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Abstract: High-spatiotemporal resolution soil moisture (SM) plays an essential role in optimized 

irrigation, agricultural droughts, and hydrometeorological model simulations. However, producing 

high-spatiotemporal seamless soil moisture products is challenging due to the inability of optical 

bands to penetrate clouds and the coarse spatiotemporal resolution of microwave and reanalysis 

products. To address these issues, this study proposed a framework for multi-source data merging 

based on the triple collocation (TC) method with an explicit physical mechanism, which was dedi-

cated to generating seamless 1 km daily soil moisture products. Current merging techniques based 

on the TC method often lack seamless daily optical data input. To remedy this deficiency, our study 

performed a spatiotemporal reconstruction on MODIS LST and NDVI, and retrieved seamless daily 

optical soil moisture products. Then, the optical-derived sm1, microwave-retrieved sm2 (ESA CCI 

combined), and reanalysis sm3 (CLDAS) were matched by the cumulative distribution function 

(CDF) method to eliminate bias, and their weights were determined by the TC method. Finally, the 

least squares algorithm and the significance judgment were adopted to complete the merging. Alt-

hough the CLDAS soil moisture presented anomalies over several stations, our proposed method 

can detect and reduce this impact by minimizing its weight, which shows the robustness of the 

method. This framework was implemented in the Naqu region, and the results showed that the 

merged products captured the temporal variability of the SM and depicted spatial information in 

detail; the validation with the in situ measurement obtained an average ubRMSE of 0.046 m³/m³. 

Additionally, this framework is transferrable to any area with measured sites for better agricultural 

and hydrological applications. 

Keywords: soil moisture; triple collocation; spatiotemporal interpolation; ESA CCI SM;  

MODIS; CLDAS 

 

1. Introduction 

Soil moisture (SM) is a crucial part of the water [1] and carbon cycle [2]. It has a con-

siderable impact on the land–atmosphere interactions as one of the primary input factors 

for various land surface and hydrological models [3,4]. To monitor vegetation growth 

[5,6], weather [7], and extreme climates, such as drought and flood [8–10], high spatial 

resolution and spatiotemporally continuous SM products are essential. 

The SM information is mainly acquired by in situ measurement, remote sensing re-

trieval, and model assimilation. Among them, the in situ measurement with the highest 

accuracy can be regarded as the “true value”, but is limited by high cost and weak spatial 

representation [11,12]. In addition, the change in SM affects vegetation growth, tempera-

ture, and evapotranspiration, which can be detected by optical remote sensing. Therefore, 

various indices including vegetation index, temperature index, and thermal inertia index 
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were developed [13–15] to indirectly estimate SM. Optical SM products offer a high spa-

tiotemporal resolution. For vegetated land, optical signals are only affected by vegetation, 

which allows for calibrating the vegetation effects on SM retrieval. However, clouds and 

rain contaminated the optical remote sensing signals, preventing their applications in 

monitoring soil and vegetation conditions. 

Compared with optical remote sensing, microwave SM is based on the physical pro-

cess of electromagnetic wave propagation and interaction with the soil [16,17]. Due to the 

stark contrast between the dielectric constants of dry soil (3) and liquid water (80), more 

moisture content in the soil mixture presents a higher dielectric constant. The conversion 

between SM and the dielectric constant is conducted by dielectric models. Microwave re-

mote sensing can be categorized into active and passive modes. The active microwave SM 

retrievals include change detection algorithms [18] and iterative optimization [19]. Passive 

microwave SM retrieval has the following three categories: i) Reverse-order solutions 

based on the radiative transfer model, such as the single channel algorithm (SCA) [20] for 

soil moisture active passive (SMAP) mission. ii) Iterative methods based on radiative 

transfer model, such as multi-angle algorithm [21] for soil moisture and ocean salinity 

(SMOS) mission, dual-channel (DCA) [22], multi-temporal dual-channel (MT-DCA) [23], 

and multi-channel collaborative algorithm (MCCA) [24] for SMAP, etc. iii) Microwave re-

mote sensing index-based methods, such as the land parameter retrieval model (LPRM) 

algorithm [25] in Advanced Microwave Scanning Radiometer (AMSR-E). Although pas-

sive microwaves can obtain relatively accurate SM, they are constrained by coarse spatial 

resolution, which is often tens of kilometers. In addition, the microwave propagates 

within vegetation layers with multiple paths, thus both the soil and vegetation contribute 

to the received signals. It is challenging to completely isolate the soil and vegetation com-

ponents, resulting in poor performances over high vegetation conditions [26,27]. 

