans or on-device lookups. Such
operations yield NDP accessors (hardware or software) that result
from the way data is accessed in the respective data organization (i.e.
heap) or the storage structure (i.e. LSM-tree).

11.2 conceptional background 111

Operations tied to the Data Organisation-based usually trigger physi-
cal on-device I/O operations, which are Page/Block-based. These per-
form physical I/O on-device without interpreting the contained data.
Furthermore, they operate on units of physical granularity such as
Pages/Blocks for Flash or cachelines for NVM. Depending on the storage
stack, these can be triggered either by the Flash-Translation Layer on
the device, any intermediate layers in the operating system, such as
file systems or the kernel, or, in case of Native Storage Management,
by the database itself [25]. In the context of databases, these Page/Block-
based operations are usually connected to the Page Layout Accessors
or Page Format Parsers to extract the physically embedded database
records.

Record-based operations comprise among others full table scans,
index lookups, or tree balancing. They make use of Page- and DB-
Object-based operations and also interpret parts of the data according
to Structural Elements as defined in Section 11.2.3. For instance, an
index lookup might read several pages containing internal nodes to
identify the correct leaf page. Depending on the database, this page
is parsed likewise to retrieve either the position in the table or the
actually requested data. All these operations process data according to
the given page layouts and respective record formats. On top higher-
level database operators like selections, joins, or GROUP BYs can be
implemented efficiently on device.

If an operation needs to interpret individual fields within one or
multiple records another Field-based operation has to be executed.
Closely linked to the DB-Object and Record Format, these kind of
operations have to utilize the data definition (from the database cat-
alogue) to extract the data types of necessary fields. While this is
sufficient for a projection, other types of Field-based operations, such
as aggregate-functions, must interpret these values to perform the
NDP-operation.

In NDP scenarios it is unacceptable to have expensive round trips to
the host to get any format or layout definitions (e.g. Data Organisation)
at runtime, as most interpretable DBMS kernels do, while executing
queries or stored procedures. Rather such definitions need to be ex-
tracted and ,together with page and record layouts, be passed to the
NDP-device to ensure synchronization free NDP-execution. Hence, the
need for explicit cross-layer format definitions arises (Section 11.2.3).

11.2.3 Structural Elements: Formats and Layouts

The terms format and layout are often used interchangeably to describe
the structure of the data in a specific area in memory or storage.
However, in the context of this paper and NDP we distinguish between
the two and provide their definitions below (Figure 11.3).

112 cross-layer data formats in near-data processing

Structural Element LayoutFormat

1 1 1 1

N 1

Figure 11.3: Formats describe the properties of a single structural element,
while layouts define the arrangement of multiple subordinate
elements.

11.2.3.1 Data Formats

The Format of an element defines the set of features (attributes, datatypes
or sub-elements) as properties of that element. The format defines
how an element is to be interpreted. Such properties can be user-
, application or system-defined. Typical examples in databases are
column/field-types, table definitions, and tuple formats. In NDP-
environments dedicated software or hardware Format Parsers are re-
quired for such formats, as they need to be processed in-situ to execute
NDP-operations (such as SUM or AVG, or to sort and compare, to
name a few).

11.2.3.2 Data Layouts

In contrast to Formats, Layouts describe the spacial/physical arrange-
ment of elements within the memory space and the scope of a container-
element. Clearly the contained elements can be of different formats.
Typical examples are page- or record-layouts, or storage structures.
The typical row-store record layout would comprise a record-header
with a set of fields and flags, followed by a record-body, roughly
containing the tuple-attributes as elements of the record format. Alter-
natively, the typical record layout in a KV-Store would comprise an
identifier/key and a value.

In NDP settings various Layout Accessors (hardware or software) are
needed on-device to retrieve the required elements efficiently from
memory or storage. In contrast to Format Parsers, Layout Accessors have
to be available entirely on the NDP device to retrieve the expected
data storage locations. Depending on the NDP operation, a Format
Parser might be applied on the result of a Layout Accessor.

Consider Figure 11.4 – a Format Parser will be required to process
records or fields of an image table, while a Layout Accessor will be used
to retrieve Record2.

11.2 conceptional background 113

11.2.4 Structural Elements in Databases

Formats and Layouts usually differ among DBMS types and are often
optimized for their specific characteristics. In the following, we de-
scribe common concepts of wide-spread Physical Storage Organisations
and list examples for Format Parsers and Layout Accessors. As a running
example Figure 11.4 shows how these are mapped onto a Key/Value
store (i.e. in MyRocks with RocksDB under the hood, which we use in
the NDP-ImageProcessor scenario).

11.2.4.1 Field Format

Based on the DDL DB-object definitions in relational databases the
list of column data types, their Field Formats and their physical repre-
sentations are known in advance or are engine-specific and therefore
predefined. For instance, MyRocks defines an entire hierarchy of vari-
ous number, decimal, string and date representations. Their Format
describes the size in Bits or Bytes and a logic to translate the physical
representation into an interpretable format for a given instruction set
of the processing unit. For instance, the Format of the SQL clause IN-
TEGER is trivially mapped to a 32 bit little-endian signed integer. Yet,
if this field is part of the record identifier its physical representation is
changed to big-endian to ensure a natural sort-order (see Figure 11.4).

11.2.4.2 Record Layout and Format

In the typical DBMS, a physical record has a unique identifier. For
instance, in the case of MyRocks, which utilizes RocksDB as a storage
manager under the hood, this identifier includes a column_family_id
and all primary key fields. In addition, RocksDB appends further in-
formation such as the sequence number and the key/value type. To
reduce the physical space consumption, fields included in the identi-
fier are not stored redundantly in the value. The following example
depicts a simple table definition for the simple ImageProcessor, which
stores every pixel of an image as a single record. Figure 11.4 (and
Figure 11.5) shows the Record Layout and Format and the necessary
information for a Record-based NDP operation.

11.2.4.3 Page Layouts

Page layouts are a distinguishing characteristic of different DBMSs
and have a major performance impact. They account for different
access properties in terms of access and data locality, cache-awareness,
prefetching as well as operation and maintenance costs. Three widely
spread representatives are the N-ary Storage Model (NSM) [21], the
Decomposition Storage Model (DSM) [5], and, the hybrid between
those, the Partition Attributes Across (PAX) [2].

114 cross-layer data formats in near-data processing

CREATE TABLE `images` (

`imageid` INT(10) UNSIGNED NOT NULL,

`x` BIGINT(20) UNSIGNED NOT NULL,

`y` BIGINT(20) UNSIGNED NOT NULL,

`red` INT(10) UNSIGNED NOT NULL,

`green` INT(10) UNSIGNED NOT NULL,

`blue` INT(10) UNSIGNED NOT NULL,

PRIMARY KEY(`imageid`,`x`,`y`)

);

Page Layout

Page Format

Record Layout

Record Format

Field Layout

Field Format

ValueIdentifier

Column
Family Id

Image
Id ... Red ...Sequence

Number

32 bit little-endian
unsigned Integer

Record 1 TrailerRecord 2 Record N

SST 1

Data
Block 1 Data Block N Index

Block

SST n

TrailerRecords

KV-Value Storage represenation (MyRocks)Logical

Block
Iterator

P
arser/A

ccesso
r

P
arser/A

ccesso
r

P
arser/A

ccesso
r

Result

Data Block 2

Physical Storage
Organisation

32 bit big-endian
unsigned Integer

IndexData

Data Organisation
Layout

Data Organisation
Format

Record
Accessor

Im
age V

alu
e

P
arser

SST Pa
rser

B
lock

P
arser

R
eco

rd

P
arser

SST
Iterator

Figure 11.4: (Left) logical data organisation and nested definitions with for-
mats and layouts. (Right) record Format and Layout of the simple
NDP-ImageProcessor divide fields in identifier and value for a
simple table definition executed in MyRocks.

The difference is the arrangement of records within the space of
a classical page as shown in Figure 11.5. However, there are various
further layouts, such as Data Blocks [19] of HyPer, which optimize
for different performance properties like scans and point queries on
compressed data. IPA [11] and IPA-IDX [10] optimize for byte-level
writes and write-amplification.

11.2.4.4 Data Storage Organisation

Databases utilize various data structures to store records of different
database objects. Hence, the most trivial storage organisation is a
heap file – flat set of records placed on pages without any specific
order. Alternatively, typical persistent Key/Value stores use multi-level
LSM-trees.

For NDP calls, operating on the granularity of DB-Objects or even
finer granularities (see Section 11.2.2), the organization of the under-

11.3 pushing down operations with format 115

Record Body

Page Header RH1 Field1

Field2 Field3 RH2 Field1 Field2

F3 RH3 Field1 Field2 F3

Page Header

Field1

Field2

F3

Field1

F3

Field1

Field2

F3

Field2

Page Header

Field1 Field1

Field1

Page Header

Field2 Field2

Field2

Page Header

F3 F3 F3

NSM

DSM

PAX

Data Trailer Data Trailer Index Trailer

RH1

RH2

RH3

SST Format (MyRocks)
RH1 RH2

 RH3

Field1

Field2 Field3

Field1

Field2 Field3

Field1

Field2 Field3Mini-
Page

Record
Header Field1 Field2 F3

Record Layout

Record Format

Figure 11.5: Examples of different DBMS page layouts and the SST Layout,
widely used in KV-Stores like RocksDB.

lying data structure is of importance, as the NDP-device needs to
be able to: (a) navigate and iterate over the physical storage; and (b)
should be able to perform address resolution in-situ. Consequently,
depending on the operation, the Layout Accessors have to retrieve the
requested data from storage.

11.3 pushing down operations with format

11.3.1 The ImageProcessor

After motivating the necessity of format pushdown from the con-
ceptional perspective, we introduce a simple NDP-ImageProcessor. It
uses NoFTL-KV [25], which is based on the pluggable storage engine
MyRocks, to manage its images. For the sake of simplicity, each pixel
of an image is disassembled into its basic colours Red, Green and Blue,
resulting in a record format similar to Figure 11.4. The operations
triggered by the application comprise a simple Get to retrieve colour
information about a single pixel, and a histogram calculation, which
counts the frequency of each colour within a certain area of an image.

Figure 11.6 gives a detailed view on the overall architecture. On
the left-hand side, operations are executed over the conventional
stack, while the right-hand side depicts the NDP execution model.
To simplify the diagram, several layers, such as Kernel and FTL are
omitted for the conventional stack. However, clearly visible is that
executions for format parsing and layout accessors happen on-device
close to the physical storage instead of on the host, where NoFTL-KV
is running. This requires both a modern Native Storage Manager as
well as a pushdown mechanism ensuring that information required to
configure and run the code for the respective Structural Elements is

116 cross-layer data formats in near-data processing

Cosmos OpenSSD

Processing Elements

NoFTL-KV

DB-Object: Image LSM-Tree

ImageProcessor

NVM / NAND

Blk Device Interface

NVM / NAND NVM / NAND

C0

C1

Cn

Record Format Parser

Classical Storage Manager Navtive Storage Manager

Field Format Parser GetHistogram

GetPixelColour

DB-Object Layout
Accessor: Iterator

Operating System

Page Layout Accessor:
Data-/Index-Block

File System

Traditional
DBMS

NDP
DBMS

NDP Interface

DB-Object Layout
Accessor: Iterator

Record Format ParserField Format Parser

Page Layout Accessor:
Data-/Index-Block

Figure 11.6: The simple NDP-ImageProcessor application runs on top of
NoFTL-KV, which is based on the pluggable storage engine of
MyRocks, and operates either with conventional query requests
via Block I/O to the Cosmos OpenSSD, or utilises the Native
Storage Manager to issue NDP calls on the device. Depending on
the stack, the Format Parser and Layout Accessors are executed
within the KV-Store on the Host, or on processing elements of
the NDP device.

available on-device. For instance, current state information about the
LSM-Tree and the record and field format as well as the SST layout
must be provided to the NDP processing elements.

Since the entire processing flow is executed on the device, it can be
optimized for the specific storage properties, e.g. number of concur-
rently addressable flash chips, or leveraging the pipelining effects of
Cosmos’s Flash Controller. The return path is lean, since results are
directly communicated to the application without any intermediate
layers.

11.3 pushing down operations with format 117

11.3.2 Testbed

For the evaluation the system stack shown in Figure 11.6 is set up
on a host system, equipped with an Intel E6850 (3GHz) CPU, 4GB
memory, and a 500GB SSD. The operating system is Debian 9.5 with
kernel version 4.9.0. The host is connected to the Cosmos OpenSSD (see
Figure 13.4) via a four lane PCIe 3.0 bus. The COSMOS platform [6]
comprises a Zynq 7000 SoC, 1GB RAM and a 512GB NAND Flash
module. The Flash and PCIe controllers are located on the FPGA part
of the Zynq 7000 and are controlled by one of its ARM Cores (667

MHz). In case of the conventional stack, the Cosmos Flash storage
is mounted as classical block device with an Ext4 file system. When
running NDP experiments, the second ARM Core, which is running
at a clock frequency that is more than four times slower than the
host CPU, is responsible to run the NDP Format Parsers and Layout
Accessors.

Figure 11.7: The Cosmos OpenSSD board resembles a classical enterprise
SSD connected via PCIe Gen3 x4 to the host. It comprises a Zynq
7000 SoC with an FPGA and a dual-core ARM, 1GB RAM and a
512GB NAND Flash module.

11.3.3 Evaluation

For the evaluation of both described operations, GetPixelColour and
GetHistogram, are executed on the conventional stack as a baseline,
and as NDP calls to compare the performance benefits. These are
application-specific versions of typical database operations like lookup
and scan. The pre-loaded dataset comprises 100 000 000 KV-Pairs of
pixels. Experiments are executed three times and the average result
is reported. To ensure comparability, the page cache of the operating
system is cleared every 2 seconds.

11.3.3.1 Record-based Operation – GetPixelColour

Within the given architecture, this operation demonstrates a simple
GET on the LSM-Tree. The record is not interpreted, and no further

118 cross-layer data formats in near-data processing

calculations or extractions are necessary to retrieve the required re-
sult. The NDP-operation, Layout Accessors and Format Parsers are
executed on the slow ARM core without FPGA support. Ahead of the
experiment, 1000 pixel coordinates are pre-generated randomly to en-
sure an equal access pattern in all executions. We run the experiment
once without any defined caches in NoFTL-KV or Cosmos (Figure
13.7.a), and once with caches for the index enabled (Figure 13.7.b).

BlockDev
N
o Cache

N
aƟve N

DP
N
o Cache

0K

3K

6K

9K

12K

15K

Ex
ec
uƟ
on
 T
im
e
[µ
s]

(a) GetPixelColour NoCache
BlockDev
Index Cache

N
aƟve N

DP
Index Cache

0K

1K

2K

3K

4K

5K

Ex
ec
uƟ
on
 T
im
e
[µ
s]

(b) GetPixelColour IndexCache

Figure 11.8: NDP calls exhibit robust performance, in general. In absence
of any on-device/NDP caches, the traditional stack executes
slightly faster, due to non-deactivatable caches in the operating
system. However, if small on-device index caches are enabled,
NDP’s performance improves around 33% against the baseline.

While the conventional stack via the block device interface yields
significant response time fluctuations, NDP executions exhibit robust
performance and stable response times. In absence of any on-device
caching, the NDP stack has a slightly inferior performance. Detailed
analysis of I/O traces on Cosmos show that not every read request
is served by the device due to non-deactivatable caches within the
kernel or file system distort the results somewhat. However, with a
small on-device index cache, the NDP performance is around 33%
better than the conventional stack. Only when an index block has to
be fetched, the performance drop behind the average execution time
of the baseline.

11.3.3.2 Field-based Operation – GetHistogram

This operation utilizes an Iterator Accessor to scan through pixels
of a given area. By applying a Field Format Parser the colours can
be read and the respective bins of the histogram incremented. The
NDP-operation, Layout accessors and Format parsers are executed on

11.4 conclusion 119

the slow ARM core without FPGA support. The experiment is run
with different selectivities on the entire data set.

5101520253035404550556065707580859095100
SelecƟvity [%]

0K

20K

40K

60K

80K

Ex
ec
uƟ
on
 T
im
e
[m
s]

NaƟve NDP

BlockDev

Figure 11.9: The performance of both stacks increases linearly for the given
data set size across a range of selectivities. However, due to
optimizations exploiting Cosmos’s hardware properties improve
the performance of NDP by about 27%.

Both curves show a linear execution time, increasing with data
size, due to same low-level NAND Flash I/O behaviour. However, by
leveraging pipelining effects of the Flash Controller, and exploiting the
entire parallelism of the Flash chips, the performance can continuously
be improved by approximately 27%.

11.4 conclusion

In the present paper, the necessity for format pushdown in NDP sce-
narios is clearly motivated. We put the terms format and layout in
an NDP context and discuss a type hierarchy for NDP operations.
Processing data format and layout definitions on device and creat-
ing/generating dedicated parsers and accessors allows optimizing
for the given hardware properties and improving the execution time.
The evaluation demonstrates the impact of NDP by improving a
Record-based operation by around 33% and a Field-based operation
by approximately 27%. Additionally, it is worth mentioning that the
NDP operations are executed on an ARM Core, which is clocked at
only 1/4 of the host CPU.

11.5 related work

Using Formats and Layouts to describe storage elements are concepts
from the early beginning in the research and development of databases.

120 cross-layer data formats in near-data processing

Page layouts such as NSM [21] and DSM [5] date back to at least the
80s. Yet, also recently, new variations were proposed like PAX [2], BLU
[22] of DB2, or DataBlocks of HyPer [19]. Some layouts even make use
of the hardware properties of Flash like Delta Records in [11].

Likewise, the concept of Near-Data Processing is deeply rooted in
database machines [4] developed in the 1970s-80s or Active Disk/IDISK
[1, 16, 23] from the late 1990s.

With the advent of Flash technologies and reconfigurable processing
elements Smart SSDs [8, 15, 24] were proposed. An FPGA-based
intelligent storage engine for databases is introduced with IBEX [26].
Biscuit [9] is a proposal for a general NDP framework. JAFAR [3, 27]
is one of the first systems to target NDP for DBMS (column-store)
use, whereas [14, 18] target joins besides scans. The use of NDP in
the realm of KV-Stores has been investigated in [7, 17]. Kanzi [12],
Caribou [13] and BlueDBM [20] are RDMA-based distributed KV-
Stores investigating node-local operations.

Much of the prior work on NDP focusses mainly on either band-
width optimizations or on the execution of specific algorithms. Yet,
this paper gives a broad overview of necessary formats and layouts,
in particular for databases to issue several types of operations as NDP
calls.

references

[1] Anurag Acharya, Mustafa Uysal, and Joel Saltz. “Active Disks:
Programming Model, Algorithms and Evaluation.” In: Proc.
ASPLOS. San Jose, California, USA, 1998. isbn: 1-58113-107-0.

[2] Anastassia Ailamaki, David J. DeWitt, Mark D Hill, and Marios
Skounakis. “Weaving Relations for Cache Performance.” In:
Proc. VLDB 01 (2001).

[3] Oreoluwatomiwa O. Babarinsa and Stratos Idreos. “JAFAR :
Near-Data Processing for Databases.” In: 2015.

[4] Haran Boral and David J. DeWitt. “Parallel Architectures for
Database Systems.” In: ed. by A. R. Hurson, L. L. Miller, and
S. H. Pakzad. 1989. Chap. Database Machines: An Idea Whose
Time Has Passed? A Critique of the Future of Database Ma-
chines, pp. 11–28. isbn: 0-8186-8838-6.

[5] George P Copeland and Setrag N Khoshafian. “A decomposi-
tion storage model.” In: In Proc. SIGMOD 1985 (1985).

[6] COSMOS Project Documentation. http://www.openssd-project.
org/wiki/Cosmos_OpenSSD_Technical_Resources. OpenSSD
Project. Jan. 2019.

[7] Arup De, Maya Gokhale, Steven Swanson, and et. al et. “Min-
erva: Accelerating Data Analysis in Next-Generation SSDs.” In:
Proc. FCCM. 2013.

http://www.openssd-project.org/wiki/Cosmos_OpenSSD_Technical_Resources
http://www.openssd-project.org/wiki/Cosmos_OpenSSD_Technical_Resources

11.5 references 121

[8] Jaeyoung Do, J. Patel, D. DeWitt, and et. al et. “Query Process-
ing on Smart SSDs: Opportunities and Challenges.” In: Proc.
SIGMOD. 2013.

[9] Boncheol Gu, Andre S. Yoon, and et al. et. “Biscuit: A Frame-
work for Near-Data Processing of Big Data Workloads.” In:
Proc. ISCA. June 2016.

[10] Sergey Hardock, Andreas Koch, Tobias Vinçon, and Ilia Petrov.
“IPA-IDX: In-Place Appends for B-Tree Indices.” In: Proc. Da-
MoN. 2019. isbn: 9781450368018.

[11] Sergey Hardock, Ilia Petrov, Robert Gottstein, and Alejandro
Buchmann. “From In-Place Updates to In-Place Appends.” In:
Proc. SIGMOD ’17. 2017.

[12] Masoud Hemmatpour, Mohammad Sadoghi, and et al. “Kanzi:
A Distributed, In-memory Key-Value Store.” In: Proc. Middle-
ware. 2016.

[13] Zsolt István, David Sidler, and Gustavo Alonso. “Caribou: In-
telligent Distributed Storage.” In: Proc. VLDB. 2017.

[14] Insoon Jo, Duck-ho Bae, and et al. et. “YourSQL : A High-
Performance Database System Leveraging In-Storage Comput-
ing.” In: Proc. VLDB. 2016.

[15] Yangwook Kang, Yang-suk Kee, and et al. “Enabling cost-
effective data processing with smart SSD.” In: Proc MSST. May
2013.

[16] Kimberly Keeton, David A. Patterson, and Joseph M. Heller-
stein. “A Case for Intelligent Disks (IDISKs).” In: SIGMOD Rec.
(1998).

[17] Jungwon Kim and et al. “PapyrusKV: A High-performance
Parallel Key-value Store for Distributed NVM Architectures.”
In: Proc. SC. 2017.

[18] Sungchan Kim, Sang-Won Lee, Bongki Moon, and et al. “In-
storage Processing of Database Scans and Joins.” In: Inf. Sci.
(2016).

[19] Harald Lang, Tobias Mühlbauer, Florian Funke, and et al. “Data
Blocks: Hybrid OLTP and OLAP on Compressed Storage using
both Vectorization and Compilation.” In: Proc. SIGMOD 16.
2016.

[20] Sang-woo Jun Ming, Arvind, and et al. “BlueDBM: An Appli-
ance for Big Data Analytics.” In: Proc. ISCA (2015).

[21] Raghu Ramakrishnan and Johannes Gehrke. Database Manage-
ment Systems. 2003.

[22] Vijayshankar Raman, Gopi Attaluri, and Ronald Barber. “DB2

with BLU Acceleration: So much more than just a column
store.” In: Proc. VLDB 13 (2013).

122 cross-layer data formats in near-data processing

[23] Erik Riedel, Garth A. Gibson, and Christos Faloutsos. “Active
Storage for Large-Scale Data Mining and Multimedia.” In: Proc.
VLDB. 1998.

[24] Sudharsan Seshadri, Steven Swanson, and et al. “Willow: A
User-Programmable SSD.” In: USENIX, OSDI (2014), pp. 67–80.

[25] T. Vincon, S. Hardock, C Riegger, J. Oppermann, A. Koch,
and I. Petrov. “NoFTL-KV: Tackling Write-Amplification on
KV-Stores with Native Storage Management.” In: Proc. EDBT.
2018.

[26] Louis Woods, J. Teubner, and G. Alonso. “Less Watts, More Per-
formance: An Intelligent Storage Engine for Data Appliances.”
In: Proc. SIGMOD. 2013.

[27] Sam Xi, O. Babarinsa, M. Athanassoulis, and S. Idreos. “Be-
yond the Wall: Near-Data Processing for Databases.” In: Proc.
DAMON (2015).

12
N K V: N E A R - D ATA P R O C E S S I N G W I T H K V- S T O R E S
O N N AT I V E C O M P U TAT I O N A L S T O R A G E

bibliographic information

The content of this chapter has previously been published in the work
"nKV: Near-Data Processing with KV-Stores on Native Computational
Storage" by Tobias Vinçon, Lukas Weber, Arthur Bernhardt, Andreas
Koch and Ilia Petrov in 2020 16th International Workshop on Data
Management on New Hardware (DaMoN). The contribution of the
author of this thesis is summarized as follows.

» As the corresponding and co-leading author, Tobias Vinçon was respon-
sible for designing and implementing the nKV system including the NDP
invocation of software-based parsers and accessors for the GET, SCAN and
BC operations. Lukas Weber complemented the NDP functionality with
hardware-based processing elements and integrated those into the COS-
MOS+ architecture. The experimental evaluation and the manuscript’s
text was a joint work of Tobias Vinçon and Lukas Weber with extensive
support from the other co-authors Arthur Bernhardt, Andreas Koch and
Ilia Petrov. «

abstract

Massive data transfers in modern key/value stores resulting from low
data-locality and data-to-code system design hurt their performance
and scalability. Near-data processing (NDP) designs represent a fea-
sible solution, which although not new, have yet to see widespread
use.

In this paper we introduce nKV, which is a key/value store utilizing
native computational storage and near-data processing. On the one hand,
nKV can directly control the data and computation placement on the
underlying storage hardware. On the other hand, nKV propagates the
data formats and layouts to the storage device where, software and
hardware parsers and accessors are implemented. Both allow NDP
operations to execute in host-intervention-free manner, directly on
physical addresses and thus better utilize the underlying hardware.
Our performance evaluation is based on executing traditional KV
operations (GET, SCAN) and on complex graph-processing algorithms
(Betweenness Centrality) in-situ, with 1.4×-2.7× better performance on
real hardware – the COSMOS+ platform [7].

123

124 nkv : near-data processing with kv-stores

12.1 introduction

Besides substantial data ingestion, yielding an exponential increase
in data volumes, modern data-intensive systems perform complex
analytical tasks. To process them, systems trigger massive data trans-
fers that impair performance and scalability, and hurt resource- and
energy-efficiency. These are partly caused by the scarce bandwidth in
combination with poor data locality, but also result from traditional
(data-to-code) system architectures.

a b

Tr
ad

iti
on

al
 S

to
ra

ge

N
D

P

2x
30%Ex

ec
ut

io
n

Ti
m

e

 F
PG

A

N
VM

, F
la

sh

Traditional Storage Native Computational
Storage

RocksDB

Storage
Mgmnt.

a b

Compatibility

ScanGET Application

NVM, Flash

BC

 C
PU

GET,
Scan,BC

Execute Storage
Mgmnt.Execute

invoketransfer
result

re
tr

ie
ve

da
ta

transfer
back

retrieve
data

nKV

Betweenness
Centrality

read,
write

File System
Block Device

SC
A

N
: 2

x
G

ET
: 1

.4
x

B
C

: 2
.7

x

Figure 12.1: KV-Store transferring data along a traditional I/O stack (a); and
(b) nKV executing operations in-situ on native computational
storage.

Near-Data Processing (NDP) is a code-to-data paradigm targeting in-
situ operation execution. In other words, operations are executed as
close as possible to the physical data location, utilizing the much bet-
ter on-device I/O performance. NDP leverages several trends. Firstly,
hardware manufacturers can fabricate combinations of storage and com-
pute elements economically, and package them within the same device
– so called NDP-capable computational storage. As a result, even com-
modity storage devices nowadays, have compute resources that can
be effectively used for NDP, but are executing compatibility firmware
(to traditional storage) instead. Secondly, with semiconductor storage
technologies (NVM/Flash), the device-internal bandwidth, parallelism,
and latencies are significantly better than the external ones (device-to-
host). Both lift major limitations of prior approaches like ActiveDisks
[1, 24] or Database Machines [5].

Wide-spread, high-performance persistent key-value stores like Lev-
elDB or RocksDB [10] tend to rely on a traditional layered-storage
stack (Figure 16.1). It simplifies their architecture, allows for more

12.1 introduction 125

flexibility and eases data management and administration. However,
layers within the DBMS (e.g. Storage Manager or access methods),
but also underlying the file- and operating system encapsulate infor-
mation and functionality necessary for the successful utilization of
NDP techniques. Firstly, NDP operations executed on-device require
the physical address ranges of the data to be processed. In traditional
storage, address information is scattered along the layers of the storage
stack (DBMS, File System, OS) and hidden behind layers of abstrac-
tion (Figure 16.1). Secondly, NDP-operations need to navigate through
and interpret the physical data on-device. To this end data formats
and layout accessors are necessary on device. However, data format
definitions are only available within the DBMS or sometimes within
the application on top. Moreover, data layouts (page or record) and
traversal methods for the data organization (files or LSM-trees) are
typically hard coded in the DBMS and thus not available on device.

To address the above, in this paper, we present nKV, which is a key/-
value store utilizing native computational storage and near-data processing
(Figure 16.1). nKV eliminates intermediary layers along the I/O stack
(e.g. file system) and operates directly on NVM/Flash storage. nKV
directly controls the physical data placement on chips and channels,
which is critical for utilizing the on-device I/O properties and com-
pute parallelism. Furthermore, nKV can execute various operations
such as GET or SCAN or more complex graph processing algorithms
like Betweenness Centrality as software NDP on the ARM-cores and as
hardware-software NDP (HW/SW-NDP) using corresponding FPGA-
based accelerators. The necessary FPGA hardware is built in the form
of simple processing elements that can be used to offload certain tasks
from the ARM-cores. Under nKV we target host-intervention-free NDP-
executions, i.e. the NDP-device has the complete address information,
can interpret the data format and access the data in-situ without host
interaction. To reduce data transfers nKV also employs novel ResultSet-
transfer modes. nKV is resource efficient as it eliminates compatibility
layers and utilizes freed compute resources for NDP. nKV performs
1.4×-2× better than RocksDB: GET latency – 1.4×; SCAN – 2×; BC
execution time – 2.7×.

This paper is organized as follows. In the next section we describe
the data organization of RocksDB and the challenges it poses to NDP.
In Section 13.2 we describe the architecture of nKV and how those
NDP-challenges are addressed in terms of interface extensions (Section
12.3.1), in-situ data processing (Section 12.3.2), as well as operations
and algorithms (Section 12.3.3). The architecture of the underlying
NDP hardware accelerators is described in Section 12.5. We discuss
the experimental results in Section 12.6 and conclude in Section 13.5.

126 nkv : near-data processing with kv-stores

12.2 background

In contrast to traditional data organizations, where data is updated
in-place, LSM-trees [22] have been proposed as an out-of-place update
structure to tackle the sustained update and insertion rates of modern
workloads and provide query capabilities at the same time. Classical
LSM-trees [22] comprise multiple B-Tree-structured index components
(C0 to CK, Fig. 12.2) that are stored in new locations and have constant
size ratios r = |Ci+1|/|Ci|, i ∈ [0,K). An insert or update operation
hits the C0 component that is located in memory. Once it reaches
a size threshold, it is flushed to disk and is merged with the C1

component. The merge processes gradually move data from C0 to CK,
purge outdated KV-Pairs, reclaim space and indirectly ensure hot-cold
data separation.

nKV builds on RocksDB [10], which introduces one independent
LSM-Tree per column family to separate the access characteristics of
different database objects. Modern LSM-Tree variants (surveyed in
[20]) are multi-levelled. Modifications to an LSM-Tree are first placed in
the main memory component C0, which comprises a set of MemTables
in RocksDB. These are realized as memory-efficient data structures
such as SkipLists. Whenever a MemTable reaches a given size limit, it
becomes immutable and a new one is created to accommodate further
modifications. Later on, immutable MemTables are transformed into
Sorted String Tables (SST) and flushed to the secondary storage (Fig.
12.2), whereas each LSM-tree component C1..CK comprises multiple
SSTs. Thereby, the contained key-value pairs are placed into multiple
data blocks in sort order of the key. Furthermore, an index block that
comprises key-offset pairs pointing to each data block (a sparse index)
is prepended. Index blocks reduce the access complexity to key-value
pairs within the SST.

