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Abstract: Recently, in healthcare organizations, real-time data have been collected from connected
or implantable sensors, layered protocol stacks, lightweight communication frameworks, and end
devices, named the Internet-of-Medical-Things (IoMT) ecosystems. IoMT is vital in driving healthcare
analytics (HA) toward extracting meaningful data-driven insights. Recently, concerns have been
raised over data sharing over IoMT, and stored electronic health records (EHRs) forms due to privacy
regulations. Thus, with less data, the analytics model is deemed inaccurate. Thus, a transformative
shift has started in HA from centralized learning paradigms towards distributed or edge-learning
paradigms. In distributed learning, federated learning (FL) allows for training on local data without
explicit data-sharing requirements. However, FL suffers from a high degree of statistical heterogeneity
of learning models, level of data partitions, and fragmentation, which jeopardizes its accuracy during
the learning and updating process. Recent surveys of FL in healthcare have yet to discuss the
challenges of massive distributed datasets, sparsification, and scalability concerns. Because of this
gap, the survey highlights the potential integration of FL in IoMT, the FL aggregation policies,
reference architecture, and the use of distributed learning models to support FL in IoMT ecosystems.
A case study of a trusted cross-cluster-based FL, named Cross-FL, is presented, highlighting the
gradient aggregation policy over remotely connected and networked hospitals. Performance analysis
is conducted regarding system latency, model accuracy, and the trust of consensus mechanism.
The distributed FL outperforms the centralized FL approaches by a potential margin, which makes it
viable for real-IoMT prototypes. As potential outcomes, the proposed survey addresses key solutions
and the potential of FL in IoMT to support distributed networked healthcare organizations.

Keywords: federated Learning; healthcare; cloud computing; security; privacy; blockchain; machine
learning
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1. Introduction

The recent decade has seen exponential and unbounded growth in the Internet-of-
Medical-Things (IoMT) landscape. IoMT encompasses the collection of wearable sensors,
which are mounted on the patient body to measure the patient’s vital indicators, such as blood
pressure, heartbeat, and oxygen levels. The sensors continuously monitor the data transmitted
over wireless communication networks to gateway nodes that perform data analytics [1].
According to a recent report by Research and Markets, which was released in January 2022, the
IoMT market is expected to reach $258 billion by 2026, which shows a significant increase
of $203 billion in four years [2]. By 2025, the healthcare industry would constitute ≈30% of
total Internet-of-Things (IoT) data volume, which is expected to rise a further 10% by 2030 [3].
The expected forecast in the IoMT domain promises new opportunities in healthcare analytics
(HA). Thus, there are strong requirements to revisit the centralized machine learning (ML)
algorithms owing to the issues of privacy, data leakage, and computational requirements [4].
Due to these challenges, the data collection process is distributed and often heterogeneous
due to different autonomous stakeholders’ involvement.

In centralized approaches, the analytics is mostly performed on cloud servers (Amazon
Web Services, Google Cloud, Microsoft Azure, and others), where critical indicators are
analyzed for future medical predictions using the cloud resources [5]. Thus, IoMT leverages
remote patient monitoring and is controlled through connected networks. Recently, the
growing privacy concerns with the health insurance portability and accountability act
(HIPPA) and general data protection regulations (GDPR) act have restricted stakeholders
from sharing electronic health records (EHRs) with medical practitioners (doctors, hospitals,
and medical labs), and researchers with patient consent only [6]. IoMT enables users to
access healthcare services via smart devices such as phones, tablets, and personal digital
assistance [7]. Thus, with growing mobile applications (m-health services), data collection
to form EHRs is frequently synchronized with centralized mobile cloud computing (CC)
servers for planning and decision-making. At any stage, misconfiguration at the centralized
server causes data leakage that impacts the privacy of the patient’s sensitive data [8].

Data in different geographical locations have their sharing policies and rights. Thus,
the sensitive attributes of the data are not shared without the prior consent of data own-
ers [9]. The sharing policies are tightly scrutinized and regulated by law enforcement
agencies or service providers due to legal policies. Moreover, in CC servers, an enemy can
target these servers due to central and single-point vulnerabilities, which might result in
privacy leakage, alterations, and authorization-based attacks. Thus, the sharing of data
among remote channels should be restricted. Still, such a step hinders the analytics carried
out by ML algorithms, as models are highly data-driven [10]. Thus, a fine balance between
data sharing and data are required for the learning models. To address the aforemen-
tioned issues of ease of accessibility and storage of collected data, a decentralized approach
seems feasible.

Thus, researchers have provided decentralized solutions in IoMT ecosystems [11,12].
The data are kept secure at local sites for analysis, which adds personalization and pri-
vacy; such data are also used to generate full-meaning information by applying dynamic
association among the different attributes [13]. The distributed learning approach allows
parallel learning models to train the data at local sites. The parallelism is carried out by two
mechanisms—enforcing the same data to parallel nodes (data-parallel) or enforcing the
same data to all nodes, where they train distinct portions of an ML model (model-parallel).
However, with large data, the model division becomes complex, and challenges of compu-
tation and system heterogeneity arise owing to varying degrees of CPU, bandwidth, and
storage capacity [14]. Another challenge is the non-independent and identical distribution
(non-IID) data, which require unified feature learning and optimization [15]. To preserve
the data homogeneity and privacy considerations, federated learning (FL) assures local
learning in IoMT via two approaches, namely, the centralized FL (CFL) and distributed
FL (DFL).

CFL employs cloud-based aggregation and is suitable for general models, whereas



Mathematics 2023, 11, 151 3 of 47

DFL assumes the distribution of users as a prime condition and focuses on edge-based
aggregation. Sometimes, a unified mix of CFL and DFL approach (hybrid FL) is possible
and is termed edge-cloud-based aggregation. In CFL, every healthcare facility trains its
model with local data aggregated and sent to improve the results of the global model. CFL
improves the system’s latency as sending the data to a global server is unnecessary to
obtain the result. Instead, healthcare facilities update their local model parameters from
global ones. However, in CFL, the healthcare nodes (or remote sites) have to trust the global
server (a CC server) to correctly send the global parameters under which the local training
would take place [16]. Thus, a malicious adversary might poison the global server or might
poison the local updates, which would lead to incorrect training of the CFL model [17].

Thus, DFL models are created to address issues in CFL, where there is no requirement
for a central model; instead, local learning is a peer learning process. The connected neigh-
bors (single-hop) learn about local updates, which are sent to other nodes to improve the
global update of the entire network. Thus, DFL has inherent potential in a variety of appli-
cations, ranging from vehicular networks [18], drones [19], IoT [20], financial systems [21],
and others. Clinical data sets from remote hospitals and medical facilities are difficult
to obtain owing to patients’ sensitive medical information, which is unavailable and has
restricted access. Hence, DFL allows numerous agents to learn a common prediction model
together while preserving the confidentiality of the training data [22]. Most real-world
applications for EHR are decentralized, and the HIPPA act prohibits sharing patient-level
data with other parties, such as insurance providers and healthcare facilities.

Hospitals maintain many patient-level records at local facilities that contain a general
description of each patient’s characteristics with missing detailed information about an
individual. It is impractical to train a complex model with limited and imbalanced data.
CFL and DFL address issues surrounding the confidentiality and accuracy of medical
data. In CFL, the computation takes place on a locally trained ML model, and only model
updates or weights are transferred. In notation, we refer to ∆Wk as the slope mk of the linear
regression model for the kth healthcare entity. These updates are globally synchronized
among the different entities via a centralized approach that consumes extra bandwidth and
creates an additional overhead at CC servers. However, in practical setups, the bandwidth
required at the local nodes is not uniform, owing to link constraints, which impose variable
delays in the aggregation.

In contrast, DFL uses an edge aggregation strategy with low overheads in terms
of resource consumption and variability in link delays. In such cases, the end devices
seamlessly communicate with the edge aggregation server, owing to fewer devices in the
coverage range. When nodes in a particular range increase, the edge aggregation server
might communicate with the cloud server for offloading and resource requirements. Edge-
cloud-based aggregation in DFL assures high scalability and improves the robustness of the
IoMT ecosystem. Another DFL approach is collaborative learning [23], where IoMT devices
share resources during the training process. In this case, devices send their local models
to nearby devices rather than the edge server. However, the security of the local model is
achieved through effective schemes such as homomorphic encryption, which allows users
to perform computations on the encrypted model with the requirement of decryption [24].
Then, local updates are shared to edge servers for updates. Another approach is the gossip
learning approach which deals with proper bandwidth utilization and shares the ∆Wk with
its directly connected neighbor healthcare entity [25]. The weights are exchanged by the
segmented gossip aggregation method. These DFL approaches maintain data integrity and,
at the same time, assure privacy-preserving challenges.

As network hospitals are geographically dispersed in DFL, they work together to
train ML models for data-driven applications. The raw data acquired at every IoMT
sensor are not shared with other nodes, which allows FL to safeguard the privacy of
EHR in the IoMT realm. Figure 1a,b, shows the CFL and DFL learning approaches. In
both scenarios, {∆W1, ∆W2, ∆W3, . . . ∆Wn} are the gradient weights of the local model of
n hospitals, presented as {H1, H2, H3, . . . , Hn}, respectively. The only difference between
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CFL and DFL approaches is the aggregation policy, where the gradient ∆Wn is shared with
the global model or peer nodes. Table 1 presents a comparative analysis of the CFL and
DFL approaches in terms of diverse parameters. The table signifies that both CFL and DFL
have significant advantages under the privacy-preservation view, where techniques such
as differential privacy, anonymization, and diversity are frequently used. Another critical
aspect is FL communication, where techniques are devised to improve the overall data rate,
minimize latency, and manage resources effectively.

(a) (b)

Figure 1. The two views of FL aggregation. (a) CFL Architecture [26]; (b) DFL Architecture [27].

Table 1. A comparative analysis of CFL and DFL schemes.

Parameters Centralized FL Decentralized FL

Model Selection Global server (cloud) selects the model and initial
hyperparameters

Peer-nodes form a consensus protocol to finalize the
model

Gradient Update Successive iterations between local (edge) nodes and global
(cloud) nodes in reducing the loss function

Gradient-sharing is based on a ledger mechanism to
record transactions

Algorithms Federated Averaging (FedAvg), federated client selection
(FedCS), FedProx, q-FedAvg

Gossip-based FL, incentive FL, resource-FL, BlockFL,
ChainFL, BAFFLE

Communication Round Synchronous with timestamping Asynchronous with chunk-based processing

Supporting AI models CNN-Unet, Deep NN, Sparse SVM, RNN, Deep-Q-networks Partitioned ML, RL, Collaborative ML, Sparse
Autoencoders, Hidden Markov models

Communication Mechanism Client-Server, where local nodes download the initial model
(downlink), and upload gradients (uplink)

Distributed with cross-verification followed by block
propagation phase

Resource Management Depends on the dataset size, available nodes energy, and
CPU/cycles

Depends on peer (joint) optimization of peer models,
link costs, communication delays, game
theory-based optimization, relaxation-enabled
resource allocation

Attacks Data Poisoning, Label-flipping, Convergence-based attacks,
Pseudorandom attacks, Secret-key sharing

Knowledge-based attacks, contracts and injection
attacks, route poisoning, causative attacks, Sybil
attacks, distributed denial-of-service attacks

Security mechanism Homomorphic encryption, secure multi-party communication Zero-knowledge proof, blockchain-based miner
verification, turbo coding

Datasets Xender trace, MNIST, Fashion-MNIST, CIFAR-10, Pascal VOC
2012 Fashion-MNIST, CIFAR-10

1.1. FL Research Trends

The above discussions indicate that the requirements of FL to support daily healthcare
use cases are significant. As per the reports by NVIDIA, medical informatics would require
FL to tackle the volumetric data. A recent study by Dayan et al. [28], which is published
in Nature Magazine and led by general mass Birgham and NVIDIA, forms collaborative
efforts of 20 diverse hospitals that train deep learning (DL)-based neural network (NN)
to monitor the oxygen levels of COVID-19, and predicts the future requirements, which
might require medical attention. A large pool of diverse data are required from different
organizations to support accurate decision-making. Recent studies by IBM Corporation [29]
indicate a merger with Healthcare, Inc., where a USD 1$ billion deal is finalized to set
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up central servers for FL aggregation (the Watson supercomputer). In medical imaging,
projects such as the cancer imaging archive (TCIA) support FL for image analysis and
segmentation purposes. Thus, FL becomes a viable choice for distributed analytics, with
the dual benefits of effective management of healthcare data-sharing rules. A study by
Darzidehkalani et al. [30] suggested an increase in healthcare projects on medical imaging
data, after the COVID-19 era. In magnetic resonance imaging (MRI), computed tomography
(CT) scan, and real-time reverse transcription polymerase chain (RTPCR) tests for the SARS-
COV2 virus, deep learning (DL) models (CNN, deep neural networks) are trained with
high data volumes. In FL setups, a dataset size is typically 150 megabytes (MB). In local
setups, FL harmonizes local training with parameter optimizations. Table 2 represents the
abbreviations with their intended meanings used in the survey.