Alternatively, hydrological or land surface process models driven by atmospheric 

data can simulate SM. By assimilating remote sensing, station data into these process 

models, reanalysis SM products with a daily or even sub-daily temporal resolution and 

continuous spatial coverage, were obtained. Furthermore, reanalysis data provide the root 

zone SM, which is more critical than surface SM for vegetation growth, but it was limited 

by coarse spatial resolution and insufficient precision. 

Considering the strengths and weaknesses of each product, the uncertainty can be 

reduced by multi-source data fusion to get an optimal estimation. Nevertheless, it is a vital 

issue to determine the optimal weights for each data in the fusion process. The Kalman 

filter is one of the most common methods for assigning weights [28], but most studies 

adopted prior knowledge to define the relative error of each product. Therefore, the rela-

tive weights are subjective, and the results are not necessarily optimal. In recent years, 

some studies were carried out on data fusion using the triple collocation (TC) method, 

which calculates the relative errors of three datasets that are independent and linearly 

connected to the true value. For example, the TC method was used to merge precipitation 

data [29] and estimate terrestrial water storage [30]. In terms of the SM data merging, Zeng 

et al. investigated the TC approach to combine ERA-Interim reanalysis data, microwave 

satellite data, and in situ measurement data [31]. Peng et al. merged microwave, JULES 

model simulation, and site data into triplets to obtain fine spatial resolution SM [32]. 

Moreover, the well-known ESA CCI SM products are based on the TC method, which 

merged active microwave (ERS1/2 SCAT, ASCAT-A/B/C) and passive microwave 

(SMMR, SSM/I, TMI, AMSRE, WindSat, SMOS, FY-3B/C/D MWRI, GPM, AMSR2, and 

SMAP) products to obtain the long-term (1978-2021) SM datasets [33,34]. 

However, the current TC merging of SM is mainly conducted with microwave, model 

simulation, and site data. Compared with these data, optical data have the advantage of 

high spatial resolution, but only a few studies introduced optical data under clear-sky 

conditions into triples [35] due to the issue of pixel contamination by clouds and rain. To 

solve this problem, our study proposed a temperature difference-vegetation index to re-

trieve SM from MODIS vegetation and land surface temperature (LST) data after applying 
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spatiotemporal interpolation [36]. Then, using the ESA CCI SM products as a reference, 

the CDF matching approach was performed to match optical and reanalysis SM products. 

The matched three data were formed into triples, and their relative errors were estimated 

by the TC method. Finally, the weight of each product was calculated by the least squares 

algorithm, resulting in a merged SM product after a significant test. This study combined 

the strengths of optical, microwave, and reanalysis data to obtain seamless daily 1 km SM 

products with satisfactory accuracy. 

2. Study Area and Materials  

2.1. Ground Measurement Data 

The study region is in Naqu (Figure 1), which is in the heart of the Tibetan Plateau, 

China. The Naqu SM observation network (CTP-Naqu) covers the longitude range of 91.5 

to 92.5 °E and the latitude range of 31 to 32 °N [37]. At a resolution of 1 km, the entire 

study area includes 10,000 pixels. This study used the SM data at a depth of 0–5 cm over 

all stations during 2017-2020. 

The land cover type in CTP-Naqu is mainly sparse alpine grassland, and the climate 

type is cold and semi-arid [38]. The soil freezes in November and begins to thaw in May 

of the following year due to the cold climate [39]. Soil freezing will affect the measurement 

of SM. Therefore, the data from May to October of each year were chosen for this study. 

 

Figure 1. Distribution of CTP-Naqu in situ SM stations. The text above the black dots in the image 

on the right shows the name of each site. 