During the flush to C1 no merge occurs for performance reasons.
Consequently, overlapping key-value ranges of SSTs can occur (con-
sider SST12-SST1n, C1, Fig.12.2). Merge steps to underlying layers
C2 . . . CK, called compactions, take either SSTs only on the level above
or combine them with SSTs on the target layer, based on the given
strategy (e.g. tiered or levelled). Either way, all KV pairs of the in-
put SSTs are sorted, out-dated entries are pruned, and the results
are stored in new SSTs on the target level (see dotted box, Fig. 12.2).
Hence, key ranges in SSTs bellow C1 do not overlap anymore. Yet, keys
may appear on multiple levels with different values (consider Key11

or Key70), to account for the temporal distribution of updates to a given
key-value record. For instance Key70 has been updated multiple times:
Key70 on C1 is the most recent record and its existence invalidates
Key70 on C2 and C3.

To retrieve a key-value record based on the key, the GET(key) first
traverses the MemTables and the immutable MemTables on C0. If the

12.2 background 127

respective key is not found, the index block of one or more SSTs in
C1 has to be read (as SSTs may overlap on C1, but not on C2...CK). By
parsing the key-offset pair, the data block, which might contain the
key, can be identified and also has to be read from secondary storage.

SST32 SST32 SST34 SST35 SST36 SST3n

...
Key15: 0

...
1

...
key51: 0

...
key54: 5

...
key60: 0

...
key61: 4

...
key63: 6

...
key64: 7

...
key66: 3

...
key68: 9

...
key69: 2

...
key70: 7

SST21 SST22 SST23 SST2n

...
key1: 1

...
key11: 7

...
Key13: 7

...
key42: 6

...
key50: 0

...
key53: 9

...
key65: 0

...
key70: 8

SST11 SST12 SST1n

...
key0: 0

...
key5: 7

...
Key9: 2

...
key42: 5

...
key6: 4

...
key70: 9

MemTable
MemTable

CF1

Flush

Compaction

C
om

pa
ct

io
n

...

C
0

Le
ve

l C
1

Le
ve

l C
2

Le
ve

l C
3

C
K

SST Index Block
Key:

Offset1
... Key:

Offsetx

M
em

or
y

Se
co

nd
ar

y
St

or
ag

e

Multi-level LSM (RocksDB/LevelDB)
Tranditional LSM

C0 C1 CK
...writes

merge merge

Memory Secondary Storage

MemTable
Immutable

MemTable CF1

Compaction
In:

Out:

SST1n SST2n

SST2n+1 SST2n+2 SST2n+m
SST11 SST12 SST1n

...
key0: 0

...
key5: 7

...
Key9: 2

...
key42: 5

...
key6: 4

...
key70: 9

SST21 SST22 SST23 SST2n

...
key1: 1

...
key 11:7

...
key13: 7

...
key42: 6

...
key50: 0

...
key53: 9

...
key65: 0

...
key70: 8

SST31 SST32 SST33 SST34 SST35 SST3nkey2: 0

...

key11: 7
key15:0

...
key51: 0

...
key54: 5

...
key60: 0

...
key61: 4

...
key63: 6

...
key64: 7

...
key66: 3

...
key68: 9

...
key69: 2

...
key70: 7

...

SST Organization
SST Data Block1

Key2:
Val 0

Key11
: Val 7 ...Key15

:Val 0

Legend

key1: 1
keyX: ValueY

SST Data Blockx
Key16:
Val Key49:

Val ...

Figure 12.2: Conceptual organization of the multi-level LSM-Trees in Rocks-
DB/LevelDB.

128 nkv : near-data processing with kv-stores

If the key is still not found, layers (C2...CK) have to be traversed
similarly. Due to the data organization and the compaction process, a
key can now reside only in a single SST per level. Range scans with or
without key predicates behave similarly, but are more complex and are
supported by other internal structures (like fence pointers). Consider
SCAN([Key68,Key70]), which traverses all levels and retrieves Key70

from C1, and Key69 and Key68 from C3.
However, if a scan involves value predicates, e.g. SCAN(0 ⩽ Val ⩽

7), the only option is to iterate over the entire dataset, yielding a
significant increase of I/O transfers, which in turn has enormous
potential to be improved via NDP.

12.3 architecture of nkv

Native computational storage. One of the underlying design principles
behind nKV is that native storage enables efficient NDP (Figures 16.1
and 13.2). In this sense nKV extends [28]. Native storage is storage that
is operated without intermediary/compatibility layers of abstraction
along the critical I/O path, and is directly controlled by the database.
This means that nKV can directly operate on NVM/Flash storage using
physical addresses and thus can precisely control physical placement
of SST data. It is this physical placement that allows utilizing the
on-device I/O bandwidth and the FPGA’s compute parallelism.

nKV physically places SST data blocks and SST index blocks on dif-
ferent LUNs and Channels (see Figures 12.2 and13.3). This allows for
reaching the internal bandwidth (Table 12.2) by requesting index and
data blocks asynchronously and utilizing processing parallelism of
FPGA-based processing elements (PEs). Besides, individual levels of
the LSM-Tree are physically separated on different chips and LUNs to
improve I/O throughput and parallelism since I/O-heavy compaction
jobs do not block the entire device, reducing demand pressure on the
bus.

Furthermore, nKV operates directly with physical addresses, to
access (read or write) precisely the physical pages that are needed.
This, in turn, is essential for reducing read- and write-amplification.

N
VM

,
Fl

as
h

N
at

iv
e

C
om

pu
ta

tio
na

l
St

or
ag

e

BC, GET,
SCAN

N
VM

,
Fl

as
h

 F
PG

A

 C
PU

Format
Parser
Layout

Accessors,
Access

Methods
ResultSet
Processor

D
M

A

nKV
Executor

Native
Storage
Interface

NVMe (native)
ResultSet

PCIe

Native Storage Mgmnt.

NDP

invoke

transfer
result

Figure 12.3: Architecture of nKV.

12.3 architecture of nkv 129

Moreover, it inherently avoids costly host round-trips for logical-to-
physical address translation. Native storage eliminates these infor-
mation hiding effects incurred through layers of abstraction and thus
simplifies the NDP-operations. Hence, native storage leads to leaner
NDP-functionality.

Computation Placement. By using native computational storage,
nKV can directly place computations on the heterogeneous on-device
compute elements, such as ARM-cores or FPGA-based processing
elements. nKV can execute various operations such GET, SCAN or
more complex graph processing algorithms like Betweenness Centrality
as software NDP on the ARM-cores or with hardware support from the
FPGA (cf. Section 12.5). The experimental evaluation indicates that
some NDP operations such as NDP_GET(key) perform best on the
ARM-cores, while other operations like NDP_SCAN(value_condition),
benefiting from parallelism, perform best on the FPGA. For its NDP-
operations nKV utilizes hardware/software co-design to handle the proper
separation of concerns and achieve best performance.

12.3.1 NDP Interface Extensions

NVMe support. nKV has a dedicated high-performance user-space and
in-DBMS NVMe layer (Figure 13.2). It is very lean and tightly inte-
grated with the rest of nKV. The native NVMe integration can control
multiple NVMe submission and completion queues either through
dedicated threads or through the transactional context. Moreover, it
reduces the I/O overhead as it allows the seamless creation of I/O
and NDP tasks, the precise allocation of transfer buffers for the DMA
engine, and prioritizable placement within the NVMe submission
queues. The deep database integration additionally avoids expensive
synchronization between user- and kernel-space, and shortens the
I/O paths even further as no drivers are involved along the critical
access paths. Internally, the native storage command set is translated
to specific NVMe I/O and NDP tasks. Although these resemble the
standardized NVMe commands, they define a new category - n over
NVMe. In nKV, they can be scheduled either for synchronous or for
asynchronous execution.

Command set. Besides the classical native storage interface, nKV
introduces NDP-Extensions [28] in terms of a generic NDP_EXEC()
command. It takes the following parameters, among others:

(i) Command Identifier – Unique identifier of the NDP function;
(ii) the SearchKey or SearchKeyRange(s) – for GET or SCAN;

(iii) the ResultsSet Size;
(iv) AddressMappings – these are ranges of physical addresses, where

the physical data to be processed is located;

130 nkv : near-data processing with kv-stores

(v) Min/Max Keys – RocksDB supports a type of zone map range
filter that can be used on device to skip processing some index/-
data blocks;

(vi) Miscellaneous – command specific parameters such as data format
definitions.

nKV composes the NVMe command based on the given parameters,
current state and address information, and its transactional context.
After placing it in the NVMe submission queue and DMA transferring
the parameters to the device, the NDP command is then executed. The
result set is handled by the ResultSet processor, which also observes
the execution status. Finally the ResultSet is transferred to nKV by the
DMA engine. An NDP-operation can invoke multiple low-level NDP
commands synchronously or asynchronously.

12.3.2 In-situ Data Access and Interpretation

Under nKV, the NDP-device can interpret the data format and access
the data without host intervention (synchronization with the host) [29].
To this end, nKV extracts definitions of the Key- and Value-formats, and
passes them as input parameters to the NDP-commands. Moreover,
the data format such as the Key- and Value-formats can be automatically
extracted from the DB-catalogue (system-defined) or can be defined by
the application.

SST Block Layout

SST Block Format

KV Record Layout

KV Record Format

Field Layout
Field Format

ValueIdentifier

KeyValue

KV1 TrailerKV2 KVN

SST 1

Data
Block 1

Data
Block N

Index
Block

SST n

TrailerRecords

KV-Value Storage represenation (RocksDB)Logical

Block
Accessor

Parser/A
ccessor

Parser/A
ccessor

Parser/A
ccessor

Data
Block 2

Physical Storage
Organisation

IndexData
SST-Data Organisation

Layout

SST-Data Organisation
Format

KV
Accessor

Value
Parser

SST
Parser

Block
Parser

KV Form
at

Parser

SST
Accessor

Result

Figure 12.4: In-situ access and data interpretation in nKV, based on layout
accessors and format parsers.

nKV employs a thin on-device NDP-infrastructure layer that supports
the execution and simplifies the development of NDP-operations
(Figures 13.2). It comprises data format parsers and accessors that are
implemented in both software and hardware (Figure 13.3). The in-situ

12.3 architecture of nkv 131

accessors traverse and extract the contained sub-entities of the persistent
data. Whereas, the in-situ data format parsers process the layout of
each persistent entity, and extract the sub-entities by invoking further
accessors (Figure 13.3).

KV-Stores like LevelDB or RocksDB [10] organize the persistent
LSM-Tree data into so called String Sorted Tables (SST) – see Sect.
15.2. To process a GET(key) request, for instance, nKV first identifies
the respective SST and invokes an NDP_GET command with the
corresponding physical address ranges, the respective Key- and Value-
formats as well as further parameters. First, the SST layout accessor is
invoked to access the data and the index blocks. Subsequently, the
index block parser is activated to interpret the data and verify if the
key is present and extract its offset. If this is the case, data block
accessor and parser are invoked to extract the Key/Value entry. In
case of an NDP_SCAN(key_val_condition) operation, the KV accessor
is subsequently invoked to extract it, followed by a field parser to
extract its value and verify the condition. This way, nKV extends scans
in classical KV-Stores. Typically, they are only able to process filter
criteria on key-embedded attributes, but not filter predicates involving
the value.

12.3.3 Operations and Algorithms

Lookup. KV-Stores offer fast (low-latency, high parallelism) retrieval of
a value, based on its key, through the GET(key) operation. In nKV, this
operation first performs a lookup within main-memory components
(MemTables, Fig. 12.2) regardless of execution model.

If the search key is not found, the lookup will proceed scanning the
deeper LSM-Tree levels by processing their indices first and eventually
their associated data blocks. Both, index and data block scanning are
I/Os intensive in the traditional stack (Figure 16.1), while with NDP,
these can be performed efficiently on-device.

Scan. As mentioned in Section 12.3.2, Scans can be performed either
on Key- or Value-embedded attributes. The index blocks of the LSM-
Tree might be leveraged to navigate to necessary data blocks for key-
attribute scans, similar to the Lookup operation. However, there is no
auxiliary structure to accelerate scans on value-embedded attributes.
Either way, multiple data blocks have to be examined depending
on the selectivity of the filter-predicate. Consequently, Scans usually
result in a high amount of data transfers, which NDP can significantly
reduce.

UDF: Betweenness Centrality. Many applications involve more com-
plex algorithms. Such user-defined functions (i.e. Betweenness Central-
ity) can also be supported by nKV. The specific algorithm implemented
within nKV relies on [6] and measures the degree, to which nodes
stand among each other. The logic involves shortest-path searches over

132 nkv : near-data processing with kv-stores

the given nodes and therefore results in a variety of lookups and scans
involving random and sequential I/O.

12.3.4 Data Consistency, Database Maintenance and NDP

In parallel to the execution of NDP functionality, nKV allows the
processing of database maintenance e.g. compactions. Such parallel
operations might result in new data or even changes to the LSM-Tree.
Yet, as nKV’s NDP-operations are executed on a snapshot of the phys-
ical data, concurrent modifications do not effect its consistency. This
can be ensured by firstly, the underlying mechanism of Copy-on-Write
(CoW), secondly the precise placement through the native storage
interface, and thirdly, the direct control of the physical GC by nKV.
Moreover, nKV requires no on-device bad-block re-mapping like other
native storage management solutions [4], since bad-block management
and wear-leveling are handled directly within the database engine
[23]. Thus native storage management [23] leverages the the above
issues by DBMS managed physical-to-logical address mapping and
data placement.

12.3.5 Result Set Handling

Unnecessary data transfers may occur depending on how the result
of an NDP-operation is transferred back. Therefore, ResultSet man-
agement additionally helps to avoid unnecessary stalls of processing
resources. nKV aims to reduce the data transfer overhead caused by a
Volcano-style record-at-a-time model. Instead it aims to bulk-transfer
the ResultSet. The former is simpler, but leads to more frequent shorter
burst transfers causing bus overhead. The latter results in fewer, but
longer bursts leveraging the throughput-optimized PCIe.

Each NDP call in nKV defines a maximum ResultSet size as a
parameter. The NDP ResultSet-Processor (Figure 13.2) allocates on-
device resources for it: either in DRAM, or if the contention is high,
it allocates a temporary region on Flash. As long as the actual result
size does not exceed the predefined one, the ResultSet is sent back
as bulk DMA-transfer, to leverage the full performance of the DMA
engine. Alternatively, it may be pipelined to the next NDP-operation.
Furthermore, nKV has a built-in extension mechanism that in the
worst case may preemptively request more physical space from the
DBMS, as it manages the logical-to-physical address mapping [23].

12.4 hardware-architecture

The COSMOS+ platform [7] is a PCIe-based extension-card. It contains
all the required hardware-modules to function as a regular NVMe-
based SSD. It can be fitted with up to 2 DIMM-extensions containing

12.5 hardware-acceleration 133

Flash modules. The available Toggle-NAND Flash-extensions can be
configured in SLC or MLC mode. In this work, they are configured as
SLC with 16 dies organized in two channels.

The main computational engine of the COSMOS+ platform is a
Xilinx Zynq-7000 SoC (XC7Z045-3FFG900) that combines two 667

MHz ARM Cortex-A9 cores with an FPGA (Figure 12.5). In the The
COSMOS+ platform [7], the FPGA-portion is used to implement the
required SSD-infrastructure. This infrastructure is made up of two sep-
arate domains: The first one is responsible for accessing the flash mem-
ory. It comprises one or many Tiger4-controllers with corresponding
low-level flash interfaces. For each channel, a distinct Tiger4-controller,
as well as a low-level interface, is required.

The second domain contains primarily an NVMe-Core, which allows
access from the host to the device via the NVMe interface. The NVMe-
Core also wraps the actual low-level PCIe-interface.

Both of these domains are running at different clock-frequencies.
While the flash domain uses a 100 MHz clock, the NVMe-Core is
running at 250 MHz. When planning to extend this platform, the
following aspects are relevant:

1) The amount of resources on the FPGA-portion (PL) of the SoC
is limited. While the platform can be fitted with more flash-DIMMs,
this also requires more flash controllers. This in turn impacts the
resource requirements. In this work, one flash-DIMM is used with 2

flash controllers. While this limits the available flash memory and the
corresponding parallelism, it also frees up resources for different use
(i.e. computational processing elements).

2) Since the different domains are running at different clock-frequencies,
the extensions should be able to run at the same clock-frequencies. In
the case of the COSMOS+ platform, this is not a huge problem, since
most hardware-accelerators can run at 100 MHz and can therefore
reside in the flash-domain.

A simplified view of the architecture is depicted in Figure 12.5.
It also includes the nKV hardware extensions described in this work
(Section 12.5).

12.5 hardware-acceleration

Using the baseline architecture (Figure 12.5), specific processing ele-
ments (PEs) are implemented, allowing to move computation from
software running on the ARM-cores to the programmable logic of the
SoC, potentially improving latency, throughput, and available paral-
lelism. The PEs are written in Chisel3 [3] using a relatively simple
architecture that can be subdivided into four distinct domains (cf.
Figure 12.6):

The control-domain consists of a register file, holding a number
of control registers, which are accessible using an AXI4-Lite interface.

134 nkv : near-data processing with kv-stores

Cosmos+ OpenSSD
Zynq-7000 SoC

Device
DRAM

Low Level Flash

Interface

Tiger4 Flash

Controller

AXI Interconnects

ARM A-9 based
Processing

System (PS)

Device
Flash

PCIe
NVMe

Core

 Host

Extension

PE 1

PE 2

Device

Figure 12.5: A simplified view of the architecture of the COSMOS+ OpenSSD
[7], including the proposed extension.

The corresponding addresses are mapped into the address space of
the processing system (PS), so that the ARM-cores can read and write
these registers and thereby control and configure the PE. The control
registers hold the required parameters for the functionality provided
by the processing elements (e.g. the memory addresses of the input
and output). In addition, the signaling to the ARM-cores is also done
using these registers. One register indicates whether the PE is busy,
while another can be used trigger the execution.

The memory-domain contains a load and a store unit. These are
connected to the PSs DRAM-interface, allowing the PE to access the
device DRAM. Both the load and the store unit perform data transfers
in chunks of 32 KB, which corresponds to the size of a single data-
block in our RocksDB-configuration. The transfers are performed
using AXI4 bursts to maximize throughput. The data-width of the
AXI4-Bus is 64 bits and the AXI burst length is 16. Generally, longer
bursts allow higher throughput, due to the sequential access pattern.
Unfortunately, the Zynq-7000 family only supports a maximum burst
length of 16.

The accessor-domain is responsible for converting the different data
granularities (64 bit words vs tuples) between the memory and the
computational domain. The tuple input buffer will buffer incoming 64

bit data words from the load unit, until a complete tuple is available.
This will then be passed to the filtering unit. Similarly, the tuple output
buffer will receive a resulting tuple and split it into words of 64 bits
to allow transfer to memory via the store unit. In this context, a tuple
corresponds to a key-value pair (kv-pair).

12.5 hardware-acceleration 135

Processing Element

Memory Accessor Computation Control

Load Unit Tuple
Input Buffer Filtering Unit

Data
Transformation

Unit
Tuple

Output Buffer

Control
Register File

Store Unit

AXI4Full
DRAM

AXI4Lite
CTRL

Store Unit

Figure 12.6: The overall Microarchitecture of the proposed Parser Processing
Elements.

The computational domain is comprised of two distinct modules.
The first one is the filtering unit, which accepts single kv-pairs as
input. Depending on the control registers, the filtering unit will then
pass on matching kv-pairs to the data transformation, while non-
matching ones are discarded. In the current implementation, the fil-
tering unit can be configured to apply a single predicate on a kv-pair.
This is done using three parameters: the column selector (i ∈ [0,n− 1],
where n is the number of distinct data-fields), the compare operator
(op ∈ {nop,=, ̸=,>,⩾,<,⩽}) and a reference value (c) to compare
against. Considering a kv-pair t = (t0, t1, t2, . . . , tn−1), the following
expression is evaluated: r = ti op c. If r is true, the kv-pair will be
passed on, else it will be discarded.

The last module transforms the data into the required output format.
This corresponds to a projection of tuples and allows the automatic
removal of RocksDB-metadata or unnecessary tuple elements. The
transformed tuple is passed back to the accessor-domain, to be stored
back to the device DRAM. The complete microarchitecture of the PEs
is also depicted in Figure 12.6.

Building atop of the baseline architecture of COSMOS+ (Figure 12.5),
we developed an extended architecture, which contains additional
processing elements. In particular, we built two different processing
elements for the specfic evaluation dataset (the database-of-research-
papers): One for the data of the paper themselves (paper-PE), and
another one for the data of the references (ref-PE). Initial experiments
showed, that the paper-PE can process a 32 KB block of data faster
than the two Tiger4s controllers are able to provide it (due to the flash
latency). Thus, we employ a single paper-PE in the final architecture.
For the handling of the paper references in the database, much more
data has to be processed multiple times. In this case, the flash latency
becomes less relevant, since the reference data is cached in the on-
device DRAM and does not have to be fetched from flash memory
each time. Thus, the architecture can keep multiple ref-PEs busy. To

136 nkv : near-data processing with kv-stores

keep the interconnects balanced, we opted for seven ref-PEs, yielding
a total of eight PEs (including the single paper-PE). Generally, it would
be possible to increase the number of PEs, but all active PEs compete
for access to the on-device DRAM. Thus, there will be a point of
diminishing returns considering overall throughput as soon as the full
memory bandwidth is saturated. Instead of replicating PEs for more
throughput, it might be more reasonable to use multiple different PEs
to increase flexibility of the hardware acceleration.

Table 12.1: FPGA-Resource Utilization of the Baseline and extended Architec-
tures, including hierarchical utilizations of relevant sub-modules.

Slices BRAM DSPs

abs. % abs. % abs %

Baseline 14544 26.61 78 14.31 0 0

Tiger4 8174 5.81 15 2.75 0 0

NVMe-Core 4312 7.89 29 5.32 0 0

LL Flash 475 0.87 5 0.92 0 0

Extended 35667 65.26 101 18.53 0 0

paper-PE 33103 15.14 0 0.0 0 0

ref-PE 4012 1.84 0 0.0 0 0

Available 54650 100.00 545 100.00 900 100

Setup CMD
20-40 µs

DMA
(50 µs)

Load Data
(200 - 400 µs)

HW Parser
(128 µs)

Flash Controller
(200 - 400 µs)

Flash Page Read
(75 µs)

HW Parser
(128 µs)

...

...

... Return Result
(100 µs)

Result Check
(2 µs)

DMA
(10 - 100 µs)

parallel per Die size-dependant

Load Data
(200 - 400 µs)

HW Parser
(128 µs)

Host HostDevice
HW-NDPFlash Access

Figure 12.7: Break-Down of Execution Times within the NDP Stack with HW
support.

The baseline and extended hardware designs were synthesized and
implemented using Xilinx Vivado v2019.1. The resulting resource uti-
lizations are reported in Table 12.1, both in terms of absolute numbers,
as well as relative to the resources available on the Zynq 7045 chip.
The baseline results indicate that the Zynq has many spare resources.
Even though small, a large fraction of its hardware resources are un-
used. The main reason for this lies in the flash-configuration. For a
platform with two flash-DIMMs and the full parallelism, eight flash
controllers and flash interfaces are needed. In our design, we only use

12.6 evaluation 137

one flash-DIMM with two controllers/interfaces, which vastly reduces
the resource-requirements.

These free resources are then leveraged by our extended architecture
to offload computations from the ARM-core to the FPGA. In doing
so the hardware accessors and format parsers can be instantiated
multiple times. In fact, nKV uses two different kinds of parsers with
up to seven instances.

Another interesting point is the vast difference in resource require-
ments between the paper-PE and the ref-PE. The reason for this lies in
the different sizes of the parsed kv-pairs. The kv-pairs processed by
the paper-PE are 136 bytes each, while the kv-pairs processed by the
ref-PE are merely 36 bytes each. Apart from the data-size, the number
of distinct data fields also plays an important role, due to the number
of required comparators.

Finally, there is a complete lack of DSP utilization. DSPs are hard-
wired special-function slices which provide fast arithmetic and logical
operations, that are typically relevant in the context of digital signal
processing. For our work, DSPs could be interesting for arithmetic
comparisons as well as pattern recognition.

For future extensions of this work, the above could be exploited to
reduce Slice-utilization, or to implement more complex functionality
within the PEs.

12.6 evaluation

For the evaluation, the COSMOS+ board [7] (see Figure 12.5) is
attached over PCIe 2.0 x8 as an NVMe block device supported by
Greedy FTL to realize traditional storage. The host server is equipped
with a 3.4 GHz Intel i5, 4GB RAM and runs Debian 4.9 with ext3. We
configure both RocksDB [10] and COSMOS+ [7] with a 5MB cache.
COSMOS+ is directly mapped into the userspace and controlled by
native NVMe.

We evaluate nKV on a 2.4GB research paper graph dataset from Mi-
crosoft Academic Graph [27]. It comprises approx. 48 million Key/Value-
pairs: 3.8M papers, 40M references, 18K venues, and 4.2M authors.
For each experiment, we report the average execution times of three
cold test runs. The baseline for our experiments is RocksDB using
block-device storage (Blk) on top of GreedyFTL and ext3. Performance
results of GET(key), SCAN(value_predicate) and BC are reported for
three different stacks: Blk as baseline, software NDP (NDP:SW) on the
ARM and FPGA-assisted NDP (NDP:SW+HW).

12.6.1 Low-level Flash Properties

Physical data placement and the on-device Flash characteristics play
an essential role in nKV. The following Table 12.2 shows the on-device

138 nkv : near-data processing with kv-stores

latency and bandwidth, measured by directly issuing page reads to the
Flash Management Unit. The level of parallelism is controlled by data
placement on either different Channels, LUNs or both. While a single
page-read takes approx. 300 µs, careful data placement on Channels
and LUNs reduces latency down to 94 µs with full parallelism (Table
12.2). However, an upper limit of around 217 MB/s can be observed for
sequential and random workloads, which is due to the bus limitations
of COSMOS+.

Table 12.2: Flash Latencies and Bandwidth (BW) of the COSMOS+ OpenSSD
for different levels of parallelism.

Pages Parallelism Duration per Page [—s]

1 1 Ch. 1 LUN 300.00

4 2 Ch. 2 LUN 113.50

8 2 Ch. 4 LUN 94.12

Access Pages Parallelism BW [MB/s] IOPS

Random 1500 1 Ch. 1 LUN 52 3000

1500 2 Ch. 1 LUN 102 6000

1500 1 Ch. 8 LUN 108 6000

1500 2 Ch. 8 LUN 213 13000

Seq. 640 2 Ch. 8 LUN 217 13000

12.6.2 Experiment 1: Lean Native Stack

One important conceptional characteristic of NDP with nKV is the
removal of traditional compatibility layers to simplify the access stack.
To verify this property, we execute a GET(key) command. We compare
the results of our baseline (Blk) against nKV with software NDP
(NDP:SW), and nKV with Parsers-PE support (NDP:SW+HW) – Figure
12.8.

nKV utilizes the native data placement and improves the round-trip
time by 1.4× due to native NVMe and mapping the device into its
userspace. This reduces the execution time from 7.9 ms to 5.7 ms, as
shown in Figure 12.8. Interestingly, there is no benefit from hardware
PEs since the gains from concurrent executions are limited due to the
sequential nature of first reading and then processing Flash data.

12.6.3 Experiment 2: Data Transfer Reduction

While the relatively simple GET-operation does not benefit from the
hardware PEs, this changes for bigger and more complex operations
like the SCAN. In addition to the vastly reduced latency, the use of
NDP has additional effect on the overall system. While all three im-
plementations read similar amounts of data from flash (492.3 MB ±

12.6 evaluation 139

Blk NDP:SW NDP:SW+HW
0

2

4

6

8
Ex

ec
ut

io
n

Ti
m

e
[m

s]
8.00

5.68
6.34

GET() Execution Times

Figure 12.8: GET execution times for Blk, NDP:SW and NDP:SW+HW.

0.2 MB due to caching), the required DMA data transfers vary. For
NDP-operations, a single DMA transfer is required to push down the
additional parameters. We draw the following conclusions. Firstly, ef-
ficient ResultSet handling reduces the transfer overhead by employing
large bulk DMA transfers. Secondly, due to on-device filtering the
amount of data to be transferred also decreases depending on the
predicate selectivity.

The execution time is reduced by more than 2x (from 6.95 s to 3.35

s) as shown in Figure 12.9.

Blk NDP:SW NDP:SW+HW
0

1

2

3

4

5

6

7

Ex
ec

ut
io

n
Ti

m
e

[s
]

6.96

4.81

3.35

SCAN() Execution Times

Figure 12.9: SCAN execution times for Blk, NDP:SW and NDP:SW+HW.

140 nkv : near-data processing with kv-stores

12.6.4 Experiment 3: Native Computational Storage

Native Computational Storage plays an essential role for nKV. Especially
with complex graph analysis operations like Betweenness Centrality
(BC) the concepts of native data placement, flash parallelism and
computation placement can be leveraged to improve the performance.
An execution on a smaller graph, benefits the software implementation.
For a large number of edges, the complexity is high and multiple HW
Parsers can be utilized to improve performance. With a total of 7 HW
Parsers nKV achieves 2.7x speed-up for 2.037.755 edges (Figure 12.10).

Blk NDP:SW NDP:SW+HW
0

200

400

600

800

1000

Ex
ec

ut
io

n
Ti

m
e

[s
]

1027.84

426.62 374.81

BC() Execution Times

Figure 12.10: Betweenness centrality (BC) execution times for Blk, NDP:SW
and NDP:SW+HW.

12.6.5 Experiment 4: Execution Parallelism

In large graph processing the number of applied HW Parsers is im-
portant to balance between FPGA utilization, memory bandwidth
limitations and performance. nKV allows configure the number of
HW Parsers individually for each NDP operation. In Figure 12.11 BC
is executed with 2.037.755 edges using a different number of ref-PEs.
Clearly, increasing the number of PEs per operation, yields better
speed-ups. Using seven PEs instead of three PEs results in a speed-up
of 1.25x. While the data suggests that more parsers are better, it is
important to note that all instances compete for DRAM accesses. Thus,
adding more parsers will yield diminishing returns due to memory
contention and increased randomness in the memory access patterns.

12.7 related work 141

3 5 7
HW-Instances

0

100

200

300

400

500
Ex

ec
ut

io
n

Ti
m

e
[s

]
476.12

400.56 374.81

BC() Execution Times using NDP:SW+HW

Figure 12.11: Betweenness centrality (BC) execution times for for
NDP:SW+HW using 3, 5 and 7 instances of the ref-PE hardware
parser.

12.7 related work

The Near-Data Processing is deeply rooted in database machines [5] de-
veloped in the 1970s-80s or Active Disk/IDISK [1, 17, 25] from the late
1990s. Besides dependence on proprietary and costly hardware, the
I/O bandwidth and parallelism are claimed to be the limiting factors.
While not surprising, given the characteristics of magnetic/mechani-
cal storage combined with Amdahl’s balanced systems law [11], this
conclusion needs to be revised. Storage devices built with modern
semi-conductor storage technologies (NVM, Flash) are offering high
raw bandwidths with high levels of parallelism on-device.

With the advent of Flash technologies and reconfigurable processing
elements, Smart SSDs [9, 16, 26] were proposed. An FPGA-based
intelligent storage engine for databases is introduced with IBEX [30].
Biscuit [12] is a timely proposal for a general NDP framework. JAFAR
[2, 31] is one of the first systems to target NDP for DBMS (column-
store) use, whereas [15, 19] target joins besides scans. The use of
NDP in the realm of KV-Stores has been investigated in [8, 18]. Kanzi
[13], Caribou [14] and BlueDBM [21] are RDMA-based distributed
KV-Stores investigating node-local operations.

Much of the prior work on persistent KV-Stores and NDP focusses
on bandwidth optimizations. NoFTL-KV [28] addresses the problem of
write-amplification. The NDP extensions demonstrated by nKV target
the read-amplification, latency improvements and computational storage.

142 nkv : near-data processing with kv-stores

12.8 conclusion

In this paper we introduced nKV – a key-value store designed for
native computational storage and near-data processing. nKV controls
physical data placement directly and hence the on-device I/O par-
allelism. Along the same lines, nKV can place NDP operations on
different compute elements on device (ARM or novel FPGA PEs) and
also configure the hardware per operation accordingly, e.g. the number
of hardware parsers used. Both placement methods impact the perfor-
mance of NDP operations, GET is faster on the ARM, while SCANs
are faster with hardware support. nKV is based on the principle of
explicit cross-layer data formats, hence hardware or software layout
accessors and format parsers are deployed an can be used for different
operations.

references

[1] Anurag Acharya, Mustafa Uysal, and Joel Saltz. “Active Disks:
Programming Model, Algorithms and Evaluation.” In: Proc.
ASPLOS 1998. San Jose, California, USA, 1998. isbn: 1-58113-
107-0.