Table 2. Abbreviations table.

Abbreviation Description Abbreviation Description

2PCC Two-phase cross-chain consensus GANs Generative Adversarial Networks
5G Fifth-generation GDPR General Data Protection Regulations
6G Sixth-generation HFL Horizontal Federated Learning
AE Autoencoders HIDS Host-based Intrusion Detection

AI Artificial Intelligence HIPPA Health Insurance Portability and
Accountability

APS Artificial pancreas system HstCon Hasty Consensus
BFL blockchain-based FL IoMT Internet of Medical Things
BLE Bluetooth Low Energy IoT Internet of Things
BSNs Body Sensor Networks KNN K-nearest Neighbour
CC Cloud Computing M2M Machine to Machine
CCFL cross cluster FL MEC mobile edge computing
CCGA Cross-Cluster Gradients Aggregation ML Machine Learning
CFL Centralized Federated Learning MSQE minimum square quantization error

CIA Confidentiality, Integrity, and,
Availability NFC Near-Field Communication

CNN Convolution Neural Network NN Neural Network
DBN Deep Belief Networks PBFT practical Byzantine fault tolerance
DefCon Deferred consensus PHR Personal Health Records
DFL Decentralized Federated Learning PLS physical layer security
DL Deep Learning RFID Radio-Frequency Identification
DRL deep reinforcement learning RL Reinforcement learning
EHR Electronic Health Record RNN Recurrent Neural Networks
FDN Feed Forward Deep Networks SOM Self-Organizing Map
FL Federated Learning SVM Support Vector Machine

FL-IoMT Federated Learning-Internet of Medical
Things VFL Vertical Federated Learning

FRFs Fuzzy Random Forest

1.2. Survey Contributions

Listed below are the survey contributions:

• A reference model of FL-IoMT is presented, which discusses the FL aggregator, and
the model update scenario. Insights on the communication and security perspectives
of the reference architecture are also presented;

• Based on the research questions, we outline the key role of AI and trusted security
solutions to support FL-IoMT. Key applications are presented to support modern
healthcare scenarios- group learning, EHR data analysis, monitoring, and use of FL in
medical imaging;

• A case-study, Cross-FL supports blockchain-based FL (BFL) mechanisms among differ-
ent departments of the same hospital and inter-hospital data management. The peer
learning process and the gradient aggregation strategy are discussed. Two algorithms
to share updates—the HstCon algorithm and the DefCon algorithm—are presented.
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Performance evaluation for these algorithms in terms of latency and accuracy of model
parameters is discussed.

1.3. Survey Organization

The survey is organized as follows: Section 2 presents a functional classification (in
terms of FL learning, FL networking, and FL security) of existing surveys and the state-of-
the-art schemes in the IoMT domain. Section 3 presents the review methodology of the
article, which poses the research questions the survey addresses. Section 4 presents a revisit
of basic IoMT functions, where we discuss the different sensor types, IoMT environment
structure, and computing requirements (in terms of processing at cloud, edge, fog, and dew
nodes). This section allows the user the understand its basic nuts and bolts of it, which
is useful to understand the FL-IoMT reference architecture in the next section. Section 5
discusses a reference architecture of FL-IoMT, with specific highlights on the learning
process, aggregation policy, and security and communication paradigms. Based on existing
surveys, we highlight the survey gaps. Section 6 presents ML and DL algorithms’ role in
assisting the FL training. Section 7 presents the inclusion of trust as a security parameter
to FL algorithms and discusses emerging trusted FL concepts. Section 8 presents the
different FL-based applications in a practical context. Section 9 discusses the open issues
and challenges in deploying FL-IoMT and prospective solutions. Section 10 presents a case
study, Cross-FL that forms a blockchain-based trusted solution for FL communication among
intra and inter-communication setups in modern hospitals and associated stakeholders.
The underlying architecture, along with consensus mechanisms, is presented in the case
study. Finally, Section 11 presents the concluding remarks and future directions.

2. Related Work

In this section, we have functionally classified the surveys and state-of-the-art (SOTA)
schemes in healthcare and IoMT ecosystems. We have classified the related papers in terms
of FL learning models (both ML and DL schemes in FL environments), networking and
resource requirements of FL nodes, and security and privacy requirements in FL designs.
Figure 2 denotes the classification taxonomy. We have subdivided our related work into
two subsections: survey articles and the SOTA approaches. The details are presented
as follows.

Related Work

Surveys

FL Model Learning

FL Networking

FL Security

State-of-the-Art

FL Model Learning

FL Networking

FL Security

Figure 2. A functional taxonomy of related surveys and state-of-the-art approaches.

2.1. Survey Articles

In this subsection, we present the related surveys of FL in the healthcare domain.
The details are presented as follows.

2.1.1. FL Model Learning

Nguyen et al. [26] discussed the potential of FL designs with the federated health-
care setups. The authors discussed FL integration with novel coronavirus disease-2019
(COVID-19) medical imaging. Antumes et al. [31] discussed the potential use cases with
FL for model training, DL algorithms such as convolution neural networks (CNN), Auto
Encoders (AE), and recurrent Boltzmann machine (RBM) for EHR disease diagnosis and
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outcome prediction. KhoKhar et al. [32] presented a systematic survey on the FL-related
schemes on healthcare imaging with secured and protected applications. The presented
potential applications are cyber attack detection and recommender systems. Authors in [33]
identified the challenges of the FL-based agnostic IoMT Healthcare system and EHR of the
images (medical) system. A distributed FL and decentralized FL scheme are presented.

2.1.2. FL Networking

Authors in [34] presented an overview of the FL chain system with multi-access edge
computing (MEC) integration. The design analysis was tested via metrics such as communi-
cation, security, protection, and incentive learning-based costs. Turjman et al. [35] surveyed
the interdisciplinary characteristics of the FL-based smart healthcare applications for the
IoMT domain, emphasizing communication and sensing mechanisms. ML algorithms such
as K-means and decision trees are found beneficial for the study’s signal enhancement of
the IoMT communications. Aouedi et al. [36] presents different services in the FL-IoMT
applicative verticals, such as medical imaging, healthcare diagnosis, optimization of drug
compositions, and drug discovery processes. During the training process, the emphasis is
laid on security and communication scenarios. The paper discusses communication cost
reduction with sufficient privacy preservation.

2.1.3. FL Security

Ali et al. [37] discussed the privacy challenges in the area of FL-based IoMT architec-
tures. The privacy threats in these architectures were identified using deep reinforcement
learning (DRL), generative adversarial networks (GANs), and digital twins (DTs). In
some cases, the efficiency and performance of the learning technique become affected by
a malicious jammer robot in the FL-based IoMT ecosystem. Shen et al. [38] presents a
systematic survey that addresses the security issues in FL when local nodes (IoT sensors)
send encrypted updates to the global model. The survey addresses an in-depth analysis
of differential privacy, secure multi-party computation, and trusted aggregation based on
attack models. For the same, cryptanalysis of identified models is considered to identify
the penetration depth of IoT devices. Based on the adversarial attacks, the open issues and
challenges are discussed. Authors in [39] proposed a survey on distributed ML techniques
where the local model is secured based on a multi-party cooperative mechanism. A sixth
generation (6G) network is considered for FL communication, and analysis is carried out
on the communication of different iterations of FL model weight updating. To optimize
the results, adaptive gradient descent FL strategies are proposed for multi-clients where
local DFL training is carried out collaboratively. The survey highlights the potential mecha-
nisms to address the adaptive learning rate and avoid excessive fluctuations and model
overfitting issues. Through experimental evaluations in a secured multi-party computation,
communication costs are analyzed with high quantifiable robustness.

2.2. State-of-the-Art Approaches

In this subsection, we discuss the SOTA schemes of recent FL designs similarly as
presented in Section 2.1. The details are presented as follows. Table 3 represents the
comparative analysis of the proposed study with the existing state-of-the-art survey.

2.2.1. FL Model Learning

Sandi et al. [40] suggested a successful privacy-preserving scheme for the FL-IoMT
secured misbehavior detection for the artificial pancreas system (APS). This has been
achieved through blockchain technology and bidirectional long-short-term memory (Bi-
LSTM). Alamleh et al. [41] proposed a framework for the FL-based IoMT to detect and
mitigate the conditions that might arise due to intrusion attack vectors. The authors
explored different ML/DL approaches to tackle intrusion detection systems (IDS) attack
scenarios. Gupta et al. [42] focused on the anomaly detection pattern in the FL-IoMT
scenario. Hence, implementing the same Hierarchical FL (HFL) that carries out aggregation
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at different positions and for the various level of users for the remote patient monitoring
use cases has been deployed. In the FL-based IoMT scenario, the resource utility patterns
are also important, and this should not be wasted. Zhao et al. [43] proposed FL concepts in
a reinforcement learning (RL) environment to train the system to evaluate and identify the
gradients achieved by the clients of the large business models. Ahmed et al. [44] presented
feature selections of various heterogeneous FL-based medical services, and their accuracy
is analyzed. Xu et al. [45] proposed a scheme FL with minimum square quantization error
(FED-MSQE). The FED-MSQE proposes a minimal square quantization in the federated
ecosystem. The results show significant improvements for multi-FL silos.

Zhang et al. [46] presented an optimization scheme for fine-tuning hyper-parameters
of complex DL models such as deep belief networks, Boltzmann machines, and CNNs.
The data become hierarchical with more nodes, increasing the model’s complexity. The au-
thors propose a multi-layer extreme learning machine (ELM), which selects the important
attributes in such cases. The scheme accelerates the DL model’s convergence time. A
non-iterative version is presented over stacked autoencoders, residual models, where mid-
dle connections are made scalable. It is also established that randomized algorithms are
more optimal for the generation of hidden layer parameter selection in the case of CNN’s.
Randomization depends on task and data distribution. Authors in [47] discussed ELM
for hidden feed-forward networks. ELMs reduce the modeling errors with the usage of
the squared loss function. The work suggests a Gaussian error distribution strategy to
induce robustness in the scheme, and the effect is compared for data with Gaussian and
non-Gaussian noise. An objective function is formed for a mixture of Gaussian distribution
to approximate incoming data.

2.2.2. FL Networking

Sanyal et al. [48] proposed a federated filtering framework for IoMT. The scheme
takes advantage of the FL scenario, which enhances the system’s energy efficiency and
also provides privacy in the resource-controlled IoMT ecosystem at minimal latency costs.
Furthermore, AI models may be trained on dispersed data due to FL. Consequently, a
substantial amount of IoMT data can be utilized without data sharing. FL-based schemes
with privacy preservation are proposed in IoMT ecosystems, where authors discussed
security mechanisms for the physical layer. Thus, physical layer security (PLS) mechanisms
are proposed; for example, authors in [49] explored this limitation and presented a scheme
for power control uplink FL-IoMT. The scheme enhances the performance through the
detection of the malicious jammer robot.

2.2.3. FL Security

Ferag et al. [50] did a comparative study on various FL-oriented DL schemes for the
IoT application associated with cybersecurity. Examples include unmanned aerial vehicles
(UAVs) for healthcare supplies, surveillance, and management. Authors in [51] developed
deep learning algorithms in FL-based setups to trace heart activity. To preserve the sensitive
attributes, anonymity and encryption schemes are considered. Dai et al. [52] presents the
survey and case study of the multi-layer blockchain-based IoMT system. The system helps
the healthcare organization manage COVID-19 patients and contributes to telemedicine
and remote healthcare assistance. Cheng et al. [53] designed an FL-assisted expectation
maximization Gaussian mixture model, and the scheme is validated through the IoMT data
with minimal data leakage.
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Table 3. Comparative analysis of the proposed survey with existing state-of-the-art surveys.

Author Year Parameters Objective Adavantages Limitations1 2 3 4

Proposed 2022 Y Y Y Y

A comprehensive discussion of
FL techniques to ensure
security and privacy is

presented

Applications of FL in IoMT
domains are discussed, which

is validated through a case
study of BFL IoMT

A solution taxonomy of FL in
the IoMT domain is not

discussed

Nguyen et al. [26] 2022 Y N Y Y

The authors surveyed recent
healthcare advances in FL and

presented the security and
communication perspective

Recent FL designs are
discussed based on computing

resources, privacy, and
incentives

Provable guarantees of FL
security, data heterogeneity,

and non-iidness are key
limitations

Antunes et al. [31] 2022 Y Y Y N Authors have discussed FL
adoption to EHR

FL with generative adversarial
networks (GAN) is exploited

for data analysis.

The secrecy of training data are
still an open question that
needs more research and

suggestions.

KhoKhar et al. [32] 2022 Y N Y Y The secured FL training model
is surveyed in IoMT

The authors considered an
image-processing application

and presented methods for
enhancing FL security.

Privacy issues of FL and data
aggregation issues require

further discussions.

Khan and Alkaabi et al.
[33] 2021 Y Y Y Y

Surveyed AI potential to
integrate with emerging

cyber-physical technologies for
smart communities

Emerging communication
networks such as

sixth-generation (6G) are
combined with edge

computing in healthcare and
FL for decentralized analytics.