2.2. Data for Merging 

2.2.1. ESA CCI SM Products 

The European Space Agency (ESA) provides the SM products of the Climate Change 

Initiative (CCI) project, which consists of active, passive, and combined products, with a 

spatial resolution of 25 km and a period of more than 40 years (1978-2021). ESA CCI SM 

team updates the algorithm every year and has to date released 13 versions of the product 

[33,40]. The latest version (V 07.1) SM was selected in the study, which improves spatio-

temporal coverage compared with the previous version. In addition, previous studies 

have shown that the combined product has the best performance in the Naqu region 

[41,42] among the three products, thus we chose the combined product. 
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2.2.2. CLDAS SM Product 

The reanalysis SM product was derived from the China Land surface Data Assimi-

lation System (CLDAS-V 2.0 near real-time product, 0.0625 × 0.0625°) by China Meteoro-

logical Administration. Based on the data fusion and assimilation technology, CLDAS lev-

erages multiple forcing variables to drive the various land surface models (e.g., CLM and 

Noah-MP) to obtain SM [43,44]. In addition, CLDAS SM data consider five soil layers to 

capture the vertical profiles. To match the sensed depth of the satellite, the daily data at a 

depth of 0-5 cm were used in this study. 

2.2.3. MODIS Product 

MODIS sensors are carried on the Aqua and the Terra spacecraft. For the LST, this 

study adopted the MYD11A1 product from the Aqua spacecraft with local overpass times 

at 1:30 pm and 1:30 am, respectively. The temperature difference between the two over-

passes was considered as a proxy for the maximum temperature difference on that day. 

In addition, an 8-day normalized differential vegetation index (NDVI) product was produced 

by combining two 16-day NDVI data from Aqua (MYD13A2) and Terra (MOD13A2) at 1 

km resolution. Moreover, we used the MODIS land cover type product (MCD12Q1) and 

selected the IGBP classification layer to mask pixels with water and participate in the error 

calculation.  

2.2.4. DEM Data 

The Space Shuttle Radar Topographic Mapping Mission (SRTM) [45] provided the 3 

arc-second digital elevation model (DEM) data that were used in the LST interpolation.  

3. Methods 

As shown in Figure 2, all data were preprocessed and resampled to 1 km at first. Soil 

moisture retrieval from optical data was carried out as follows: i) Daily NDVI products 

were generated by Savitzky-Golay (SG) filter algorithm [46] and linear interpolation. ii) 

The multi-temporal interpolation method was utilized to create the daily seamless LST 

product using daily NDVI, DEM, and MODIS LST data. iii) Temperature difference-veg-

etation index (TDVI) was proposed to retrieve SM from the interpolated NDVI and LST. 

Subsequently, we combined optical (TDVI-based), microwave (ESA CCI combined), and 

reanalysis (CLDAS) soil moisture products into triples. The deviation between the three 

products was corrected using the CDF matching algorithm, and the relative error of each 

product was estimated by the TC approach. Finally, the merged daily SM products at 1 

km resolution were obtained based on the least square merging and relevant significance 

test, followed by an evaluation against station observations. 
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Figure 2. Schematic diagram of our proposed merging method to obtain 1 km spatial resolution 

daily SM by spatiotemporal interpolation and triple collocation. 

3.1. Retrieve Cloud-Free Daily Optical SM 

3.1.1. Obtain Daily MODIS NDVI 

This study used 16-day MODIS NDVI (MYD13A2 and MOD13A2) rather than daily 

NDVI. This is due to the fact that the 16-day NDVI was synthesized by selecting high-

quality pixels, which considerably decreased the number of pixels that were missing or of 
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poor quality due to cloud contamination. The MYD13A2 and MOD13A2 data were com-

bined to obtain 8-day synthetic NDVI data. 

The steps involved in interpolating NDVI data include the following. First, the 

pixel_reliability layer was utilized to control the quality, and then the SG filter method 

was conducted to reduce the noise in the NDVI image. The SG filter is a polynomial 

smoothing algorithm based on the least squares principle for smoothing time series data. 

Finally, pixel-by-pixel linear interpolation is performed on the time series to acquire daily 

NDVI data [47]. 