[2] Oreoluwatomiwa O. Babarinsa and Stratos Idreos. “JAFAR :
Near-Data Processing for Databases.” In: 2015.

[3] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avizie-
nis, J. Wawrzynek, and K. Asanovic. “Chisel: Constructing
hardware in a Scala embedded language.” In: Proc. DAC 2012.
2012.

[4] Matias Bjørling, Javier Gonzalez, and Philippe Bonnet. “Light-
NVM: The Linux Open-Channel SSD Subsystem.” In: Proc.
FAST 2017. 2017.

[5] Haran Boral and David J. DeWitt. “Parallel Architectures for
Database Systems.” In: ed. by A. R. Hurson, L. L. Miller, and
S. H. Pakzad. 1989. Chap. Database Machines: An Idea Whose
Time Has Passed? A Critique of the Future of Database Ma-
chines, pp. 11–28. isbn: 0-8186-8838-6.

[6] Ulrik Brandes. “A Faster Algorithm for Betweenness Central-
ity.” In: Journal of Mathematical Sociology (2001).

[7] COSMOS Project Documentation. http://www.openssd-project.
org/wiki/Cosmos_OpenSSD_Technical_Resources. OpenSSD
Project. Jan. 2019.

[8] Arup De, Maya Gokhale, and et. al et. “Minerva: Accelerating
Data Analysis in Next-Generation SSDs.” In: Proc. FCCM 2013.
2013.

http://www.openssd-project.org/wiki/Cosmos_OpenSSD_Technical_Resources
http://www.openssd-project.org/wiki/Cosmos_OpenSSD_Technical_Resources

12.8 references 143

[9] Jaeyoung Do, J. Patel, D. DeWitt, and et. al et. “Query Process-
ing on Smart SSDs: Opportunities and Challenges.” In: Proc.
SIGMOD 2013. 2013.

[10] Facebook. RocksDB. https://github.com/facebook/rocksdb.
2020.

[11] Jim Gray and Prashant J. Shenoy. “Rules of Thumb in Data
Engineering.” In: Proc. ICDE 2000. 2000.

[12] Boncheol Gu, Andre S. Yoon, and et al. et. “Biscuit: A Frame-
work for Near-Data Processing of Big Data Workloads.” In:
Proc. ISCA 2016. June 2016.

[13] Masoud Hemmatpour, Mohammad Sadoghi, and et al. “Kanzi:
A Distributed, In-memory Key-Value Store.” In: Proc. Middle-
ware 2016. 2016.

[14] Zsolt István, David Sidler, and Gustavo Alonso. “Caribou: In-
telligent Distributed Storage.” In: Proc. VLDB 2017. 2017.

[15] Insoon Jo and et al. et. “YourSQL : A High-Performance Database
System Leveraging In-Storage Computing.” In: Proc. VLDB
2016. 2016.

[16] Yangwook Kang, Yang-suk Kee, and et al. “Enabling cost-
effective data processing with smart SSD.” In: Proc MSST 2013.
May 2013.

[17] Kimberly Keeton, David A. Patterson, and Joseph M. Heller-
stein. “A Case for Intelligent Disks (IDISKs).” In: SIGMOD Rec.
(1998).

[18] Jungwon Kim and et al. “PapyrusKV: A High-performance
Parallel Key-value Store for Distributed NVM Architectures.”
In: Proc. SC 2017. 2017.

[19] Sungchan Kim, Sang-Won Lee, Bongki Moon, and et al. “In-
storage Processing of Database Scans and Joins.” In: Inf. Sci.
(2016).

[20] Chen Luo and Michael J. Carey. “LSM-based storage tech-
niques: a survey.” In: The VLDB Journal 29.1 (2020), pp. 393–
418.

[21] Sang-woo Jun Ming, Arvind, and et al. “BlueDBM: An Appli-
ance for Big Data Analytics.” In: Proc. ISCA (2015).

[22] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth
O’Neil. “The log-structured merge-tree (LSM-tree).” In: Acta
Inform. (1996).

[23] Ilia Petrov, Andreas Koch, Sergey Hardock, Tobias Vincon,
and Christian Riegger. “Native Storage Techniques for Data
Management.” In: Proc. ICDE (2019).

https://github.com/facebook/rocksdb

144 nkv : near-data processing with kv-stores

[24] Erik Riedel, Christos Faloutsos, Garth A. Gibson, and David
Nagle. “Active disks for large-scale data processing.” In: Com-
puter (Long. Beach. Calif). 34.6 (2001), pp. 68–74.

[25] Erik Riedel, Garth A. Gibson, and Christos Faloutsos. “Active
Storage for Large-Scale Data Mining and Multimedia.” In: Proc.
VLDB 1998. 1998.

[26] Sudharsan Seshadri, Steven Swanson, and et al. “Willow: A
User-Programmable SSD.” In: USENIX, OSDI (2014).

[27] Arnab Sinha, Zhihong Shen, Yang Song, Hao Ma, Darrin Eide,
Bo-June (Paul) Hsu, and Kuansan Wang. “An Overview of
Microsoft Academic Service (MAS) and Applications.” In: Proc.
WWW 2015. 2015.

[28] T. Vincon, S. Hardock, C Riegger, J. Oppermann, A. Koch, and
I. Petrov. “NoFTL-KV: Tackling Write-Amplification on KV-
Stores with Native Storage Management.” In: Proc. EDBT 2018.
2018.

[29] Tobias Vincon, Arthur Bernhardt, Lukas Weber, Andreas Koch,
and Ilia Petrov. “On the Necessity of Explicit Cross-Layer Data
Formats in Near-Data Processing Systems.” In: Proc. HardBD @
ICDE 2020. 2020.

[30] Louis Woods, J. Teubner, and G. Alonso. “Less Watts, More Per-
formance: An Intelligent Storage Engine for Data Appliances.”
In: Proc. SIGMOD 2013. 2013.

[31] Sam Xi, O. Babarinsa, M. Athanassoulis, and S. Idreos. “Be-
yond the Wall: Near-Data Processing for Databases.” In: Proc.
DAMON (2015).

13
N K V I N A C T I O N : A C C E L E R AT I N G K V- S T O R E S O N
N AT I V E C O M P U TAT I O N A L S T O R A G E W I T H
N E A R - D ATA P R O C E S S I N G

bibliographic information

The content of this chapter has previously been published in the work
"nKV in Action: Accelerating KV-Stores on Native Computational Storage
with Near-Data Processing" by Tobias Vinçon, Lukas Weber, Arthur
Bernhardt, Andreas Koch and Ilia Petrov in 2020 46th International
Conference on Very Large Data Bases (VLDB). The contribution of the
author of this thesis is summarized as follows.

» As the corresponding and co-leading author, Tobias Vinçon was respon-
sible for designing and implementing the nKV system including the NDP
invocation of software-based parsers and accessors for the GET, SCAN and
BC operations. Lukas Weber complemented the NDP functionality with
hardware-based processing elements and integrated those into the COS-
MOS+ architecture. Tobias Vinçon was in charge of designing the paper
graph demonstration walk-through and provided an interactive grafical
user interface to showcase the performance improvements. With feedback
from the other co-authors Lukas Weber, Arthur Bernhardt, Andreas Koch
and Ilia Petrov, Tobias Vinçon concluded the text. «

abstract

Massive data transfers in modern data-intensive systems resulting
from low data-locality and data-to-code system design hurt their
performance and scalability. Near-data processing (NDP) designs
represent a feasible solution, which although not new, has yet to see
widespread use.

In this paper we demonstrate various NDP alternatives in nKV,
which is a key/value store utilizing native computational storage and
near-data processing. We showcase the execution of classical operations
(GET, SCAN) and complex graph-processing algorithms (Betweenness
Centrality) in-situ, with 1.4×-2.7× better performance due to NDP.
nKV runs on real hardware - the COSMOS+ platform.

13.1 introduction

Besides substantial data ingestion, yielding an exponential increase
in data volumes, modern data-intensive systems perform complex

145

146 nkv in action : accelerating kv-stores with ndp

analytical tasks. To process them, systems trigger massive data trans-
fers that impair performance and scalability, and hurt resource- and
energy-efficiency. These are partly caused by the scarce bandwidth in
combination with poor data locality, but also result from traditional
(data-to-code) system architectures.

Near-Data Processing (NDP) is a code-to-data paradigm targeting in-
situ operation execution, i.e. as close as possible to the physical data
location, utilizing the much better on-device I/O performance. NDP
leverages several trends. Firstly, hardware manufacturers can fabricate
combinations of storage and compute elements economically, and package
them within the same device – so called NDP-capable computational
storage. As a result, even commodity storage devices nowadays have
compute resources that can be effectively used for NDP, but are execut-
ing compatibility firmware (to traditional storage) instead. Secondly,
with semiconductor storage technologies (NVM/Flash) the device-
internal bandwidth, parallelism, and latencies are significantly better
than the external ones (device-to-host). Both lift major limitations of
prior approaches like ActiveDisks or Database Machines.

In this paper, we demonstrate nKV, which is a RocksDB-based key/-
value store utilizing native computational storage and near-data processing
(Figure 16.1). nKV eliminates intermediary layers along the I/O stack
(e.g. file system) and operates directly on NVM/Flash storage. nKV
directly controls the physical data placement on chips and channels,
which is critical for utilizing the on-device I/O properties and com-
pute parallelism. Furthermore, nKV can execute access operations

a b

Tr
ad

iti
on

al
 S

to
ra

ge

N
D

P

2x
30%Ex

ec
ut

io
n

Ti
m

e

 F
PG

A

N
VM

, F
la

sh

Traditional Storage Native Computational
Storage

RocksDB

Storage
Mgmnt.

a b

Compatibility

ScanGET Application

NVM, Flash

BC

 C
PU

GET,
Scan,BC

Execute Storage
Mgmnt.Execute

invoketransfer
result

re
tr

ie
ve

da
ta

transfer
back

retrieve
data

nKV

Betweenness
Centrality

read,
write

File System
Block Device

SC
A

N
: 2

x
G

ET
: 1

.4
x

B
C

: 2
.7

x

Figure 13.1: KV-Store transferring data along a traditional I/O stack (a); and
(b) nKV executing operations in-situ on native computational
storage.

13.2 architecture of nkv 147

like GET or SCAN, or more complex graph processing algorithms
such as Betweenness Centrality as software NDP on the ARM cores or
with FPGA hardware support (NDP:HW+SW). Under nKV we target
intervention-free NDP-execution, i.e. the NDP-device has the complete
address information, can interpret the data format and access the data
in-situ (without any host interaction). To reduce data transfers nKV also
employs novel ResultSet-transfer modes. nKV is resource efficient as it
eliminates compatibility layers and utilizes freed compute resources
for NDP.

We demonstrate nKV for the use-case of a database of research
papers, and on a 2.4GB graph dataset with 48 million KV-pairs. Our
demonstration scenarios involve interacting with the paper DB, brows-
ing and analyzing it: (a) analysis scenario (BC): verifies if the 10-year best
paper award was awarded the most prominent paper from 10 years
ago and offers some unexpected insights; (b) Latency-based (GET): we
let the audience pick a paper from the BC ResultSet and display its de-
tails; (c) Bandwidth-based (SCAN): we retrieve other papers from same
Venue/Author/Year. nKV performs 1.4×-2× better than RocksDB:
GET latency – 1.4×; SCAN bandwidth – 2×; Betweenness Centrality –
2.7×.

13.2 architecture of nkv

N
VM

,
Fl

as
h

N
at

iv
e

C
om

pu
ta

tio
na

l
St

or
ag

e
BC, GET,

SCAN

N
VM

,
Fl

as
h

 F
PG

A

 C
PU

Format
Parser
Layout

Accessors,
Access

Methods
ResultSet
Processor

D
M

A

nKV
Executor

Native
Storage
Interface

NVMe (native)
ResultSet

PCIe

Native Storage Mgmnt.

NDP

invoke

transfer
result

Figure 13.2: Architecture of nKV.

Native computational storage. To make efficient use of the on-device
I/O and compute resources nKV extends [14] and employs native
storage (Figures 16.1 and 13.2). This way it eliminates intermediary
layers along the critical I/O path like the file system, and can operate
directly on NVM/Flash storage using physical addresses. nKV can
therefore precisely control physical placement of SST data, which
is critical for utilizing the on-device I/O properties and compute
parallelism. nKV physically places SST data blocks and SST index blocks
on different LUNs and Channels to utilize the on-device parallelism
and lower the processing latency (see Figure 13.3). Native storage is
essential for reducing read- and write-amplification, and also for
executing NDP-operations avoiding information hiding through these

148 nkv in action : accelerating kv-stores with ndp

layers of abstraction. Furthermore, individual levels of the LSM-Tree
can be physically separated on different chips and LUNs to improve
I/O throughput and parallelism since I/O-heavy compaction jobs do
not block the entire device and relieve the bus. In addition, native
storage allows the realization of lean NDP-functionality.
NDP Interface Extensions. nKV defines NDP-Extensions to the native
storage interface. Furthermore, nKV has a dedicated high-performance
in-DBMS NVMe layer (Figure 13.2). It does not rely on an NVMe
kernel driver, but is deeply integrated in the DBMS and hence runs in
user-space. The native NVMe integration reduces the I/O overhead, as
it avoids expensive switches between user and kernel space (drivers),
and shortens the I/O even further, as no drivers are needed.
Computation Placement. By using native computational storage, nKV
can place computations directly on the heterogeneous on-device com-
pute elements, such as ARM CPUs or the FPGA. nKV can execute
various operations such as GET or SCAN, or more complex graph
processing algorithms like Betweenness Centrality as software NDP on
the ARM cores, or with hardware support from the FPGA. nKV demon-
strates that hardware implementations alone cannot reach the best
performance as pure software implementations do not. For its NDP-
operations nKV utilizes hardware/software co-design to handle the proper
separation of concerns and achieve best performance.
ResultSet Handling. nKV aims to bulk-transfer the ResultSet of an
NDP-Operation to avoid the data transfer overhead caused by a record-
at-a-time model. Thus nKV materializes the ResultSet, partially or fully,
depending on the NDP operation. It is then DMA-transferred with
multiples of the COSMOS+’s DMA-engine transfer unit (4KB).
In-situ data access and interpretation. Under nKV the NDP-device can
interpret the data format and access the data without host intervention. To
this end, nKV extracts definitions of the Key- and Value-formats. These
are then passed as input parameters to NDP-commands. Moreover,
the data format such as the Key- and Value-formats can be automatically
extracted from the DB-catalogue (system-defined), or can be defined by
the application.

nKV employs a thin on-device NDP-infrastructure layer that supports
the execution and simplifies the development of NDP-operations
(Figures 13.2). It comprises data format parsers and accessors that are
implemented in both software and hardware (Figure 13.3). The in-situ
accessors are used used to traverse and extract the contained sub-
entities of the persistent data. Whereas, the in-situ data format parsers
process the layout of each persistent entity, and extract the sub-entities
by invoking further accessors (Figure 13.3).

KV-Stores like LevelDB or RocksDB organize the persistent LSM-
Tree data in to so called Sorted String Tables (SST). To process a GET(key)
request, for instance, nKV first identifies the respective SST and in-
vokes an NDP_GET() command with the physical address ranges (of

13.3 demonstration walk-through 149

these SSTs), the respective Key- and Value-formats as well as further
parameters. First, the SST layout accessor is invoked to access data and
index blocks. Subsequently, the index block parser is invoked to inter-
pret the data, verify if the key is present, and extract its location. If this
is the case, the data block accessor and parser are invoked to extract
the Key/Value entry. In case of an NDP_SCAN(key_val_condition) opera-
tion, the KV accessor is subsequently invoked to extract it, followed
by a field parser to extract its value and verify the condition.

13.3 demonstration walk-through

Demo Setup. The demonstration setup comprises a desktop PC as host
equipped 3.4 GHz Intel I5 CPU, 4 GB RAM, connected to COSMOS+
via NVMe over PCIe (Figure 13.4). The COSMOS+ [2] has a Zynq 7045

SoC with an FPGA, two 667 MHz ARM A9 CPU Cores and an MLC
Flash module configured as SLC. We configure both RocksDB and
COSMOS+ with 5 MB cache.

We demonstrate nKV on the use-case of a database of research
papers, and on a 2.4GB graph dataset including 48 million Key/Value-
pairs. These comprise approx. 3.8M papers, 40M references, 18K
venues, and 4.2M authors. BC operates on a graph with varying
number of relevant edges: from 2.5K to 2 million. The audience will
browse and analyze the paper set using a GUI (Figures 13.5), triggering
different operations on the paper graph in different scenarios.

13.3.1 Walk-Through

1. Complex Graph Analysis – BC. The demo starts by letting the
audience pick a DB conference venue and an year (e.g., VLDB, 2000).
Subsequently, nKV executes Betweenness Centrality to determine the
most prominent paper from that year. The audience can then verify if
that paper had indeed been awarded the 10-year best paper award ten
years later. Expect some unexpected(!) insights.

Under the hood, nKV executes a complex NDP operation pipeline,
comprising a SCAN and BC. Based on the audience selection, nKV first
filters out the relevant papers and references by running a SCAN and
applying val_condition on the values of all paper KV-pairs. This is only
possible since the data formats are available in-situ, and the format
parses and layout accessors execute on-device. The intermediary result
is materialized on-device, which is essential for such NDP-pipelines.
Subsequently, BC is executed on the intermediary results. nKV switch
between software NDP or software/hardware NDP. We demonstrate
how the hardware accessors and parsers can be instantiated multiple
times, and run in parallel on the FPGA yielding best results.

150 nkv in action : accelerating kv-stores with ndp

Observation: nKV executes NDP-pipelines and complex operations
in-situ. Given the high parallelism and compute intensity, NDP:SW+HW
yields best results.

2. Latency – GET. After the BC analysis, the audience can interactively
pick a paper from the BC ResultSet and display its details.

Under the hood, the NDP execution of GET is performed in SW and
in NDP:SW+HW. Since only a single NDP_GET() is executed at a time,
nKV utilizes native data placement, but not the on-device parallelism.

Observation: Latency-critical operations are 1.4× faster and best
results are achieved with NDP:SW, closely followed by NDP:SW+HW
(Figure 13.7).
3. Bandwidth – SCAN. After the audience has been presented the
details of a paper (previous scenario), they can opt for retrieving other
papers from the same Venue/Author/Year.

Under the hood, this results in an NDP SCAN(value_condi- tion). The
operation is performed with different selectivities and different result
set sizes, based on the audience selection (Figure 13.8a). Importantly,
the selection condition is on the value, which requires NDP format
parsers and layout accessors to be evaluated in-situ. Conversely, the
Blk RocksDB stack transfers the entire data to the host, to interpret the
values there, apply the val_condition, and eventually discard most of
the data. Figure 13.8b shows the extra read volume transferred by the
Blk to perform the same SCAN.

Observation: Bandwidth-critical scan and selection operations re-
quire I/O bandwidth and high hardware parallelism. Hence, NDP:SW+HW
is best and outperforms the traditional stack by 2×.
4. Parallelism and Native Computational Storage Last but not least
we execute BC again, however this time we demonstrate the effect of
configurable parallelism in native computational storage, whenever nKV
executes a complex operation (Figure 13.6b).

nKV can configure the degree of parallelism required by each NDP-
operation. While the amount of compute parallelism is limited for
NDP:SW, as there are few ARM cores, the same does not apply to
the FPGA. As described in Section 13.2, there can be multiple parallel
instances of the hardware accessors and parsers on the FPGA. These
are relatively space-efficient, as 16 instances fit even into the small
Zynq 7045 FPGA. Interestingly, operating with the maximum available
parallelism does not always yield the the best results (Figure 13.6c).

Observation: nKV can employ the FPGA for NDP:SW+HW, in-
creasing the level of computational storage parallelism. However, this
capability only translates into performance benefits for complex opera-
tions.

13.4 related work 151

13.4 related work

The Near-Data Processing approach is deeply rooted in well-known
techniques such as database machines or Active Disk/IDISK. With the
advent of Flash technologies and reconfigurable processing elements
Smart SSDs [4, 8, 13] were proposed. An FPGA-based intelligent
storage engine for databases is introduced with IBEX [15]. JAFAR [1,
16] is one of the first systems to target NDP for DBMS (column-store)
use, whereas [7, 10] target joins besides scans. Recently, Samsung
announced its KV-SSD [11]. The use of NDP in the realm of KV-Stores
has been investigated in [3, 9]. Kanzi [5], Caribou [6] and BlueDBM
[12] are RDMA-based distributed KV-Stores investigating node-local
operations.

Much of the prior work on persistent KV-Stores and NDP focuses
on bandwidth optimizations. NoFTL-KV [14] addresses the problem of
write-amplification. The NDP extensions demonstrated by nKV target
the read-amplification, latency improvements and computational storage.

13.5 conclusion

We demonstrate nKV, which is a key/value store utilizing native com-
putational storage and near-data processing. We showcase the execution
of classical operations (GET, SCAN) and complex graph-processing
algorithms (Betweenness Centrality) in-situ, with 1.4×-2.7× better per-
formance due to NDP. nKV runs on real hardware - the COSMOS+
platform. nKV utilizes the the available I/O and compute parallelism
on the native computational storage through direct data and operation
placement. Complex operations (BC, SCAN) benefit from it, whereas
others (GET) benefit from software NDP.

references

[1] Oreoluwatomiwa O. Babarinsa and Stratos Idreos. “JAFAR :
Near-Data Processing for Databases.” In: 2015.

[2] COSMOS Project Documentation. http://www.openssd-project.
org/wiki/Cosmos_OpenSSD_Technical_Resources. OpenSSD
Project. Jan. 2019.

[3] Arup De, Maya Gokhale, Steven Swanson, and et. al et. “Min-
erva: Accelerating Data Analysis in Next-Generation SSDs.” In:
Proc. FCCM. 2013.

[4] Jaeyoung Do, J. Patel, D. DeWitt, and et. al et. “Query Process-
ing on Smart SSDs: Opportunities and Challenges.” In: Proc.
SIGMOD. 2013.

http://www.openssd-project.org/wiki/Cosmos_OpenSSD_Technical_Resources
http://www.openssd-project.org/wiki/Cosmos_OpenSSD_Technical_Resources

152 nkv in action : accelerating kv-stores with ndp

[5] Masoud Hemmatpour, Mohammad Sadoghi, and et al. “Kanzi:
A Distributed, In-memory Key-Value Store.” In: Proc. Middle-
ware. 2016.

[6] Zsolt István, David Sidler, and Gustavo Alonso. “Caribou: In-
telligent Distributed Storage.” In: Proc. VLDB. 2017.

[7] Insoon Jo, Duck-ho Bae, and et al. et. “YourSQL : A High-
Performance Database System Leveraging In-Storage Comput-
ing.” In: Proc. VLDB. 2016.

[8] Yangwook Kang, Yang-suk Kee, and et al. “Enabling cost-
effective data processing with smart SSD.” In: Proc MSST. 2013.

[9] Jungwon Kim and et al. “PapyrusKV: A High-performance
Parallel Key-value Store for Distributed NVM Architectures.”
In: Proc. SC. 2017.

[10] Sungchan Kim, Sang-Won Lee, Bongki Moon, and et al. “In-
storage Processing of Database Scans and Joins.” In: Inf. Sci.
(2016).

[11] KV-SSD. https://github.com/OpenMPDK/KVSSD. Samsung.

[12] Sang-woo Jun Ming, Arvind, and et al. “BlueDBM: An Appli-
ance for Big Data Analytics.” In: Proc. ISCA (2015).

[13] Sudharsan Seshadri, Steven Swanson, and et al. “Willow: A
User-Programmable SSD.” In: USENIX, OSDI (2014).

[14] T. Vincon, S. Hardock, C Riegger, J. Oppermann, A. Koch,
and I. Petrov. “NoFTL-KV: Tackling Write-Amplification on
KV-Stores with Native Storage Management.” In: Proc. EDBT.
2018.

[15] Louis Woods, J. Teubner, and G. Alonso. “Less Watts, More Per-
formance: An Intelligent Storage Engine for Data Appliances.”
In: Proc. SIGMOD. 2013.

[16] Sam Xi, O. Babarinsa, M. Athanassoulis, and S. Idreos. “Be-
yond the Wall: Near-Data Processing for Databases.” In: Proc.
DAMON (2015).

https://github.com/OpenMPDK/KVSSD

13.5 references 153

SST Block Layout

SST Block Format

KV Record Layout

KV Record Format

Field Layout
Field Format

ValueIdentifier

KeyValue

KV1 TrailerKV2 KVN

SST 1

Data
Block 1

Data
Block N

Index
Block

SST n

TrailerRecords

KV-Value Storage represenation (RocksDB)Logical

Block
Accessor

Parser/A
ccessor

Parser/A
ccessor

Parser/A
ccessor

Data
Block 2

Physical Storage
Organisation

IndexData
SST-Data Organisation

Layout

SST-Data Organisation
Format

KV
Accessor

Value
Parser

SST
Parser

Block
Parser

KV Form
at

Parser

SST
Accessor

Result

Figure 13.3: In-situ access and data interpretation in nKV, based on layout
accessors and format parsers.

COSMOS+

Fl
as

h
Fl

as
h

ARM A9

FPGA
Zynq 7000

D
R

AM

Flash
Ctrl.
Tiger

NVMe
Ctrl.

Host

PCIe
chipset

nKV

NVMe
(native)

PC
Ie

Figure 13.4: COSMOS+ and the Demonstration Setup.

Figure 13.5: Interactive GUI.

154 nkv in action : accelerating kv-stores with ndp

B
lk

N
D
P:
 S
W

N
D
P:

SW
+H
W

0

200

400

600

800

1000

1200

D
ur
at
io
n
[s
]

1,
02
7.
8

42
7.
3

37
4.
8

(a)

N
D
P:

SW
+H
W
(3
)

N
D
P:

SW
+H
W
(5
)

N
D
P:

SW
+H
W
(7
)

0

100

200

300

400

500

D
ur
at
io
n
[s
]

476.1

400.6
374.8

(b)

3K 6K 13
K

32
K

54
K

91
K

28
3K

39
5K

70
1K

14
11
K

20
38
K

28
88
K

46
27
K

0M

1M

2M

3M

4M

0

200

400

600

800

D
ur
at
io
n
[s
]

Duration [s] Edges

(c)

Figure 13.6: Betweenness Centrality: (a) BC on different stacks; (b) BC with
different levels of parallelism; (c) BC execution time vs number
of relevant edges (complexity).

0 2 4 6 8 10 12

Duration [ms]

Blk

NDP: SW

NDP: SW + HW

11.694

7.213

8.106

Figure 13.7: GET Latencies on different stacks.

Blk NDP: SW NDP: SW + HW

0K 1K 2K 3K 4K 5K 6K 7K 8K

Duration [ms]

Blk

NDP: SW

NDP: SW + HW

6,958

4,811

3,349

(a)

On-device (Flash Chip to COSMOS+ RAM) Device-to-Host (DMA)

0 200 400 600 800 1000
Data Transfers [MB]

Blk

NDP: SW

NDP: SW + HW

553.0492.5

492.4

492.4

(b)

Figure 13.8: SCAN performance:(13.8a) SCAN on different stacks; (13.8b)
Data Transfer Volume

14
A F R A M E W O R K F O R T H E AU T O M AT I C
G E N E R AT I O N O F F P G A - B A S E D N E A R - D ATA
P R O C E S S I N G A C C E L E R AT O R S I N S M A RT S T O R A G E
S Y S T E M S

bibliographic information

The content of this chapter has previously been published in the work
"A Framework for the Automatic Generation of FPGA-based Near-Data Pro-
cessing Accelerators in Smart Storage Systems" by Tobias Vinçon, Lukas
Weber, Lukas Sommer, Leonardo Solis-Vasquez, Christian Knödler,
Arthur Bernhardt, Andreas Koch and Ilia Petrov in 2021 IEEE Inter-
national Parallel and Distributed Processing Symposium Workshops
(IPDPSW). The contribution of the author of this thesis is summarized
as follows.

» As the corresponding author, Tobias Vinçon provided with nKV, the
NDP invocation, and software-based orchestration of processing elements,
essentail parts for the exerimental evaluation. Lukas Weber and Lukas
Sommer extented those with a framework for automatic generation of
FPGA-based processing elements and evaluated this against the static
baseline. The manuscript’s text was joint work of Tobias Vinçon, Lukas
Weber and Lukas Sommer with feedback from Leonardo Solis-Vasquez,
Christian Knödler, Arthur Bernhardt, Andreas Koch and Ilia Petrov. «

abstract

Near-Data Processing is a promising approach to overcome the limita-
tions of slow I/O interfaces in the quest to analyze the ever-growing
amount of data stored in database systems. Next to CPUs, FPGAs will
play an important role for the realization of functional units operating
close to data stored in non-volatile memories such as Flash.

It is essential that the NDP-device understands formats and lay-
outs of the persistent data, to perform operations in-situ. To this end,
carefully optimized format parsers and layout accessors are needed.
However, designing such FPGA-based Near-Data Processing acceler-
ators requires significant effort and expertise. To make FPGA-based
Near-Data Processing accessible to non-FPGA experts, we will present
a framework for the automatic generation of FPGA-based accelerators
capable of data filtering and transformation for key-value stores based
on simple data-format specifications.

The evaluation shows that our framework is able to generate ac-
celerators that are almost identical in performance compared to the

155

156 automatic generation of near-data processing accelerators

manually optimized designs of prior work, while requiring little to
no FPGA-specific knowledge and additionally providing improved
flexibility and more powerful functionality.

14.1 introduction

The rate at which new data is produced and stored every day has
constantly been increasing in recent years, and with the advent of
the internet-of-things (IoT), this trend will continue in the foreseeable
future. A substantial amount of the data produced every day is stored
in database systems, such as key-value stores (KV-store). Of course,
this data is not write-only: To make sense (and gain value) out of the
stored data, it needs to be analyzed, ever more so now in the golden
age of Big Data and Machine Learning.

Data analytics has been limited by slow I/O interfaces to the at-
tached storage devices such as non-volatile memory (NVM). This
severely hampered the processing of stored data. An interesting ap-
proach to overcome this limitation is Near-Data Processing (NDP):
Instead of moving huge amounts of data from storage via the I/O-
bottleneck to the CPU for analysis, which will eventually yield a result
typically much smaller in size than the input data, Near-Data Process-
ing places the computation much closer to the data. With hardware
vendors being able to economically integrate processing units with
non-volatile memories on a single chip or board, Near-Data Processing
can help to overcome the limitations on data analytics imposed by
slow I/O interfaces.

One example for a Near-Data Processing system for key-value stores
was presented by Vinçon et al. in [18, 19]: By combining what they
refer to as Native Computational Storage, which removes unnecessary ab-
straction layers and unifies information about data format and layout
in a single layer with NDP capabilities, they were able to demonstrate
speedups of up-to factor 2.7x for real-world data analysis. For their
approach, they did not only use standard CPUs, but also leveraged the
computational power and parallelism of FPGAs. However, the FPGA-
based NDP processing elements (PEs) in their work were hand-crafted,
requiring significant development effort and expertise.

In addition, not only do data storage formats evolve over time,
but the specific data representation requirements in the actual NDP-
operations also tend to change over time. Hand-crafting highly opti-
mized NDP-accelerators becomes impractical in such scenarios, which
may include data analytics on big data sets, or evolving feature vectors
in machine learning.

In this work, based on the nKV architecture [18], we present a
framework to automatically generate FPGA-based NDP accelerators
from data format specifications. The generated PEs are able to filter
and transform data from key-value stores, based on user-specified

14.2 motivation 157

filter predicates and transformation rules. The PEs are integrated in a
system-on-chip (SoC) architecture for the Cosmos+ OpenSSD platform
[17].

In the evaluation, we compare the performance of the automatically
generated accelerators with hand-crafted designs and assess the im-
pact of the data format on the hardware footprint of the generated
accelerators.