The two major concerns that
need to be solved are

communication costs and
clients with heterogeneous

characteristics.

Nguyen et al. [34] 2021 N Y Y Y

Communication, incentive,
security, and resource

distribution are the important
metrics addressed through an

FLchain design.

Authors surveyed applicative
domains to support edge data
sharing and crowdsensing and
explored its potential with FL

learning for healthcare

Convincing mobile users to
join the FLchain process is a

fundamental challenge in real
setups, as a mobile user serves
as both a training and miner

node.

Turjman et al. [35] 2020 Y N Y N
The survey presents insights
about new FL perspectives in

the IoMT ecosystems.

Smart healthcare applications
in classification, sensing

technologies through
wearables, and

inter-connectedness in FL
network communication are

explicitly discussed.

Fewer insights are presented
for the design of new protocols

and open communication
standards, which allows

interoperability between local
FL nodes with the global

trained model

Sheng et al. [38] 2020 N Y Y Y
Discusses backdoor and

inference attacks as potential
threats to FL systems.

Privacy and security
countermeasures such as

differential privacy, secure
aggregation, and secure

multiparty computation are
discussed.

FL is still susceptible to data
membership inference and

backdoor attacks.

Wu et al. [39] 2020 N N N Y
The survey presents insights
about new FL perspectives in

the IoMT ecosystems.

The model’s privacy, security,
and sensitivity to

hyperparameters are to be
improved.

The accessibility of massive
data contexts and the

convergence efficiency of the
training model are still

restricted.

Sanyal et al. [48] 2019 N Y N N

FL-based filtering mechanisms
are discussed for IoMT setups

for prediction at central fog
servers.

For loMT aggregation, a
lightweight, fully

unsupervised local subroutine
and filtering algorithm are

introduced

Research challenges in
procuring effective and

unbiased data collection at
IoMT testbeds at local setups
are not discussed, which can

help formulate a general
relationship between decision

accuracy and perturbation
error.

Ferag et al. [50] 2021 Y N Y N
Authors reviewed FL-based

security and privacy solutions
with blockchain integration

Blockchain-assisted FL
schemes are selected to operate

in conjunction with DL for
cybersecurity applications

Designing a specialized IoT
framework based on FL

remains an essential research
topic that must consider the
underlying IoT architecture.

Can and Ersoy et al. [51] 2021 N Y Y Y

Federated deep learning (FDL)
algorithms are surveyed to

address data heterogeneity and
collection process for heart

activity data.

IoT-based wearable monitoring
schemes with FL are examined,

and dataset challenges are
presented.

The absence of control groups
in the experimental setups

lowers the validation
functionality of wearables.

The discussion on corrective
measures is not carried out in

the study.



Mathematics 2023, 11, 151 10 of 47

Table 3. Cont.

Author Year Parameters Objective Adavantages Limitations1 2 3 4

Dai et al. [52] 2020 Y N Y Y

To address the security and
privacy issues with IoMT
systems, the authors have

presented a
blockchain-enabled IoMT.

Blockchain technology can
strengthen security and

safeguard user privacy in
IoMT systems.

It is not easy to improve
performance by implementing

more scalable consensus
algorithms.

Cheng et al. [53] 2020 N Y N Y

Blockchain-assisted FL
verification architectures are

surveyed, and for aggregation,
homomorphic encryption is

studied

Designing homomorphic
encryption schemes during the
FL aggregation process lowers

the privacy risk and allows
personalization in healthcare

setups

The authors did not address
the importance of

credential-based authorization,
which simplifies the

complexity of the overall
process.

1: Review Method, 2: Case Study, 3: FL architecture, 4: FL Applications, Y—shows that the parameter is present,
N—shows that the parameter is absent.

Wang et al. [54] discussed the consideration of edge computing for the FL-IoMT
and designed an architecture consisting of the lightweight privacy protocol with minimal
overheads. Wu et al. [55] presented an incentive mechanism for the FL-IoMT, where the
incentive proposals are proportional to the effectiveness of the learning mechanism, and
it trivially depends on the data size of local training, privacy budget, and information
asymmetry. Hence, to deal with such a problem, Lakhan et al. [56] proposed a security
and privacy scheme that works with minimal resources. For validation, the authors have
used metrics such as delay and cost. To manage the security and privacy in the COVID-
19 situation, Samuel et al. [57] have introduced the blockchain concept in the FL-based
IoMT. The scheme ensures trust, immutability, data availability, and information security.
Choudhury et al. [58] offered a plan to cope with the challenges associated with centralized
learning. The concept of differential privacy was also imposed on the Fl-IoMT-based case
study. The performance was high and found to be usable with the IoMT framework.

2.3. The Necessity of the Survey

The market size of FL in HA healthcare analytics from 2020 to 2030 will rise to ≈12% [59].
Researchers have shifted towards incorporating FL solutions with modern learning capabil-
ities that address data sharing and privacy issues. Most surveys and SOTA on FL discuss
optimization of model parameters, gradient sharing with low power, and security issues. For
the same, articles discuss CFL and DFL schemes where cloud, edge, or hybrid aggregation
is presented. The other direction is towards the fairness and incentive mechanisms of DFL
schemes. In edge FL schemes, numerous surveys discussed issues of caching at network
devices to improve local learning. The articles have discussed these issues from model training
and security viewpoint but have not addressed the specific challenges in the IoMT domain.
Thus, the proposed survey underlines the integration of FL with IoMT with a high-level
overview of the proposed architecture. Furthermore, recent advancement in IoMT has pro-
pelled the design of optimal FL algorithms that caters the communication and trust in such
systems. Thus, blockchain integration with FL is a viable choice in distributed setups, and the
proposed survey discusses a useful case study.

3. Review Method

This section represents the review methodology and highlights the research questions
to assist the study.
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3.1. Research Questions and Its Study

IoMT devices generate a vast amount of data per second, consisting of permutation
of different sensors with time. The variety of this data, combined with IoMT devices, is
limited to power and resources, particularly implanted medical devices. This places a large
computational load on typical ML algorithms and limits their usefulness in IoMT devices.
As a result, new tactics are necessary to utilize ML approaches effectively. It is critical to
comprehend the IoMT system’s security and privacy challenges and their related remedies
based on ML approaches. Furthermore, it is critical to analyze the efficacy of currently
deployed ML approaches, the strength of solutions provided to the IoMT system, and its
difficulties. We discovered that there had been little attention devoted to these concerns in
the literature. Consequently, this study includes a systematic literature review, which aims
to expose the strengths and limitations of previous research in this area, followed by the
creation of solid improved techniques. Table 4 highlights the research question identified
along with the objective that assists the survey.

Table 4. Research question of the proposed survey.

Q.N. Research Question Objective

RQ1: What is the need for FL in IoMT?

To understand the important features of FL
that improve the privacy and security of
the shared EHR among different
stakeholders in the IoMT setup.

RQ2: What is the drawback of the current
centralized IoMT ecosystem?

To explore privacy attacks in the
centralized IoMT system and how a
decentralized FL-based system ensures the
privacy of sensitive information.

RQ3: What are the challenges of FL in the IoMT
ecosystem?

To formulate the open issues and
challenges to seek future directions for
decentralized healthcare.

RQ4: How does FL-IoMT benefits healthcare?
To conceptualize the use of FL with the
integration of IoMT in the healthcare
setups.

3.2. Review Methodology

The literature survey is employed on the most recent and relevant computer science
healthcare databases such as IEEEXplore, PubMed, WHO database, Science Direct, and
ACM Digital Library. This study also includes websites, blogs, reports, books, and patents
in the healthcare and IoMT domains. An exhaustive literature survey is carried out on
technologies related to AI, ML, DL, FL, and IoMT with their integration in the health-
care domain. The search is narrowed down by initial compilation and filtering. Figure 3
presents the search criteria including some common synonyms. With the defined search
keywords, a number of articles is identified and based on the date and year of the publica-
tion. The research repositories are searched based on the combination of words “Federated
Learning”, “Internet-of-Medical-Things”, “Healthcare”, “Federated Learning for health-
care”, “Security in Internet-of-Medical-Things”, and “Artificial Intelligence in Healthcare.”
We also searched the academic databases for classification algorithms, applications, security
parameters for FL, and their applicability in the healthcare domain.
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Paper Selection Process

Keywords

Federated Learning
Artificial Intelligence 

in Healthcare
Internet-of-Medical-

Things
Federated Learning in 

Healthcare

Literary Sources

IEEE Xplore ACM library WHO Database Sciencedirect PubMed

I/P # 330
Exclusion based 

on title 
O/P# 223

I/P # 223
Exclusion based 

abstract and 
conclusion
O/P # 167

I/P # 167
Exclusion based on 

full text
O/P: 134

I/P # 134
Exclusion based 
on commonality  

O/P# 115

Figure 3. Survey methodology and Inclusion–Exclusion.

4. Nuts and Bolts of IoMT: Sensors, Node Setup, and Aggregation Policy

In this section, we present a background of the type of sensor nodes used in IoMT
ecosystems. The nodes generate data required to undergo computational analysis at
different computing capacities. The collected data are trained at cloud, fog, multi-access
edge, or dew layer. Depending on application-specific requirements, data are trained
via CFL and DFL models at different nodes. We begin our discussion by discussing
different IoMT sensors and general IoMT setups and then shift towards the computational
(processing) of collected data at different aggregations in a layerwise manner. The details
are presented as follows.

4.1. IoMT Sensors

We have categorized IoMT sensors into two categories, normal medical sensors and
biosensors. The details are presented as follows.

4.1.1. Normal Sensors

IoMT allows different sensor nodes to communicate over a wireless channel to re-
motely and continuously monitor the patient’s health and subsequently form clinical
indicators for HA. With constant monitoring, the patient’s medical expenses are reduced as
his body indicators are measured daily. IoMT has two categories of sensor nodes: normal
medical sensors and biosensors. Normal sensors are mainly used in patient diagnosis and
therapeutic support, such as blood pressure and glucose sensors (strip-based). Another
category is patch sensors, which a patient wears like a torso, and critical indicators such as
heart, pulse activity, sleep activity, and body fall movements are measured. These sensors
are useful for elderly persons as they can measure triggers or spikes during fall detection
analysis. Another category is connected sensors such as wearables and invasive sensors.
Wearable sensors form direct contact with human skin and monitor individual activities
(fitness trackers, watches, smart clothing, and others). Invasive sensors (such as electrocar-
diograms and electroencephalograms) generate signals that measure brain signals and eye



Mathematics 2023, 11, 151 13 of 47

gaze motion to check patient alertness. A use-case application is when a person feels sleepy
while driving. Then, it can monitor the person’s eye pupils to raise alarms or notifications.

4.1.2. Biosensors

Biosensors are short-form for biological sensors and are normally formed by using
any transducer with a biological element, which can be enzymes, nucleic acid, lectins,
plant proteins, tissue slices, or antibodies. These elements, popularly known as bioele-
ments, interacted with analytes and converted the biological reaction into electrical signals,
which are measured as inputs [60]. Different categories of biosensors are used, such as im-
munosensors, canaries, biochips, glucometers, and others. Any biosensor mainly consists
of two elements—the natural elements and the electronic element. The generated signal is
mainly electrical, but in many cases might be thermal or optical. Mainly, biosensors are
small, so they can be implanted inside human bodies (normally the size of rice grain) or
taken as pills and are soluble in human body fluids [61]. Once inside the body, the biosensor
electrical component reacts with gastric body fluids to trigger the electrochemical reaction.
Once triggered, a digital voltage or spike is generated, which is measured by devices.

Recently, new biosensors have been designed to detect ribonucleic acid (RNA) viruses such
as CRISPR-Cas9. Other categories include nucleic acid-based, antigen-Au/Ag nanoparticles-
based electrochemical biosensors, optical biosensors, and surface plasmon resonance.
Biosensors can identify dangerous metal concentrations in the water thanks to their metal-
specific electrodes. In addition, it can recognize harmful pathogens and find elements of
bio-recognition such as enzymes, antibodies, or biomolecules [62]. Biosensors also offer the
chance to improve the post-operative care process. Table 5 summarizes the common types
of sensors used to empower the Internet of Medical Things (IoMT). It presents the different
categories of normal sensors and biosensors with descriptions, different types, and their
potential use-case.

Table 5. Types of sensor devices in IoMT ecosystems.

Sensor
Type Name Description Sensor Name/Types Use-Case

Bi
os

en
so

rs

Electrochemical
biosensor

This sensor uses an electrode to
immobilize the electron and
bio-molecules which causes a
transducing biochemical event.

potentiometric,
amperometric, and
conductometric
biosensors,

It is used to directly monitor the
activity of the living cell by
converting biological events to
electrical signals.

Physical biosensors
It senses the biological change such
as a change in mass, fluorescence,
and resonance of the patient.

piezoelectric biosensors
and thermometric
biosensors

Patients temperature, room humidity,
and light intensity

Optical biosensors
Based on the optical measurement
principle, and use fiber optics as well
as optoelectronic transducers.