3.1.2. Develop Seamless MODIS LST 

This study adopted a multi-temporal interpolation method to interpolate LST, which 

assumes that the LST variation characteristics in different pixels under similar environ-

mental conditions (including seasons, altitudes, and vegetation) are highly correlated 

[36,48,49]. For two LST images acquired with a close date interval (�� and ��), the follow-

ing relationship exists: 

�����
= �(�����

, ������
, ���) (1)

where ������
 represents the NDVI image corresponding to the �� day, and DEM is the 

digital elevation of the study area. With a linear assumption, the relationship � becomes: 

�����
= � ∙ �����

+ � ∙ ��� + � ∙ ������
+ � (2)

where a, b, c, and d represent regression coefficients. 

Based on the above principles, quality control was performed on all LST images by 

the QC layer at first, then, the images with more than 90% clear-sky LST pixels were se-

lected as the reference images (�����
), and the other images were interpolated images 

(�����
). In addition, the date interval between �� and �� should be within 30 days to 

avoid the seasonal variation of LST. If the date interval is greater than 30 days, we 

searched for reference images of adjacent years. The specific reference image information 

is shown in Tables S1 and S2 in the supplementary materials. 

Next, clear-sky pixels were selected in the interpolated image, and the LSTs in the 

reference image corresponding to these clear-sky pixels were found. Subsequently, the 

regression coefficients in Equation 2 are fitted using the ancillary remote sensing dataset 

(NDVI, DEM) of the corresponding location. Finally, based on Equation 2 with known 

regression coefficients, the LST estimation of missing pixels in the interpolated images 

was completed. 

Through the above process, the percentage of valid LST pixels for each image was 

above 90%. To produce a seamless LST image, the remaining pixels were interpolated 

using the inverse distance weight (IDW) technique. 

3.1.3. Generate Cloud-Free Daily SM Product 

In optical remote sensing, many studies have used surface temperature, vegetation 

index, and albedo as indicators of SM, such as the temperature vegetation dryness index 

(TVDI) [14], apparent thermal inertia (ATI) [50], and vegetation supply water index 

(VSWI) [51]. Inspired by the above index, we proposed a temperature difference-vegeta-

tion index (TDVI), defined as the ratio between diurnal temperature difference (������ −

��������) and NDVI: 

���� =
������ − ��������

����
 (3)

This index and the measured SM have a strong correlation. Therefore, cloud-free 

daily TDVI data can be calculated using cloud-free daily LST and NDVI data, and then 
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the cloud-free daily SM product over the study area was retrieved by the fitted relation-

ship between TDVI and the measured SM. 

3.2. Multi-Source SM Products Merging 

To merge multi-source SM products, all data were adjusted to a unified numerical 

range through bias correction, and the relative error of each data was estimated by the TC 

method. Then, the weight of each product was calculated by the least squares technique 

according to the relative error. Finally, the merging of multi-source data was completed 

based on the significance test. 

3.2.1. Bias Correction using CDF Matching 

Due to discrepancies in sensor frequencies, observation principles, and retrieval al-

gorithms, different SM products have certain systematic biases that need to be removed 

before data merging. This study adopted the CDF matching technique, which is consid-

ered as an enhanced non-linear method for eliminating the statistical moment difference 

between two datasets [52,53], and does not change the trend of the data. Additionally, the 

reference data quality influences the accuracy in merging the product [54]. We used ESA 

CCI combined SM data as the reference data since previous studies [55,56] demonstrated 

its excellent accuracy. The CLDAS and TDVI-based SM products were normalized to have 

the same range and distribution as the ESA CCI combined SM by CDF matching. 

3.2.2. Error Estimation by Triple Collocation 

Without relying on the true value, the TC technique [57] possesses the ability to cal-

culate the error of each product, which requires that the errors of the three data are un-

correlated. We selected optical, microwave, and CLDAS data to build triples. The data 

sources and algorithms are different, thus the precondition of error irrelevance is satisfied. 