14.2 motivation

In general, the development of hardware accelerators for specific ap-
plications is a tedious task that requires knowledge of the application
domain, as well as expertise in accelerator development and device
specifics. Typically, using the database specification, a corresponding
hardware accelerator will be implemented using some form of Hard-
ware Description Language (HDL) such as Verilog or VHDL. As soon
as the accelerator design is finished, a suitable software interface has
to be implemented. Depending on the target platform, this interface
may vary. For the OpenSSD Cosmos+, the HW/SW interface has to
be developed as device firmware, which is executed on the ARM-
cores of the device. Since the architecture and the accelerator design
impact how the accelerator is controlled, it is necessary to consider
both when developing the software interface. As soon as the software
interface is implemented, all of the components can be integrated.
In this stage, the firmware is adapted to use the software interface
to access the accelerator. Lastly, the hardware design (including the
accelerator) has to be synthesized into a bitstream, which is used to
program the FPGA-portion of the Zynq-7000 SoC on the Cosmos+.
After compilation and synthesis has finished, the accelerated system
can be deployed and used.

A major problem of this toolflow is the required cross-domain
knowledge. Especially the PE development requires experience with
hardware development, as well as a good knowledge of the target
platform. Additionally, HW-SW dependencies exist, which makes
it impractical to develop the software interface without a finalized
accelerator design.

In this work, we aim to implement a framework which allows the
automatic generation of the accelerator design by composing fixed archi-
tecture templates. These templates allow for the concurrent generation
of the software interface. The merit of this approach is twofold: First,
hardware development expertise is no longer required. The proposed
framework is usable without any knowledge about hardware devel-
opment or HDLs. Instead, the required information is provided to
the tools in a simple C-style syntax. Additionally, the dependency
between the accelerator design and the interface development is re-
moved, allowing an overall faster development cycle.

158 automatic generation of near-data processing accelerators

14.3 near-data processing background

14.3.1 Background: Key-Value Stores

In this work, we focus on Near-Data Processing for wide-spread, high-
performance Key-Value (KV) Stores, in particular RocksDB [8]. In order
to provide querying capabilities in combination with high sustained
insert and update rates, modern KV-Stores often use out-of-place
update approaches such as Log-Structured Merge-Trees (LSM-Tree)
[14].

An LSM-tree employs multiple components C0...Ck. All insertions
and updates are performed on the first component C0, typically lo-
cated in memory. After C0 reaches a defined size threshold, its content,
i.e., the insertions and updates, is flushed to persistent memory and
merged with component C1. Over time, the merges will gradually
move data from C0 to Ck to ensure a separation of hot and cold data.
During each merge process, outdated key-value pairs are purged and
their space is reclaimed.

RocksDB uses LSM trees in a multi-leveled variant [13]. The com-
ponent C0 comprises multiple MemTables and is located in volatile
memory, while the remaining components C1...Ck reside in persistent
memory (e.g., Flash). Whereas the MemTables in C0 are typically
implemented using a memory-efficient structure such as skip-lists,
the data is transformed into the so-called Sorted String Tables (SST)
format during the flush from C0 to the persistent component C1. Each
component C1...Ck in persistent memory comprises multiple SSTs.
Each SST in turn is composed by an index block and a number of data
blocks. The key-value pairs are stored in the data-blocks in key-sorted
order.

During the merge process, as part of the LSM tree algorithm, the
SSTs are compacted, i.e., outdated entries are pruned. Nevertheless, as
the compaction process only happens as part of the merge process,
multiple key-value pairs for the same key can be present on different
levels of the LSM tree hierarchy. For example, a more recent key-value
pair k, v ′ in component C2 supersedes a pair k, v in component C5.
For performance, no compaction takes place during the flush from
component C0 to component C1.

Access operations to the key-value store, such as GET or SCAN
require to traverse multiple index blocks, starting at the MemTables in
component C0. Assuming that the key is not present there, all index
blocks of every SST from C1 need to be traversed (remember that no
compaction is performed during the flush, thus multiple pairs for a
key can be present in C1), followed by traversing a single index block
in the remaining index components C2...Ck. SCAN operations with a
value predicate (e.g., SCAN(0 < Value < 42)) even require traversal
of the entire data-set.

14.3 near-data processing background 159

The NDP PEs generated by our tool-flow operate on SST files using
parallelized NDP operations for faster access.

14.3.2 nKV: Near-Data Processing Architecture

The NDP PEs developed in this work is based on the nKV Near-Data
Processing architecture developed by Vinçon et al. [18]. Their archi-
tecture and custom key-value store exploits two key insights: First,
while intermediate layers and abstraction such as block devices and
file systems simplify the architecture and implementation of key-value
stores such as RocksDB, they also introduce inefficiencies and compli-
cate the implementation of true near-data processing. For NDP to be
effective, it needs to operate directly on the physical addresses of the
data in the key-value store. Therefore, nKV uses native computational
storage, i.e., the intermediate abstraction layers along the critical I/O
path have been removed and nKV directly operates on Flash storage,
using physical addresses.

Having control over the physical placement of data also allows
nKV to optimize the placement of data. By distributing data on in-
dependent Flash channels and LUNs, nKV facilitates parallel access
and processing of data [18]. Moreover, keeping the data of different
LSM-tree index components separated on different Flash chips, avoids
blocking of the entire bus by compaction jobs taking place as part of
the LSM-tree merge.

The second important insight that underlies nKV is the fact that
placing the computation closer to the data can significantly reduce the
amount of data transferred, and consequently speed-up access. Many
KV-store operations, such as the SCAN-operation on value predicates
explained in the previous section, are very I/O-intensive, requiring
much more data to be moved from storage to the processor than
what is required for the final result of the operation. Using Near-Data
Processing, i.e., placing the computation much closer to the data, does
not only reduce the I/O complexity of the operations, but also allows
for higher degrees of parallelism, as the device-internal bandwidth
of storage devices (e.g., parallel access to different Flash channels)
is typically much higher than the bandwidth of the I/O interface to
the processor. In a similar fashion, NDP also achieves much shorter
latencies.

In general, KV-Stores employ concrete data formats defined by
either the application on by the database object itself (e.g. table),
when applied as a DBMS storage engine, the data catalog. The nKV
architecture exploits on-device data access and allows for data format
interpretation in-situ. While information about the layout and format
of data is scattered and encapsulated across multiple abstraction layers
in classical KV-stores, nKV removes these layers and introduce on-
device infrastructure for data format parsers and accessors in both

160 automatic generation of near-data processing accelerators

RocksDB nKV

Storage
Mgmnt.

Storage
Mgmnt.

Compatibility

NVM, Flash

CPU

Input data

File System

Block Device

Compute

N
V

M
, F

la
shCPU

FPGA
Compute

CPU

Invoke

Result

Figure 14.1: Comparison of traditional KV-store and the nKV-architecture
with native computational storage and Near-Data Processing.

soft- and hardware. The infrastructure operates on the SST format and
allows interpretation of the data format and data access without host
intervention.

The difference between the nKV architecture, with its native com-
putational storage and use of NDP, and traditional KV-store setups,
such as RocksDB, can be seen in 14.1: While RocksDB has to retrieve
large amounts of data from the storage through intermediate layers to
perform the requested operation on the host CPU, the nKV architec-
ture can leverage the full device-internal bandwidth of the Flash and
perform the requested operation on-device, eventually transferring
only the much smaller result set back to the host.

While the prior FPGA-based NDP PEs for nKV were designed
manually, this work will target the existing nKV architecture, and
provide an automated tool-flow for generating FPGA-based hardware
accelerators for NDP operations.

14.4 near-data processing accelerator generation

Our implementation targets the Cosmos+ OpenSSD platform [17],
which features a Xilinx Zynq-7000 SoC (XC7Z045). Additionally, the
Cosmos+ offers two kinds of memory: Fast but volatile DRAM, and
slow but persistent Flash memory.

The Cosmos+ baseline architecture enables it to be used as a “plain”
NVMe SSD. To this end, the programmable logic (PL) of the Zynq
SoC is used to implement an NVMe interface as well as controllers for
the the attached Flash memory. Specifically, the Tiger4 Flash memory
controller is used [17]. This baseline architecture is extended with
FPGA-based NDP processing elements (PEs) in [18], which supports

14.4 near-data processing accelerator generation 161

Low-Level
Flash Interf.

Tiger 4 Flash
Controller

Device Flash NVMe Core

NDP Accelerators

PE1

PE2

A
X

I InterconnectsARM CPU
(PS)

Device
DRAM

Programmable Logic (PL)

Zynq 7000 SoC

PCIe

Figure 14.2: Overall system architecture based on the Cosmos+ OpenSSD
platform, extend with FPGA-based NDP accelerators.

hardware/software co-execution for NDP in conjunction with the
Zynq ARM cores. While [18] uses manually developed PEs, in this
work we will introduce a way to automatically generate them from
abstract specifications .

When adding FPGA-based PEs, a balance between Flash parallelism
and compute parallelism has to be struck, since both the Flash memory
controllers and the PEs compete for FPGA resources on the reconfig-
urable portion of the Zynq-7000. In this work, we use a single Flash
DIMM and two separate Flash controllers for the Flash memory. The
resulting system architecture is shown in 14.2.

To reduce the implementation complexity, the PEs are not directly
coupled to the Flash memory. Instead, the data is first buffered in
DRAM, and the results are also initially collected in DRAM. While
this might seem counter-intuitive, this detour does not have significant
negative performance impact due to two issues: First, the overall
Flash bandwidth achievable using two Tiger4 controllers is only about
200 MB/s. Second, most of the data will be accessed multiple times,
and thus profits from being stored in faster DRAM (compared to the
relatively slow Flash memory).

14.4.1 NDP Accelerator Architecture Template

While the concrete functionality of the accelerators is automatically
generated to match the specified filtering and data transformations, all
accelerators use the same architectural template as a basis. This template,
which is also depicted in 14.3, comprises four main components. The
first component, the control component (14.3.a) is simply a register
file, which is mapped into the memory space of the on-chip ARM core.
The registers can then be used for communication between CPU and
PE.

162 automatic generation of near-data processing accelerators

Control (a)
Control Register File

Store Unit

Input Tuple
Buffer

Output Tuple
Buffer

Accessor (c)

Data
Transform

Memory (b) Compute (d)

Load Unit Filtering Unit
AXI4 Full

DRAM

AXI4 Lite
Control

NDP Accelerator (PE)

Figure 14.3: Architectural template used by the generated NDP accelerators.

The second component, marked (b), of the template is concerned
with loading and storing data from/to memory. As described in
the previous section, the PEs do not have direct access to the Flash
memory. Instead, the input data is loaded from the DRAM via the
corresponding AXI4 interface provided by the Zynq PS. The loading
and processing of data takes place at a granularity of 32KB blocks.

The two tuple buffers in the accessor component, marked (c), are
responsible for converting between the native bit-size of the memory
interface (64 bit on Zynq-7000), and the actual size of a tuple in the
KV-store (i.e., a key-value pair).

The computation component, marked (d) in 14.3, consists of two
main functional units: The filtering unit will discard any tuple that
does not match a user-specified predicate. Predicates can evaluate
elements of the key, as well as the value and, in contrast to prior
work ??, can also be defined across multiple columns. This is achieved
by the option of chaining multiple filtering units, each evaluating a
single predicate. The number of filtering stages is configurable, and
the framework will automatically generate the required logic.

The second functional unit is the data transform unit, which trans-
forms the tuples that passed the filter, as defined by the user. Example
for transforms include discarding RocksDB meta-data, or unnecessary
columns. Both units, the filtering unit as well as the data transfor-
mation unit, are generated automatically, as described in the next
section.

14.4.2 Automatic Generation of NDP Accelerators

In general, the underlying abstraction of most contemporary databases
is structured application data. An example for this structuring are
relational databases, that impose a database scheme on all of the stored

14.4 near-data processing accelerator generation 163

/* @autogen define parser Point3DTo2D with

chunksize = 32, input = Point3D , output = Point2D ,

mapping = {output.x = input.y, output.y = input.z }

*/

typedef s t r u c t { u i n t 3 2 _ t x , y , z ; } Point3D ;
typedef s t r u c t { u i n t 3 2 _ t x , y ; } Point2D ;

Figure 14.4: Example Code showing how a PE is defined for automatic gen-
eration. The generated PE will automatically transform data
from the Point3D-type to Point2D-type, discarding the field x.
Additionally, the Point3D-structs can be filtered using predicates
on all of the present fields (x, y and z).

data. As an alternative to relational databases, key-value stores employ
a less structured way of storing data. While key-value stores typically
do not enforce a structure, most applications still use structured data.
Thus, the application might use string-based key-value stores to store
the binary data, maintaining the application-level structuring of the
data outside the KV-store. The application would then use an internal
record-based datatype (e.g. structs), and transform this data into a
corresponding key-value pair. The resulting key-value pair obviously
has the same structure as the underlying struct.

For our automatic generation, we have to assume that the data is
structured, as we would not be able to interpret the value data for
filtering or other processing otherwise. Typically, an application will
use data-classes or structs to represent this structure. By interpreting
these type-definitions, our tools can generate the matching hardware
NDP units for the specified data structures. In our framework, we
rely on C-inspired type-definitions, as well as annotations for the
specification of the PEs. This allows the database engineer to reuse
his application code for the generation of PEs. An example for the
specification of a PE is given in 14.4.

From the parsed type-definitions and annotations, an internal repre-
sentation of these types is built. This internal representation is limited
to data-types that are suitable for hardware-processing. Specifically, in-
tegers and single/double precision floating point types are supported.
In addition to these primitive types, it is also possible to work with
(nested) arrays and (nested) structs. For byte-arrays, it is also possible
to flag them as string-data using a prefix annotation. If the annotation
is given, the corresponding byte-array will be split into a prefix that
is handled as a regular field, while the rest of the byte-array is not
used for predicate-evaluation. The reason for this lies in the potential
sizes of strings, which makes them very hard to process in hardware.

For example, the output of the Tuple Input Buffer is just a sequence
of bits containing the complete data of the corresponding struct. With
the information gathered by the contextual analysis, these bits can

164 automatic generation of near-data processing accelerators

be interpreted. For example, consider a struct Point which encodes
the coordinates x, y and z (all 32 bit integers) of a point in three-
dimensional space. The hardware now knows, that the first 32 bits
encode x, while the second 32 bits encode y, etc. Using this infor-
mation, it is now possible to filter points that lie behind a certain
threshold (filtering), or project the 3D-data into a two-dimensional
space (data transformation).

Contextual Analysis As described previously, the contextual analy-
sis phase of our tools is responsible for computing the data-layouts
from the parsed representations of the type-definitions. To simplify
this process, the contextual analysis performs multiple transformations
on the struct data-type. The input to the contextual analysis are trees
representing the struct-types. Each node describes a different part of
the overall structs, with leaf nodes representing actual primitive types
(e.g., integers), while regular nodes can be nested structs or arrays.
In the first step, arrays that are annotated to represent strings are
transformed into structs, which contain a prefix-field followed by an
array, which contains the rest of the string (postfix). After strings are
resolved in this manner, the next step removes arrays completely from
the tree, by flattening them into structs with a corresponding sequence
of scalar element fields. In essence, an array uint_32t [2] becomes
the struct struct {uint_32t elem_0, elem_1;}. Since the data layout
is identical for both, this scalarization simplifies the following steps. In
a final step, the contextual analysis determines the largest relevant field.
Relevant fields are those that can be used for filtering predicates. In
our case, this includes all primitive fields except string-postfixes. Using
the size of the largest field, the contextual analysis then determines,
whether other fields have to be padded. The padding ensures that all
relevant fields can be processed in a single comparator unit.

Memory Interface The memory interface contains a Load- and a
Store-Unit, both having access to the PS-DRAM via a shared AXI4 Full
interface. In contrast to [18], we opted for more flexible units. Vinçon
et al. rely on fully static units that always load and store complete data
blocks (32 KByte). While this keeps the hardware footprint minimal,
it is not very efficient with regard to the use of memory bandwidth.
Due to the Data Transformation step, which often removes elements
such as metadata from the tuples, the output is almost always smaller
than 32 KByte. As memory contention is a major bottleneck, reducing
the number of memory accesses will improve the performance. In our
work, the Load- and Store-Unit can be configured (using the Control
Register File) to store variable amounts of data, thereby reducing
unnecessary memory accesses and memory contention.

Tuple Buffers The Tuple Buffers transform the unstructured data
retrieved from memory into processable structured data, and back
again for storage. To do this, a buffer is used to group the incom-
ing stream of 64 bit words, until one or more complete tuples are

14.4 near-data processing accelerator generation 165

Filtering Unit

Parameter IO

deque

Tu
pl

e
In

pu
t F

IF
O

Tu
pl

e
O

ut
pu

t F
IF

O

el
em

_0
el

em
_1

el
em

_n

Compare Logic

Tu
pl

e Enqueue
Logic

co
l-s

el cm
p-

va
l

op
-s

el

Figure 14.5: Internal structure of the Filtering Unit.

available. According to the padding and type information gathered
by the contextual analysis phase, this word is split into a vector of
correspondingly padded words. A second vector contains all of the
disregarded string-postfixes. The string-postfixes are carried along the
computations, but cannot be accessed. The Output Buffer reverses the
transformation of the Input Buffer, so that the result can be stored
back by the Store Unit.

Filtering Unit This module provides the selection-functionality on
the incoming stream of tuples. To do this, hardware is generated that
allows the comparison of tuple-members against a given reference-
value using a set of compare-operations. An important extension over
the work presented in [18] is the fact that the set of operators can be
easily extended in our toolflow. Each operation is represented using a
function mapping two data-words to a boolean value, which in turn
is used to determine, whether a tuple is filtered out. Using a user-
defined set of operations or the pre-defined standard set of operations
(̸=, ==, >, >=, <, <=, nop), the Compare Unit is generated. Since our
toolflow relies on the Chisel3-framework [3] for the implementation
of the actual hardware, this also enables flexibility. For example, the
framework supports interfacing to Verilog and VHDL, which in turn
allows addition of custom compare-operations. A schematic view of
the filtering unit is shown in 14.5.

The input and output are FIFOs. In each cycle, a present tuple is
dequeued from the input FIFO and one of its elements is selected using
a multiplexer. This element is used as input to the Compare Unit which
also uses the compare_value and operator_select to determine the
exact operation to perform. The resulting signal is used to determine,
whether the current tuple is to be enqueued into the output queue.
A very important advantage of this architecture is the chainability.
Due to the clear interface, this unit can be chained multiple times to

166 automatic generation of near-data processing accelerators

allow the evaluation of multiple predicates in a pipeline, which was
not possible with the architecture in [18].

Data Transformation Unit The Data Transformation Unit is auto-
matically generated from the given struct-types. Both input and output
are tuple-FIFOs. During the generation of the Data Transformation
Unit, the framework will automatically match each (nested) field of
the output-struct to the appropriate (if any) field of the input-struct.
Using this mapping of input- to output-fields, hardware will be gener-
ated that implements this transformation. In general, there are three
cases: 1) When the input and output are of the same struct-type, tu-
ples are simply passed through. 2) If the output-struct contains only
(nested) fields that are also present in the input-struct, the mapping is
automatically derived. 3) If the output struct-type contains (nested)
fields that are not present on the input, the user has to specify which
(nested) input-field is to be used. While this is very flexible, it also
requires user interaction in the form of corresponding annotations. An
example for this is shown in 14.4 with the mapping-key. Using this key,
it is defined that y and z are used for the projection into 2-d space.
Without a mapping, the toolflow would default to the second case and
use x and y for the projection.

Composition All of the described modules are then composed
into a PE. Due to their latency-insensitive design, the corresponding
interfaces can be directly wired-up. Additionally, all modules are
automatically connected to their respective control registers. The con-
trol register file is automatically configured to provide the required
number of registers.

14.4.3 Automatic Generation of the Software Interface

In addition to automatically generating the PEs for performing the
NDP operations, we also added a tool pass, which automatically
generates a software-interface for controlling the PEs. The reasoning
behind this is to allow a database-engineer to use the PEs without
any additional knowledge about how they work and how they are
controlled.

Using the information about the Control Register File and the behav-
ior of the PEs, we generate the software-interface bottom-up: First, we
generate compiler-macros for encoding the different addresses. From
these macros, we built simple software-functions for accessing the
different control registers. In a final step, we use these access-functions
to built more complex functionality, such as synchronous and asyn-
chronous filtering functions using one or multiple of the filtering
stages. For debugging-purposes, functions are generated for printing
the state of the PE and for outputting the corresponding data-types.
All generated functions are collected in a single header-only library

14.5 evaluation 167

/** Control Register Addresses. */

def ine START 0

def ine BUSY 4

[. . .]
def ine FILTER_OP_0 60

def ine CYCLE_COUNTER 64

/** Generated Functions */

u i n t 3 2 _ t f i l t e r _ s y n c (. . .) { . . . }
u i n t 3 2 _ t f i l t e r _ a s y n c (. . .) { . . . }
void wait_unti l_done (. . .) { . . . }

Figure 14.6: Snippet from the generated software-interface that can be used
to interact with the PEs.

file, which can then be added to the project by the database-engineer
in order to exploit the PEs.

An example-snippet of the generated header-only library file is
given in 14.6.

14.5 evaluation

We will first compare our automatically generated PEs against the
hand-crafted units used in [18]. Since [18] has already shown that the
NDP approach outperforms the typical non-NDP approach, we will
omit this discussion. Then, we will examine the hardware utilizations
of the generated PEs and determine their usability on the OpenSSD
Cosmos+ SSD platform. All hardware-syntheses are run targeting the
Xilinx Zynq-7000 SoC (XC7Z045). In all designs, the Flash controllers
and processing elements are clocked at a frequency of 100 MHz,
while the NVMe-Core is clocked at 250 MHz, which is in line with
the original baseline. While a higher frequency could improve the
performance of the PEs, the main bottleneck in this architecture is the
available Flash bandwidth.

Performance For the performance evaluation, we use the same
benchmarks as in [18]. They work on a sample dataset for a publica-
tion reference graph. The nodes of the graph are papers published
in journals and conferences. The edges of the graph are references
between those papers. Overall, the dataset is comprised of 3,775,161

Paper-Entries and 40,128,663 references between them. For the evalua-
tion, we run GET- and SCAN-operations using the same software-NDP
baseline as well as the adapted algorithm, which uses the correspond-
ing PEs. Note that for both operations the execution is implemented
in a hybrid way, where the software executes a very general algorithm
and exploits the hardware whenever datablocks have to be filtered or
transformed.

The resulting NDP-runtimes for GET are shown in 14.7 (a). Note
that both the NDP hardware and software runtimes we report for

168 automatic generation of near-data processing accelerators

GET are slightly slower (ca. 10%) than those given in [18]. This is due
to updated firmware for the COSMOS+ board, which traded some
performance for higher reliability. As described in [18], it also makes
sense that the GET-operation does not profit greatly from hardware
support, since it is sequential and the configuration-overhead (i.e.,
writing control registers) of accelerators is too high to make an overall
difference. Even though, the GET-operation does not improve, the
automatically generated PEs are similar in performance in comparison
to the ones used by [18].

HW SW
0

10

20

30

40

50

60

Ti
m

e
(m

s)

(a) GET Operation

HW SW
0

1

2

3

4

5

Ti
m

e
(s

)

(b) SCAN Operation

Accelerator
Generated
Designed

Figure 14.7: Execution times of the GET and SCAN operations, comparing
our work to the work provided in [18]. For both Operations
execution is executed with HW-acceleration (HW) and without
(SW).

The SCAN operation has much longer runtimes, making the minor
firmware-induced timing variations between [18] and our measure-
ments negligible. As in [18], the hardware-accelerated NDP SCAN is
faster than the software version. The performance of our generated
accelerator is on par with the manually optimized one as shown in
14.7 (b). Using the generated PEs slightly increases the runtime by
0.018 seconds from 5.512 seconds to 5.530 seconds.

An additional extension of our work is the possibility to gener-
ate PEs featuring multiple filtering stages. Using multiple pipelined
filtering stages allows the implementation of more complex NDP-
functionality. Moreover, due to the use of elastic pipelines, additional
filtering stages will only add very small increases to the overall execu-
tion times. Since the filtering stages are able to process a tuple per cycle,
the increase in latency of additional filtering stages will be marginal.
Especially for compute-bound tasks, this would give the hardware
accelerators an edge over the use of the on-device ARM-cores.

Hardware Utilization We generated accelerators that provide the
same filtering and transformation functionality as [18] and compare
our hardware utilization against theirs. Specifically, we use 1 paper-PE
to process the nodes in the graph and 7 ref-PEs to process the edges.
Since [18] only reports slices for the PEs, we limit our comparison to

14.5 evaluation 169

slices as well. Please note that each of our generated accelerators also
uses a single BRAM slice, which was not the case for the custom built
processing elements of [18].

Table 14.1: FPGA Resource Utilization of the PEs used in [18] and our work.
The design contains the complete COSMOS+ OpenSSD platform
as well as 1 paper-PE and 7 ref-PEs.

Slice Util. (abs.) Slice Util.(%)

[18] Our Work [18] Our Work

Overall 40821 41934 74.70 76.73

paper-PE 9480 14348 17.35 26.25

ref-PE 1277 1446 1.41 2.65

Available 54650 54650 100.00 100.00

14.1 shows the corresponding utilization results. It is noteworthy
that for both of the PE-types, the resource utilization has grown. Some
of this can be attributed to the improved Load- & Store units, which
have become more flexible. Specifically, instead of always processing
blocks of a certain size, our infrastructure can be configured to load
only partial data blocks. Analogously, the Store-Unit can be config-
ured to write back partial blocks. Since the Data Transformation will
typically strip data away, this reduces the overall amount of data read
and written, which in turn reduces memory contention. Also, note
that the overall increase is less than expected, considering the size
increases of the individual PEs. This is due to a more efficient use of
interconnects in our refined architecture template.

We also evaluated the amount of hardware required for multi-staged
filtering, as well as for different tuple sizes. For the first part, we
take a closer look at the correlation between tuple-sizes and required
hardware. For this part of the evaluation, we rely on out-of-context
synthesis. In out-of-context syntheses, only a selected part (in our case
the PE) is synthesized without the rest of the surrounding architecture.
The resulting utilizations represent the amount of logic resources
required without very dense packing. For the generation of the PEs,
we used a number of different input formats that feature tuple sizes
ranging from 64 bits up to 1024 bits. For of these sizes, we specified
a struct with the corresponding number of uint32_t and uint8_t

values. Input and output types are identical and mapped automatically.
For each size, we generate a PE that is able to compute on the complete
tuple (at the granularity of 32-bit fields) and another PE, where half of
the data is discarded using string-prefixes.

The results are shown in 14.8. An interesting observation is the
fact that for smaller PEs, the use of string-prefixing yields a higher
slice-requirement. At a first glance, this would make the prefixing

170 automatic generation of near-data processing accelerators

64 128 256 512 1024
Overall Struct-Size (bits)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Sl
ice

s (
%

)

Slice Utilization - Sizes
Half
Full

Figure 14.8: Out-of-Context Slice Utilization of generated PEs in correlation
to the size of the processed tuples. Half refers to accelerators
using the prefixing, whereas Full refers to the ones using all
data.

irrelevant. To understand why prefixing is still necessary in some
cases, we have to consider that the critical part of our hardware is
the Filtering Unit with the compare operations at its core. In 14.9, all
fields have a width of 32 bit, which means that the corresponding
compare-operators are also 32 bit operators. For the 1024 bit struct,
the corresponding string-data would have an overall size of 512 bits. A
full-width compare unit would vastly increase the amount of required
hardware. Thus it is still reasonable to use the prefixing.

Lastly, we take a closer look at the multi-stage feature and the result-
ing hardware-requirements. For this part of the evaluation, we reuse
the same data-formats as in the previous step, but focusing on 256

bit structs only. For both (with and without string-prefixes), we built
accelerators with up to 5 filtering stages for more complex predicates.
Of these, especially the 2-staged ones are interesting, since they could
be used to implement RANGE_SCANs. Again, the utilization results
were obtained using out-of-context synthesis.

Looking at the results shown in 14.9, we can see an almost linear
correlation between the number of stages and the slice requirement.
Additionally, we observe that the increase per additional stage is small
compared to the overhead incurred by the fixed part of the template
(Load/Store Unit, Tuple Buffers). This implies that multi-stage filtering
incurs only minor additional cost, while offering a lot more flexibility.

14.6 related work

The first approaches for Near-Data Processing, moving computation
closer to the data date back to as early as the 1970s. However, ap-
proaches such as database machines [5] or ActiveDisk [1, 12, 15] were

14.6 related work 171

1 2 3 4 5
Stages

0.0

2.5

5.0

7.5

Sl
ice

s (
%

)

Slice Utilization - Stages
Half
Full

Figure 14.9: Out-of-Context Slice Utilization (in percent) of generated PEs in
correlation to the number of filtering stages. Additional stages
increase resource requirement in a linear fashion, but provide
more flexibility. The use of string-prefixing (Half) has only minor
impact.

severely limited by the I/O-limitations and memory bandwidth of
mechanical hard-drives.

Only after the wide-spread availability of modern non-volatile stor-
age solutions, e.g., Flash-based SSDs, significant advances in the perfor-
mance of Near-Data Processing systems became possible. Approaches
such as SmartSSD [7, 11, 16] exploit the much higher I/O-bandwidth
of modern storage devices as, for example, provided by parallel, in-
dependent Flash-channels. JAFAR [2, 20] was one of the first systems
focusing on Near-Data Processing for DBMS. Biscuit [10] was another
approach targeting NDP for DBMS, namely MySQL. In contrast to
our work, they only employed the ARM-based CPUs found in com-
modity SSD hardware for software-based Near-Data Processing, but
also identified the lack of a usable framework for programming NDP
PEs as an important issue. Our framework allows to automatically
generate FPGA-based Filtering and Data Transformation units from
simple user-input. It thus offers a solution to make FPGA-based NDP
acceleration accessible to non-FPGA experts.

With their HRL architecture [9], Gao et al. present a new hardware
architecture targeting NDP that combines fine-grained reconfigurable
regions, as found on FPGAs, with coarse-grained regions as common
in Coarse-Grained Reconfigurable Arrays (CGRA). Their overall sys-
tem architecture combines this accelerator with DRAM in an Hybrid
Memory Cube (HMC), but does not include non-volatile memories.

Architectural challenges and other considerations on how to inte-
grate FPGAs into Near-Data Processing architectures were discussed
by Dhar et al. [6] and Becher et al. [4]. While Dhar et al. envisioned
an architecture featuring Flash storage and a combination of FPGA
and High-Bandwidth Memory (HBM), with the FPGA processing

172 automatic generation of near-data processing accelerators

data cached in HBM, the ReProVide architecture proposed by Becher
et al. uses a combination of an ARM CPU and an FPGA, similar to
our approach. In the multiple dynamically reconfigurable regions
of the FPGA, different pre-synthesized NDP PEs can be used. How-
ever, these accelerators must be hand-crafted and cannot be generated
automatically.

14.7 conclusion & outlook

In this work we have developed a framework for the automatic genera-
tion of FPGA-based accelerators for the use with Near-Data Processing
applications. Our evaluation shows that our automatically generated
accelerators provide almost identical performance compared to a setup
with hand-crafted hardware accelerators. This is worthwhile, since our
approach effectively removes the need for custom hardware develop-
ment and lowers the entry barrier for hardware-accelerated databases.
Moreover, our multi-staged filtering approach enables more powerful
computations with minimal overhead.

While filtering and transformation of data are wide-spread use-cases
that can easily be realized using our framework, more computational
and analytical tasks could also be performed using this architecture.
In future work, we will investigate, how we can leverage the data-
parallelism of the architecture to perform more compute-intensive
tasks. Using our architecture, it is possible to access and process all
tuple-elements in parallel, which could offer great potential for faster
analysis of the processed data.

references

[1] Anurag Acharya, Mustafa Uysal, and Joel Saltz. “Active Disks:
Programming Model, Algorithms and Evaluation.” In: Proc.
ASPLOS 1998. San Jose, California, USA, 1998. isbn: 1-58113-
107-0.

[2] Oreoluwatomiwa O. Babarinsa and Stratos Idreos. “JAFAR :
Near-Data Processing for Databases.” In: 2015.

[3] J. Bachrach et al. “Chisel: Constructing hardware in a Scala
embedded language.” In: Proc. DAC 2012. 2012.

[4] Andreas Becher et al. “Integration of FPGAs in Database Man-
agement Systems: Challenges and Opportunities.” en. In: Datenbank-
Spektrum 18.3 (Nov. 2018). issn: 1610-1995. (Visited on 08/22/2020).