Surface plasmon
resonance (SPR), SPR
imaging (SPRi), and
localized SPR (LSPR)

Detection of deoxyribonucleic acid
(DNA) hybridization, clinical
diagnostics, bio-defense, food
testing, clinical biomarkers, and
toxin screening

Wearable biosensors

These are portable integrated sensors
and are easily implanted on the
patient’s body with the help of
tattoos, body implants and clothing.

saliva, tear, and body
sweat-based wearable
biosensors

bio-sensing to detect vitamins and
minerals, obtaining information
regarding biological fluid within a
body cavity.
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Table 5. Cont.

Sensor
Type Name Description Sensor Name/Types Use-Case

N
or

m
al

se
ns

or
s

Flow sensors

Flow sensor accurately measures the
flow of liquid and gases in
ventilators and anaesthesia
workstations

contact and non-contact
flow sensors Used as a respiratory gas monitor

Fingerprint sensors Captures a digital image of the
fingerprint pattern

optical scanners,
capacitance scanners,
ultrasonic scanners, and
thermal scanners

Fingerprints can be used to identify
an injured person during an
emergency, which can be checked
against public healthcare databases
for vital health information of the
person.

Temperature Sensor
Temperature from a source and
converts it into human and device
understandable form.

Thermistors, resistance
temperature detectors and
thermocouples

Measuring blood or body fluid
temperatures

Pulse Heart Rate Sensor

Heartbeat sensor can sense a change
in the volume of blood flow in the
vessel with the help of red and green
lights

photoelectric pulse wave
and blood pressure
measurement.

Sleep tracking, anxiety monitoring,
health bands, remote patient
monitoring, alarm systems

4.2. IoMT Node Setup

The section discusses IoMT sensor nodes setup and required communication protocols.
IoMT network scales itself in three categories, namely, the IoMT body setup (on-body),
hospital setup (local FL client systems), or community setup (a shared group of local FL
clients). In the case of in-house IoMT (both on-body and hospital IoMT), the sensor nodes
send clinical data to servers to assist decision-making capability. These setups are computa-
tionally constrained and thus have small datasets to execute the ML and DL models. These
models can send patient data from residences and hospitals to clinics (doctors) or healthcare
practitioners. The underlying communication stack employs low-powered communication
protocols, and the energy consumption is ≈ 1 joule/sec. The devices communicate with a
power range of 0.4 watts to 0.7 watts. The transfer network varies from personal area net-
work (PAN) to master–slave piconets and scatters nets (in the case of Bluetooth low energy).
The network range is mostly indoors and falls under the IEEE 802.15.4 protocol. The other
protocols mostly used are 6lowPAN, a routing protocol for low-power and lossy networks
(RPL) supported by an IPv6 address. The device identification is made through proto-
cols such as uCode, and uniform resource identifiers, supported by transport/application
layer services such as message queue telemetry transport (MQTT), constrained application
protocol (CoAP), and lightweight machine-to-machine (LwM2M) to interface with web
services. For faster connections, WebSocket is another preferred choice. Other suitable
networks are Z-wave, Zigbee, low power wide area networking (LoRAWAN), LoRAPAN,
radio frequency identification (RFID), wireless highway addressable remote transducer
protocol (Wireless HART), and others.

In-house-IoMT prevents hospital readmissions by constantly monitoring and identify-
ing critical health indicators, known as telehealth. Telehealth allows pristinely discharged
patients to contact doctors in remote mode. Community IoMT refers to utilizing IoMT
devices over a larger region or city. Mobility services, for instance, use equipment to track
patients when traveling in a car. Paramedics and other first responders monitor patient
statistics beyond the boundaries of the hospitals using emergency service intelligence
systems. It sets up point-of-care devices, which are used to diagnose health problems. In
long-range communication, cellular networks are a viable choice (low-powered long-term
evolution, 5G and beyond), long-range radio (LoRA), SigFox, and others. LoRa supports a
range higher than 10 km, whereas SigFox supports a range of 10–20 km in rural and urban
conditions. Sigfox also supports the advanced encryption standard of 128-bit key size
(AES-128) for communicating data to the receiver nodes, with a high interference immunity
due to adaptive modulation.
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4.3. Aggregation Policy

In this subsection, the aggregation policies are discussed in detail. We form a com-
parative analysis of cloud-based, edge-based, fog-based, and dew-based FL aggregation.
Table 6 presents a comparative analysis of the varying degree of computing at these lay-
ers in different FL parameters. The section above discusses that a central server (global
server) is called an aggregator in CFL setup [63]. By design, the local nodes retain data
and perform local model training. The local updates are shared with the cloud aggregator,
which fuses the gradients to form an optimal weight (gradient) strategy for the global
server [64]. As cloud servers have high computing resources, the global model training
is supported (with high backend GPU accelerators). For example, consider the scenario
where local hospitals execute a CNN model for COVID-19 detection on MRI images. In
such cases, a cross-device scenario is applicable where a large number of client nodes
(>100) participate in the training process [65]. In such cases, FL models such as federated
averaging (FedAvg) are a popular choice [66]. The global model is normally trained via
a stochastic gradient descent (SGD) model to minimize the classification and prediction
bias. Every party has a small dataset and constrained operating capability (mainly mobile
devices). The communication is synchronous, and the global training updates are sent back
to local nodes for model optimization. In edge-based FL, nodes communicate with the local
edge server as aggregators. Edge is the closest to end devices, and it allows for computing
to be carried out and a small amount of data to be stored directly on devices, applications,
and edge gateways. Thus, edge aggregation supports the DFL scenarios in a better manner.
In such cases, FedAvg does not cater well to requirements owing to simple averaging,
as data might have diverse parameters affecting global convergence and learning rates.
The local objectives also vary significantly in these models and might become bounded
by local optima instead of global solutions. One solution is to increase the iterations to
improve convergence, but it would significantly consume useful edge resources, making
the network non-scalable to support the cross-device scenario.

In edge aggregation, FedProx is considered a better solution that adds a proximal term
to the local function defined by FedAvg [67]. It also addresses the statistical heterogeneity
and non-IID data distribution with minimal computational constraints. However, when
the edge aggregator faces bottlenecks, a fog computing layer is introduced, which acts as
the resource manager between the edge and the cloud node. This simplifies the logistic
operation at the local nodes, as fog nodes analyze important communication parameters.
Thus, the data transfer has low latency, even in low bandwidth networks. However, a joint
optimization strategy is required for resource allocation and gradient selection at the fog
layer. At the fog layer, it is necessary to virtualize resources, administer the edge aggregator
policy, store sensitive data, and connect multiple edge nodes using the cloud.

Recently, dew computing [68] is considered an optimal fit to support the DFL scheme,
owing to the property of independence and collaboration. In dew computing, the in-
dependence property supports the ability of the dew layer to conserve partial learning
functionality of local models, where connection loss to the edge aggregator is normal. Dew
supports a hierarchical aggregation to the edge node, where the DFL nodes learn the local
models collaboratively. Dew layers support dew intelligence, where micromanagement of
data selection is carried out asynchronously. This principle is denoted as the dew layer’s
collaborative property, and many local devices create a shared knowledge of data, where
the updates are shared via shared links between DFL nodes. Thus, dew intelligence is
suitable in IoMT applications, as it supports the highest degree of personalization during
local training. In the dew layer, authors in [69] presented a scheme, FedHealth that forms
a collaborative learning model for shared EHRs among multiple nodes. The Dew layer
supports another learning paradigm, split learning [70], where a common model trains
different data modalities. It solves the problems of vanilla FL, proposed by Google, where
local gradients are ensembled at the central global node. The convergence time of vanilla
FL (for example, GBoard) is high. Another FL approach, community-based FL (CBFL) [71],
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is also supported by the dew layer, which has high predictive accuracy and a high degree
of data privacy.

Table 6. A comparative analysis of IoMT devices at varying levels of computing nodes (Cloud, Fog,
Edge, and Dew).

FL Parameters Cloud Computing Fog Computing Edge Computing Dew Computing

Latency 50–150 ms 15–20 ms 5–10 ms 1–2 ms

Architecture Centralized Distributed Distributed Hybrid

Hardware Routers, layer 3 switches,
bridges, and gateways Bridges and gateways Access points, base stations base stations, dew servers

Nodes Mostly Servers with
high-end computing

Portable handled devices
(Laptops, Mobiles)

Portable with limited
capacity (Mobiles)

Embedded Controllers
(Sensors with proportional
integral derivative control)

Distance Far from the edge (No. of
Hops—1 to 30)

Network closest to the edge
( 1–10 Hops) At the edge (1 or 2 Hops) On Device (at most 1 hop)

Access Network Both Wired and Wireless Wireless Wireless Both wireless and wired

Data Analysis
permanent storage, less
time-sensitive data
processing

Real-time picks whether to
send to the cloud or process
locally

real-time, immediate
decision-making

Real-time and offline
(disconnected) computation

Scalability High, Easy to Scale (No
Limit) Scalable within network Hard to scale No scaling

Computing Cost $400 monthly to $15000
based on the type of model

$100 monthly to $999 based
on the type of model

$199 monthly to $1299 based
on the type of model

$50 monthly to $100
depending on model types

Usage Analytics, processing,
warehousing

Local data analytics,
processing, storage

Real-time processing,
visualization, micro storage

Real-time processing, micro
storage, and miniature
protocols required

Virtualization Yes Yes Yes No

5. FL-IoMT: Fundamentals and Key Technicalities

This section provides the fundamentals and key technicalities through an FL-IoMT
architecture and presents the FL learning process, aggregation, and the security and com-
munication process.

In medical setups, wearable sensors communicate with gateway edge nodes that lever-
age machine-to-machine (M2M) connections driven by IoT protocols. It enables various
links to communicate with each other over the Internet [72]. Different AI models are de-
signed over these indicators and are utilized to find statistical inferences to make informed
decisions. Due to data inconsistencies, we use interpretable analytics that provides valid
reasoning to AI models and allows explainability for AI models [73]. The local data are
sent to the central servers for analysis, but it increases the computational requirements
four-fold [74]. According to a recent study, by 2025, the network’s edge will process ≈ 950
ZettaBytes of data in digital reports and files. On the other hand, the global data center
traffic is expected to reach 21.6 ZettaBytes [75]. With massive data collection, security is an
important parameter and requires privacy preservation among security channels and third-
party applications. To cater to this, recent researchers have suggested the use of privacy
preservation [76], crypto primitives [77], and trust building using blockchain [78,79].

5.1. A Reference Architecture for FL-IoMT

This section represents a typical FL model training procedure in IoMT ecosystems.
Figure 4 presents the architecture which specifies the overall communication process of
FL-IoMT. The architecture consists of two main components-IoMT sensor nodes that
capture the data and the other is the aggregation server. We consider that n hospital entities
participate collaboratively to train their local models. The IoMT devices (sensors) and the
global servers are positioned at the service access point to aggregate the local updates.
The different architectural components are discussed as follows.
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Figure 4. FL-IoMT architecture and communication process [80].

5.1.1. IoMT Client

Every Hn receives the initial model M0. Each local model M0 is trained with local
IoMT data Dn, and model weights ∆Wn are computed by minimizing the loss function f n.
For example, consider a linear regression model where the weight optimization function is
denoted as f n(W) and can be written as follows:

f n(w) = 1/2(Xi −Yi)
2 (1)

where {Xi, Yi} are the input pairs. The objective function can be fed to a back propagation
model, which can optimize the weights more efficiently. Once the ∆Wn is computed, it is
sent to the aggregation server via the access point.

5.1.2. Aggregation Server

The main server (global) collects the model updates in the form of gradient ∆Wn.
Based on the received gradient, the server computes the new version of the global model,
which is depicted as follows:

Mg =
1

∑ |Di|
n

∑
i=1
|Di|Wi| (2)

where Di and Wi are the local data and local model weights at the ith hospital, respectively.
The constraint is specified for all the Hn, which needs to use and send to the same learning
model after every training iteration. After training the new model, a new ∆Wn is sent to
compute the next round of global model Mg.

5.1.3. The FL Learning Process

FL uses statistical data models to train while keeping the data safe at a local site. With
the rise of data and the computing capability of devices, the practical FL learning process
in IoMT has taken significant leaps. However, owing to privacy concerns, the data need to
be processed locally, and the computations are supported at edge nodes. This improves the
latency of FL communication rounds [81]. The important FL use cases normally include
wearables which require quick decisions in critical life-saving emergencies. The challenge
with FL remains to construct a single statistical model from the raw data saved on millions
of devices over the Internet. The FL learning process’s final aim is to minimize the global
loss function, presented in Equation (3) as follows:
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f = min(∆W)
1
K

n

∑
i=1

kn

∑
j=1

fk(∆W) (3)

where ∆W represents the weights of the global model, and K is the total data points from
IoMT devices. Each n IoMT device has its local data set dn of kn data points.

5.2. FL Categorization Based on the Data Partition View

In FL, the data are partitioned between multiple client nodes. The scheme in which
the data are partitioned significantly affects the aggregation models. The partitioning view
can be categorized into three categories, namely, vertical FL (VFL), horizontal FL (HFL),
and federated Transfer Learning (FTL). The details are presented as follows. These are
categorized according to different samples, and feature space lies in the distribution pattern.
The same sample space refers to the set of the possible outcomes of a random experiment,
while the same feature space refers to the set of features used to categorize the data. Figure 5
represents the overview of HFL, VFL, and FTL.