The TC method assumes a linear correlation between the SM product and the true 

value: 

�

��� =  �� + β�� + ��

��� =  �� + β�� + ��

��� =  �� + β�� + ��

 (4)

where � is the true SM; ��� (� ∈ {�, �, �}) represent three SM products matched by the 

CDF method; the additive and multiplicative deviations from the true value are repre-

sented by � and β, respectively; and � is the random error. 

 Since the errors between products and true values are independent, according to the 

covariance calculation formula, the following equation can be obtained: 

C�� = �������, ���� = �
������

�,       ��� � ≠ �

��
���

� + ���
� ,   ��� � = �

 (5)

where �� is the random error variance. Let λ� = ����, the above equation transforms into: 

C�� = �
λ�λ�,       ��� � ≠ �

λ�
� + ���

� ,   ��� � = �
 (6)

By multiplying and subtracting Equation 6 in pairs, the error variance value of each 

data can be calculated as: 
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⎩
⎪⎪
⎨

⎪⎪
⎧���

� = ��
� −

������

���

���
� = ��

� −
������

���

���
� = ��

� −
������

���

 (7)

Note that only pixels with more than 100 samples are retained in TC error calculation, 

as the results are unreliable when the number is less than 100 [58]. Furthermore, when the 

computed error variance ���
�  of any product is negative, the error variances of other prod-

ucts in the triplet are invalid. To fill the invalid pixels generated by the above two cases, 

we averaged all error variances of valid pixels under the same land cover type, and then 

assigned this average value to the invalid pixels for the same cover type. 

3.2.3. Weight Estimation via Least Square Merging 

A least square merging technique introduced by Yilmaz et al. was successfully 

adopted to merge thermal infrared, passive microwave, and model SM products [59]. It is 

advantageous to combine various SM products since it minimizes random errors. The 

least squares merging form is as follows: 

������� = ����� + ����� + ����� (8)

where �������  is merged SM and ��  is the weight of each SM product. To obtain an 

unbiased merged estimate, the sum of ��  is equal to 1. 

The purpose of the least square method is to minimize the error variance of the 

merged SM product (���
� ), which has a cost function (J) form: 

� = ���
� = ��

����
� + ��

����
� + ��

����
�  (9)

� = ���
� = ��

����
� + ��

����
� + (1 − �� − ��)����

�  (10)

Setting 
��

��
= 0 and 

��

��
= 0, ��  can be obtained: 

⎩
⎪
⎪
⎨

⎪
⎪
⎧�� =

���
� ���

�

���
� ���

� + ���
� ���

� + ���
� ���

�

�� =
���

� ���
�

���
� ���

� + ���
� ���

� + ���
� ���

�

�� =
���

� ���
�

���
� ���

� + ���
� ���

� + ���
� ���

�

 (11)

Equation 11 indicates that the weight of one product is proportional to the uncer-

tainty of the other two products. When only two products are available, the formula for 

��  is: 

⎩
⎪
⎨

⎪
⎧�� =

���
�

���
� + ���

�

�� =
���

�

���
� + ���

�

 (12)

Gruber et al. (2017) proposed the defining of weights according to the signal-to-noise 

(SNR) ratio attributes of dataset rather than error variances. However, all the data were 
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unified into the same data space by CDF matching (Section 3.2.1), thus Equations 11-12 

are feasible. 

3.2.4. Merging Based on Correlation Significance Level 

The reliability of TC is weak when one or more of the products in the triplet have low 

temporal coverage or poor quality. Therefore, if a product in a triple is not strongly linked 

with the other products, TC results are frequently regarded as inaccurate. A scheme based 

on a correlation significance level (p-value) of 0.05 [32,60] was adopted to increase the 

spatial coverage of the merged SM products. 

As shown in Table 1, the merging scheme on each pixel contains four cases. In the 

first case, the TC weighted average approach (Section 3.2.3) was applied when all three 

products are significantly correlated (p-value < 0.05). In the second case, when one product 

in the triplet is closely related to the other two products, we chose this product. In the 

third case, the correlation significance level is present in only two products. We calculated 

the arithmetic mean of these two products. Finally, the pixel was ignored if there is no 

strong association between the three products. 

Table 1. Merging scheme based on Pearson correlation with a significance level of 0.05. 