[5] Haran Boral and David J. DeWitt. “Parallel Architectures for
Database Systems.” In: 1989. Chap. Database Machines: An
Idea Whose Time Has Passed? A Critique of the Future of
Database Machines, pp. 11–28. isbn: 0-8186-8838-6.

14.7 references 173

[6] Ashutosh Dhar et al. “Near-Memory and In-Storage FPGA Ac-
celeration for Emerging Cognitive Computing Workloads.” In:
2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI).
July 2019.

[7] Jaeyoung Do, J. Patel, D. DeWitt, and et. al et. “Query Process-
ing on Smart SSDs: Opportunities and Challenges.” In: Proc.
SIGMOD 2013. 2013.

[8] Facebook. RocksDB. https://github.com/facebook/rocksdb.
2020.

[9] Mingyu Gao and Christos Kozyrakis. “HRL: Efficient and flexi-
ble reconfigurable logic for near-data processing.” In: 2016 IEEE
Intl. Symp. on High Performance Computer Architecture (HPCA).
2016.

[10] Boncheol Gu et al. “Biscuit: a framework for near-data process-
ing of big data workloads.” In: ACM SIGARCH Computer Archi-
tecture News (June 2016). issn: 0163-5964. (Visited on 08/21/2020).

[11] Yangwook Kang, Yang-suk Kee, and et al. “Enabling cost-
effective data processing with smart SSD.” In: Proc MSST 2013.
May 2013.

[12] Kimberly Keeton, David A. Patterson, and Joseph M. Heller-
stein. “A Case for Intelligent Disks (IDISKs).” In: SIGMOD Rec.
(1998).

[13] Chen Luo and Michael J. Carey. “LSM-based storage tech-
niques: a survey.” In: The VLDB Journal 29.1 (2020), pp. 393–
418.

[14] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth
O’Neil. “The log-structured merge-tree (LSM-tree).” In: Acta
Inform. (1996).

[15] Erik Riedel, Garth A. Gibson, and Christos Faloutsos. “Active
Storage for Large-Scale Data Mining and Multimedia.” In: Proc.
VLDB 1998. 1998.

[16] Sudharsan Seshadri, Steven Swanson, and et al. “Willow: A
User-Programmable SSD.” In: USENIX, OSDI (2014).

[17] Yong Ho Song, Sanghyuk Jung, Sang-Won Lee, and Jin-Soo
Kim. “Cosmos+ OpenSSD: A NVMe-based Open Source SSD
Platform.” In: Flash Memory Summit (2016).

[18] Tobias Vinçon et al. “NKV: Near-Data Processing with KV-
Stores on Native Computational Storage.” In: Proc. 16th Interna-
tional Workshop on Data Management on New Hardware. Portland,
Oregon: ACM, 2020. isbn: 9781450380249.

https://github.com/facebook/rocksdb

174 automatic generation of near-data processing accelerators

[19] Lukas Weber et al. “On the necessity of explicit cross-layer
data formats in near-data processing systems.” In: Distributed
and Parallel Databases (2021). doi: https://doi.org/10.1007/
s10619-021-07328-z.

[20] Sam Xi, O. Babarinsa, M. Athanassoulis, and S. Idreos. “Be-
yond the Wall: Near-Data Processing for Databases.” In: Proc.
DAMON (2015).

https://doi.org/https://doi.org/10.1007/s10619-021-07328-z
https://doi.org/https://doi.org/10.1007/s10619-021-07328-z

Part IV

N D P O F F L O A D I N G M O D E L S

15
N E A R - D ATA P R O C E S S I N G I N D ATA B A S E S Y S T E M S
O N N AT I V E C O M P U TAT I O N A L S T O R A G E U N D E R
H TA P W O R K L O A D S

bibliographic information

The content of this chapter has previously been published in the
work "Near-Data Processing in Database Systems on Native Computational
Storage under HTAP Workloads" by Tobias Vinçon, Christian Knödler,
Leonardo Solis-Vasquez, Arthur Bernhard, Sajjad Tamimi, Lukas We-
ber, Florian Stock, Andreas Koch and Ilia Petrov in 2023 49th Interna-
tional Conference on Very Large Data Bases (VLDB). The contribution
of the author of this thesis is summarized as follows.

» As the corresponding and leading author, Tobias Vinçon was resposible
for the conceptional details and implementation of the shared state propa-
gation in nKV. He contributed the NDP interface, parsers and accessors,
the orchestation of software and hardware-based NDP as well as NDP
pipelines and operations which were utilized in the experimental evaluation.
Thereby, Leonardo Solis-Vasquez extended the COSMOS+ architecture
with mutli-core functionality. Arthur Bernhard was in charge of providing
the neoDMBS implementation in cooperation with Sajjad Tamimi and Flo-
rian Stock. Extending Linkbench with HTAP functionality was contributed
by Christian Knödler. The manuscript’s text was created in joint work by
Tobias Vinçon and Ilia Petrov with feedback from all authors including
Andreas Koch. «

abstract

Today’s Hybrid Transactional and Analytical Processing (HTAP) sys-
tems, tackle the ever-growing data in combination with a mixture of
transactional and analytical workloads. While optimizing for aspects
such as data freshness and performance isolation, they build on the
traditional data-to-code principle and may trigger massive cold data
transfers that impair the overall performance and scalability. Firstly,
in this paper we show that Near-Data Processing (NDP) naturally fits
in the HTAP design space. Secondly, we propose an NDP database
architecture, allowing transactionally consistent in-situ executions of
analytical operations in HTAP settings. We evaluate the proposed
architecture in state-of-the-art key/value-stores and multi-versioned
DBMS. In contrast to traditional setups, our approach yields robust,
resource- and cost-efficient performance.

177

178 near-data processing under htap workload

Passive Storage

Unified
Engine

Passive Storage

Trans.
Engine

Analytical
Engine

HTAP
OLTP OLAP

HTAP
OLTP OLAP

Computational
Storage

HTAP
OLTP OLAP

NDP Engine

Current HTAP Design Space NDP Extension

Unified Storage Decoupled Storage Computational Storage

Data
Freshness

Perf.
Isolation

Data Transfer
Reduction

Data
Freshness

Perf.
Isolation

Data
Freshness

Perf.
Isolation

Data Transfer
Reduction

Data Transfer
Reduction

U
pdate-aw

are N
D

P

D
at

a
Ex

ch
an

ge

Figure 15.1: State-of-the-art HTAP architectures can be divided into unified
and decoupled storage systems [58] and optimize either on data
freshness or performance isolation. NDP and computational
storage allow tackling both dimensions, while reducing cold
data transfers for better performance.

15.1 introduction

Modern data-intensive systems run Hybrid Transactional and Analyti-
cal Processing (HTAP) workloads combining long-running analytical
queries (OLAP) as well as frequent and low-latency update transac-
tions (OLTP) on the same dataset and even on the same system [53].
Such hybrid systems operate with continuous update rates on a hot
portion of a large dataset, while performing complex analytical tasks
on both the hot and the much larger cold part of the dataset. Con-
sequently, large data transfers of cold data occur that are partly due
to poor data locality, but also due to traditional (data-to-code) system
architectures. Such transfers entail non-robust performance, scalability
issues, and poor resource efficiency.

Near-Data Processing (NDP) is a code-to-data paradigm targeting
in-situ operation execution, i.e. as close as possible to the physical
data location. NDP leverages the trend towards smart/computational
storage as hardware manufacturers can fabricate combinations of storage
and compute elements economically, and package them within the
same device. Furthermore, with semiconductor storage (NVM/Flash),
the device-internal bandwidth, parallelism, and latencies are much
better than the external ones (device-to-host). Both trends lift major
drawbacks of prior approaches like ActiveDisks [1, 34, 59] or Database
Machines [14], such as bandwidth limitation and expensive proprietary
hardware. Interestingly, even commodity devices nowadays come

15.1 introduction 179

with compute hardware used for running backwards compatibility
firmware not for data processing.

Based on their storage design, two types of HTAP architectures can
be distinguished [58]: unified and decoupled storage (Fig. 15.1). The
former executes the OLTP and OLAP operations on the same dataset
based on snapshotting and multi-versioning techniques, and is optimal
for analytical processing on latest data. The latter separates the OLTP
and the OLAP sub-system. It trades higher (but amortizable) OLAP
response times, data freshness, selective access, workload adaptability,
for higher OLTP throughput.
Problem 1: HTAP architectures cause transfer of cold data. In state-of-
the-art large-memory settings, the working dataset fits in memory, yet
the complete dataset is much larger (cold, historic data) and available
on persistent storage. For instance, Umbra [51] is a novel system,
representative of the new class of hybrid in-memory/SSD-based high-
performance DBMS. HTAP workloads tend to process/analyze cold
data, which is generally not in memory. Existing HTAP architectures
(Fig. 15.1) assume passive storage, and thus OLAP processing entails
large transfers of cold data. This impacts the system performance, and
limits its scalability and resource efficiency (as shown in a motivating
experiment – Fig. 15.2 – discussed later on). A key observation of this
paper is that NDP naturally fits in the HTAP problem space, as NDP
allows in-situ operations to process cold data without moving it to the
host. NDP enables intervention-free execution, where the DBMS can
continue processing, after asynchronously offloading NDP operations
and delegating their execution to computational storage.
Problem 2: NDP necessitates transactional consistency. Despite all its
advantages, NDP is currently utilized solely in read-only settings. Yet,
in update-intensive HTAP settings, the most recent modifications of
OLTP-style transactions are only available in the large DBMS mem-
ory [21], likely scattered across different data structures. However,
analytical NDP operations from OLAP transactions, offloaded to com-
putational storage, require that most recent data in-situ, alongside the
cold persistent dataset, to achieve consistency and freshness guarantees.
These properties are necessary since NDP operations execute in the
context of the invoking transaction. The question of how the most
recent data can be collected and propagated to smart storage, and how
consistency and freshness can be ensured is still considered open [21].
Update-aware NDP. In this paper, we propose a snapshot-based, update-
aware NDP architecture for computational storage and HTAP work-
loads. The core idea is to define a small shared state that accumulates
modifications to main-memory data and DBMS state. Noticeably, the
shared state is the only delta between the working set in the large
DBMS memory, containing the most recent updates, and the much
larger, but colder and complete dataset on computational storage. The
shared state is regularly flushed to computational storage, whenever

180 near-data processing under htap workload

/

Stack Traditional Update-Aware NDP

Th
ro

ug
hp

ut
 [t

x/
s]

A BExpectation Evaluation

OLTP
100%

OLTP
100%

HTAP
OLTP+OLAP

Time

Injection
of OLAP Tx

DBMS serves
OLAP+OLTP

OLAP as NDP,
DBMS serves OLTP

Buffer
adjustment

Figure 15.2: Expectation: A traditional systems suffer the impact of data
transfers after an OLAP query injection. Update-aware NDP
executes OLAP operations in-situ, with robust performance. Our
evaluation B confirms this behaviour.

it reaches a pre-defined limit, but most importantly it is propagated
as part of every NDP invocation. Thus, at the point of invocation the
computational storage attains a complete and consistent snapshot, and
the read-only NDP operation can execute with consistency guarantees.
Moreover, the in-situ execution is asynchronous and free from DBM-
S/host intervention, as the computational storage now has a complete
snapshot of the entire dataset. Although our architecture is aligned
with disaggregated storage architectures [17, 45, 70], here we target
in-situ processing.

We demonstrate the impact of NDP in HTAP settings with a mo-
tivating experiment (Fig. 15.2) in MySQL/MyRocks as traditional
stack and MyRocks over nKV [69] as an NDP stack. In the first phase,
both systems run LinkBench [5] as an OLTP workload. In the second
HTAP phase, we inject an analytical OLAP operation (Betweenness
Centrality, performing a graph analysis) in parallel to OLTP. Upon
its completion, we switch back to pure OLTP in the last phase. The
clear performance drop with the traditional stack during the HTAP
phase is due to excessive cold data transfers. Noticeably, the OLTP
throughput remains unchanged with the NDP stack, because of the
intervention-free in-situ OLAP execution.
Our contributions are:
• We propose an update-aware NDP architecture that utilizes a small

shared state to create a consistent snapshot on computational storage
and execute the analytical NDP operation in-situ against it. Such
NDP executions have snapshot transactional guarantees.

• We propose new NDP execution models. NDP storage can execute
operations asynchronously in an intervention-free manner. Currently,
we focus on read-only, analytical NDP operations.

• We describe how intermediary and final results can be handled
in-situ to reduce data-transfers.

15.2 background and related work 181

• A case study shows the implementation in two different systems: a
key-value store (nKV), and a multi-version DBMS (neoDBMS). The
evaluation is performed on real hardware - COSMOS+ [18].
This paper is organized as follows. The next section provides nec-

essary background and discusses related work. In Sect. 15.3 we go
into the details of the proposed update-aware NDP architecture and
describe the concepts behind its execution model. The experimental
evaluation is discussed in Sect. 15.4 and we conclude with Sect. 15.5.

15.2 background and related work

We now discuss the current state-of-the-art HTAP systems from the
industry [25, 26, 42, 43, 57] and academia [2, 4, 6, 7, 15, 28, 35, 39,
44, 48, 50, 58, 62] and classify their approaches into the HTAP design
space. Our goal is to present: (a) the relevant background on the
HTAP design space and the extension with NDP, (b) an overview of
important aspects in regard to NDP and today’s systems support [3,
8, 9, 20, 21, 29, 31–33, 36, 49, 63, 64, 73, 74, 76], as well as (c) a brief
outline of the native storage concepts as they form the foundation of
the present system architecture.

15.2.1 HTAP Workload and Systems

Today’s database systems persist and operate on large and ever-
increasing amounts of data. However, the processing no longer in-
volves only OLTP-style workloads, operating on a small but hot por-
tion of the entire data. Moreover, real-time analytical queries (OLAP),
often with very complex algorithms, operate on the cold data from the
storage tier as well as the freshest updates from the OLTP workload.
The combined workload, termed Hybrid Transactional and Analytical
Processing (HTAP), extends the problem space of database architec-
tures with the following aspects [15, 48, 58]:
• Data Freshness. For the analytical portion of the HTAP workload,

the given system architecture should aim for having the most recent
version of data resulting from updates performed in the OLTP work-
load. Therefore, fast propagation of these updates to the analytical
snapshot is required, and optimally avoids any performance drops
for the transactional workload.

• Data Consistency. Regardless of the data freshness, the entire system
must ensure transactional guarantees for its transactions so that
transactional and analytical queries have a consistent view on the
data. Various mechanisms have been proposed and applied in
databases to construct the so-called required snapshot. Two of
the most prominent are the Copy-on-Write (CoW) approach and
Multi-Version Concurrency Control (MVCC). The first ensures the
visibility of older versions by creating a copy for modifications. The

182 near-data processing under htap workload

second creates a new version for every modified record and extends
it with the current timestamp.

• Data Transfers. Independently of the separation of the analytical
from the transactional engine, data transfers from the storage tier
to the host processing units account for a large part of the overall
performance. They result from: (a) HTAP processing of cold- and
hot-data likewise, and (b) the cold data being much larger than the
hot data and thus, causing buffer pollution and finally high eviction
rates. Overall, the result is limited scalability, bandwidth boundness,
and performance loss.

• Performance Isolation. DBMS are often used by business-critical ap-
plications, for which robust performance in terms of latency and
throughput is essential. Interference between OLTP and OLAP
workload must be prevented, in particular for hybrid scenarios that
run both of them concurrently [48].

• Memory Pollution. While OLTP workloads operate on the hot data
(working set) that fits in state-of-the-art large main memories, the
major portion for OLAP processing is the cold data that exceeds the
memory capacity. Hence, OLAP scans in hybrid scenarios inevitably
entail buffer pollution in case the transactional and analytical en-
gines share the same buffers, e.g. database buffers or OS page cache
and device caches. Even though the buffer size is usually defined to
be larger than the hot portion of the data set, the analytical queries
have to fetch large parts of the cold data into the buffer, and thus
cause evictions of the hot data.
Current state-of-the-art architectures proposed for HTAP scenar-

ios can be classified into two major categories [58]. Firstly, Unified
Storage Systems build snapshots for every occurrence of an analyti-
cal query. Consequently, this kind of system operates on the freshest
data and is optimal for in-memory OLAP processing. Widely-known
systems of this category are HyPer [35], Caldera [4], DB2 BLU [57] or
SAP HANA [25]. Secondly, Decoupled Storage Systems continuously
transfer modifications from the transactional engine to the separate
analytical engine. Thus, workload optimizations and performance
isolation can be introduced at the cost of data freshness. BatchDB [48],
SQL Server [43] or Oracle’s Dual Format [42] are representatives for
this category.

Near-Data Processing emerges as another dimension in the HTAP
architecture design space, which is not yet considered widely. Our
update-aware NDP architecture, proposed here, can handle the fresh-
est data and ensure transactional consistency without the drawback
of buffer pollution or lack of workload optimizations from Unified
Storage Systems. Noticeably, update-aware NDP allows to place data
most efficiently on the computational storage device to leverage the
hardware characteristics of the storage medium, but also introduces

15.2 background and related work 183

compute placement, as today’s devices often come with multiple
heterogeneous processing capabilities.

15.2.2 Near-Data Processing

Early approaches of Near-Data Processing date back to the 1980s-
90s. Database machines [14] or Active Disk/IDISK [1, 34, 59] introduced
proprietary magnetic/mechanical storage hardware. However, man-
ufacturing costs combined with the low bandwidth and parallelism
became limiting factors. With the advance in the semiconductor in-
dustry, Flash technologies and reconfigurable processing elements
arose, and Smart SSDs [21, 63] were proposed. Since then, a variety of
specific database and generic NDP frameworks were introduced such
as IBEX [73, 74], Minerva [20], Willow [63], BlueDBM [49], JAFAR [8,
76], Kanzi [31], ISP [38], YourSQL [33], Biscuit [29], PapyrusKV [36],
DoppioDB [3, 64], Caribou [32], Batched Writes [22], BlockNDP [9],
Umbra [51], PolarDB [17] or nKV [68, 69]. Besides avoiding costly data
transfers between host and device, each NDP approach optimizes for
specific characteristics.
Storage Properties. By moving the execution closer to the storage, the
opportunity to intensively leverage the hardware properties of storage
technologies emerged. Flash, NVM, and HBM are widely utilized
in NDP approaches due to their extremely parallel interfaces. Thus,
significantly higher on-device bandwidths can be achieved in contrast
to communications with the host. Indeed, [37] makes the case for 50

GB/s device-internal versus 6.4 GB/s device-to-host bandwidth. This
is due to the physical organisation of semiconductor storage devices,
which involves multiple chips, connected over independent channels to
the on-device processing element. The chip-level bandwidth increases
with chip density, which in turn increases due to modern 3D stacking
technologies.

Similarly, latencies can be reduced as time-costly transfers through
several OS layers are avoided and the arbitration over the parallel
storage entities can be highly customized, reducing the load on waiting
queues. Often, low-level interfaces that are usually not exposed to the
host (e.g. multi-plane operations), allow for further optimizations.
Computation Models and Compute Placement. Apart from the stor-
age technology, nowadays devices may comprise a variety of heteroge-
neous processing elements such as CPUs, GPUs, or FPGAs. Individual
computations can be placed either traditionally on the host, or on-
device. In case of the latter, it is further possible to split up and
distribute processing across the various processing elements in het-
erogeneous hardware. For example, nKV [68, 69] demonstrated that
moving computation to the device obtains significant performance
benefits. Yet, offloading computation from ARM cores to parallel
FPGA pipelines can improve throughput even further, especially for

184 near-data processing under htap workload

large scans. Depending on aspects such as the actual operation, work-
load, and underlying storage technology, the computation placement
decision can vary and hardware can be configured individually for
each NDP invocation.
Disaggregation and shared-storage architectures. The proposed NDP
architecture is aligned to current disaggregated storage architectures
[17, 45, 70]. These aim at elasticity and pushdown of database oper-
ations in the storage layer that decouples the CPU resources on the
compute nodes from those of the storage nodes. The present work
aims at NDP, which is a distinct subset of that problem space targeting
in-situ processing.

15.2.3 Native Storage

Under native storage [54], the DBMS operates directly on the physi-
cal storage without intermediary layers of abstraction. Consequently,
functionality like address mappings or garbage collection, that ap-
pears multiple times along the I/O path of traditional system stacks,
can be combined and deeply integrated into the DBMS. This benefits
not only the workload-aware scheduling, but also enables leveraging
the hardware characteristics. Especially with the advent of Flash as
general-purpose storage in today’s data centres, the throughput is
highly dependant on the utilization of parallel I/O units, e.g. channels
and LUNs [68]. Thus, native storage also establishes novel storage ab-
stractions like Regions and Groups [30] that can adapt to the workload
at runtime per database object, and improve throughput, latency, and
reduce write-amplification [67]. Other approaches, not yet as deeply
integrated into the database as native storage, are pursued by [13, 55].

15.2.4 Update-aware NDP Systems

The components of the update-aware NDP architecture (Sect. 15.3) are
generic, aligned with existing architectures of modern DBMS, and are
easy to integrate. Throughout this paper, we focus on two systems:
LSM-tree KV-Stores and multi-version DBMS.

Firstly, we employ nKV [68], a KV-store based on RocksDB, which
can be exposed as a MySQL storage engine by means of MyRocks
(MyRocks over nKV). It is a single-versioned, Copy-on-Write system,
supporting Repeatable Read as the highest isolation level. The un-
derlying data organisation is based on multi-level LSM-Trees [47],
with C0 being an in-memory skiplist-based MemTable, and C1...Cn

organized as Sorted String Tables (SSTs) on persistent storage. The
latter comprise data blocks with the actual KV-Pairs, and an addi-
tional index structure referencing these. As shown in Figure 15.3,
each active transaction is assigned a separate write batch that contains
transaction-local modifications before commit. Thus, transaction reads

15.3 update-aware ndp architecture 185

are first issued against their batch, before querying the MemTables
or the persistent data. Modifications of a transaction are invisible to
other transactions as they go to separate WriteBatches. Considering
the example of Figure 15.3, a snapshot taken during TX4 comprises
only key_a = 11 and key_b = 2.

Secondly, we introduce neoDBMS [10], as a multi-version NDP-
DBMS based on PostgreSQL. neoDBMS stores all updates as physically
materialized version records (Fig. 15.3). As such they are identified by
an implicit RecordID (<PageNr,SlotNr>). The version records of each
tuple form a version chain organized as a singly-linked list in a New-to-
Old (N2O) manner, where every version has a forwards reference to its
predecessor [27]. The invalidation of a version is handled implicitly by
the presence of a successor version. All version records in a chain have
the same virtual id (VID, e.g. ta or tb) as they belong to the same tuple.
To mark the entry-point of a chain, neoDBMS introduces a VIDMap

containing the RecordID of the latest version of each tuple. The N2O
organisation yields fast visibility checks, especially for fresh data. In
addition to the VID every physical record contains a transactional
creation timestamp, unique for each version chain. These are utilized
by the version visibility check to construct a transactionally consistent
snapshot. For instance, to construct the snapshot between TX3 and
TX4 (Fig. 15.3) the version chain is traversed to determine the first
visible version of each tuple to a transaction, e.g. ta.v3 and tb.v1 to a
transaction starting at the time of the snapshot.

15.3 update-aware ndp architecture

We begin with an overview of the components of the proposed archi-
tecture (Fig. 15.4) and elaborate on them in the sections to follow.

TX
5

TX
4

TX
3

TX
2

ta.v4 1 TX4

ta.v3 1 1 TX3

New-to-Old

MyRocks over nKV neoDBMS

SST12 SST1n

MemTable
MemTable

Flush

C
0

C
1

C
n

MemTable
Immutable MemTable

SST 1.1 SST 1.m

...

ta.v2 3 0 TX2

Version Chain:Entry Point:
RecIDTuple VID

VID(ta)
VID(tb)

tb.v2 9 TX5

tb.v1 2 TX1

......

... Compaction

key_a:11 . . . key_a:30

TX

WriteBatch
TX5

key_a = 5
key_b = 2 key_a=30 key_a=11 key_a = 1 key_b = 9

Past TX Active TX

Snapshot

key_b:9

ta.v1 5 TX1

Attr.RecId T.stampPtrLegend
key_a = ta.v*
 Visible records

Attr.RecId T.stampPtr

TX
1

Index
Block

DataBlock1
key_a:5

DataBlock N

SST 1.m

...
...

time

. . .

WriteBatch
TX4 key_a:1

SST n.m

. . .

SST n.1 SST n.2 SST n.3 ...

. . .

key_b:2 key_a:5
key_a:

Figure 15.3: Storage organization under nKV and neoDBMS.

186 near-data processing under htap workload

15.3.1 Shared State and NDP Execution Model

The core idea of the update-aware NDP architecture is to offload the
processing of read-only HTAP operations (e.g. complex queries with
massive scans) that require reading large parts of the cold data on
device, while ensuring transactional guarantees in presence of fre-
quent update transactions. To this end, we define a small shared state
that accumulates modifications to main-memory data and DBMS state.
The shared state is the delta between: the large working set in the
main memory of the host DBMS with the most up-to-date data, and
the much larger but colder and complete dataset on computational
storage. The shared state is regularly flushed to computational storage
whenever it reaches a pre-defined size, but most importantly, it is
propagated as part of every NDP invocation. Thus, at the time of
propagation, the computational storage attains a complete and trans-
actionally consistent in-situ snapshot, and the read-only NDP operation
can execute with consistency guarantees. The only caveat is that NDP
processing must begin from the shared state and only then move onto
the cold data, as data items in the latter may have been invalidated by
their “newer versions” in the former. Interestingly, the NDP execution
is intervention-free, as it is asynchronous and does not require any
interaction with the host. Therefore, it can achieve better scalability
and performance.

In the following sections, we consider details of snapshot creation
in single-version and multi-version systems, concurrency control, the
NDP interface, and the execution model.
Shared State. DBMS usually maintain the freshest data, mapping
tables, status or system information, in the large and fast main mem-
ory of the host system. Modifications or newly inserted records are
scattered across the database address space (Fig. 15.5.A) and remain
there, until they get evicted. Beyond actual records, modifications spill
across various auxiliary structures, such as status and mapping tables,
e.g. logical-to-physical address mapping. However, NDP operations
require all of the latest data and state, to ensure transactional guaran-
tees. In the words of Do et al. [21]: “If there is a copy of the data in the
buffer pool that is more current than the data in the SSD, pushing the query
processing to the SSD may not be feasible.”

In the update-aware NDP architecture (Fig. 15.5.B), we accumulate
the modifications to all of those structures in an incremental way and
place them together in shadow data structures that are collectively
referred to as the shared state. As a result, the original data is left
unmodified in the large memory of the DBMS. The shared state is
small and configurable in the range of a few hundred KB to a few MB
at most and can be propagated at low overhead.

The Delta-Buffer is a key element of the shared state. It accumulates
modifications as replacement records. Thus, records in the delta-buffer

15.3 update-aware ndp architecture 187

Native Storage Manager

Parsers & Accessors

Flash
NVM

Flash

NVM

Flash

NVM

Flash

NVM

Flash

NVM

Flash

NVM

Flash

NVM

Flash

NVM

NDP Extension

Processing

SW (ARM)

HW (FPGA)
Result-Set Manager

Execution Engine

NDP Execution Host Execution

Query Processor

NDP DBMS

C
o
m
p
u
t
a
t
i
o
n
a
l

S
t
o
r
a
g
e

Shared State
Data Dict

Delta Buffer

Address Mapping

Operations

UDF
Get/Scan Join Agg

NDP Pipelines

Transaction
Management

Buffer Manager

BEGIN TRANSACTION TX 1:
 UPDATE tbl1 SET ...
 INSERT INTO tbl1 ...

COMMIT;

BEGIN TRANSACTION TX2:
 SELECT c FROM tbl1 ...
 INSERT c+1 INTO tbl1 ...

COMMIT;

@NDP_transaction(TX3)
BEGIN TRANSACTION TX3:
 SELECT TOP(BC(...)) FROM tbl1,tbl2...
COMMIT;

OLTP OLAP

H
W
+
SW

S
c
h
ed
u
l
e
r

Address Mapping Delta Buffer

Data Dict

Shared State

SYNC
SHARED
STATE

NDP
EXEC

Native Storage
Interface

Figure 15.4: Update-aware NDP enables a transactionally consistent in-situ
processing of OLAP operations.

typically invalidate “older” versions present in memory or on the
computational storage. Processing thus begins always with the delta-
buffer and the shared state. In a multi-version DBMS, the delta-buffer
accumulates the versions newly created by active transactions, while
predecessor versions remain in memory and can be accessed by con-
current transactions. In a single-version DBMS (like RocksDB), the
delta-buffer contains replacement records.

The delta-buffer is managed by an append-only double buffering
strategy. Records are appended until the size reaches a certain thresh-
old, upon which a new pre-allocated buffer is made available, while
the old one is frozen. Committed records are prepared and compacted
on fewer pages, while data from uncommitted transactions is pruned.
Under specific systems like nKV, the process is straightforward as
the delta-buffer (MemTables) is guaranteed to contain only commit-
ted versions due to the WriteBatch techniques. A possible low-space
utilization is alleviated by lightweight compaction. Along these lines,
the corresponding entries in the mapping tables are extracted and
prepared. Both are then moved to the DBMS memory buffer, and
are simultaneously flushed to the computational storage device. The
traditional logging is orthogonal and remains unaffected. The shared
state and the delta-buffer can be tailored to specific database objects.

188 near-data processing under htap workload

C
om

p.
 S

to
ra

ge

C
om

p.
 S

to
ra

ge

 Data Dict

Update TxUpdate Tx. Analytical Tx.

Bu
ffe

r

Persistent
Data

Delta
Buffer

Δ
Data

NDP
Op

hot

cold

ho
t a

nd
 c

ol
d

da
ta

Update TxUpdate Tx Analytical Tx.

? NDP
Op

cold

on
ly

 c
ol

d
da

ta

Traditional NDP Update Aware NDP

Bu
ffe

r

Δ-difficult

Shared State

Snapshot

 Addr.Mapping

A B

Persistent
Data

DBMSDBMS

Figure 15.5: Modifications are gathered in a small in-memory shared
state and propagated to computational storage, for consistent
snapshot-based hot and cold data processing.

Thus, every DB-object can be assigned to a separate and individually-
sized delta-buffer, to account for different levels of hotness and update
patterns.

The concept of shared state is aligned with existing architectures of
modern DBMS and is easy to integrate. For instance, it resembles the
staging area in modern main-memory DBMS, such as SAP HANA [65],
the delta storage in multi-version DBMS [75] or the batch-write trans-
actional buffer in RocksDB.
Shared State Propagation Modes. The shared state is propagated
to computational storage device in two distinct modes. First, Flush
& Append is the regular mode, which is triggered by a flush of the
shared state. The flushed state is prepared as described above, to
contain data from a committed transaction, and the corresponding
log records are written out in advance. Along the same lines, ahead of
the flush, and based on the DBMS-controlled address mapping, the
native storage manager has allocated clean nonadjacent physical pages.
Noticeably, their physical addresses need not to be adjacent. Next, all
shared state pages are flushed to storage and written to those allocated
locations. Thus, the flush to persistent store is realized as a logical
append that is placed on pre-assigned and nonadjacent locations. The
flush is atomic, as only if all pages are successfully written, the storage
manager atomically swaps the address-mapping entries. Otherwise,
all pre-assigned address-mappings are dismissed, the corresponding
locations are marked for later garbage collection, and the process
repeats. The delta entries of the mapping table are merged atomically
as well. However, the merge is performed only after the completion of
active NDP-operations (which thus remain unaffected).

The second mode is Pass Along & Cache: At the time of an NDP
invocation, the shared state is snapshotted and, together with the list
of transactions currently in-flight, propagated to storage as part of the

15.3 update-aware ndp architecture 189

NDP invocation. The state is merely cached on-device for the duration
of the call, and released/garbage-collected upon its completion. This
is possible, since the max. shared state size can be configured to be
smaller than memory limits of the NDP device.