F
ea

tu
re

 S
pa

ce

Sample Space

A

B

A

B

A

B

HFL VFL TFL

Figure 5. Categorization of FL based on Data Partition.

Horizontal FL

HFL is applicable when the feature space of two different datasets of users A and
B overlaps more than the users’ closeness. For example, consider two different IoMT
devices from different regions that might have some overlapping data collected from
their respective patient node. In HFL, healthcare stakeholders develop the distributed
global model using datasets with the same feature space but different sample spaces.
The same AI model might be used by the local FL players (artificial NN) to train their
respective datasets. Without accessing the local data directly, the server might make a
global update by including local changes received by local participants. The detection
of speech disorders is considered an example of an HFL example. Many people say the
same phrase (feature space) on their cellphones with varying voices (sample space). A
parameter server averages the local speaking information to create a worldwide speech
recognition model. Thus, an FL-enabled speech (voice) recognition system would become
more personalized for a specific user (owing to local samples) but would also incorporate
the averaging information of other connected users. In HFL, the clients compute their
local gradients and upload the information, but the collection nodes might leak private
information. Thus, adding a random noise with the local gradient is a viable approach.
In the case of DFL approaches, the authors have proposed an HFL framework named
BlockFL [82], which uses blockchain-based ledgers from where transactions from mobile
clients are recorded to update the local models. Another scheme termed MOCHA [83] is
designed to solve security and multitasking issues of edge aggregation, and the scheme
assures fault-tolerance of distributed nodes during FL training.

5.3. Vertical FL

VFL specializes in federated training of medical datasets with similar sample spaces
but distinct data feature spaces. VFL is applicable when the feature sets of user A and user
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B in the database overlap less than the user similarity of A and B. For example, consider two
IoMT devices at one hospital entity, which collect patient body movements, and postures,
and predict fall detection, sleep cycle, and other details. Patients are common (user similar-
ity), but each has different clinical indicators owing to the difference in body movements.
During local training, it uses solutions based on entity alignment in combination with
encryption measures to alleviate the problem of data sample overlap at distant clients. A
shared learning model among entities, such as health centers and insurance companies,
might be an example of VFL in IoMT applications in a smart healthcare system. In this
frame of reference, a VFL approach is used by a hospital and an insurance company that
serves patients (same sample space) to collaboratively train an AI model for smart treatment
choices utilizing their datasets, such as healthcare costs at insurance companies and previ-
ous medical records at hospitals. ML models such as classification [84], gradient descent
computation, and linear regression are applicable in the case of such vertical divisions.
In DFL, peer training strategies such as SecureBoost are proposed, where all peer nodes
summate the user features to train their models [85]. This strengthens the decision-model
accuracy, and data losses are minimized. To assure data privacy during communication,
Paillier and addictive homomorphic encryption are proposed by users [86].

Federated TL

FTL works with datasets with various sample spaces and feature spaces, unlike the
VFL systems. It is applicable when two users, A and B, rarely overlap, and we do not find
any common segment. In such situations, we use transfer learning to find similarities in
data, such as two different IoMT devices of two different regions sensing different body
movements (for example, one is monitoring the heart pulses, and the other is measuring
the patient body temperature. A transfer learning approach estimates feature values by
incorporating several feature areas into a single representation, which is trained using
regional datasets. Random masks and other encryption techniques provide extra privacy
and security between clients and servers during the gradient transfer. FTL might help in
illness identification in smart healthcare by working with countries that have a variety
of facilities with a variety of people (sample space) and varied therapeutic plans (feature
space). FTL may improve the shared AI model output that enhances diagnostic accuracy.

5.4. Security Paradigms in FL

Both conventional and zero-day attacks that might compromise IoMT devices. This
is mainly due to the lack of well-established security standards and safeguards in device
manufacturing, device configuration, and underlying IoT-based communication protocols.
IoT devices are small embedded chips with limited capacities, and thus they have limited
computing and power capacity. Modern cryptographic algorithms employ multiple levels
of security (in terms of rounds, key generations, and hash computations) and thus re-
quire high processing and computational power for robust security in large organizational
perimeters. Moreover, with heterogeneous networks and distinct protocols at each tier,
finding a unified security solution that addresses all requirements is daunting. According
to Statista (The statistics portal), the number of medical IoT devices in the European Union
(EU) might reach 25.8 million by 2025. Besides the ever-increasing range of smart medical
equipment and low-cost wireless sensors, privacy and security issues have surfaced as
major concerns. Furthermore, the volume of data generated rises in lockstep with the
number of internet-connected devices. Statistic estimates that IoT devices will generate
79.4 Zettabytes by 2025 [87]. In reality, privacy and data disclosure are now the most
important issues IoMT infrastructure faces, as IoMT devices and their data are vulnerable
to cyber-attacks. The privacy and security requirements for IoMT are distinct from those
for conventional networks, often alluded to as the confidentiality, integrity, and availability
(CIA) triad.

To assure the security and privacy of FL data, encryption strategies such as homomor-
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phic encryption (HE), differential privacy (DP), and secure multi-party communication
(MPC) is preferred. The details are presented as follows:

1. Homomorphic Encryption—Normal encryption strategies require the FL users to decrypt
the data based on the shared key and the encryption algorithm. In such cases, there are
high risks of key disclosure; thus, in secure FL design, HE is a preferred choice. In HE,
any user (FL client), denoted by C, encrypts the training data D using its private key
PrC. The encrypted data are then sent to other users or global cloud servers. The other
user forms an evaluation function, normally denoted as Eval, and the sending user
queries a homomorphic function f (.) to server Eval. The server S or other local
users reply through a function on the same data D, denoted by Enc( f (D)). Once the
sending user C receives Enc( f (D)), it operates decryption on the function, which is
represented as Dec(Enc( f (D)), which returns the data D as output. Thus, any user
can compute the function and process the encryption without prior knowledge of the
encryption key PrC. In the process, users not authorized with the server Eval do not
know the homomorphic function f (.), and thus data are not disclosed. Thus, there are
low risks of leakage of gradient values during the exchange process, and the model
parameters are shared securely between multiple clients (in the case of DFL) and a
global server (in the case of CFL). Different variants of HE are proposed, such as fully
HE, partial HE, and somewhat HE. Fully HE supports the construction of functions
with the desired functionality, and the program never forms any decryption at any
node. Fully HE has high overheads (as function operators are complex); thus, for
edge-based aggregation, partial HE uses fewer function parameters for computation
(mostly addition and multiplication operations only). Somewhat HE only works on a
subset of total nodes in the network and is used for local node training.

2. Differential Privacy—DP is a security mechanism where information can be shared
publicly depending on local data patterns, but explicit identifiable attributes are
hidden. Thus, DP assures that, from a given released public healthcare dataset, the
attributes are non-identifiable, which limits the disclosure level. DP is used when the
IoMT ecosystem supports a high degree of confidentiality, as it mixes the information
of other neighboring users in the shared dataset. Any record in a dataset is insensitive
to overall statistical changes in the complete dataset. In DP, the process is to normally
add a noise factor to the output during the computation of the gradient function.
The preferable noise distributions used are Gaussian and Laplacian distributions.
However, suppose a high amount of noise is added to the dataset. In that case, it
undermines the statistical distribution of the dataset, and thus there is a trade-off
between high privacy and dataset stability. Normally, in edge-based aggregation,
owing to computational requirements, DP is quantized and compressed to improve
the communication performance of the local network. A popular variant of DP, named
ε-DP, is preferred. As inputs, we supply ε ε ∈ (R), and a random algorithm R(A) on
the dataset D as input (the trusted party which works on the dataset and its release).
An image of the random algorithm is computed, denoted as IR(A). By definition, we
consider datasets D1 and D2, which differ in one row (a constant c), and any malicious
adversary does not know c. We say that the algorithm R(A) assures ε-DP iff ∀ subsets
S ∈ IR(A), we have the condition as follows:

Pr[R(A)D1 ∈ S] ≤ eεc.Pr[R(A)D2 ∈ S] (4)

This means that the datasets are bounded by eε for c items, or more specifically, the
datasets which differ by c, are protected by a noise factor of εc. The values are ε, and
c are fine-tuned depending on the number of FL users and the aggregation operation
to assure low-powered communication in IoMT ecosystems. In research, fine-tuning
is achieved via minimax optimization and gradient-based convex optimization.

3. Secure MPC—In secure MPC, we assume that k clients {C1, C2, . . . , Ck} have their
local gradients {G1, G2, . . . , Gk} to share with one another. Any kth user Ck splits its
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gradient into k partitions, keeps one partition secret to itself, and shares the remaining
(k − 1) sub-gradients with other users. Similarly, all other users follow the same
approach and keep one secret gradient to themselves. Each participant has the (k− 1)
parts with them, which are shared by other (k− 1) users. The trick is that which part
they have kept secret with them is not known to another user. Now an addictive
function A(.) is performed on the received (k− 1) gradient shared with them, and
they add their secret gradient S(Gk) to this to obtain the partial gradient computation
at their end. In general, the overall sum and average computation at the aggregator
node remains constant, which is shown as ∑k

i=1 Gk and ∑k
i=1 Gk/k, respectively.

5.5. Communication Perspective in FL

In this subsection, we discuss the requirement of resource management in FL networks
in terms of communication and computation costs. During the training process, the
available computational resources are local or global. In the case of local training, the
important factors to be considered are the dataset size S(D), the node available energy EN ,
and the processor computing power (in terms of CPU cycles/sec). The energy dissipation is
proportional to the frequency of items in the dataset, denoted by fd, S(D), and the number
of training iterations It, and the CPU processing parameters γ and τ. γ is the parameter for
CPU cycles, and τ is the processing capacity parameter, which varies according to It [88]

De = It(γτS(D) fd
2) (5)

Based on De, the model computational latency Lt is computed as follows:

Lt = It
τS(D)

fd
(6)

Equations (5) and (6) suggest that the computational time and energy have an inher-
ent trade-off and depend on the hardware and system parameters and the convergence
time of the training model. Thus, in the case of small-sized datasets, the computational
requirements are low, which are further minimized in the case of a fog-edge layered scheme.
The fog layer provides computational offloading services to FL clients, and the operating
frequency is managed properly with the assistance of CPU computation. However, the local
device parameters might be heterogeneous, affecting the model accuracy ω. To solve this,
data portioning approaches play an important role in reducing the data items’ statistical
disparity. Once the local modeling constraints are satisfied, the gradients are communi-
cated to the aggregator node. In the case of vanilla FL, the global updates are carried out
at cloud/edge nodes, and the updates are sent back to FL clients, which corresponds to
the CFL scheme. For distributed nodes, the model learning is achieved via low-powered
consensus approaches, where the validator nodes form a meta-information block of the
shared updates. It strongly depends on the data rate Dn of the underlying network, where
we consider the transmission latency Lt of local parameter size ps to be communicated to
the edge server as follows [89]:

Lt = ∑
n∈N

ps

Dn
(7)

The required power Pn to communicate the updates is carried out as follows:

Pn = ∑
n∈N

Wn

Lt
(8)

where Wn denotes the work carried out in total by n FL clients in Lt. Summing up the
discussions from Equations (7) and (8), the model communication and computation costs
depend on the number of iterations It and the minimization of the local loss function
and through increased Dn. In such cases, the signal rate Sn also becomes an important
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factor, and thus efficient channel encoding mechanisms are required. The models are fitted
according to the designed local accuracy ω to update the global iterations Gt and global
loss δ as follows:

Gt =
ωlog( 1

δ )

1−ω
(9)

Thus, there is a requirement for joint optimization of energy and latency in low-powered
IoMT wireless networks.

6. Learning Models to Support FL Training in IoMT Ecosystems

FL is a framework for distributed ML and DL methods. FL allows different devices or
clients to solve a common problem while keeping the privacy of the data at local devices
in healthcare or IoMT infrastructure, where one global server takes control of the global
aggregated model. This section mostly classifies FLs using DL and ML and their associated
techniques. ML is an AI technique that learns without being explicitly programmed
from data and experiences. For continuous data analysis and the production of useful
information in the IoMT, ML might be crucial, particularly at nodes for computation such
as cloud [90] and fog computing [91]. For FL, ensemble techniques, probabilistic fuzzy
random forest, and DL mechanisms are found to be useful [92]. Table 7 presents related
works of ML and DL to support FL-IoMT ecosystems.

Table 7. Contribution of ML and DL models to support FL-IoMT.

Author Year Model Description Contribution of Models to
Support FL-IoMT Dataset

Celestine et al. [93] 2020 ML and DL

ML and DL algorithm are
used on healthcare dataset to
identify which food need to
be given to certain patients.

Data sets are collected from
an internet source, and
FL-IoMT models are used to
enhance the accuracy of food
selection.

health base medical
dataset

Nighat et al. [94] 2020
ResNet-34 or
DenseNet-121
models

DL model to detect
Leukemia patients an
IoMT-based model is
proposed.