If (p-value < 0.05)? 
Decision 

C – E * C – T E – T 

   TC weighted average 

   C 

   T 

   E 

   Arithmetic mean (C,E) 

   Arithmetic mean (C,T) 

   Arithmetic mean (E,T) 

   Disregard pixel (NaN) 

* C represents CLDAS SM data, T refers to TDVI-based SM data, and E is ESA CCI combined SM 

data. 

3.3. Spatiotemporal Analysis Method 

To investigate how the four SM products (CLDAS, ESA CCI combined, TDVI-based, 

and merged SM) change in temporal and spatial dimensions over the study period (every 

May to October from 2017 to 2020), we employed the Hovmöller diagram [61], which av-

erages all the values in a longitude or latitude row, places the average values on one axis, 

and the other axis represents time. The longitude or latitude axis reveals the spatial dis-

tribution of SM, while the time axis shows the seasonal and inter-annual variation of SM. 

4. Results and Discussions 

4.1. TDVI-Based SM Retrieval 

Since the land cover is quite homogeneous (sparse alpine grassland) in this study, 

building a station-by-station relationship is not necessary. We averaged the SM of all sta-

tions and the corresponding TDVI values across the study region, and then fitted the re-

lationship between them. As seen in Figure 3, TDVI and the measured SM exhibit a neg-

ative correlation. The mechanism between TDVI and SM is explained as follows:  

First, the amount of soil moisture influences the soil thermal inertia since water has 

a large specific heat capacity. Additionally, soil thermal inertia reflects the ability of soil 

to resist temperature changes; the more soil moisture, the higher the thermal inertia, and 

the lower the soil temperature. Therefore, the soil temperature difference and SM within 

a day are negatively correlated.  
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Moreover, SM is closely related to vegetation growth. When the vegetation coverage 

is high, it reduces the evaporation of surface SM, and the vegetation index reflects the 

growth of vegetation; the more luxuriant the vegetation, the higher the index, thus SM 

and vegetation index have a positive association. Eventually, the TDVI was obtained by 

dividing the soil diurnal temperature difference by the vegetation index, which can better 

describe the variation of soil moisture. 

A logarithmic relationship exists between site-averaged SM and pixel-averaged 

TDVI. Utilizing the logarithmic equation obtained by fitting, the SM value for each pixel 

could be acquired from the TDVI value. 

 

Figure 3. Logarithmic relationship between site-averaged SM and pixel-averaged TDVI. 

4.2. Triple Collocation Analysis 

4.2.1. Effect of LST Interpolation on Triple Collocation 

Figure 4 illustrates that despite the 4-year time period of this study (2017-2020), only 

39.68% of the 10,000 pixels in the study area had triples with days greater than 100, and 

the maximum number of days is only 138. If the LST is not interpolated, more than half of 

the weights derived by the TC approach are not available, and the resulting merged prod-

ucts will have a considerable number of missing pixels. The triplet ratio is increased to 

99.93% after interpolation, and most pixels are available for more than 300 days. 

The ratio of available triples before and after interpolation has significantly increased. 

Given this, LST interpolation efficiently addresses the issue of a severe lack of optical data 

pixels and enables the optical SM data under all weather conditions to participate in the 

TC analysis. 
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Figure 4. A comparison histogram of the number of available triples (orange columns are the num-

ber of triples before LST interpolation, green columns are after interpolation). 

4.2.2. Error and Weight Analysis 

Figure 5 exhibits the errors and weights of CLDAS, ESA CCI combined, and TDVI-

based SM products. Due to the CDF matching operation, the error here is the relative error 

between each SM data. Among the three products, ESA CCI combined SM has the smallest 

overall error, which supports our decision to use it as the reference data for CDF matching. 

The error of TDVI-based SM product ranks second, which proves that the SM retrieved 

through our developed TDVI index is reliable. The CLDAS error is the largest, and we 

also discovered that the CLDAS product contains unreasonable values on some stations, 

which may be caused by inappropriate parameter settings (detailed analysis in Section 

4.3.1).  