In this mode, applying the shared state to persistent storage is dif-
ficult in the general case since (a) it contains possible modifications
of the invoking transaction, yet it is unknown whether it will com-
mit; and (b) its space utilization may be low and incur overhead to
successive space management operations (compaction, garbage collec-
tion). With the shared state in place, the NDP operation executes in a
shared-nothing manner without any intervention or synchronization
with the host. Thus, the DBMS and device can operate independently
and only synchronize at the end.

15.3.2 NDP Transaction Management

We now describe how transaction management must be adapted
in the light of update-aware NDP, HTAP workloads, and existing
concurrency control (CC) schemes. In that context, we face three issues:
(a) transactional consistency, (b) intervention-free NDP executions, and
(c) easy integration in various systems.

Any transaction containing NDP operations is called NDP transac-
tion (annotated as @NDP_Transaction). Transactional consistency man-
dates that the NDP operations from an NDP transaction must only
process modifications by transactions committed prior to its beginning,
while ignoring modifications from concurrent transactions other than
their own. The issue at hand is that, at the time of the NDP invoca-
tion, it is unknown whether concurrent transactions will commit or
abort, and thus, which records should be processed. We tackle this by
executing the NDP operation against a transactional snapshot created
for it in-situ (described below). Noticeably, the snapshot construction
and the execution are intervention-free, since inside the shared state,
a list of the in-flight transactions is propagated alongside the NDP
invocation, and is thus available on the device. This approach works
well in the widespread general MVCC case [12], where the snapshot
comprises only the latest committed version records prior to NDP
transaction beginning. For example, NDP operations from transaction
TX3NDP (Fig. 15.6.A) can only operate on data from TX1, ignoring
modifications from TX2.
Transaction Scheduling. Depending on the DBMS design and the CC
flavor, modifications from concurrent transactions might be visible. For
instance, MySQL/MyRocks [24] mandates that the visible record is
the latest committed ahead of the NDP invocation (snapshot creation),
rather than the NDP transaction start. Thus, modifications from TX2

might be relevant to TX3NDP (Fig. 15.6.B), but will not be present on
device. Propagating them is difficult and unscalable. To this end, we

190 near-data processing under htap workload

propose a transaction admission mechanism for transactions with NDP
operations (Fig. 15.6). Whenever such NDP-transaction arrives (e.g.
TX3NDP), it is assigned a transactional timestamp, as usual. However,
its admission is delayed until after the completion of all transactions
that were active when it arrived. The delay is typically very short
(2ms in our setup), since OLTP transactions are fast relative to slow
NDP/OLAP operations. Currently, we allow a single NDP invocation
at a time. At the time the NDP-tx. is admitted for execution, no CC
anomalies occur, since modifications from TX2, but also from TX4 are
ignored (Fig. 15.6.C). Hence, TX3NDP has at least snapshot-isolation
guarantees.
Transactional Guarantees. We now analyze how update-aware NDP
supports transactional guarantees for read-only operations in two
transactional scenarios (Fig. 15.7). In particular, update-aware NDP
within nKV is bound to MyRocks’ highest isolation level Repeatable
Read and its MVCC implementation, and can avoid Dirty Read and
Non-Repeatable Read anomalies. Since NDP transactions wait for
all other active OLTP transactions to complete (commit or rollback)
before a snapshot of the current state is taken and the pushdown to
the device is issued (see Fig. 15.7.A), it is ensured that the shared
state and the delta-buffer only include transactionally consistent data
for all previously started transactions. In case another transaction is
started right after the NDP transaction, but before the NDP invocation
(see Fig. 15.7.B), MyRocks stores all writes of this transaction in a
separate WriteBatch (Sect. 15.2.4), ensuring that those updates will
not be available to other transactions until its commit. Even if the
transaction commits during the pushdown execution, the changes will
not be present on device, as they have not been propagated with the
NDP_EXEC call.
In-situ Snapshot Construction. In-situ snapshot creation is DBMS
specific and can be realized with (a) a Copy-on-Write mechanism
(MyRocks over nKV); as well as with (b) visibility-checking in multi-
versioned DBMS. In Copy-on-Write based systems such as nKV, this
snapshot is usually identified via a snapshot identifier, e.g. a sequence
number (see Fig. 15.8). Records with a newer identifier are simply
skipped during processing. This is possible because the write batching
mechanism ensures that the delta-buffer only committed data. For

TX1 TX2

TX3NDP
TX1

TX2

TX3NDP

timestamp(TX3NDP) admission

Visible versions

Invisible versions
time

TX4

admission delay

TX1 TX2

TX3NDP

General MVCC

MyRocks

A

B

C

read

Figure 15.6: NDP transactions are delayed until concurrent OLTP tx. com-
plete ensuring an intervention-free execution.

15.3 update-aware ndp architecture 191

TxHost TxNDP

BEGIN TX

WRITE(key)

COMMIT/
ROLLBACK

N
D

P

NDP_EXEC

READ(key)

delay

COMMIT

BEGIN TX

A TxHost TxNDP

BEGIN TX

WRITE(key)

COMMIT/
ROLLBACK N

D
P

NDP_EXEC

READ(key)

delay

COMMIT

BEGIN TX

B

WRITE(key)

Figure 15.7: Update-aware NDP offers transactional guarantees depending
on the integrated database.

C
o

m
p

.
S

to
ra

g
e

C
o

m
p

.
S

to
ra

g
e

Persistent

Data

Shared

State

NDP
Op

cold

MyRocks over nKV

Transaction

Write Batch

C0

Cn

NDP Transaction
WritesReads

Compaction

C1
Persistent

Data

Shared

State

NDP Op

cold

neoDBMS

Transaction NDP Transaction

WritesReads
TX3  TXId = 3

B
u

ff
e

r

Delta
Buffer

Vis. Check

TX3  SeqNum = 0x1001

T
ra

n
s
fe

r

Key SeqNum Value
k1 0xFFFF AAAATX0

k2 0x1000 BBBBTX1

k1 0x1001 FFFFTX2

k2 CCCCTX4

Visible
-
✓
✓
-

C
Cn

C1

C0

Batch

Rid Vid Value
r4990 0 AAAATX0

r4711 1 BBBBTX1

r2606 0 FFFFTX2

r0711 1 CCCCTX4

Visible
-
✓
✓
-

Pointer

Snapshot Construction: NDP TX3 Snapshot Construction: NDP TX3
E

v
ic

t

TXid

0
1
2
4

1

2

1

2

3

Commit

B
u

ff
e

r

Delta
Buffer

F
lu

s
h3

4

N
D

P

In
v
o
c
a
tio

n

N
D

P
In

v
o
c
a
tio

n

Figure 15.8: In-situ snapshot creation is DBMS specific.

instance, under nKV (Fig. 15.8), the NDP transaction and invocation
get a sequence number of 0x1001, and the in-situ snapshot comprises
keys k1 and k2, as k1 with sequence number 0xFFFF is skipped due to
its lower component level.

In a multi-version system like neoDBMS, an in-situ visibility check-
ing is performed. To this end, the shared state also comprises the
version chain information and the list of in-flight transactions at the
time of the NDP invocation. Given the invoking transaction id, the
visibility check can now traverse the version chain backwards starting
from the VIDMAP entry point (Fig. 15.4) to find the version, visible to
the NDP transaction. We utilize newest-to-oldest order and thereby
can ensure fast visibility checks, especially for fresh data [27]. For
instance, neoDBMS (Fig. 15.8) will only construct an in-situ snapshot
for TXid = 3 comprising version records r4711 for VID/tuple 1 (as
r0711 as higher creation timestamp) and r2606 for VID/tuple 0 (as its
creation timestamp is the highest ⩽TX3).

192 near-data processing under htap workload

15.3.3 NDP Interface

To enable an efficient pushdown of NDP commands, the lean interface
definition of native storage [68] is extended. It builds upon NVMe, yet
as a user-space module to avoid high user-/kernel-space switching
overhead. Our native NVMe leverages SPDK [66].
Interface Design. Native storage [54] allows operating directly on
physical memory, without any intermediary layers, by means of read-
/write/erase commands. This interface is extended by a command that
transmits the current shared state via the NVMe payload to the device.
Furthermore, an NDP_EXEC command extension sends parameter
sets to device and can trigger a variety of executable functions (see
Sect. 15.3.6). Its parameter set includes: (1) the shared state, and (2)
the operation-specific parameters. Moreover, metadata and schema
information are also included, i.e. column families and their respective
data formats, number of LSM levels, assignment of SST per level, and
many more.
Native integration. The NDP interface is deeply integrated into the
DBMS. The entire stack is optimized to avoid copies of memory
(zero-copy approach). Calls to computational storage are issued either
synchronously through a central polling manager, or asynchronously
through a callback function. The logical-to-physical address mapping
is maintained within the storage manager, and updated on-the-fly
with every I/O. Invalidated pages (e.g. after compaction) are marked
for later garbage collection.

15.3.4 Parsers and Accessors

NDP operations must access and interpret persistent binary data in-
situ without any interaction with the host. To this end, schema and
data dictionary information must be present on device, and is propa-
gated with the NDP call. It comprises information about DB-objects,
their columns, types, sizes, or their physical representation. The on-
device NDP infrastructure employs schema information to support
data layout accessors for in-situ navigation, and format parsers for
data interpretation [68, 72]. We also introduce physical page pointers
to reduce the overhead of large address mappings.
Layout accessors exist for every element of the persistent data layout
and help to navigate through the binary data organization and to
access sub-elements. For instance, for a given key (Fig. 15.9), accessors
allow navigating through the index block of an SST to the physical
location of a record within a data block. Accessors are simple to
realize, with a microarchitecture resembling load units. They can be
instantiated multiple times to increase the parallelism.
Format parsers. While accessors handle in-situ navigation, format
parsers are required to extract persistent binary elements (records,

15.3 update-aware ndp architecture 193

values), interpret them semantically, and allow for further processing,
mathematical operations, or comparisons. We actually distinguish
field, record, and page formats and layouts for this purpose. For
instance, in MyRocks, each element of the LSM-Tree based data or-
ganization (Fig. 15.9, right side) corresponds to a specific parser and
accessor. The index block is interpreted according to its format, and
the physical page pointers to the data blocks are extracted. Similarly,
the data block is processed by the respective parsers and accessors to
obtain the actual records, which themselves contain elements such as
(a) an identifier, including a column_family_id, all primary key fields, the
sequence number, and the key/value type; and (b) the actual value
formatted according to the DDL definition.
Generation. Parsers and accessors are not necessarily static. As for-
mats and layouts are declarative, parsers and accessors and can be
automatically generated as software and/or hardware counterparts to
support heterogeneous hardware, schema evolution [71].

Index Block
Data Block 1 Data Block 2 Data Block 3

File (logical)

Data Organisation (logical): Table T1

File Representation Native Storage Representation

Data Block 1

Data Block 2

Data Block 3

...

Index Block

Storage (physical)

PPN 20

Address
Mapping
LBA PPN
1 20

2 100

303

... ...

7 40

...

PPN 30

PPN 40

PPN 100

Storage (physical)

PPN 20
PPN 30

PPN 40

PPN 100

Table T1

F
ile

O

ff
s
e
t

Physical
Page
Pointer

Table T1
Footer 3

5
8 90

PPN 90
2

4

6

C0 C1

Cn

SST SST SST... ...

Flash Page

Accessor

PPP Parser

2
1

1

L
S

M
-T

re
e

Figure 15.9: Physical Page Pointers eliminate the overhead of logical-to-
physical address translation in file-based designs. The numbers
indicate the necessary navigation steps.

Physical Page Pointers. Under native storage [54], the DBMS has
direct control over the physical storage and manages the logical-to-
physical address mapping. However, NDP-executions also necessitate
address information in-situ, for on-device address resolution and
intervention-free execution. The propagation of this information incurs
high synchronization overhead. For instance, the size of the page-
level address-mapping can be as large as 1 GB for 1 TB of storage.
To this end, we introduce Physical Page Pointers (PPP, Fig. 15.9) that
complement parsers and accessors, such that any reference within the
persistent dataset is based on a PPP. They are designed for append-
based storage (e.g. with LSM-Trees [47, 52], or Partitioned B-Trees [60]),
since persistent data is immutable and is only modified by DBMS-
controlled storage maintenance (i.e. garbage collection, compaction).

194 near-data processing under htap workload

PPPs eliminate the overhead of in-situ address resolution and address-
mapping synchronization. The latter is still maintained, but only
within the DBMS.

For example, the index block of an SST utilizes PPP parsers and
accessors to refer to the data blocks (Fig. 15.9). In contrast, traditional
DBMS mostly use files and offsets within them, which require on-
device address-mapping for in-situ navigation. To process an SST file
(Fig. 15.9), the DBMS extracts the address mappings for the file (1),
loads (2) and processes (3) the index block (4). For each index block
entry, the DBMS resolves (5) the address for the data block and (6)
loads it.

15.3.5 Software and Hardware-based NDP

Today’s computational storage devices come with various heteroge-
neous processing elements, ranging from classical scalar ARM proces-
sors and SIMD units to highly flexible FPGAs. Different NDP process-
ing tasks may profit from software- or hardware-based processing, or
from a combination of both.
Software. Software-based NDP is especially viable for low-latency
operations [68], such as point lookups, as these are less parallel, and
benefit from the faster scalar units. The development of software-based
NDP functionality is straightforward and their software compilation
times are relatively short.
Hardware. In comparison, hardware design is relatively tedious, error-
prone, and requires more extensive debugging and testing [71]. More-
over, hardware compilation (e.g. FPGA-bitstream generation) is time-
consuming. However, hardware implementations can speed-up pro-
cessing significantly. Particularly, large scans are good acceleration can-
didates, due to their intrinsically parallel execution [68]. Furthermore,
hardware units typically have multiple instances. In the proposed
architecture, we configure the number of instances individually for
each NDP invocation.
Software-Hardware Co-Design. Often, software- and hardware-based
processing can be combined to form a flexible execution model. In our
full update-aware NDP architecture, we foresee a scheduling engine,
running in software, that dynamically decides whether to schedule
a processing task on a hardware processing element, or to use the
software-based alternative [68, 69].

15.3.6 NDP Pipelines and Operations

Even though the actual operation execution is not the primary focus
of this paper, we describe how the proposed architecture handles
the execution of sequences of NDP operations. With computational

15.3 update-aware ndp architecture 195

storage, we propose a hybrid execution model, combining pipelined
block-at-a-time [56] and materialized execution strategies.

Inspired by [77], the operations in a demand-pull pipeline are split
into operation execution groups. Block-at-a-time (BaT) execution [56]
(formerly termed vectorization [77] – not to be confused with SIMD-
vectorization) is achieved by embedding a buffering phase between
any two execution groups. All the operators in a pipeline are connected
through a record-at-a-time interface. The output of an operator within
a group is passed on-the-fly to the next one, while the buffering stage,
caches records internally until a buffer budget is reached. Once full,
the next execution group can pull the buffered records over the same
record-at-a-time interface. This mode leverages the device-internal
memory hierarchy and heterogeneous processing elements, as the
buffer stage can be placed in the device DRAM cache. Nonetheless,
the buffer/cache budget remains a key limiting factor.

To this end, an operator can materialize intermediary or final results
on the device (Fig. 15.10), and the next operator can operate on the
materialized data (more details in Sect. 15.3.7). Local materialization
allows: (a) the creation of complex NDP-pipelines, possibly with size-
reducing operators at the end; (b) in-situ handling of non-size-reducing
operations like joins or grouping, (c) the reduction of data transfers to
host and more efficient DMA handling.

Currently, nKV supports the following NDP operations. Get retrieves
the value for a given key and benefits from in-situ execution with low-
latency [68, 69]. Scan. Both key and value filter-scans can benefit from
parallel in-situ executions [68, 69]. Furthermore, our format parsers
realize projection. Depending on the query, the query planner embeds it
as an early projection [40] in the initial pipeline stages to reduce the size
of the result set. Furthermore, we support Joins such as Block Nested
Loop Join and Grace Hash Join that spill intermediate partition results
to the computational storage. This is especially advantageous as joins
are non-size-reducing. Finally nKV also supports hash table-based
GROUP BY and aggregation.

Betweenness Centrality (BC) is a UDF used as an analytical HTAP
operation. It performs a classical analysis on social graph data, and
measures the degree to which nodes stand among each other. Our
BC implementation in nKV is inspired by [16], and utilises the Node
and Link tables of LinkBench [5] as graph representation. The logic,
outlined in Algorithm [16, 68], sequentially scans the nodes with the
NodeTableParser. In case the type of the node complies to the given
search criteria, its neighbours are looked up via the LinkTableParser
and distances are calculated recursively. Finally, the BC results are
calculated according to the original algorithm in [16]. Overall, BC
yields a random and sequential I/O mix.

196 near-data processing under htap workload

C
o

m
p

u
ta

ti
o

n
a

l
S

to
ra

g
e

NDP Pipeline

σ(...) → BC → TOP3

DBMS

σ(...) TOP3

Persistent Data / Delta Buffer

T
e

m
p

D
a

taRes3 Final Result
N

D
P

_
E

X
E

C

Scan

@NDP_transaction(TX1)

BEGIN TRANSACTION TX1:

 SELECT TOP(BC(...)) FROM tbl1,tbl2 … WHERE tbl1.type = 10 ...
COMMIT;

Pipelined block-at-a-time Exec Materialized

Res2Res1
BC

σ → ⋈

Control Flow

Legend

Data Flow

Figure 15.10: NDP-pipelines can be executed on the device, for faster pro-
cessing or reduction of data transfers. Result set materialization
is viable on computational storage.

15.3.7 Result-Set Handling

A key goal of update-aware NDP is to leverage in-situ processing
capabilities and reduce data transfers to host. This encompasses the
intermediary or final results of NDP-operations. Clearly, a naïve block-
at-a-time strategy would cause excessive transfers.

A key insight is that, computational storage offers fast local memory
(BRAM, fast HBM or DRAM) as well as ample and cheap storage.
Furthermore, a native storage DBMS can exclusively allocate and
control on-device memory, allowing in-situ executions to materialize
intermediary or final results there (see Sect. 15.3.7). The update-aware
NDP architecture allows non-size-reducing operations, such as joins
or grouping, to materialize their results in-situ to reduce data transfers
(Fig. 15.10), while the next operator in a pipeline can operate on the
materialized data.
Planning and execution. The planner estimates the upper bounds
of the sizes of intermediary and final results along an NDP-pipeline.
If the estimate exceeds the buffer stage memory (BRAM, HBM), the
BaT execution group ends, a materialization stage is injected in the
NDP-pipeline, and another execution group begins.
Allocation. Depending on the size estimation, the planner and the
storage manager employ an allocation strategy that targets fast levels
of the on-device memory hierarchy first, i.e. static FPGA memories like
BRAM or URAM, followed by fast on-chip HBM, and off-chip DRAM.
If these resources are insufficient, a materialization and spilling strat-
egy to persistent storage (e.g. NVM or Flash) is applied. To this end,
every materialization stage is assigned an exclusive physical address
range by the native storage manager. This may be the case for hash-
join partitions, or aggregations with a high number of groups. If the
space turns out to be insufficient during execution, the pipeline stalls
and computational storage request more space from the DBMS in an
extra roundtrip.

15.4 experimental evaluation 197

Space management and garbage collection. A native storage DBMS
controls storage directly, manages logical-to-physical address mapping,
and performs the garbage collection. It allocates and assigns exclusive
physical address ranges to each materialization stage in a pipeline.
Thus, the DBMS ensures that other transactions, pipelines or NDP
operations do not overlap in the same storage space. Address ranges
are preserved for the duration of the execution until the completion
of the calling transaction. As part of commit/rollback processing
upon its completion, the DBMS marks them for GC and schedules an
asynchronous GC call.

15.4 experimental evaluation

Experimental Setup. The experiments are conducted on two different
system stacks (Fig. 15.11). The first, MyRocks over nKV, is based on
MyRocks with nKV [68, 69] as storage manager and is used if not men-
tioned otherwise. The host is running Debian 4.9 OS and is equipped
with a 3.4 GHz clocked Intel i5 CPU and 4 GB RAM. The COSMOS+
board [18] is attached over PCIe Gen 2.0 ×8 and comprises a Zynq
7045 SoC with an FPGA, two 667 MHz ARM A9 Cores, and an MLC
Flash module configured as SLC. COSMOS+ is roughly equivalent
to a consumer NVMe SSD or smart storage device (e.g. Samsung
SmartSSD [21]) in terms of price and resources. The concrete config-
uration depends on the evaluation stack. MyRocks (MySQL 5.6) is
configured with Repeatable Read as Serializable is not supported.
Unless mentioned otherwise, the memory footprint is set to 7.5% of
the dataset size (incl. 400 MB block buffer), and the mutable memtables
are configured to 32 MB.

The second system stack, neoDBMS, is based on PostgreSQL12 and
runs on an ARM Neoverse N1 System Development Platform (SDP)
as host with 4 2.6 GHz ARM N1-CPUs and 3 GB RAM. A Xilinx Alveo
U280 FPGA board with 2 GB DDR4 connected via PCIe Gen4 ×8

serves as enterprise-grade smart storage.
Baselines. We evaluate update-aware NDP against two baselines (Fig.
15.11): the block and the native stacks under nKV and neoDBMS.

Block/BLK (Baseline). The main baseline is the traditional, file-system
stack with block-device storage. Out-of-the-box MySQL and Post-
greSQL process OLTP and OLAP queries on the host, transferring all
data from storage. We use ext4 as file system and configure Alveo U280
and COSMOS+ as block devices. COSMOS+ runs GreedyFTL with
1 MB DRAM cache for block device compatibility.

Native (Baseline) stack is lean and eliminates the file system and
block-device layers, in contrast to block. Like block, native transports
all necessary data from passive storage. It represents our second
baseline as it builds the foundation of native NDP. COSMOS+ is
directly exposed to nKV userspace through the native NVMe.

198 near-data processing under htap workload

NDP. Both nKV and neoDBMS introduce the concept of native NDP
and build on top of native. This allows offloading the OLAP process-
ing to the device where most of the data is already located, while
the OLTP workload fetches the required data to the host on-demand.
In MyRocks over nKV, one ARM core of the COSMOS+ exclusively
handles foreground I/O, while the other one performs the NDP/O-
LAP execution. Thus, NDP execution on the COSMOS+ is limited to a
single execution at a time, while the host benefits from its 4 core CPU.
On-device, 200 MB DRAM are reserved as a hashtable-based block
buffer for reading pages that can be used by the OLAP operations.
neoDBMS relies on 16 RISC-V [61] processors on the FPGA that are
operated via the TaPaSCo framework [41].

PostgreSQLMySQL/MyRocks

NDP
stack

Native
(baseline)

LinkBench (OLTP)

Block
(baseline)

RocksDB

CO
SM

OS
+ GreedyFTL

JOIN/BC (OLAP)

RocksDB

Flash

nKV

NDP

NDP
stack

Block
(baseline)

Visibility Check

Ext4 file sys.

Al
ve

o
U2

80

neoDB

Visibility CheckRISC-V

Micro-benchmarks

ARM,FPGA
Parsers,

Accessors
Parsers, AccessorsNVM

HTAP:

Ext4 file sys.

Figure 15.11: System Setup.
Workload. The workload is based on an HTAP-extended version of
LinkBench [5] (if not specified otherwise). LinkBench [5] represents
a social graph that is larger than the database memory. The graph
is frequently updated by the OLTP-style transactional workload of
LinkBench [5]. In addition, we introduce new analytical workload
portions, performing graph analysis with either BC or JOIN/GROUP BY

queries (see Sect. 15.3.6).
The initial dataset comprises a graph with 10M nodes and 20 GB

of data. The workload is controlled by several parameters described
below.
• OLTPSKEW : The OLTP workload operates on the hot portion of the

dataset. The workload parameter OLTPSKEW sets the ratio of hot
to cold data accesses.

• OLAPSEL: To vary the complexity and runtime, the number of input
nodes to BC is limited to a certain threshold - OLAPSEL - by filtering
on the type of the NODE table (normal distribution).

• OLAPPAUSE: It controls the time between two OLAP query injec-
tions. Due to the limited number of ARM cores on COSMOS+ (one
used for I/O, the other for NDP), the OLAP workload is currently
restricted to only sequential executions.

Experiment 1: Update-aware NDP enables transactionally consistent
NDP executions of OLAP operations in presence of OLTP updates
in HTAP systems, without performance drops. We open with a
general experiment, demonstrating that with NDP as part of the HTAP

15.4 experimental evaluation 199

design space, analytical queries are executed without degrading the
performance of the concurrent transactional workload, while analytical
queries operate on the freshest data. To conduct this experiment,
the HTAP workload is configured with OLAPPAUSE = 100s and
OLTPSKEW = 40%.

/

Stack BLK NATIVE NDP

90

100

110

120

130

Time [s]

Th
ro

ug
hp

ut
 [t

x/
s]

1800 1850 1900 1950 2000

60

80

100

120

140

160

Time [s]

Th
ro

ug
hp

ut
 [t

x/
s]

0 500 1000 1500 2000 2500 3000
A B

Spikes due to
compaction

Figure 15.12: (A) LinkBench with HTAP extension is executed on the Block,
Native, and NDP Stack. The throughput drops during OLAP
queries due to increased I/O and the related buffer pollution.
(B) Enlarged detail of one drop.

Figure 16.3.A shows the OLTP throughput over time for all stacks.
The native and block baselines exhibit significant performance drops
whenever an OLAP query is injected. These are due to the increased
number of read I/Os, as the cold data for the OLAP execution must be
fetched from storage. In contrast, no buffer misses occur in the NDP
stack due to the in-situ OLAP execution (Fig. 16.3.B).

Several aspects need to be considered. Firstly, OLAP processing
incurs significant buffer pollution, as hot OLTP working set pages are
evicted to make room for cold data. Even after the completion of OLAP
processing and a workload switch back to OLTP, it takes time for the
buffer to recover and retain the hot OLTP working dataset in memory
(Fig. 16.3.B). We investigate this effect in a further experiment by
varying the buffer size (Fig. 15.13). Clearly, the larger the DBMS buffer,
the longer the adjustment time upon a workload change. Secondly,
NDP and native have higher throughput (tx/s) compared to the block
stack baseline, due to the leaner I/O stack. Lastly, each stack exhibits
regular and sharp performance drops. These relate to compactions
and flushes of the LSM-tree, and explain the gradual performance
degradation over time (Fig. 16.3.A). Overall, the OLTP throughput of
NDP is 30% better than block in the HTAP phase, and 12% better than
block during the OLTP phase.

Insight. Extending the HTAP design space with update-aware NDP
improves the overall performance. Offloading OLAP operations to
computational storage preserves transactional consistency, reduces
data transfers, and minimizes DBMS buffer pollution.
Experiment 2: Update-aware NDP is intervention-free, yielding ro-
bust and resource-efficient performance. Now we investigate the

200 near-data processing under htap workload

Buffer Size 1000M 400M

0K

1K

2K

3K

4K

Time [s]
2180 2200 2220 2240 2260

Buffer Recovery Time

 Throughput [tx/s]
--- Block Cache Miss Count

Figure 15.13: After an OLAP query, the cache misses (dashed) decrease as the
buffer retains the hot dataset. The buffer recovery time (solid
arrows) for the OLTP throughput (solid) to reach the original
level depends on the buffer size.

hypothesis that with intervention-free NDP in HTAP settings, in-situ
OLAP processing does not impact host-side OLTP processing, yield-
ing better CPU utilization and robust performance. The experiment
(Fig. 15.14) sets the HTAP phase so that the time between two suc-
cessive OLAP requests is OLAPPAUSE = 1000s. We report the host
CPU utilization, for host-only HTAP (native baseline), and for NDP
OLAP-execution with concurrent host OLTP.

We observe significant drops in CPU utilization (Fig. 15.14), during
the OLAP phase under the native stack. These are due to CPU stalls,
while waiting for I/O to fetch cold data from storage for host-only
HTAP processing. With NDP, these drops are minimized, as OLAP
processing is offloaded to computational storage, and the in-situ ex-
ecution is asynchronous and intervention-free. Therefore, the free
host CPU resources are utilized for concurrent OLTP processing, as
the working OLTP dataset typically fits in memory. Moreover, NDP
leverages storage device resources that would otherwise remain idle.
In particular, we utilize both COSMOS+ ARM cores, the FPGA, and
exploit the full Flash parallelism. In addition, intervention-free NDP
translates into robust transactional throughput, as shown in the pre-

Spikes due to compaction

CPU utilization
dents due to host-

side HTAP
processing

Figure 15.14: OLAP processing on the host, degrades CPU performance
due to I/O wait time. NDP yields robust utilization of host
resources, by leveraging on-device capabilities.

15.4 experimental evaluation 201

O
LA

P
Ex

ec
. D

ur
a�

on
 [s

]

Stack BLK NATIVE NDP

300

350

400

450

500

550

600

O
LT

P
Th

ro
ug

hp
ut

 [t
x/

s]

1 105
OLAPSEL

0

100

200

300

400

1 5 10

BA OLAPSEL

0

100

200

300

400

500

O
LT

P
Th

ro
ug

hp
ut

 [t
x/

s]

OLAPSEL

0 20 40 60 80 100

0

20

40

60

80

100

120

140

O
LA

P
Ex

ec
. D

ur
at

io
n

[s
]

OLAPSEL

0 20 40 60 80 100
C D

Figure 15.15: Executing BC as OLAP workload avoids dropping OLTP
throughput (A), with increasing selectivities and OLAP run-
times (B). NDP outperforms native/block under OLTP, (C)
although JOIN/GROUP BY queries are slower on-device (D).

vious experiment (Fig. 16.3). Insight. Intervention-free NDP frees up
host resources, making them available to other tasks.
Experiment 3: NDP can handle different types of OLAP operations.
Our architecture handles different types of OLAP operations with
good overall HTAP performance, utilizing on-device I/O properties
and due to intervention-free NDP. To this end, we investigate BC/TOP

and JOIN/GROUP BY as NDP-pipelines.
First, we consider Selection/BC/TOP to show how NDP dampens

the effect of varying selectivity on OLAP executions. Notably, these
are size-reducing operations. To this end, we vary OLAPSEL, which de-
termines the number of NODE table records that BC is processing. Thus,
higher OLAPSEL yields higher OLAP read-intensity and more data
transfers, as well as more nodes to be processed and longer OLAP
runtimes (Fig. 15.15.B). Given the HTAP workload, Figure 15.15.A
shows the throughput of a frequent concurrent OLTP transaction
GetLinkList, with varying OLAPSEL. With increasing OLAPSEL (Fig.
15.15.A), the average OLTP throughput decreases and its variance
expands under the block and native stacks. This is due to the increas-
ing OLAP duration, which causes more data transfers and a larger
performance drop as observed in Experiment 1. Insight. With NDP,
the throughput remains stable with varying OLAPSEL.

Second, we consider JOIN/GROUP BY/AGGREGATION pipeline to show
that NDP can handle non size-reducing operations, because of the hy-

202 near-data processing under htap workload

Stack BLK Native NDP

OLAP =10SELOLAP =5SELOLAP =1SELOLAP =10SELOLAP =5SELOLAP =1SEL

0

200
400

8 10 13 8 10 13 8 10 13

500

1,000

8 10 13 8 10 13 8 10 13
0K

1K

2K

4 8 4 8 4 8

0

200

400

4 8 4 8 4 8

A

B D

C

O
LT

P
Th

ro
ug

hp
ut

[t
x/

s]

O
LA

P
Ex

ec
.

D
ur

at
io

n
[s

]

Buffer/Dataset Ratio [%] Logical Cores

Figure 15.16: System performance behaviour with larger host memory foot-
prints (A,B) and more logical cores (C,D).

brid execution model. We use the query: SELECT n.type, SUM(c.count)

FROM node n JOIN count c ON n.id = c.id WHERE n.type <= ? GROUP

BY n.type;. NDP and host plans resort to a BNLJ, while the on-device
we resort to hash-based grouping, which does not spill to flash in this
query. Again we vary the selectivity OLAPSEL. Fig. 15.15.D shows
increasing OLAP execution times with higher selectivities. Notice-
ably, NDP OLAP becomes compute-bound due to the slow on-device
ARMs. Nonetheless, we achieve better overall HTAP performance due
to intervention-free NDP.