To detect four different
subtypes, an IoMT-based
model is used to enhance the
accuracy up to 99.50% and
99.56% with GA SVM and
ResNet 34, respectively.

ASH image bank and
ALL-IDB global data-set

Muham-mad et al. [95] 2021
SVM, DT and
K-nearest
neighbor

A smart effective healthcare
model that monitors the
health of elderly people
through IoMT devices.

The ioMT-based model
interface provides higher
validation and accuracy by
91.00% and 92.00%,
respectively.

UCI Repository IoMT
Dataset

Sekhar et al. [96] 2021 CNN, SVM,
KNN

Implemented a TL-based
approach to detect brain
tumors from MRI images.

The model achieves accurate
results for 3-class tumor
classification.

Figshare dataset and
Harvard Dataset

Atta-ur Rahman et al. [97] 2022 SVM and KNN.
Predict mitochondrial and
multifactorial genetic
inheritance disorders.

The SVM-based model gives
better accuracy up to 87.00%
than the KNN-based model.

Genome disorder
dataset from Kaggle

Gathering information and integrating it into a model with sophisticated ML/DL
models to construct an AI-based system is a critical and sensitive procedure concerning FL
setups. Suppose an intruder alters information from origin to destination. In that case, the
prediction will be erroneous, and the safety of the information will be jeopardized because
this technique interacts with susceptible information. Thus, FL assures the privacy of data
during the integration process.

Edge-based FL aggregation is advantageous as the quantity of knowledge obtained
from nodes is fairly high when local procedures are used. Device heterogeneity can be
maintained in a secure environment for data evaluation and training. An FL-associated AI
framework can be incorporated to generate a secured and low-powered computation in
healthcare setups. In the same direction, Table 8 provides a summary of the understanding
of ML/DL support with FL-IoMT with a discussion on applicative areas, challenges, and
potential solutions. Table 9 presents a summary of the various approaches of datasets that
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combine ML/DL with XAI in FL-oriented setups, and Table 10 presents examples of the
local learning models in IoMT applications.

Table 8. Applicative view of FL with ML/DL in IoMT setups with potential challenges and scope.

Author Various Fields of
Applications

Challenges and Its
Addressing Proposed Solution

Nguyen et al.
[26]

IoT, edge computing,
blockchain,FL

data volume
To improve the access and security of
deploying FL, Blockchain is being used to
provide decentralized learning via FL without
the need for a central network connection.

Kim et al.
[82]

Blockchain, FL, ML The complexity of the
architecture

Evaluated a latency prototype of FL based on
blockchain to reflect the best block generation
frequency while accounting for processing
delays and communication.

Brisimi et al.
[98]

learning mechanism for heart
related disease

Issue related to the Sparse
SVM

Proposed the design architecture for a cPDS
that could distinguish between individuals
who desired to be admitted to the hospital
and individuals who did not.

Silva et al.
[99]

Brain imaging data using the
FL approach

There is not any production
ready process based on FL.

A software central module and the base client
to carry out the experiment learning experience.

Holbl et al.
[100]

healthcare informative,
distributed systems,
consensus, Blockchain

Data confidentiality and
Methods of encryption

Realizing the possibilities of blockchain
systems and focusing on the challenges
and contributions of blockchain-oriented
research in the healthcare sector.

Long et al.
[101]

Bio-informative, FL, healthcare Data with various
characteristics

Investigation of FL to allow for the
development of an open health system
using AI. FL’s current challenges
and prospective solutions are examined.

Esteva et al.
[102]

AI, Healthcare, FL, NLP,
Computer Vision

Ethical issue, data leakage,
The NLP model is
challenging to train.

A extensive examination of object
recognition in biomedical image
informatics, as well as an explanation
of the usage of NLP in domains such
as EHR datasets.

Table 9. Dataset summary of FL works with ML/DL and XAI in healthcare.

Authors Year Dataset Used and Its
Description XAI FL AI Healthcare Implementation Areas

Raza et al. [103] 2022

Beth Israel Hospital at
the Massachusetts
Institute of Technology
maintains an
arrhythmia database
(MIT-BIH)

Y Y Y Y
ECG-based prediction of
arrhythmia using both noisy
and clean data.

Shukla et al. [104] 2022 Datasets from
3DIRCAD N N Y Y Detecting and Predicting

Liver Cancer

Thomsen et al. [105] 2022

Statistics Denmark and
the Danish Colorectal
Cancer Screening
Private Database

Y N Y Y Screening for colorectal
cancer.

Flores et. al. [106] 2021
Image of a chest X-ray
from Mass General
Brigham

N Y Y Y
To forecast COVID-19 cases
based on chest X-ray
analysis

Barbiero et al. [107] 2021 dataset of CUB Y N Y N
Method of logical
explanation based on
entropy
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Table 10. IoT local learning models.

Local Learning Model Authors IoT Applications

SVM [108] Network slicing.

CNN [109] using the classification of images to
diagnose disease.

LSTM [110] Used for the edge caching

K-means [111]
To reduce packet error rates, sensor
networks can be clustered. IoT networks
can also use proactive caching.

RNN [112] forecasting using time series

ML and DL approaches simplify healthcare decision analytics, but understandability
is still an open problem. The models act as ’black boxes’; thus, the output predictions are
not validated. In healthcare, this is crucial to have confidence in the predictions, as inputs
are vital health indicators of patients. Thus, explainable AI (XAI) has emerged as a ground-
breaking approach to solve the explainability of these models. In XAI, rule-based and fuzzy
mechanisms are researched worldwide. Rule-based systems allow model explainability
depending on inputs and the processing steps. Fuzzy approaches produce forms in normal
language to make the models easier for physicians and patients to understand. Authors
in [113] discussed the CNN-supported model, which categorizes the wound. In the model,
an XAI local interpretable model-agnostic explanation (LIME) replaces the model output
with an interpretable form. Authors in [114] exploited the concept of XAI to diagnose
glioblastoma based on textual characteristics, where the relationships between attributes
are formed in a graph-based topology.

In FL communication, the underlying IoT protocols play a major impact on local
learning. Based on the communication standards and application requirements, models
are selected. For example, in the case of image-based classification, a fully-connected
feed-forward NN (FNN) is preferred owing to low complexity. Different NNs necessitate
the right application of activation functions, which control a NN response. Binary step
functions, nonlinear activation, and linear functions are the three main categories for activa-
tion functions. These functions must be selected for local learning. Local methods should
have fewer complications and a high degree of performance.

To determine the ideal number of local repetitions, authors in [115] took into consid-
eration a variety of data patterns for study, namely, the data distribution, local datasets,
and cognitive patterns. It is concluded that these factors influence the number of local
learning iterations. In such cases, the concepts of CNN and SVM are used with edge-based
aggregation. The architecture considers a network with nine layers and a convolution layer
of 5 × 5 × 32. A 2 × 2 MaxPool has been used to normalize the local response with z × 256
fully connected system, with a Softmax activation function. Other approaches use squared
SVM and double deep Q-network in the case of DFL schemes, which minimizes the trans-
mission and energy cost of CFL networks [116]. Double deep Q-network is constructed
through a single-layer fully-connected FNN with 200 neurons. The network integrates
computational offloading and edges caching at the local sites. In [69], an FL-learning
framework is presented with access to local repositories for authorized users. In work,
convolutional and max-pooling layers are fixed at endpoints during the model transfer.
These layers observe the miniature details of low-level user activity-related information.
The performance is further optimized via TL. In addition, an incremental learning approach
can be tailored to the architecture. The evaluation testbed was created using the two layers
of the convolution and two pooling layers with the three fully connected layers. Here, a
convolution size of 1 × 9 is used. Another case study is on an augmented reality-based
application, which uses the CIFAR-10 dataset [117], and a CNN model is constructed.
The analysis shows that, with a rise in local iterations, there is also a proportionate rise in
effectiveness. A simple FedAvg scheme is carried out in the CNN network layer with a
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structure size of 3 × 6 × 5, with 2 × 2 max pool, and 6 × 16 × 5 convolution layer. ReLU
has been used as the activation function for the same. In [118], the proposed methodology
revisits the performance issues of local iterations of FL and bias minimization. To address
the same, an edge node collects the local models, and it is designed using an FNN model,
which consists of two hidden layers of 30 and 50 neurons, respectively.

7. Trusted FL-IoMT

The section discusses trust as an important phenomenon in IoMT systems for a diverse
set of activities such as data sharing, report monitoring, patient tracking, data collection and
analysis, hygienic care, and preventive device maintenance. For the same, blockchain-based
ledgers are considered that provide provenance and auditability in training systems [119].

7.1. Blockchain in IoMT

Blockchain is a distributed system that keeps track of transactions between networked
nodes. The IoMT has expanded demand for distributed computing, and blockchain ad-
dresses many challenges regarding the security of healthcare system players. As IoMT
devices generate data frequently, it is impossible to immediately store each sensing data in
the blockchain, as it involves a high transaction cost [120]. To overcome these limitations,
the environment of the IoMT device uses a lightweight, scalable blockchain that handles
the frequent transactions from IoMT devices. Figure 6 represents the blockchain for the
IoMT setup, where the cluster head (CH) is responsible for reducing the data flow from
IoMT devices to the blockchain. CH also reduces the packet overhead by creating a pool of
transaction information of IoMT devices after a certain epoch(δt). Permissioned blockchain
stores the < Hn, ∆Wn > by executing the smart contract Sn. This crucial step ensures
that the model updates are immutable and free from any modification by an adversary.
Similarly, patient information (Pk) can be stored on the blockchain by executing the smart
contract. As the size of Pk is generally large, a single transaction might span multiple
blocks, increasing the storage overhead and proportionally affecting the transaction fees.
To overcome this, we can use an interplanetary file system (IPFS) that stores Pk in local
offline storage. Thus, a single unique 32-byte content address is returned irrespective of
the content size. Thus, comparatively storing a single transaction in one block (on-chain),
a drastic improvement of ≈32k entries is achieved with IPFS (off-chain) storage. In the
FL-IoMT scenario, the blocks are linked in a network and use distributed time-based con-
sensus algorithm for block verification after collecting data IoMT nodes and CH, and at δt
time sends the block to mining nodes for verification.

Figure 6. Block-Chain for IoMT.

The data exchanged between network nodes is saved and utilized for cross-references.
This approach aids in pinpointing the specific source of miscreants in the network since
these blocks carry information from preceding blocks. The unidentified blocks in the
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network are therefore deleted, clearing the path for blockchain to be viewed as a trustworthy
technique in FL-IoMT-based information exchange systems [121].

7.2. Trusted FL

The critical component of FL is aggregating the local gradients at the central server. It
has been analyzed that model updates may contain some sensitive parameters that can be
used to gain insights into users’ details. Thus, user privacy may be jeopardized throughout
the training, making FL vulnerable and discouraging medical sites from participating
in cooperative learning. This aspect makes the development of a trustworthy server for
the coordination of model aggregation a necessary condition for ensuring dependable FL
operations in smart healthcare. According to the contract, entities such as global servers
and local hospitals must guarantee a trusted model aggregation. This is especially impor-
tant in the context of smart patient monitoring, where the processing of sensitive health
information must be trusted to deliver trustworthy FL-based healthcare [26]. Researchers
explored novel solutions, such as creating decentralized and blockchain-based trusted
servers or offering safe aggregation techniques, to increase confidence in the server further.
In this context, a novel approach is presented to prevent fake updates from unreliable local
healthcare setups or devices. Such dependable device selection is crucial in reducing the
impact of various security assaults.

As previously indicated, there are some difficulties in establishing trustworthy user
selection in smart healthcare systems. There is no uniform selection methodology, for
instance, and there are no real-time user monitoring techniques. Blockchain technology
controls FL users’ reputations to overcome these issues. In particular, the adoption of
blockchain in federated environments decentralizes FL, enabling the removal of a single
central server from the model aggregation process. The peer-to-peer block consensus func-
tion of the blockchain enables peer-to-peer coordination of the global model calculation.
Blockchain technology is employed in decentralized FL-enabled healthcare systems to stop
rogue servers and outside intrusions [122].

7.3. Incentive FL

All IoMT devices must communicate their local model updates with the aggregation
server following conventional FL techniques, although this server is not always accessible
in real-world scenarios [123]. IoMT devices typically have constrained computer power,
radio bandwidth, confidentiality issues for user data, and server dependability, so they
are unwilling to share their algorithms. Incentive-aware FL solutions motivate more FL
users and enhance FL-enabled occupational health and safety effectiveness. A recent study
discovered that FL incentive systems could be grouped by various criteria, along with the
device’s information. FL can be categorized according to various factors, such as based on
the information contribution of the device, resource usage, and device reputation.

• Device information contribution: Information quantity and information quality are two
crucial variables used to analyze it. Information quantity refers to the frequency of
the local model updates and how often we train with sample data; it is commonly
measured using the Shapely value.

• Device reputation: When creating FL incentive systems, device reputation is a crucial
measure to consider. Reputation generally represents how accurate information is
supplied for model training and trusted local updates.