The weight of each pixel for each product was determined based on the results of the 

error. The ESA product had an average weight of 0.418, which had a greater weight in the 

central and marginal regions. The TVDI product had a superior weight in the rest of the 

region, with an average weight of 0.378. Whereas, the CLDAS product was assigned an 

average weight of 0.204, which had a low weight throughout the study area. 
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Figure 5. Relative error and weight distribution maps of CLDAS, ESA CCI, and TVDI-based SM 

products. 

4.3. Merged Soil Moisture Results 

4.3.1.. Spatiotemporal Variation of SM 

The Hovmöller diagrams in Figures 6 and 7 demonstrate that ESA CCI combined SM 

product is heavily missing in May and October (dark blue), while the merged products 

have the highest spatiotemporal coverage. In addition, we observed that the spatiotem-

poral distribution of CLDAS data is entirely different from the other three data through-

out 2017 and from May to June in 2018. To further explore this issue, time series plots were 

produced between four products and in situ SM data, selecting two of the sites as exam-

ples (Figure 8), and the time series plots for all sites are shown in the supplementary ma-

terials. In Figure 8, the CLDAS data deviate from other data in the above period, which 

further confirms our findings through the Hovmöller diagram. In addition, the CLDAS 

soil moistures were lower than the other products at site BC03 in 2019-2020, which may 

be due to the high soil organic matter content (SOC) of the top soil in the Naqu region; 

therefore, the porosity and water retention capacity are large, resulting in high soil water 

content [44,62]. The surface process models driven by CLDAS products may not consider 

the effect of SOC and therefore underestimated the soil moisture. Nevertheless, the 

CLDAS data also exhibited a specific cumulative trend, thus we suggested that the prob-

ability density matching step needs more verification in the Naqu region.  

It should be emphasized that the anomaly of CLDAS data had no impact on the study 

results since the TC technique was used to calculate the relative error of each product. 

Section 4.2 shows that the CLDAS error obtained by the TC method was the largest and it 

was assigned a low weight. This phenomenon also proves the robustness of our proposed 

framework. 

The spatiotemporal distributions of four SM data followed similar patterns except 

for the anomalous part. In terms of time variation, SM in each year was relatively low in 

May, reached a high level in July and August, then began to decline, and reached a low 

level in October. This temporal characteristic is consistent with the time pattern of soil 

freezing and thawing on the Tibetan Plateau [63]. Regarding the spatial distribution, SM 

varied slightly in longitude or latitude, partly since the averaging process may reduce the 

spatial variability. Additionally, there was insufficient spatial heterogeneity since the 

study area was small (1°×1°) and had a uniform land cover. 



Remote Sens. 2023, 15, 159 13 of 20 
 

 

In summary, the merged product captures the temporal variability of SM well, 

greatly improves the spatial resolution, and expands spatial and temporal coverage. 

 

Figure 6. Hovmöller (time-latitude) diagrams of CLDAS, ESA CCI combined, TDVI-based, and 

merged SM products for the study period (every May to October from 2017 to 2020). 

 

Figure 7. Hovmöller (time-longitude) diagrams of CLDAS, ESA CCI combined, TDVI-based, and 

merged SM products during the study period (every May to October from 2017 to 2020). 
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Figure 8. Temporal evolution of ESA CCI combined, CLDAS, TDVI-based, merged and in situ SM 

at BC03 and MS3533 sites. 

4.3.2. Compared with the In Situ Data 

This study evaluated four products using all of the available measured sites during 

the study period and selected ubRMSE, RMSE, Correlation, and Bias as the performance 

metrics [64]. After removing the stations with no observation data and the total number 

of observations less than 50, 48 stations were finally involved in the calculation. The box-

plots in Figure 9 display the metric statistics of the four products. Overall, the ESA CCI 

combined SM performs the best, followed by the merged product, TDVI-based SM is the 

third, and the CLDAS product performs the poorest. Although the merged results rank 

second, the difference with ESA CCI is minimal. The average ubRMSE of the merged SM 

is close to 0.04 m³/m³ (0.046 m³/m³), achieving satisfactory accuracy. More importantly, 

the merged product has a higher spatiotemporal resolution compared with the other 

products. 
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Figure 9. Comparison of statistical metrics (ubRMSE, RMSE, Correlation, Bias) among ESA CCI 

combined, CLDAS, TDVI-based, merged SM in validation with the in situ measurements. 