Third, we vary the host resources for Selection/BC/TOP. In the first
step, we increase the block buffer (Fig. 15.16.A/B), varying memory
footprint from 8% (1.6 GB) to 13% (2.6 GB) of the dataset size. State-of-
the-art approaches [19, 23, 46] aim at 10%. More host memory, yields
better OLTP throughput (Fig. 15.16.A) and OLAP times (Fig. 15.16.B)
under all stacks. With larger OLAPSEL and more memory, the OLAP
gap between BLK and NDP shrinks, as larger memories shorten the
OLAP performance drop length (Fig. 16.3) by reducing the buffer
pollution.

Next, we attach COSMOS+ to another host with a more powerful
CPU. More logical cores improve OLTP performance (Fig. 15.16.C),
but entail higher buffer pollution that slows down OLAP queries on
native (Fig. 15.16.D) due to increased buffer contention, while NDP
OLAP remains unaffected due to intervention-free NDP. In fact, the
higher the host parallelism, the higher the potential improvement
through update-aware NDP, due to better relative OLAP execution
times. NDP preserves its advantage, whenever both cores and memory
are increased in a lockstep, since the buffer pollution caused by better
OLTP (more cores) counters the positive OLAP impact (more memory).
Experiment 4: Update-aware NDP reduces data transfers. One major
benefit of NDP is that data is processed close to its physical storage
location, and thus, reduces costly data transfers. To quantify this effect,
we execute the read-only OLAP operation in isolation on each stack.
Again, we vary the selectivity OLAPSEL to to increase the number of
neighbours processed by BC, and the number of Join/Grouping nodes
for OLAP query from Experiment 3.

15.4 experimental evaluation 203

Figure 16.5.A clearly shows that the native stack baseline outper-
forms the block under all settings. This is due to the leaner I/O stack,
reducing the amount of data to be read and transferred to host, and
due to the advanced native NVMe storage manager that reduces I/O
latencies (Fig. 16.5.B/C). Yet, NDP improves OLAP runtime by 52%
over native and 48% over block for a lower number of neighbours
(5K, 10K). With more neighbours, the number of nearest neighbour
searches within the analytical operation rises, as does the number of
nodes to be revisited by the algorithm as well. This behaviour benefits
vastly from large buffers, which is a major constraint on commodity
computational storage devices, given the limited COSMOS+ DRAM
capacity. Thus, buffer misses on the device entail more Flash reads
under NDP relative to native and block (see Fig. 16.5.B). Regardless of
these limitations, Figure 16.5.C clearly indicates that the device-to-host
data transfers can be reduced significantly.

Stack BLK NATIVE NDP

0

2

4

6

Neighbours

D
at

a
Tr

an
sf

er
 [G

B
]

5K 10K 20K 50K
0

100

200

Neighbours

Ex
ec

ut
io

n
D

ur
at

io
n

[s
]

5K 10K 20K 50K
0

5

10

Neighbours

D
at

a
R

ea
d

Fl
as

h
[G

B
]

5K 10K 20K 50K
A B C

0

100

200

300

400

OLAPSEL

Ex
ec

ut
io

n
D

ur
at

io
n

[s
]

0 20 40 60 80 100
0

2

4

6

OLAPSEL

D
at

a
R

ea
d

Fl
as

h
[G

B
]

0 20 40 60 80 100

D E F

0

1

2

3

OLAPSEL

Tr
an

sf
er

 [G
B

]

0 20 40 60 80 100

Figure 15.17: (A) Processing BC, Native and NDP outperform Block. (B) More
neighbours yield more NDP I/O. (C) Yet, host-device data
transfers are reduced significantly. Similar effects are visible
with JOIN/GROUP BY/AGGR query (D,E,F).

Figure 16.5.D shows the execution time of the OLAP query from Exp.
3 under the same conditions. The low NDP performance is due to the
NDP BNL-JOIN compute-boundness, but also due to its I/O intensity
(Fig. 16.5.E), which grows as expected, due to the small on-device join
buffer. Nonetheless, the whole NDP-pipeline is size-reducing, keeping
the number host-transfers low (Fig. 16.5.F).

Insight. NDP reduces reduces data transfers to host even further,
but is constrained by the on-device processing capabilities (ARM) are
significantly weaker than host CPUs.
Experiment 5: Update-aware NDP can operate on fresh data with
low overhead. Operating on fresh data and supporting transactional
guarantees is achieved at the expense of transferring the shared state to

204 near-data processing under htap workload

Exec. Type NDP-Delta NDP-NoDelta Exec. Phase delta exec

1

10

100

1,000

10,000

100,000

OLAP_SEL

D
ur

at
io

n
[m

s]

5 1
0

5

10

15

20

25

30

OLAP_SEL

Tr
an

sf
er

ed
 D

el
ta

 B
uf

fe
r

[M
B

]

5 1
0

50

100

150

200

OLAP_SEL

D
ur

at
io

n
[s

]

5 1 CBA

Figure 15.18: (A) NDP operates on fresh data with low overheads as (B)
transfer times are low due to (C) small delta-buffer sizes.

Stack neoDBMS (NDP) PostgreSQL (Block)

1

2

3

Number of Predecessor Versions

Ex
ec

ut
io

n
D

ur
at

io
n

[s
]

1 2 3A B 0

0.5

1.0

Update per Record

Ex
ec

ut
io

n
D

ur
at

io
n

[s
]

0 1 2 3

Figure 15.19: (A) The most recent tuple-version is retrieved with overhead
due to N2O in neoDBMS. (B) Accessing predecessor versions is
sped up by leveraging the on-device parallelism.

computational storage. We now quantify this overhead by executing
the HTAP experiments with and without shared state transfers. We
vary OLAPSEL to achieve different shared state sizes. Figure 15.18.A
shows the average OLAP execution duration in both settings. This
execution time is broken down (Fig. 15.18.B) into shared state transfer
time to device, and the subsequent processing time on a logarithmic
scale. Figure 15.18.C shows the average size of the shared state for
those breakdowns.

The shared state transfers amount to just 1 second, irrespectively
of OLAPSEL, and represent a negligible portion (0.7%) of the overall
execution time. The different shared state sizes are due to the parallel
OLTP update activity: lower OLAPSEL entail lower OLAP runtimes
and more OLTP transactions that yield more updates and larger shared
states. The shared state size and thus the transfer overhead can be
controlled through configuration parameters.

The remaining portion is due to operation dependent fresh data
processing. As BC’s execution time depends on the number of input
nodes and OLAPSEL, the gap of both scenarios (with and without
shared state propagation) increases with higher selectivities.

Insight. Even though the shared state increases the data transferred
from host to device, the time overhead is negligible: 0.7% of total NDP
execution time of analytical queries.

15.4 experimental evaluation 205

Experiment 6: Computational storage can efficiently return the vis-
ible version or the transactionally consistent snapshot by means
of NDP. So far we have investigated how CoW shared state and in-
situ snapshot creation facilitates NDP processing. In this experiment,
we investigate the impact of in-situ version visibility checking for
multi-version DBMS.

To this end, we execute a micro-benchmark on top of TPC-C OrderLine

table in the DB stack. It is subdivided into four phases. In each phase,
an update (TU) and a read (TR) transaction are executed after each
other. The update transactions update all tuples of the OrderLine table
(the ol_amount column) and commit, thus producing a new version
of each tuple and increasing the dataset size. The read transaction
computes SUM(ol_amount).

In a follow-up micro-experiment, we start each TR, but leave it
open, while all TU commit, thus increasing the number of versions to
four. Now compute SUM(ol_amount) for each reading transaction TR
(Fig. 15.19.B) in-situ and on the host. Figure 15.19.B shows the overhead
of creating a snapshot at different points in time, and traversing the
version chain to different predecessors. The in-situ snapshot creation
time increases with the number of versions per tuple to be skipped.
Nonetheless, the in-situ creation is 2× faster.

Insight. With update-aware NDP the storage device can provide the
visible version and construct snapshots on the device. The runtime
improves up to 4× by leveraging hardware parallelism.
Experiment 7: Update-aware NDP reduces the power consumption
per transaction. Besides throughput, power consumption plays an
important role for the spread of NDP. We now present the end-to-
end power consumption of both the host and COSMOS+ during the
executions of Experiment 1. Noticeably, the host is not optimized for
power measurements and has idling energy consumers, e.g. a graphics
card. Overall, block demands the most power with 0.16 Watt/tx; Native
is in the midfield with 0.14 Watt/tx; and NDP improves the power
consumption to 0.12 Watt/tx and thus, by up to 26.1%. Thereby, the
power draw of the storage device increases from 13.8 Watt (block)
to 14.7 Watt (NDP). This is expected, as NDP offloads processing
to device. Host power consumption increases as well from 44 Watt
(block) to 50.5 Watt (native) due to the current native storage manager
implementation. Its power footprint can be lowered with a better
thread-management in future work. Nevertheless, update-aware NDP
relieves the host and decreases the consumption to 47 Watt. Changing
to a synchronous interface lowers the host-side power consumption of
native and NDP by approx. 5% below that of block at the cost of some
throughput.

Insight. Even though the total power draw is slightly higher on the
device and the host, native and NDP execute more work, yielding
26.1% lower Watts/transaction compared to block.

206 near-data processing under htap workload

15.5 conclusions and future work

In this paper, we introduce update-aware NDP as a generic architec-
ture for transactionally consistent in-situ processing in HTAP envi-
ronments. The key idea is to propagate the most recent data, status,
and system information to smart storage. As a result, a transactionally
consistent snapshot can be constructed in-situ, on top of which read-
only analytical NDP operations are executed. The evaluation indicates
a 30% higher OLTP throughput in HTAP settings and update-aware
NDP with 26% less Watts/transaction. We observe that shared state
propagation overhead is marginal (⩽0.7%) and that in-situ snapshot
computation is 2×/4× faster.
Future Work. Offloading modifying NDP operations is an important
challenge for reducing data transfers. They require synchronisation
and invalidation mechanisms for disaggregated memory environ-
ments for transactional consistency [11]. Furthermore, efficient NDP
logging space management techniques are necessary.

references

[1] Anurag Acharya, Mustafa Uysal, and Joel Saltz. “Active Disks:
Programming Model, Algorithms and Evaluation.” In: Proc.
ASPLOS. San Jose, California, USA, 1998. isbn: 1-58113-107-0.

[2] Ioannis Alagiannis, Stratos Idreos, and Anastasia Ailamaki.
“H2O.” In: Proc. SIGMOD. 2014, pp. 1103–1114. isbn: 9781450323765.
doi: 10.1145/2588555.2610502. url: http://15721.courses.
cs . cmu . edu / spring2018 / papers / 10 - storage / h2o . pdf %

20http://dl.acm.org/citation.cfm?doid=2588555.2610502.

[3] Gustavo Alonso, Timothy Roscoe, David Cock, Mohsen Ewaida,
Kaan Kara, Dario Korolija, David Sidler, and Zeke Wang. “Tack-
ling Hardware/Software co-design from a database perspec-
tive.” In: Proc. CIDR. 2020.

[4] Raja Appuswamy, Manos Karpathiotakis, Danica Porobic, and
Anastasia Ailamaki. “The case for heterogeneous HTAP.” In:
Proc. CIDR. 2017.

[5] Timothy G. Armstrong, Vamsi Ponnekanti, Dhruba Borthakur,
and Mark Callaghan. “LinkBench: A Database Benchmark
Based on the Facebook Social Graph.” In: Proc. SIGMOD. 2013.
isbn: 978-1-4503-2037-5.

[6] Vaibhav Arora, Faisal Nawab, Divyakant Agrawal, and Amr
El Abbadi. “Janus: A Hybrid Scalable Multi-Representation
Cloud Datastore.” In: IEEE Trans. Knowl. Data Eng. 30.4 (2018),
pp. 689–702. issn: 10414347. doi: 10.1109/TKDE.2017.2773607.

https://doi.org/10.1145/2588555.2610502
http://15721.courses.cs.cmu.edu/spring2018/papers/10-storage/h2o.pdf%20http://dl.acm.org/citation.cfm?doid=2588555.2610502
http://15721.courses.cs.cmu.edu/spring2018/papers/10-storage/h2o.pdf%20http://dl.acm.org/citation.cfm?doid=2588555.2610502
http://15721.courses.cs.cmu.edu/spring2018/papers/10-storage/h2o.pdf%20http://dl.acm.org/citation.cfm?doid=2588555.2610502
https://doi.org/10.1109/TKDE.2017.2773607

15.5 references 207

[7] Joy Arulraj, Andrew Pavlo, and Prashanth Menon. “Bridg-
ing the archipelago between row-stores and column-stores
for hybrid workloads.” In: Proc. SIGMOD. Vol. 26-June-20.
2016, pp. 583–598. isbn: 9781450335317. doi: 10.1145/2882903.
2915231. url: http://dx.doi.org/10.1145/2882903.2915231.

[8] Oreoluwatomiwa O. Babarinsa and Stratos Idreos. “JAFAR :
Near-Data Processing for Databases.” In: 2015.

[9] Antonio Barbalace, Martin Decky, Javier Picorel, and Pramod
Bhatotia. “BlockNDP: Block-storage near data processing.”
In: Proc. Middlew. 2020, pp. 8–15. isbn: 9781450382014. doi:
10.1145/3429357.3430519. url: https://doi.org/10.1145/
3429357.3430519.

[10] Arthur Bernhardt, Sajjad Tamimi, Florian Stock, Carsten Heinz,
Christian Knoedler Tobias Vinçon, Andreas Koch, and Ilia
Petrov. “neoDBMS: In-situ Snapshots for Multi-Version DBMS
on Native Computational Storage.” In: Proc. ICDE (2022).

[11] Arthur Bernhardt, Sajjad Tamimi, Florian Stock, Andreas Koch,
Tobias Vincon, and Ilia Petrov. “Cache-Coherent Shared Lock-
ing for Transactionally Consistent Updates in Near-Data Pro-
cessing DBMS on Smart Storage.” In: Proc. EDBT. 2022.

[12] Philip A. Bernstein and Nathan Goodman. “Concurrency Con-
trol in Distributed Database Systems.” In: ACM Comput. Surv.
13.2 (June 1981), pp. 185–221.

[13] Matias Bjørling, Javier Gonzalez, and Philippe Bonnet. “Light-
NVM: The Linux Open-Channel SSD Subsystem.” In: 2017.

[14] Haran Boral and David J. DeWitt. “Parallel Architectures for
Database Systems.” In: Database Machines. Ed. by A. R. Hurson,
L. L. Miller, and S. H. Pakzad. Springer Berlin Heidelberg, 1989.
Chap. Database Machines: An Idea Whose Time Has Passed?
A Critique of the Future of Database Machines, pp. 11–28. isbn:
0-8186-8838-6.

[15] Amirali Boroumand, Saugata Ghose, Geraldo F. Oliveira, and
Onur Mutlu. “Polynesia: Enabling Effective Hybrid Transac-
tional/Analytical Databases with Specialized Hardware/Soft-
ware Co-Design.” In: CoRR abs/2103.00798 (2021). arXiv: 2103.
00798. url: https://arxiv.org/abs/2103.00798.

[16] Ulrik Brandes. “A Faster Algorithm for Betweenness Central-
ity.” In: Journal of Mathematical Sociology (2001).

[17] Wei Cao et al. “POLARDB meets computational storage: Effi-
ciently support analytical workloads in cloud-native relational
database.” In: Proc. FAST. 2020, pp. 29–41.

[18] COSMOS Project Documentation. http://www.openssd-project.
org/wiki/Cosmos_OpenSSD_Technical_Resources. OpenSSD
Project. Jan. 2019.

https://doi.org/10.1145/2882903.2915231
https://doi.org/10.1145/2882903.2915231
http://dx.doi.org/10.1145/2882903.2915231
https://doi.org/10.1145/3429357.3430519
https://doi.org/10.1145/3429357.3430519
https://doi.org/10.1145/3429357.3430519
https://arxiv.org/abs/2103.00798
https://arxiv.org/abs/2103.00798
https://arxiv.org/abs/2103.00798
http://www.openssd-project.org/wiki/Cosmos_OpenSSD_Technical_Resources
http://www.openssd-project.org/wiki/Cosmos_OpenSSD_Technical_Resources

208 near-data processing under htap workload

[19] Niv Dayan and Stratos Idreos. “Dostoevsky: Better Space-Time
Trade-Offs for LSM-Tree Based Key-Value Stores via Adaptive
Removal of Superfluous Merging.” In: Proc. SIGMOD. 2018,
pp. 505–520.

[20] Arup De, Maya Gokhale, Steven Swanson, and et. al et. “Min-
erva: Accelerating Data Analysis in Next-Generation SSDs.” In:
Proc. FCCM. 2013.

[21] Jaeyoung Do, Yang-Suk Kee, Jignesh M. Patel, Chanik Park,
Kwanghyun Park, and David J. DeWitt. “Query processing on
smart SSDs.” In: Proc. SIGMOD (2013), p. 1221. issn: 07308078.
doi: 10.1145/2463676.2465295. url: http://dl.acm.org/
citation.cfm?doid=2463676.2465295.

[22] Jaeyoung Do, David Lomet, and Ivan Luiz Picoli. “Improv-
ing CPU I/O performance via SSD controller FTL support
for batched writes.” In: Proc. SIGMOD. 2019. doi: 10.1145/
3329785.3329925. url: https://doi.org/10.1145/3329785.
3329925.

[23] Siying Dong, Andrew Kryczka, Yanqin Jin, and Michael Stumm.
“Evolution of Development Priorities in Key-value Stores Serv-
ing Large-scale Applications: The RocksDB Experience.” In:
FAST). 2021.

[24] Facebook Inc., MyRocks. Transaction Isolation in MyRocks. https:
/ / github . com / facebook / mysql - 5 . 6 / wiki / Transaction -

Isolation. 2021.

[25] Franz Färber, Norman May, Wolfgang Lehner, Philipp Große,
Ingo Müller, Hannes Rauhe, and Jonathan Dees. “The SAP
HANA Database – An Architecture Overview.” In: IEEE Data
Eng. Bull. 35.1 (2012), pp. 28–33. url: http://dblp.uni-trier.
de/db/journals/debu/debu35.html%7B%5C#%7DFarberMLGMRD12%

7B%5C%%7D5Cnhttp://sites.computer.org/debull/A12mar/

issue1.htm.

[26] Anil K Goel, Jeffrey Pound, Nathan Auch, Peter Bumbulis,
Scott MacLean, Franz Färber, Francis Gropengiesser, Christian
Mathis, Thomas Bodner, and Wolfgang Lehner. “Towards scal-
able real-time analytics: An architecture for scale-out of OLxP
workloads.” In: Proc. VLDB Endow. Vol. 8. 12. 2015, pp. 1716–
1727. doi: 10.14778/2824032.2824069.

[27] Robert Gottstein, Ilia Petrov, and et al. “SIAS-Chains: Snapshot
Isolation Append Storage Chains.” In: ADMS@VLDB. 2017.

[28] Martin Grund, Jens Krüger, Hasso Plattner, Alexander Zeier,
Philippe Cudre-Mauroux, and Samuel Madden. “HYRISE-A
main memory hybrid storage engine.” In: Proc. VLDB Endow.
4.2 (2010), pp. 105–116. issn: 21508097. doi: 10.14778/1921071.
1921077.

https://doi.org/10.1145/2463676.2465295
http://dl.acm.org/citation.cfm?doid=2463676.2465295
http://dl.acm.org/citation.cfm?doid=2463676.2465295
https://doi.org/10.1145/3329785.3329925
https://doi.org/10.1145/3329785.3329925
https://doi.org/10.1145/3329785.3329925
https://doi.org/10.1145/3329785.3329925
https://github.com/facebook/mysql-5.6/wiki/Transaction-Isolation
https://github.com/facebook/mysql-5.6/wiki/Transaction-Isolation
https://github.com/facebook/mysql-5.6/wiki/Transaction-Isolation
http://dblp.uni-trier.de/db/journals/debu/debu35.html%7B%5C#%7DFarberMLGMRD12%7B%5C%%7D5Cnhttp://sites.computer.org/debull/A12mar/issue1.htm
http://dblp.uni-trier.de/db/journals/debu/debu35.html%7B%5C#%7DFarberMLGMRD12%7B%5C%%7D5Cnhttp://sites.computer.org/debull/A12mar/issue1.htm
http://dblp.uni-trier.de/db/journals/debu/debu35.html%7B%5C#%7DFarberMLGMRD12%7B%5C%%7D5Cnhttp://sites.computer.org/debull/A12mar/issue1.htm
http://dblp.uni-trier.de/db/journals/debu/debu35.html%7B%5C#%7DFarberMLGMRD12%7B%5C%%7D5Cnhttp://sites.computer.org/debull/A12mar/issue1.htm
https://doi.org/10.14778/2824032.2824069
https://doi.org/10.14778/1921071.1921077
https://doi.org/10.14778/1921071.1921077

15.5 references 209

[29] Boncheol Gu, Andre S. Yoon, and et al. et. “Biscuit: A Frame-
work for Near-Data Processing of Big Data Workloads.” In:
Proc. ISCA. June 2016.

[30] Sergey Hardock, Ilia Petrov, Robert Gottstein, and Alejandro P.
Buchmann. “Revisiting DBMS Space Management for Native
Flash.” In: Proc. EDBT. 2016.

[31] Masoud Hemmatpour, Mohammad Sadoghi, and et al. “Kanzi:
A Distributed, In-memory Key-Value Store.” In: Proc. Middlew.
2016.

[32] Zsolt István, David Sidler, and Gustavo Alonso. “Caribou: In-
telligent Distributed Storage.” In: Proc. VLDB. 2017.

[33] Insoon Jo, Duck-ho Bae, and et al. et. “YourSQL : A High-
Performance Database System Leveraging In-Storage Comput-
ing.” In: Proc. VLDB. 2016.

[34] Kimberly Keeton, David A. Patterson, and Joseph M. Heller-
stein. “A Case for Intelligent Disks (IDISKs).” In: SIGMOD Rec.
(1998).

[35] Alfons Kemper and Thomas Neumann. “HyPer: A hybrid
OLTP&OLAP main memory database system based on virtual
memory snapshots.” In: Proc. ICDE. 2011, pp. 195–206. isbn:
9781424489589. doi: 10.1109/ICDE.2011.5767867.

[36] Jungwon Kim and et al. “PapyrusKV: A High-performance
Parallel Key-value Store for Distributed NVM Architectures.”
In: Proc. SC. 2017.

[37] Sungchan Kim, Hyunok Oh, and et al. et. “In-storage Process-
ing of Database Scans and Joins.” In: Inf. Sci. 2016 ().

[38] Sungchan Kim, Hyunok Oh, Chanik Park, Sangyeun Cho, Sang-
Won Lee, and Bongki Moon. “In-storage processing of database
scans and joins.” In: Inf. Sci. 327 (Jan. 2016), pp. 183–200. issn:
00200255. doi: 10 . 1016 / j . ins . 2015 . 07 . 056. url: http :

//dx.doi.org/10.1016/j.ins.2015.07.056%20https://

linkinghub.elsevier.com/retrieve/pii/S0020025515006003.

[39] Hideaki Kimura, Alkis Simitsis, and Kevin Wilkinson. “Janus:
Transactional processing of navigational and analytical graph
queries on many-core servers.” In: Proc. CIDR. 2017.

[40] Christian Knoedler, Tobias Vincon, Arthur Bernhardt, Lukas
Weber, Leonardo Solis-Vasquez, Ilia Petrov, and Andreas Koch.
“A cost model for NDP-aware query optimization for KV-
stores.” In: Proc. DAMON (2021).

[41] Jens Korinth, Jaco Hofmann, Carsten Heinz, and Andreas Koch.
“The TaPaSCo Open-Source Toolflow for the Automated Com-
position of Task-Based Parallel Reconfigurable Computing Sys-
tems.” In: Applied Reconfigurable Computing. 2019.

https://doi.org/10.1109/ICDE.2011.5767867
https://doi.org/10.1016/j.ins.2015.07.056
http://dx.doi.org/10.1016/j.ins.2015.07.056%20https://linkinghub.elsevier.com/retrieve/pii/S0020025515006003
http://dx.doi.org/10.1016/j.ins.2015.07.056%20https://linkinghub.elsevier.com/retrieve/pii/S0020025515006003
http://dx.doi.org/10.1016/j.ins.2015.07.056%20https://linkinghub.elsevier.com/retrieve/pii/S0020025515006003

210 near-data processing under htap workload

[42] Tirthankar Lahiri et al. “Oracle Database In-Memory: A dual
format in-memory database.” In: Proc. - Int. Conf. Data Eng.
2015-May (2015), pp. 1253–1258. issn: 10844627. doi: 10.1109/
ICDE.2015.7113373.

[43] Per Åke Larson, Adrian Birka, Eric N Hanson, Weiyun Huang,
Michal Nowakiewicz, and Vassilis Papadimos. “Real-time an-
alytical processing with SQL server.” In: Proc. VLDB Endow.
Vol. 8. 12. 2015, pp. 1740–1751. doi: 10.14778/2824032.2824071.

[44] Juchang Lee, Wook Shin Han, Hyoung Jun Na, Chang Gyoo
Park, Kyu Hwan Kim, Deok Hoe Kim, Joo Yeon Lee, Sang
Kyun Cha, and Seung Hyun Moon. “Parallel replication across
formats for scaling out mixed OLTP/OLAP workloads in main-
memory databases.” In: VLDB J. 27.3 (2018), pp. 421–444. issn:
0949877X. doi: 10.1007/s00778-018-0503-z.

[45] Rui Lin, Yuxin Cheng, Marilet De Andrade, Lena Wosinska,
and Jiajia Chen. “Disaggregated Data Centers: Challenges
and Trade-offs.” In: IEEE Communications Magazine 58.2 (2020),
pp. 20–26. doi: 10.1109/MCOM.001.1900612.

[46] Chen Luo. “Breaking Down Memory Walls in LSM-Based Stor-
age Systems.” In: SIGMOD. 2020.

[47] Chen Luo and Michael J. Carey. “LSM-based storage tech-
niques: a survey.” In: The VLDB Journal 29.1 (2020), pp. 393–
418.

[48] Darko Makreshanski, Jana Giceva, Claude Barthels, and Gus-
tavo Alonso. “BatchDB: Efficient isolated execution of hybrid
OLTP+OLAP workloads for interactive applications.” In: Proc.
SIGMOD. Vol. Part F1277. 2017, pp. 37–50. isbn: 9781450341974.
doi: 10.1145/3035918.3035959. url: http://dx.doi.org/10.
1145/3035918.3035959.

[49] Sang-woo Jun Ming, Arvind, and et al. “BlueDBM: An Appli-
ance for Big Data Analytics.” In: Proc. ISCA (2015).

[50] Tobias Mühlbauer, Wolf Rödiger, Angelika Reiser, Alfons Kem-
per, and Thomas Neumann. “ScyPer: a hybrid OLTP&OLAP
distributed main memory database system for scalable real-
time analytics.” In: Datenbanksysteme für Business, Technologie
und Web (BTW) 2044. Ed. by Volker Markl, Gunter Saake, Kai-
Uwe Sattler, Gregor Hackenbroich, Bernhard Mitschang, Theo
Härder, and Veit Köppen. Bonn: Gesellschaft für Informatik
e.V., 2013, pp. 499–502.

[51] Thomas Neumann and Michael J Freitag. “Umbra: A Disk-
Based System with In-Memory Performance.” In: CIDR. 2020.

[52] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth
O’Neil. “The log-structured merge-tree (LSM-tree).” In: Acta
Inform. 33.4 (June 1996), pp. 351–385. issn: 0001-5903.

https://doi.org/10.1109/ICDE.2015.7113373
https://doi.org/10.1109/ICDE.2015.7113373
https://doi.org/10.14778/2824032.2824071
https://doi.org/10.1007/s00778-018-0503-z
https://doi.org/10.1109/MCOM.001.1900612
https://doi.org/10.1145/3035918.3035959
http://dx.doi.org/10.1145/3035918.3035959
http://dx.doi.org/10.1145/3035918.3035959

15.5 references 211

[53] Fatma Özcan, Yuanyuan Tian, and Pinar Tözün. “Hybrid Trans-
actional/Analytical Processing: A Survey.” In: Proc. SIGMOD
2017. 2017, pp. 1771–1775.

[54] Ilia Petrov, Andreas Koch, Sergey Hardock, Tobias Vincon,
and Christian Riegger. “Native Storage Techniques for Data
Management.” In: Proc. ICDE (2019).

[55] Ivan Luiz Picoli and Philippe Bonnet. “Open-Channel SSD (
What is it Good For).” In: Cidr (2020).

[56] Orestis Polychroniou and Kenneth A. Ross. “Towards Practical
Vectorized Analytical Query Engines.” In: DaMoN’19. 2019.

[57] Vijayshankar Raman, Gopi Attaluri, and Ronald Barber. “DB2

with BLU Acceleration: So much more than just a column
store.” In: Proc. VLDB 6.11 (2013), pp. 1080–1091. issn: 2150-
8097. doi: 10.14778/2536222.2536233. url: https://researcher.
watson.ibm.com/researcher/files/us-ipandis/vldb13db2blu.

pdf%20http://dl.acm.org/citation.cfm?id=2536233.

[58] Aunn Raza, Periklis Chrysogelos, Angelos Christos Anadiotis,
and Anastasia Ailamaki. “Adaptive HTAP through Elastic Re-
source Scheduling.” In: Proc. SIGMOD. SIGMOD ’20. Portland,
OR, USA, 2020, pp. 2043–2054.

[59] Erik Riedel, Garth A. Gibson, and Christos Faloutsos. “Active
Storage for Large-Scale Data Mining and Multimedia.” In: Proc.
VLDB. 1998.

[60] Christian Riegger, Tobias Vinçon, Robert Gottstein, and Ilia
Petrov. “MV-PBT: Multi-version indexing for large datasets and
HTap workloads.” In: Adv. Database Technol. - EDBT. Vol. 2020-
March. 2020, pp. 217–228. isbn: 9783893180837.

[61] RISC-V. https://riscv.org/.

[62] Mohammad Sadoghi, Souvik Bhattacherjee, Bishwaranjan Bhat-
tacharjee, and Mustafa Canim. “L-Store: A real-time OLTP and
OLAP system.” In: Proc. EDBT. Vol. 2018-March. 2018, pp. 540–
551. isbn: 9783893180783. doi: 10.5441/002/edbt.2018.65.
arXiv: 1601.04084.

[63] Sudharsan Seshadri, Steven Swanson, and et al. “Willow: A
User-Programmable SSD.” In: USENIX, OSDI (2014).

[64] David Sidler, Zsolt Istvan, Muhsen Owaida, Kaan Kara, and
Gustavo Alonso. “DoppioDB: A Hardware Accelerated Database.”
In: Proc. SIGMOD. 2017.

[65] Vishal Sikka, Franz Färber, Wolfgang Lehner, Sang Kyun Cha,
Thomas Peh, and Christof Bornhövd. “Efficient Transaction
Processing in SAP HANA Database: The End of a Column
Store Myth.” In: Proc. SIGMOD. Scottsdale, Arizona, USA,
2012. isbn: 978-1-4503-1247-9.

https://doi.org/10.14778/2536222.2536233
https://researcher.watson.ibm.com/researcher/files/us-ipandis/vldb13db2blu.pdf%20http://dl.acm.org/citation.cfm?id=2536233
https://researcher.watson.ibm.com/researcher/files/us-ipandis/vldb13db2blu.pdf%20http://dl.acm.org/citation.cfm?id=2536233
https://researcher.watson.ibm.com/researcher/files/us-ipandis/vldb13db2blu.pdf%20http://dl.acm.org/citation.cfm?id=2536233
https://doi.org/10.5441/002/edbt.2018.65
https://arxiv.org/abs/1601.04084

212 near-data processing under htap workload

[66] SPDK. https://spdk.io.

[67] T. Vincon, S. Hardock, C. Riegger, J. Oppermann, A. Koch,
and I. Petrov. “NoFTL-KV: Tackling Write-Amplification on
KV-Stores with Native Storage Management.” In: Proc. EDBT.
2018.

[68] Tobias Vincon, Lukas Weber, Arthur Bernhardt, Andreas Koch,
and Ilia Petrov. “nKV: Near-Data Processing with KV-Stores
on Native Computational Storage.” In: Proc. DaMoN. 2020.

[69] Tobias Vincon et al. “nKV in Action: Accelerating KV-Stores on
Native Computational Storage with Near-Data Processing.” In:
PVLDB 12 (2020).