7.4. Resource-Aware FL

Instead of aggregating the weights of each local model, a resource-aware FL is used
to aggregate an ensemble of local information collected from edge models, which is sub-
sequently distilled into a resilient global knowledge as the server model using learning
extraction. Deep knowledge exchange combines the local model and the global information
into a small-scale knowledge network. The deployment of a resource-aware model and
multi-model knowledge fusion is made possible by such knowledge extraction, which



Mathematics 2023, 11, 151 27 of 47

preserves communication effectiveness and modeling diversity. If the mutual training of
the local model trains with the global information, the results present a small-size network
to extract the local knowledge [124]. The tiny-size network is then transmitted to the
service for multi-model synthesis and global knowledge distillation. As a result, better
communication efficiency and multi-model FL for the resource-aware FL are produced.

7.5. Gossip-Based FL

A decentralized alternative to FL is called gossip learning and does not call for a
central server or any other component. It relies on a simpler infrastructure—message
transfer and no cloud resources. Gossip learning is likely to be strictly less efficient than
FL. However, decentralized FL is a viable answer to the issue of unreliable parameter
servers in centralized FL for secure federated competent healthcare. Decentralized FL
implementations frequently use consensus, diffusion, and gossip methods. For instance, it
is suggested that a decentralized FL scheme can be used in conjunction with a segmented
gossip aggregation technique to improve training effectiveness. To maximize the use
of all clients’ available bandwidth, each client can function as a worker who randomly
chooses a small number of nearby workers to send the model segment during each training
iteration [125,126].

8. FL-IoMT for Modern Healthcare and Its Applications

In a conventional IoMT scenario, for various reasons, AI-based systems collect data
from medical records, such as sickness diagnoses, medical images, clinical trials, medication
discovery, and EHR, among others. In this circumstance, exchanging EHR with remote
data centers or the cloud to generate medical data raises significant privacy concerns. This
suggests that eliminating or missing metadata such as patient information may not be
adequately protected in terms of privacy, notably in difficult healthcare situations. Because
data must be sent to analyze, most AI systems depend on a central server. FL combines
more data with increased privacy awareness to suggest alternate options. Table 11 presents
a comparative analysis of emerging FL-assisted IoMT schemes regarding trust, aggregation,
privacy, and computation costs.

8.1. Facilitates Group Learning

To address the problem of a small sample size for training secure collaborating infor-
mation and shared ML model, the FL method gathers data from a variety of clients [127]. It
is essential to choose a data partition in the HFL and DFL to handle the limited sample size
and limited sample characteristics. This technique offers decentralized ML model training
without using an organized central aggregate server. Medical institutions train their DL
models locally before periodically sending them to the global server. The aggregate model
is distributed to all local facilities.

During the training process, the data are always kept private to each node. Medical
information is kept private by only transmitting the model’s weight and characteristics.
Because it keeps sensitive and private information while allowing many medical organi-
zations to collaborate, FL eradicates numerous security worries. Hence, the FL approach
collects data from several clients to address the issue of limited-size data for training ML-
based shared models. To address the sample data’s limited size and features, it is important
to select a good data partition scheme in HFL and DFL. This method provides decentralized
ML model training through a central global server.
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Table 11. A comparative analysis of FL-assisted IoMT schemes.

Author Year Objectives Parameters Contribution Limitations1 2 3 4 5 6

Aouedi et al. [36] 2022

A transfer learning approach in FL
communication is considered to
simplify and save time in the data
collection process

Y Y Y Y Y Y

With FL, blockchain is integrated and
encryption methods are used during
aggregation to preserve the privacy of
transfer learning

There are still unresolved privacy and
security concerns with client synchronization
and the use of non-IID (independent and
identically distributed) datasets.

Ali et al. [37] 2022
A triage of DRL, DT, and GANs
with FL setups is established to
detect privacy risks.

Y N Y Y Y Y

The efficacy of FL algorithms utilizing DRL,
DNN, and GANs in FL architectures was
demonstrated through experimental
simulations.

The elimination of bias elements in data
preparation for ML is a critical issue.
The challenge becomes more complex in FL
as data are stored in a scattered manner.

Sandi et al. [40] 2022

To deploy a smart contract
ecosystem to implement the
privacy-preserving bidirectional
long-short-term memory and
enhance security for the FL-based
IoMT.

N Y Y Y Y Y The efficient privacy-preserving framework
for secure misbehavior

It is essential to check the suggested strategy
in a real setting using actual EHR.

Alamleh et al. [41] 2022

Standardization of multiple-criteria
decision-making (MCDM) is
considered for evaluation and
benchmarking of FL-based
intrusion detection system datasets

N Y Y Y Y Y
Via FL, the intrusion detection datasets are
distributed at remote locations, which
improved the model accuracy.

IDS classifiers were only used for the binary
classification problem

Zhao et al. [43] 2022

Federated Reinforce Client
Contribution Evaluation (F-RCCE)
is designed as an evaluation
method for the client.

N Y Y Y Y Y
Privacy preservation and accuracy are gained
using differential privacy and deep neural
networks (DNN)

More robust and lightweight encryption
algorithm is needed.

Ahmed et al. [44] 2022

In FL-based IoMT, the idea of
physical layer security (PLS) is
introduced and is utilized to
effectively preserve data privacy.

Y Y Y Y Y Y
The improvement of the secrecy rate of PLS
in FL-based IoMT is reported, and it is based
on clustering.

For the development of an energy-efficient
and secure FL in IoMT, PLS and
cryptographic mechanisms are required to be
merged and tested for efficiency.

Xu et al. [45] 2022

An MSQE quantizer mechanism is
integrated with FL to address the
quantization issues of IoMT sensors
and wearables.

N N Y Y Y Y
With quantization, security concerns are also
addressed to assure privacy and improved
accuracy of the training model.

The difficulty lies in deciding how many
parameters to use for quantization, which
involves bncing performance gain and
overhead.

Ruby et al. [49] 2022

The work addressed
jamming-based attacks in FL
communication networks by a
malicious adversary.

N Y Y Y Y Y

The interaction between the FL network and
a jammer is modeled using a hierarchical
game-based technique to identify the optimal
strategy for each player.

The suggested anti-jamming technique has
excellent energy and learning performance
when a single jammer is present, but it is
insufficiently protective when there are
several jammers present.

Wang et al. [54] 2022

To reduce serious privacy and
security issues while transferring
the patient’s data to the central
server.

N Y Y Y Y Y

explains the FL training framework and
creates a simple protocol for privacy
protection based on secret sharing and
weight masks.

Techniques such as a single point of failure
and model poisoning attacks are not
implemented.

Fan et al. [126] 2022

A COVID-19 ecosystem is
considered, where authors used FL
to solve privacy and security
concerns of locally trained nodes

N Y Y N Y Y

Diverse and heterogeneous data sets are
considered to assure personalization in
model learning, and the data are aggregated
for global update through the
privacy-preserving mechanism.

The transmission of model updates to a
global server might be attacked by an
adversarial model, and thus central privacy
protection needs to be explored.

Gupta et al. [42] 2021

Security and privacy risks in the
anomaly detection (AD) models are
considered while sharing the
patient’s confidential data

Y Y Y Y Y Y
A lightweight IoMT ecosystem is devised,
where devices are identified based on
anomalous classes.

FL communication metrics such as
communication time and local training time
are not considered during evaluation

Wu et al.[55] 2021

An incentive method for rewarding
data owners to participate in FL in
the IoMT is considered with
privacy risk into account.

Y Y Y Y Y Y Multi-dimensional cost optimization using
incentive mechanism for FL privacy.

Numerical methods are needed for
performance evaluation.

Lakhan et al. [56] 2021

A multi-level local fog-cloud
ecosystem is designed that
guarantees privacy preservation
and fraud detection.

Y Y Y Y Y Y
Energy consideration is minimized and
communication delay for healthcare devices
is considered for IoMT applications.

Dynamic and run-time unknown threats in
edge-fog design are not considered.

Samuel et al. [57] 2021 Addressed the issue of ineffective
model detection. Y Y Y Y Y Y

A COVID-19 infrastructure design is
presented to overcome the communication
constraints.

A flow model of the implementation is not
discussed. Furthermore, there is a concern
about the scalability of the real-time design.

Choudhury et al. [58] 2020
To apply an FL strategy to decrease
the problems caused by centralized
learning.

N Y Y Y N Y A comparative analysis between accuracy
and privacy.

FL algorithm has convergence issues and the
same is not addressed.

1: Threat Model, 2: FL Client Nodes, 3: Aggregator Server Type, 4: Computation cost, 5: Communication cost,
6: Privacy, Y—shows that the parameter is present, N—shows that the parameter is absent.

8.2. EHR Data Analysis

In EHR analysis, obtaining reliable results across populations is challenging since
healthcare data are frequently fragmented and private. This poses a challenge to creating
generalizable, effective analytical approaches that require a variety of “big data” based
learning. FL holds significant promise for collaborating with different healthcare data
sources while ensuring patients’ privacy. FL uses a centralized approach where a global
server builds a model by receiving the inputs from different local healthcare setups while
keeping the sensitive data in local establishments where it belongs.

As an example, patient pathology data are often acquired digitally and in the form of
an EHR; it is beneficial for medical inspections, sickness diagnosis, and locating essential
information. CFL and DFL are two types of FL for managing the data centrally and in
a distributed manner. EHRs include systematic and stochastic biases that restrict the
generality of the conclusions, even though they give a vast quantity of EHR for research. FL



Mathematics 2023, 11, 151 29 of 47

allows medical organizations to integrate EHR data practically, allowing people to maintain
their privacy. Because of the iterative perceived advantages of gaining knowledge from big
and varied volumes of medical data, the FL model will perform well.

8.3. Healthcare Monitoring

As a result of COVID-19, physical and mental health problems are becoming more
prevalent among people. Due to this, maintaining our bodily and mental health requires
personal daily healthcare management and monitoring. The IoMT has developed due to
the convergence of the IoT with healthcare services to offer intelligent medical services. Its
widespread use has been hampered by privacy and security issues. Healthcare systems
using the IoT have been continuously improving, which handles the growing need to carry
patient data. This expansion has made it possible to use various health gadgets, such as
smart technology-based sensors, which may track and analyze various personal health
characteristics and, in some cases, act as a trigger for potential health incidents. Most linked
healthcare systems currently use ML and DL algorithms to generate decisions automatically
for accurate predictions. While this has led to more accurate disease diagnosis and quicker
disease detection, some drawbacks, such as a lack of labelled data for training models,
make systems unreliable and inefficient.

Additionally, improper and malicious coordination of ML models could result in
possible attacks and information leaking. In some circumstances, this could result in the
privacy of patient data being violated, putting data security at risk in similar circumstances
and sowing distrust amongst various parties. Therefore, it is necessary to incorporate
experts’ domain knowledge to provide a heuristic-based knowledge system that maintains
confidentiality to improve model accuracy. To protect data privacy, a model is trained
locally using patient data. In this situation, local adaptation or contextualization of the
ML model is still possible, which is more efficient than a model that trains on fewer data.
Additionally, utilizing their data, all nodes collaborate to train the model. All ML models
distribute their knowledge among all connected nodes. This platform has a powerful
anonymity feature and can repel adversarial attacks throughout incremental learning.
The data leakage problem is solved when local data are kept at the site and shared with
the trained model parameter. Hence, an active FL-based health monitoring platform is
beneficial. This platform has a powerful anonymity feature and can repel adversarial
attacks throughout incremental learning.

8.4. Imaging in the Medical Field and COVID-19

Another way FL might be employed in an IoMT environment is in medical imaging.
In collaboration with some medical institutes, it is utilized for activities such as brain tumor
segmentation and diagnosis using Magnetic Resonance Imaging (MRI), CT scans, and X-ray
images of the chest. To detect COVID-19, AI and computer vision help [128] to determine
infection level. The hospital does not allow sharing of medical data without authorization
due to patient privacy concerns and protection. Such training data took a lot of work to
gather. This will result in insufficient data samples while using DL techniques to find the
COVID-19 infection spread. Such types of problems or challenges can be solved using the
FL mechanism. Without obtaining local data, it can resolve the problem of data silos and
produce a common model.

To collaboratively create a shared model, FL relies on data sets spread over some
local healthcare setups across the globe. This perfectly safeguards patient information.
FL experiments for COVID-19 and medical imaging are required, which is still spread
across the globe in different states of the counties. In [129], the FL concepts have experi-
mented on COVID-19 identification with the help of chest X-ray images. Four alternative
models—MobileNet [130], ResNet18 [131], MobileNet, and COVID-Net—were used in
the experiment to train CXR pictures [132]. The comparative experiment of training with
and without FL was identified. The experimental findings demonstrate that ResNet18
performs optimally in both FL- and non-FL-training. In images containing COVID-19
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labels, ResNeXt [133] performs best. The most minimal set of settings is in MobileNet.
Research shows that ResNet18 is a better option among the four well-known COVID-19
detection models.