Furthermore, Figure 10 shows the metrics distribution of the merged SM product at 

each site. The product performed better in the northwest part with dense sites and worse 

in the northeast part with sparse sites. The reason may be that dense sites will have a 

greater impact on the TDVI fitting results. The effect of the number of in situ stations on 

the merged results will be further investigated in a subsequent study. 

 

Figure 10. Spatial distributions of ubRMSE, RMSE, Correlation, and Bias for the merged SM against 

in situ SM observations. 
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4.4 Uncertainty Analysis 

The uncertainties in this study are primarily attributed to the following three aspects: 

First, when retrieving soil moisture from optical data, there may be an oversaturation 

in NDVI, and the effect of vegetation indices, such as enhanced vegetation index (EVI) 

and leaf area index (LAI) should be explored in future studies. In addition, the impact of 

the number of measured sites on the retrieval results should be further considered. 

Second, in estimating the product error by the TC method, this study estimated the 

time-invariant error, but the error of SM product varies with vegetation phenology, sur-

face roughness, and environmental conditions. Therefore, the time-variant error should 

be calculated to combine soil moisture products [65,66]. In addition, the CDF matching 

method was used in this study to eliminate the bias between products. Although this 

method is commonly used, different rescaling techniques will affect the accuracy of TC 

error estimation, thus the effectiveness of methods, such as variance and mean matching 

and normalization can be further investigated [67]. 

Finally, in product merging, the nearest neighbor method was adopted to resample 

all products to 1 km; however, the original resolutions of ESA CCI and CLDAS are 25 and 

6.25 km, respectively. There is a scale difference between them and the 1 km optical prod-

ucts, which will lead to uncertainty in the results. 

5. Conclusions 

This paper proposed a framework to generate seamless 1 km daily soil moisture 

products by the spatiotemporal interpolation technique and the triple collocation method. 

This framework merged optical, microwave, and reanalysis data to leverage their 

strengths. 

First, the interpolation method was used to improve the spatiotemporal coverage of 

optical data, which tackled the pain point of a serious lack of optical data and realized the 

operation of introducing all-sky optical data into TC triples, which is rare in previous TC-

based merging studies. 

Second, a temperature difference-vegetation index was established, which has a close 

relationship with the measured SM. This index is a reference for soil moisture retrieval in 

the Naqu area. It should be noted that this index serves as a proxy for soil moisture in this 

framework, and the soil moisture index can be adjusted in other regions; therefore, our 

method is flexible and transferable. 

In addition, the merged framework based on the TC method can not only obtain the 

merged soil moisture products, but also evaluate the performance of input products. 

Through the study, the CLDAS products in the Naqu area were found to exhibit anoma-

lies in 2017 and the first half of 2018, and the causes of the anomalies were further explored 

through site validation. The CLDAS product needs further validation to check its accuracy 

in the Tibetan Plateau. 

Finally, spatiotemporal analysis and metrics evaluation revealed that the merged 

products captured the dynamic changes in soil moisture well, depicted spatial details bet-

ter, and achieved satisfactory accuracy. 

In conclusion, this research produced a set of high spatiotemporal resolution soil 

moisture data that can be utilized as an input variable in atmospheric or land surface 

models to facilitate climate and vegetation analysis in the Tibetan Plateau as well as assist 

in regional water resource management. Furthermore, the ESA CCI SM and MODIS (or 

its successor VIIRS) products have a long time series, allowing us to extend the merged 

products to longer periods in future studies. 

Supplementary Materials: The following supporting information can be downloaded at: 

https://www.mdpi.com/article/10.3390/rs15010159/s1. Table S1: The DOY (day of the year) of 

LST_day reference images (the ratio of valid pixels >90%); Table S2: The DOY of LST_night reference 

images (the ratio of valid pixels >90%); Figure S1–S48: Temporal evolutions of four products (ESA 

CCI combined, CLDAS, TDVI-based, and merged) and in situ measured SM over 48 sites. 
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