[70] Midhul Vuppalapati, Justin Miron, Rachit Agarwal, Dan Truong,
Ashish Motivala, and Thierry Cruanes. “Building An Elastic
Query Engine on Disaggregated Storage.” In: 17th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI 20). Santa Clara, CA: USENIX Association, Feb. 2020,
pp. 449–462. isbn: 978-1-939133-13-7. url: https://www.usenix.
org/conference/nsdi20/presentation/vuppalapati.

[71] Lukas Weber, Lukas Sommer, Leonardo Solis-Vasquez, Tobias
Vincon, Christian Knoedler, Arthur Bernhardt, Ilia Petrov, and
Andreas Koch. “A Framework for the Automatic Generation
of FPGA-based Near-Data Processing Accelerators in Smart
Storage Systems.” In: Proc. RAW@IPDPS (2021).

[72] Lukas Weber, Tobias Vinçon, Christian Knödler, Leonardo Solis-
Vasquez, Arthur Bernhardt, Ilia Petrov, and Andreas Koch. “On
the necessity of explicit cross-layer data formats in near-data
processing systems.” In: Distributed and Parallel Databases (2021).

[73] Louis Woods, Zsolt István, and Gustavo Alonso. “Ibex: An
Intelligent Storage Engine with Support for Advanced SQL
Offloading.” In: Proc. VLDB (2014).

[74] Louis Woods, J. Teubner, and G. Alonso. “Less Watts, More Per-
formance: An Intelligent Storage Engine for Data Appliances.”
In: Proc. SIGMOD. 2013.

[75] Yingjun Wu, Joy Arulraj, Jiexi Lin, Ran Xian, and Andrew
Pavlo. “An Empirical Evaluation of In-memory Multi-version
Concurrency Control.” In: Proc. VLDB Endow. 10.7 (Mar. 2017),
pp. 781–792. issn: 2150-8097.

[76] Sam Xi, O. Babarinsa, M. Athanassoulis, and S. Idreos. “Be-
yond the Wall: Near-Data Processing for Databases.” In: Proc.
DAMON (2015).

[77] Jingren Zhou and Kenneth A. Ross. “Buffering Database Oper-
ations for Enhanced Instruction Cache Performance.” In: Proc.
SIGMOD 2004. SIGMOD ’04. Paris, France, 2004, pp. 191–202.
isbn: 1581138598.

https://www.usenix.org/conference/nsdi20/presentation/vuppalapati
https://www.usenix.org/conference/nsdi20/presentation/vuppalapati

Part V

N D P E X E C U T I O N A N D R E S U LT- S E T
M A N A G E M E N T

16
R E S U LT- S E T M A N A G E M E N T F O R N D P O P E R AT I O N S
O N S M A RT S T O R A G E

bibliographic information

The content of this chapter has previously been published in the work
"Result-Set Management for NDP Operations on Smart Storage" by Tobias
Vinçon, Christian Knödler, Arthur Bernhard, Leonardo Solis-Vasquez,
Lukas Weber, Andreas Koch and Ilia Petrov in 2022 18th International
Workshop on Data Management on New Hardware (DaMoN). The
contribution of the author of this thesis is summarized as follows.

» As the corresponding and leading author, Tobias Vinçon was in charge
of designing the concepts for near-data processing result-set management.
Ilia Petrov supported him in structuring and embedding these concepts.
Moreover, Tobias Vinçon integrated the concepts in nKV and provided
the testbed with COSMOS+ as real hardware. Likewise, the manuscript’s
text was created by him with valuable feedback from all authors includ-
ing Christian Knödler, Arthur Bernhard, Leonardo Solis-Vasquez, Lukas
Werber and Andreas Koch. «

abstract

Current data-intensive systems suffer from scalability as they transfer
massive amounts of data to the host DBMS to process it there. Novel
near-data processing (NDP) DBMS architectures and smart storage
can provably reduce the impact of raw data movement. However,
transferring the result-set of an NDP operation may increase the data
movement, and thus, the performance overhead. In this paper, we
introduce a set of in-situ NDP result-set management techniques,
such as spilling, materialization, and reuse. Our evaluation indicates a
performance improvement of 1.13× to 400×.

16.1 introduction

Regardless of the increasing data sizes and the evolution of storage
technology, modern DBMS employ traditional data-to-code architec-
tures. They require growing amounts of data to be transferred to the
DBMS host to be filtered and processed there. Data movement turns into
a performance and scalability limitation, as it consumes scarce band-
width and increases resource and energy consumption. The advent
of intelligent storage and disaggregated memory enables Near-Data

215

216 result-set management for ndp on smart storage

Processing (NDP) architectures and code-to-data paradigms that target
execution of DB-operations close to where data is physically stored.
To this end, NDP can leverage the higher device-internal bandwidth,
parallelism and especially faster storage for data processing and fil-
tering. Yet, not only raw-data movement impairs performance. Since
there are different types of NDP operations (e.g., size-reducing but
also non-size-reducing ones) and different execution modes, result-set
management for NDP operations looms as an important factor.

The core intuition of this paper is that NDP necessitates result-
set management techniques. This observation is governed by the
following trends. Firstly, modern intelligent storage is capable of
managing result-sets, both intermediary and final. Different NDP
operations need it due to their potentially non-size-reducing nature or
their execution mode. Secondly, storage (like Flash or NVM) is cheap
and abundant as these technologies offer high density. Lastly, access
to in-situ storage is much faster than that of device-to-host in terms of
both bandwidth and latency.
State-of-the-art overview. NDP approaches [2–4, 10, 11] establish
the following principles. Firstly, pioneered by IBEX [10, 11], smart
storage devices support either tuple- or block-based access. The former
is typically used for the result tuples of an NDP operation (Tuple-based
NDP or Blocks of Tuples NDP). Thus, the result transfer units contain
only fully-qualifying tuples (Figure 16.1). The latter is employed for
foreground I/O, i.e., any read/write operation accessing raw blocks
(Block I/O). Intel’s Block-NDP [2] improves the latter by allowing an
NDP operation to only return raw blocks containing partially-qualifying
filter criteria (Block-level NDP.). Both are sub-optimal due to the large
transfer overheads (Figure 16.1).

Secondly, qualifying tuples or blocks are transferred up to the host
immediately, i.e., as soon as they are produced. Depending on either the
selectivity or the NDP operation itself, the immediate result-set transfer
mode may cause significant overhead. Furthermore, it may preclude
employing optimizations such as a single large low-overhead DMA
transfer, utilizing the full I/O bandwidth. The immediate host transfer
precludes a reuse of results on the device, whether by a follow-up NDP
operation or by the host itself.

In a nutshell, while current tuple-based approaches reduce the over-
all volume by transferring the precise result tuples, they may not attain
the best performance due to transfer overhead and low bandwidth
utilization. Conversely, block-based approaches may utilize the full
I/O bandwidth, but incur a performance penalty by transferring more
data. Noticeably, none of them allows for reuse.
The contributions of this paper include the following. (a) We intro-
duce in-situ result-set materialization that enables combining arbitrary
NDP operations into NDP pipelines. NDP pipelines that reduce the
overall data transfer to the host even though they may contain non-

16.2 in-situ materialization 217

Transfer Unit
Tuples Blocks

Result

Filtering

Useful Data

Movement

Traditional

Block I/O

Block-level

NDP

Tuple-

based

NDP Result Set

Management

Transfer Unit
Tuples Blocks

Result

Filtering

Useful Data

Movement

Traditional

Block I/O

Block-level

NDP

Tuple-

based

NDP Result Set

Management

Figure 16.1: State-of-the-art approaches prioritize for result filtering or I/O
throughput. Native NDP Result Handling combines those di-
mensions and improves overall performance.

size-reducing operations. (b) We also introduce on-device spilling of
data to persistent storage (e.g., Flash), by which NDP operations are
viable even on resource-constrained intelligent storage devices (e.g.,
especially in memory). (c) Furthermore, we introduce the reuse of
results materialized in-situ in further processing without significant
overhead. Additionally, this reuse enables fault tolerance e.g., in com-
plex pipelines.
Next, we discuss in-situ result-set materialization (Sect. 16.2) and the
system design (Sect. 16.3). The performance is evaluated in Sect. 16.4.

16.2 in-situ materialization

Prior mentioned approaches treat results only as transient data, while
their consumption happens immediately after their generation. Our
approach introduces the ability to (fully) materialize them, as well
as to consume them in a deferred manner. It processes the results
later on (see Consumption Mode) or even reuses them multiple times
(see Reuse Semantics). In general, materialization can be achieved for
both, final and intermediary results. This also requires space on the
computational storage device, which is abundant and cheap. Space
allocation is performed for each NDP invocation by the Native Storage
Manager [6] of the database system.
Consumption Mode. NDP pipelines necessitate different result con-
sumption modes. As shown in Figure 16.2.A, NDP_Pipeline #1, TX1 is
annotated with an immediate consumption. Hence, it treats the opera-
tion’s input data and its result as transient, and relies on pipelining.
Given an immediate consumption, the final results are transferred
back to the host (Figure 16.2.D) as soon as a result unit (e.g., a result
tuple or a block of result tuples) is produced.

In this paper we introduce two additional alternatives. Firstly, we
allow for in-situ materialization of intermediary results for either follow-
up NDP operations or upcoming NDP pipelines (Figure 16.2.B). The
latter can be issued completely asynchronously. Secondly, we allow
for result-spilling (Figure 16.2.C). It is applicable to operators such

218 result-set management for ndp on smart storage

DBMS

C
o

m
p

u
ta

ti
o

n
a

l
S

to
ra

g
e

σattr1 <= ?Scan

Inter. Res2Inter. Res1

πattr1,...

Direct
Consumption

Final Results

Group By
attr1

SpillingData

Inter. Res3

Inter. Results

πattr2,...

BEGIN TRANSACTION TX1:

 @NDP_Pipeline: #1

 «Immediate Cons., Direct Release»

 SELECT attr1,... FROM tbl1,…

 WHERE attr1 <= ? GROUP BY attr1

 …

 @NDP_Pipeline: #2

 «Deferred Cons., No Release»

 SELECT attr2,... FROM tbl1,…

 WHERE attr1 <= ?
COMMIT;

NDP_Pipeline: #1

NDP_Pipeline: #2

BEGIN TRANSACTION TX2:

 «Immediate Cons., Direct Release»

 SELECT attr2,... FROM tbl1,…

 WHERE attr1 <= ?
COMMIT;

R
e
u

s
e

Control Flow

Legend

Data Flow

Control Flow

Legend

Data Flow

A

E

G

B C

Scan
F

Persistent Data

 Native Storage ManagerNDP_EXEC

D

Figure 16.2: NDP Pipelines can materialize intermediate and final results
in-situ, e.g., for reuse in further processings.

16.2 in-situ materialization 219

as a hashtable-based GROUP BY or an HASH JOIN implementations that
exceed on-device memory limits. These limits can be easily reached,
especially as consumer-grade NDP devices have constrained hardware
resources.

With materialization in place, NDP pipelines can also be instru-
mented with a deferred consumption mode as depicted in Figure 16.2.E,
NDP_Pipeline #2. Thereby, the final results are not transferred back to
the host immediately, but rather stored on the persistent storage for
consumption at later on by the host or another NDP pipeline.
Parsers and Accessors. The native NDP approach in nKV [7, 8] is
based on the concept of in-situ data interpretation. To this end, NDP
parsers and accessors have been proposed [7, 9] to handle data from the
base tables. However, database operations in an NDP pipeline typi-
cally consume intermediary results from previous stages, for which
no suitable parsers and accessors exist. Consider for example, Fig-
ure 16.2.F, where the scan in NDP_Pipeline #2 can be optimized to
consume the intermediary results from NDP_Pipeline #1. To handle the
interpretation of intermediary results, we extended the parsers and
accessors [7, 9] to cope with record formats of intermediary results
and interpret them on-device to avoid data movement.
Reuse Semantics. Whenever a result (intermediary or final) is mate-
rialized, its data is available for consumption until its address space
is released. Hence, multiple queries can reuse the data by either con-
suming it from the computational storage device (Figure 16.2.G) or
processing (Figure 16.2.F). By releasing the data, their allocated storage
location is flagged for garbage collection and will be erased with its
next execution.
Space management, allocation and planning. nKV [7, 8] is based
on the concept of native storage [6]. In essence, native storage [6]
mandates that the DBMS operates directly on the physical storage
avoiding intermediary layers, i.e., a file system or on-device translation
layers. As a result, functionality like address mappings or garbage
collection is deeply integrated in nKV.
Planning and allocation. The planner estimates the upper bounds of the
sizes of intermediary and final results along an NDP-pipeline. If the
estimate exceeds a predefined buffer size, then a materialization or
spilling stage is injected in the NDP-pipeline.

Depending on the size estimation, the planner and the storage
manager employ an allocation strategy that targets fast levels of the on-
device memory hierarchy first, e.g., on-device DRAM. If insufficient, a
materialization and spilling to persistent storage is planned. In this
sense, every materialization stage is assigned an exclusive physical
address range by the native storage manager as the DBMS controls
the address mapping. If the space proves insufficient, the execution
stalls and the computational storage requests more space from the
DBMS in an extra host-roundtrip.

220 result-set management for ndp on smart storage

Space management and garbage collection. nKV controls storage directly,
manages logical-to-physical address mapping, and schedules the
garbage collection (GC). It allocates and exclusively assigns physi-
cal address ranges to each pipeline and its materialization or spilling
stages. Thus, nKV ensures that other transactions, pipelines or NDP
operations do not overlap in the same storage space. nKV preserves
these address ranges for the duration of the execution until the comple-
tion of the invoking transaction or the reuse phase. Only then, nKV’s
storage manager marks them for GC and performs an asynchronous
GC call, which is executed as an NDP operation.

16.3 system design

To investigate the previously described aspects of result-set manage-
ment and in-situ materialization, we integrated those concepts into
MyRocks. As storage manager, we use nKV [7, 8], an NDP-capable
KV-Store based on RocksDB that already supports a native storage
interface towards computational storage devices. Moreover, we define
a communication protocol on top of NVMe to enable host-device inter-
actions, while several interconnected and distributed state machines
facilitate NDP processing on-device.

Communication Protocol. Our proposed communication between
the host and device is kept lean to avoid any unnecessary data transfers
and host-device roundtrips. Prior to any processing, the device must
allocate sufficient resources for the planned command. Therefore, the
host can reserve an NDP Slot on-, which is then assigned to a given
processing id (PID). Subsequently, an NDP invocation is performed. It
includes pre-allocated physical pages for either in-situ materialization
or spilling, as well as a monotonically increasing host interaction id
(HI), ensuring a total order of all upcoming interactions. From this
point onward, the processing will be fully managed by the device
itself and executed without any intervention with the database engine.
Whenever a block of tuples (as the final result-set) exceeds its limits, the
associated command is returned with the respective results as payload.
Upon that, the host can repetitively issue further commands until all
results are retrieved and the NDP pipeline reached its completion.
The NDP Slot is automatically returned afterwards. Upon an error
during processing or in the event of insufficient resources (e.g., pre-
allocated physical pages), the command is returned with a status field
indicating the cause. As described in Sect. 16.2, the native storage
manager resolves it, by scheduling GC or by allocating further pages
and issuing a follow-up commands with the respective action, i.e., by
passing new free page addresses to the device.
On-Device State Machines. In general, the processing elements, e.g.,
cores, on the intelligent storage device can be subdivided in a single
managing core and multiple processing cores. Thereby, several state

16.4 experimental evaluation 221

machines, interconnected via a shared memory, run simultaneously
on each core to perform certain functionalities. The managing core
runs the NVMe Engine and interacts with the host via the previously
described protocol. The NDP Engine is responsible for allocating the
NDP Slot, transferring either information or extracting results from
the HIs. Its counterpart on the processing cores continuously polls for
new HIs of the NDP Slot before executing the NDP pipeline. During
execution, persistent data is requested via flash reads towards the
flash engine located on the managing core. Result tuples are placed
into blocks of the respective HI before they are returned to the host.
Thus, the NDP engine can continue running on the processing cores,
while existing results are transmitted up to the host in parallel by the
managing core. This way interleaved pipelining is achieved.

16.4 experimental evaluation

Experimental Setup. We use MyRocks (MySQL 5.6) with nKV [7, 8]
as storage manager. The COSMOS+ board [5] is employed as an NDP-
capable storage device and rough equivalent to a consumer-grade
NVMe SSD or smart storage device. It comprises a Zynq 4045 SoC
with an FPGA, two 667 MHz ARM A9 cores, and Flash storage. The
board is connected via PCIe 2.0 ×8 to a host with a 3.4 GHz clocked
Intel i5 CPU and 4 GB of RAM, running Debian 4.9. The maximum
transfer size per NVMe DMA request is limited to 1 MB, due to the
NVMe engine of COSMOS+. Therefore, this is also our largest result
transfer unit.

As a baseline for the evaluation, we use nKV with native storage,
but without NDP (Native). It eliminates file system and block-device
layers, and allows for leveraging the physical properties of the un-
derlying storage with native storage management [6–8]. The results
are compared to the NDP configuration which utilizes one ARM core
exclusively, as managing core and performing host-device communi-
cation and interacting with the flash controller. The other ARM core is
used as processing core and is dedicated to NDP pipeline processing.
It uses on-device 200 MB DRAM as block buffer and 32 kB intermedi-
ary result buffers between pipeline stages if not mentioned otherwise.
MyRocks is configured to have a memory footprint of around 10%
of the data set size, including a block buffer of 1.4 GB. As dataset
we utilize LinkBench [1] configured with 10M Nodes and 20 GB of
data. Queries are always issued after a cold start to avoid measuring
unintended effects from caching and to ensure consistent results.
Experiment 1: Efficient NDP result handling can reduce not only
the data to be transferred from device to host, but also improve
execution duration by batching multiple results in larger transfer
units. In our first experiment, we investigate the influence of the result
transfer granularity on the execution duration. To this end, we em-

222 result-set management for ndp on smart storage

Native (baseline) NDP

Figure 16.3: Traditional Block I/O cannot filter data on-device (blue) in con-
trast to NDP. Yet, transferring results in small granularities
(e.g., tuple-based) entails high communication overhead (yel-
low). NDP wins after the intersection.

ploy a simple selection-projection query: SELECT id, type,...FROM

nodetable WHERE type <= ?. We vary the selectivity to increase the
result-set size and the amount of data to be transferred. As a baseline,
we report the execution time for classical block-based I/O with the
Native stack (Figure 16.3, blue). By using the NDP stack (Figure 16.3,
yellow), we continuously increase the granularity of the data transfer
unit from 1 kB (simulating tuple-based) to the limit of 1 MB (blocks of
tuples).

NDP reduces the device-to-host data transfers to the final results of
the given query. The only remaining cost is for reading and filtering
the data, as shown with 0% selectivity. With higher selectivities, the
amount of data to be transferred increases. Furthermore, the transfer
granularity entails an overhead of handshakes between host and device
in the PCIe/NVMe communication. Thus, with COSMOS+, the best
execution duration is obtained by transferring large blocks of tuples,
improving the performance by up to 27%.

Insights. NDP result management is capable to adapt to and opti-
mize for the given underlying storage link technology. Therefore, it
is necessary to adjust the granularity of transfer units accordingly by
either sending tuple-per-tuple or by batching multiple result tuples
into blocks of specific sizes.
Experiment 2: Concurrent execution of processing and final result
transfers as pipeline stages improves performance. In this experi-
ment, we investigate the impact of interleaved pipelining and transfer
granularity on the execution duration (Figure 16.4.a). We execute the
query from Experiment 1 on the NDP stack with and without inter-
leaved pipelining and vary the granularity of transfer units. In general,
the performance with interleaved pipelining is significantly faster than
processing and transferring results in a sequential order. Particularly,

16.4 experimental evaluation 223

10 50 100 250 500 7501,000
0

100

200

300

400

500

600

NDP (baseline)
NDP Interleaved Pipelining

Final Result Buffer Size Limit [kB]

Ex
ec

ut
io

n
D

ur
at

io
n

[s
]

0 20 40 60 80 100
0

10

20

30

40

50

60

70

Native (baseline)
NDP Immediate Consume
NDP Materialize +
Deferred Consume

Selectivity [%]

Ex
ec

ut
io

n
D

ur
at

io
n

[s
]

Figure 16.4: a) On-device interleaved pipelining improves execution signifi-
cantly. b) Final result materialization and deferred consumption
(brown) entail a small overhead over immediate consumption
(yellow) and outperform the baseline (blue).

small transfer granularities, entailing a high communication overhead,
benefit from interleaved pipelining, shortening execution durations
by up to 30%. Yet, the largest possible transfer unit (1 MB) improves
performance by 13%.

Insights. Interleaved pipelining enables result-set transfers while
further processing is executed concurrently. Thereby, it efficiently
conceals the communication overhead entailed by smaller transfer
units, benefits larger transfer blocks, and shortens host processing
delays. Other approaches are bound to the standard block granularity,
while nKV can vary it.
Experiment 3: Result materialization can be achieved without a
significant execution runtime overhead in NDP pipelines. Next, we
investigate the costs of materializing final results of an NDP pipeline
in Figure 16.4.b. Again, we execute the query of Experiment 1 on the
Native (blue) and the NDP (yellow) stack without materialization as
baselines. The same query is repeated as NDP pipeline that materi-
alizes its final results on Flash and immediately retrieves those via
classical I/O. We vary the selectivity to determine the impact of the
final result size on the materialization cost. Executing the query as
NDP pipelines outperforms the Native baseline by up to 40%, despite
materialization, even for higher selectivities. In fact, materialization
costs largely depend on the final result-set size, and thus, add up 4%
to 20% on the original execution time. However, this increase also
includes the final result-set retrieval from Flash.

Insights. NDP pipelines allow to materialize their results on device
without high execution overheads. Thereby, the cost for materializa-
tion increases with higher selectivities and result sizes, while still
outperforming the Native baseline.

224 result-set management for ndp on smart storage

0 20 40 60 80 100
0.01

2

5
0.1

2

5
1
2

5
10

2

5
100

1 2 3
0

20
40
60
80

100
120
140
160
180

Native (baseline)
NDP Immediate Consume
NDP Materialize No Consume

Reuse Host
Reuse On-Device

Selectivity [%] Reuse Runs

Ex
ec

ut
io

n
D

ur
at

io
n

[s
]

Ex
ec

ut
io

n
D

ur
at

io
n

[s
]

Figure 16.5: Reuse of materialized results improves the host (magenta) and
on-device (dark red) performance significantly.

Experiment 4: The reuse of in-situ materialized results has marginal
costs and amortizes those materialization costs already after the
second consumption. Last but not least, we investigate the reuse of in-
situ materialized results. In particular, we focus on the materialization
of Experiment 3 and extend it with the costs of NDP result materializa-
tion without consumption (brown), result reuse on the host (magenta),
and NDP result reuse on-device (red) as shown in Figure 16.5 on a
logarithmic scale.

Since NDP result materialization without consumption (brown)
does not require retrieving the result data after persisting it to Flash,
it shortens the execution duration by up to 12% compared to NDP
immediate consumption (yellow), and by up to 45% compared to
Native, depending on the selectivity and the respective result-set size.
However, consuming it in a deferred manner will add up the costs
for either reuse on host or reuse on-device, and thus, will be marginally
slower than NDP immediate consumption, while still outperforming
the Native baseline. However, the full potential of reusing material-
ized data develops by the second execution (Figure 16.5 right). While
reuse on host has significantly lower duration (up to 95%, compared
to NDP immediate consumption), reuse on-device can speed up the
consumption even further by 73× to 400× over NDP immediate con-
sumption, since reading previously-filtered data leverages the full
Flash parallelism of COSMOS+. This is especially useful for iterative
(e.g., k-means) or follow-up NDP operations.

Insights. NDP pipelines enable an efficient and flexible result ma-
terialization. They can be consumed either immediately or deferred.
Moreover, the materialized data can be reused multiple times on the
host but also on-device with significantly lower execution times.

16.4 references 225

references

[1] Timothy G. Armstrong, Vamsi Ponnekanti, Dhruba Borthakur,
and Mark Callaghan. “LinkBench: A Database Benchmark
Based on the Facebook Social Graph.” In: Proc. SIGMOD. 2013.
isbn: 978-1-4503-2037-5.

[2] Antonio Barbalace, Martin Decky, Javier Picorel, and Pramod
Bhatotia. “BlockNDP: Block-storage near data processing.”
In: Proc. Middlew. 2020, pp. 8–15. isbn: 9781450382014. doi:
10.1145/3429357.3430519. url: https://doi.org/10.1145/
3429357.3430519.

[3] Antonio Barbalace and Jaeyoung Do. “Computational Storage:
Where Are We Today?” In: 11th Conference on Innovative Data
Systems Research, CIDR 2021, Virtual Event, January 11-15, 2021,
Online Proceedings. www.cidrdb.org, 2021.

[4] Wei Cao et al. “POLARDB meets computational storage: Effi-
ciently support analytical workloads in cloud-native relational
database.” In: Proc. FAST. 2020, pp. 29–41.

[5] COSMOS Project Documentation. http://www.openssd-project.
org/wiki/Cosmos_OpenSSD_Technical_Resources. OpenSSD
Project. Jan. 2019.

[6] Ilia Petrov, Andreas Koch, Sergey Hardock, Tobias Vincon,
and Christian Riegger. “Native Storage Techniques for Data
Management.” In: Proc. ICDE (2019).

[7] Tobias Vincon, Lukas Weber, Arthur Bernhardt, Andreas Koch,
and Ilia Petrov. “nKV: Near-Data Processing with KV-Stores
on Native Computational Storage.” In: Proc. DaMoN. 2020.

[8] Tobias Vincon et al. “nKV in Action: Accelerating KV-Stores on
Native Computational Storage with Near-Data Processing.” In:
PVLDB 12 (2020).

[9] Lukas Weber, Tobias Vinçon, Christian Knödler, Leonardo Solis-
Vasquez, Arthur Bernhardt, Ilia Petrov, and Andreas Koch. “On
the necessity of explicit cross-layer data formats in near-data
processing systems.” In: Distributed and Parallel Databases (2021).

[10] Louis Woods, Zsolt István, and Gustavo Alonso. “Ibex: An
Intelligent Storage Engine with Support for Advanced SQL
Offloading.” In: Proc. VLDB (2014).

[11] Louis Woods, J. Teubner, and G. Alonso. “Less Watts, More Per-
formance: An Intelligent Storage Engine for Data Appliances.”
In: Proc. SIGMOD. 2013.

https://doi.org/10.1145/3429357.3430519
https://doi.org/10.1145/3429357.3430519
https://doi.org/10.1145/3429357.3430519
http://www.openssd-project.org/wiki/Cosmos_OpenSSD_Technical_Resources
http://www.openssd-project.org/wiki/Cosmos_OpenSSD_Technical_Resources

	Declaration
	Abstract
	Zusammenfassung
	Publications
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Acronyms

	 Synopsis
	1 Introduction
	2 Today's Challenges
	2.1 The Need to Change System Paradigms
	2.2 The Shift toward Near-Data-Processing
	2.3 Trends and Factors
	2.3.1 Workload
	2.3.2 Architecture
	2.3.3 Abstractions and Interfaces
	2.3.4 Hardware

	2.4 Central Research Question

	3 Storage Management for NDP
	3.1 Physical Storage Management in Databases
	3.2 Extending Native Storage with NDP
	3.3 Reducing Address Information Volume

	4 On-Device Navigation and Data Interpretation
	4.1 The Necessity for Cross-Layer Parsers and Accessors
	4.2 Leveraging Heterogeneous Processing Capabilities
	4.3 Automation of NDP Accelerator Creation

	5 NDP Offloading Models
	5.1 Types of NDP Offloading Models
	5.2 Propagating the Shared State
	5.3 Data Freshness and Transactional Consistency

	6 NDP Execution and Result-Set Handling
	6.1 Execution Modes
	6.2 NDP Pipelines
	6.3 Final and Intermediary Result-Set Handling
	6.4 Communication Protocol and State Machine

	7 Conclusion and Outlook
	7.1 Conclusion
	7.2 The NDP Problem Space and Future Work

	Bibliography

	 NDP Abstractions for Physical Storage Management
	8 Native Storage Techniques for Data Management
	8.1 Outline
	8.2 Native Storage and Data Management
	8.2.1 Architectural Approaches and Techniques
	8.2.2 Interfaces
	8.2.3 Abstractions
	8.2.4 System Integration
	8.2.5 Reconfigurability
	8.2.6 In-Storage Processing
	8.2.7 Data Management on Native Storage

	8.3 Biographies of the presenters
	References

	9 NoFTL-KV: Tackling Write-Amplification with Native Storage
	9.1 Introduction
	9.2 Related Work
	9.3 NoFTL-KV: native storage KV-Store
	9.4 Experimental Evaluation
	9.5 Conclusion
	References

	10 nativeNDP: Big Data Analytics on Native Storage
	10.1 Introduction
	10.2 Related Work
	10.3 nativeNDP Framework
	10.3.1 System Stack
	10.3.2 Interfaces and Abstractions

	10.4 Experimental Evaluation
	10.4.1 Datasets and Operations
	10.4.2 Experimental Setup
	10.4.3 Experiment 1 – Baseline
	10.4.4 Experiment 2 – Pushdown Cluster
	10.4.5 Experiment 3 – Pushdown NDP Device

	10.5 Conclusion
	References

	 On-Device Navigation and Data Interpretation
	11 Cross-Layer Data Formats in Near-Data Processing
	11.1 Introduction
	11.2 Conceptional Background
	11.2.1 Near-Data Processing
	11.2.2 NDP Operation Types in Databases
	11.2.3 Structural Elements: Formats and Layouts
	11.2.4 Structural Elements in Databases

	11.3 Pushing down Operations with Format
	11.3.1 The ImageProcessor
	11.3.2 Testbed
	11.3.3 Evaluation

	11.4 Conclusion
	11.5 Related Work
	References

	12 nKV: Near-Data Processing with KV-Stores
	12.1 Introduction
	12.2 Background
	12.3 Architecture of nKV
	12.3.1 NDP Interface Extensions
	12.3.2 In-situ Data Access and Interpretation
	12.3.3 Operations and Algorithms
	12.3.4 Data Consistency, Database Maintenance and NDP
	12.3.5 Result Set Handling

	12.4 Hardware-Architecture
	12.5 Hardware-Acceleration
	12.6 Evaluation
	12.6.1 Low-level Flash Properties
	12.6.2 Experiment 1: Lean Native Stack
	12.6.3 Experiment 2: Data Transfer Reduction
	12.6.4 Experiment 3: Native Computational Storage
	12.6.5 Experiment 4: Execution Parallelism

	12.7 Related Work
	12.8 Conclusion
	References

	13 nKV in Action: Accelerating KV-Stores with NDP
	13.1 Introduction
	13.2 Architecture of nKV
	13.3 Demonstration Walk-through
	13.3.1 Walk-Through

	13.4 Related Work
	13.5 Conclusion
	References

	14 Automatic Generation of Near-Data Processing Accelerators
	14.1 Introduction
	14.2 Motivation
	14.3 Near-Data Processing Background
	14.3.1 Background: Key-Value Stores
	14.3.2 nKV: Near-Data Processing Architecture

	14.4 Near-Data Processing Accelerator Generation
	14.4.1 NDP Accelerator Architecture Template
	14.4.2 Automatic Generation of NDP Accelerators
	14.4.3 Automatic Generation of the Software Interface

	14.5 Evaluation
	14.6 Related Work
	14.7 Conclusion & Outlook
	References

	 NDP Offloading Models
	15 Near-Data Processing under HTAP Workload
	15.1 Introduction
	15.2 Background and Related Work
	15.2.1 HTAP Workload and Systems
	15.2.2 Near-Data Processing
	15.2.3 Native Storage
	15.2.4 Update-aware NDP Systems

	15.3 Update-Aware NDP Architecture
	15.3.1 Shared State and NDP Execution Model
	15.3.2 NDP Transaction Management
	15.3.3 NDP Interface
	15.3.4 Parsers and Accessors
	15.3.5 Software and Hardware-based NDP
	15.3.6 NDP Pipelines and Operations
	15.3.7 Result-Set Handling

	15.4 Experimental Evaluation
	15.5 Conclusions and Future Work
	References

	 NDP Execution and Result-Set Management
	16 Result-Set Management for NDP on Smart Storage
	16.1 Introduction
	16.2 In-situ Materialization
	16.3 System Design
	16.4 Experimental Evaluation
	References