With the assistance of numerous hospitals and a data center, FL can be useful to
develop cooperative education procedures for EHRs analytic management systems that
are resource-conscious and respect privacy [134]. Despite the rigorous privacy regulations
imposed by distant medical centers [135], the use of FL creates new possibilities for feder-
ated EHR analytics because it only permits the transmission of model parameters; raw data
are preserved at local locations due to the FL learning nature [58,136]. Due to distributed
data resources being used and the computing power of several silos, FL is an extremely
effective learning method to boost the success rates of training AI models, as demonstrated
in [137,138]. By preparing a worldwide model, FL is useful for easing at-home health
monitoring from scattered houses under a data server’s supervision by keeping user data
locally while avoiding data leaks [139]. For instance, FL can help healthcare applications
such as assisted living and fall detection by enabling mobile activity monitoring [69,140]. It
is also found that the FL method outperforms other traditional methods, such as centralized
education and regional training without federation, apps for smart health monitoring that
have excellent accuracy rates, and respect user privacy [141,142].

It is recognized that FL, by combining several medical institutions into a single, unified
entity through the federated data training process, significantly supports medical imaging
applications [143]. In particular, FL can be used to connect medical devices such as MRI
scanners to cloud servers because these devices have sufficient local datasets and adequate
CPU power to compute AI updates [144,145]. The potential for aiding the identification
of acute neurological signs such as headache or unconsciousness is greatly increased by a
recent study of the functions of FL, particularly in X-rays [146,147]. FL is very helpful in
promoting COVID-19 diagnosis and detection with escalating privacy issues, with coor-
dination of enormous hospitals to construct a shared AI model [148–150]. For instance, it
was discovered that FL could be used by several medical institutions in collaboration for
COVID-19 screening from X-rays [151], while working with hospitals to detect COVID-19
and categorization and feature extraction of X-ray is carried out [152,153].

9. Open Issues and Future Research Directions

The section discusses the open issues and potential research directions of FL-IoMT
and its key integration in terms of security and networking concepts. The details are
provided below.

• Size of Blockchain: The majority of public blockchains are significantly smaller than
personal healthcare data. Storing EHRs on the blockchain is a significant challenge
due to high computational mining overheads. The blockchain size might increase
significantly, and thus handling large volumes of data is a prime challenge. To cope
with the storage issue, the information should be maintained in a separate off-chain
storage-based system. Rather than the whole data management, the blockchain
comprises the hash-based references; this is a case of the typical database system with
the clinical data held off-chain and off-chain clinical patient information may now be
accessed through immutable hashes of healthcare data kept on-chain [154].

• Communication in FL-IoMT: Communication is crucial to the success of FL-enabled
healthcare services between the aggregate server and FL users [155]. Effective com-
munication resource allocation strategies can greatly boost learning outcomes. When
numerous devices using IoMT must establish a connection with the aggregation server
for downlink model broadcasting and uplink model updating, it carries huge sig-
nificance [156]. According to numerous current research studies, in such a scenario,
the aggregation server can use efficient scheduling rules to choose an appropriate
group of IoMT devices [157].

• The dynamicity of the wireless channels: Owing to variable delays in different connected
links and the dynamicity of the connected topology in wireless channels, a propor-
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tional dependence in the present in the training of the local models, and communica-
tion of the learning updates from aggregation server to FL clients, and vice versa [158].
Possible solutions include optimizing objectives where the link dynamicity and tempo-
ral behavior are considered in the approach. Secondly, trustworthy design objectives
such as outage probability and device reliability should be considered.

• Blockchain framework for FL-based IoMT: Although the literature has identified several
positive effects of FL-enabled healthcare services, for the identified issue, there is
no accepted terminology for managing the usefulness of the various explanations
or solutions. For the various blockchain frameworks suggested in the literature, it
indicates that the requirement of the central server with trustworthiness is to be
achieved with the limited changes of the prescribed IoMT policies. They are available
for various (healthcare) scenarios, and various network configurations and data sets
are used to assess their effectiveness; it is challenging to compare such systems [159].

• Standards associated with the protocols: The ubiquity and standardization of commu-
nication protocols, device technology, deployment situations, and aggregation tech-
niques provide significant obstacles. Recently, IEEE Std 3652.1-2020 [160] provided
instructions for FL architecture and design aspects. Additionally, this guideline high-
lights important FL-related issues such as privacy, security, performance effectiveness,
and economic feasibility, as well as assessment techniques and success factors for
FL platforms.

• AI Techniques and FL-based IoMT: Recently, concerns have been raised about slow learn-
ing rates and high bias in the FL learning process. Moreover, with a high number of
local nodes (silos), the communication overhead with the central server also increases.
Thus, it is highly imperative to design flexible and on-the-fly training hyperparameters
so that learning rates can be optimized [161]. For example, the design of efficient
incentive systems in DRL is used for optimizing network parameters in FL commu-
nication, with lower dimensionality [43,162]. Moreover, to implement trusted FL,
effective incentive design mechanisms should be present, which synergize with the
model cost [163,164]. Another approach is to design adaptable FL techniques where
different ML models are introduced on a plug-and-play basis. The underlying design
remains intact (at the local silos and the central server) [165].

• Security in FL based IoMT: Distinct customers might have various datasets, including
time series, text, images, and audio, as well as many data elements, including skin
temperature, heart rate, face photos, and blood type, in realistic healthcare settings[43].
Most FL architectures generally employ single datasets, for example, diabetic retinopa-
thy [58]. To train these datasets, heterogeneous FL architecture must be designed,
where ensemble learning mechanisms are included [166].

• 6G and its impact on FL-IoMT: The rise of 6G communication networks has opened
interesting applicative use cases in the IoMT domain. We are transitioning towards
micro-level chip implants, which require low networking power to communicate [167].
New technologies such as compressive sensing, blockchain, THz and visible light com-
munications, quantum transmission, 3D networking, and huge intelligence surfaces
coincide with the considerably tighter 6G criteria [168]. Future research should focus
on employing sixth-generation (6G) service on smart devices, including smart wear-
ables and implants, for FL-based healthcare on a large scale. AI and FL capabilities,
for example, should enhance future e-health services, improving patient quality of life
and reducing hospitalization rates [43,169].

• Data privacy and FL-IoMT: Despite FL’s significant potential to safeguard user data
privacy, many privacy concerns need to be appropriately handled, particularly in situ-
ations related to smart healthcare given the high sensitivities of the wellness data [58].
Attacks using association extrapolation, unintended disclosures, and generative ad-
versarial networks are three categories under which FL privacy problems might be
grouped [170]. For instance, the attacker might improperly use the global FL model to
determine if a sample of data is included in the FL health data collection. Furthermore,
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the moment the patient’s apparatus transmits local model updates to the main server
located in healthcare centers and hospitals, the patient’s information can be deduced.
Building privacy-preserving FL healthcare solutions using differential privacy, AI, and
cutting-edge encryption methodology seems challenging. Numerous studies consider
using various other types of privacy to improve the privacy of FL systems [171]. Fur-
ther study of this area of research is necessary for smart healthcare systems, including
how artificial noise is introduced to model upgrades from individual gadgets. In such
a way, the model based on the centralized computer will also be affected [172].

• Attacks and its defense mechanism: Several client-side participants in the FL-based
oriented healthcare approach could pretend to be attackers and try to provide false or
poisoned model updates to damage the model aggregation. When local clients and
the central server are communicating the model during local data training or model
transmission, an adversary may also contaminate information about data features.
Attacks on the server side may be used by an outside attacker that potentially steals
information from the combined global model, posing serious privacy concerns such as
information leakage. A fundamental obstacle for FL-based smart healthcare systems is
finding a solution to these security issues. Consider other methods, such as differential
privacy, to protect training datasets against leaks. Additionally, creating aggregation
with the safety techniques is a viable way to offer a framework with double masking
for local updates encrypting, facilitating a key exchange between clients and the main
server, and protecting clients from data theft and attack [173].

• Non-iidness of healthcare dataset: A critical issue that has to be resolved is the non-iidness
of the database related to the medical, which might lead the FL training to diverge
in training to obtain an outstanding training result in FL-based healthcare services.
A hospital might, for instance, possess a greater prevalence of a certain local ailment
compared to hospitals in other cities. The label distributions, in this instance, vary
between medical institutions, making it difficult for them to participate in the federated
data training. Without mentioning the non-iidness challenge, the data instruction
would substantially decline in quality. To assure effective information support in
FL-based intelligent healthcare, remedies to the non-iid issue must be developed, such
as creating a new subset of databases to distribute equitably among clients. Solutions
to the non-iid problem must be developed, such as creating a supplementary subset
of databases to distribute evenly among the end-users, ensuring efficient data training
for intelligent healthcare. Within the smart healthcare industry powered by FL, non-
iid data must be evaluated using quantitative standards such as standard deviation,
accuracy with precision, and correctness regarding the label/feature distribution skew
division and the homogeneous mechanism [174].

10. Case Study: Cross-FL-Trusted Cross-Cluster Federated Learning in IoMT

This section outlines a case study by Jin et al. [175] and addresses the issue of sparse
clustering in heterogeneous IoMT ecosystems. The authors integrated blockchain with
FL (BFL) to address the trust issues among remote hospital nodes. They proposed the
generation of large BFL clusters, which internally can be subdivided into smaller clusters.
To address the interoperability of communication between intra-clusters, a cross-cluster FL
(CCFL) approach is presented, and consensus protocols are discussed to send immutable up-
dates through the FL chain. To obtain a consensus, the blockchain ecosystems implemented
in the cluster require regular network connectivity and communications. The consensus
effectiveness and efficiency might be quite low due to the high-latency interactions and
regular communications. Furthermore, BFL demands that model changes be distributed
across the FL-based cluster. Figure 7 depicts cross-cluster gradient aggregation across two
hospitals. The gradients which are produced in hospital A would be transferred to hospital
B. Then, the gradients are aggregated into the final step. The local model updates are sent
out by the devices/nodes installed in hospital A. After FL training, the FL consensus FL is
formed on the blockchain ledger based on the intrachain mechanism, where the gradients
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are recorded from the updated models within the premises of hospital A. These gradients,
which are identified from the various devices, are then consolidated in the process of
the consensus. The resultant updates of the aggregated gradients are then transferred to
hospital B, and the step is termed the gradient exchange. Once this is received by hospital
B, the validations will be performed. The consensus is accepted if the intrachain consen-
sus is confirmed by hospital B. When the confirmation receipt is received, hospital A is
acknowledged the same. The process of validation from different devices supported by the
intrachain consensus is called receipt consensus. The resultant (receipt consensus) is added
to the transactional ledger, which is stored at hospital A. To communicate in the FL, every
IoMT device in a hospital forms a cluster, and each cluster has a permissioned blockchain
system installed onto it. The major outcomes and the contributions of the case study are
outlined as follows:

1. The issues with the current BFL were identified, particularly the problem of data
sparsity, privacy leakage, and low efficiency were discussed;

2. Cross-cluster federated learning schemes were implemented to provide secure com-
munication across the cluster;

3. To show the viability and effectiveness of CFL, prototypes are used, and comprehen-
sive trials are run.

As indicated in Figure 7, the transaction updates are based on the gradient compu-
tation, the confirmation of local update status, the application response, and the miner
incentive in the CFL protocol. The blockchain follows the Merkle tree data structure, where
apart from the gradient computations at local nodes, the aggregation strategy (for both
CFL and DFL) is based on Merkle addition, and the transactions are proposed on a block
packager. The packaged data (in the block) are added with a time-generated nonce and
sent for validation.

The blockchain system uses the consensus mechanism to enable distributed training
task orchestration and model update aggregation [176]. The BFL setup runs in local
hospitals, where clusters are created and are called healthcare centers. Interchangeably, the
term node means any general IoMT device, and the cluster represents healthcare centers.
We consider that the training data d is distributed among D nodes in any cluster, where
any node nk works on k samples, denoted by sk, with the trivial constraint 1 ≤ k ≤ D.
The objective of the training node nk is to minimize the function fk(w):

fk(w) = 1/nk

nk

∑
p=1

l(xkl
, ykl

, w) (10)

In Equation (10), the (xkl
, ykl

) denotes the sample data with an indexing l which is
in node nk, and w denotes the weights. The l(xkl

, ykl
, w) is the loss function used to make

the sample prediction. Once model learning is complete, the gradient descent algorithm is
executed to minimize the local model loss as presented in Equation (11) as follows:

wt+1 ← wt − γ5 fk(wt) (11)

Here, γ denotes the unit step function, and t denotes the model learning rate as inputs
to the gradient descent algorithm. We consider that5 fk(w) computes gradients of small
unit-step functions, represented as fk(w). For learning, the BFL gathers all updates from
nodes (IoMT devices) and sends them to healthcare centers (clusters), which operate as
aggregators. The training objective O(w) is presented in Equation (12) as follows:

Ow =
D

∑
d=1

(nk/n) fd(w) (12)
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where n represents the total number of samples in the training data, nk is the kth value of
the aggregation, and Ow is the loss functionality. To identify the resultant value of the loss
function at unit steps, denoted as S(Ow), Equation (13) is presented:

wt+1 ← wt − γ
D

∑
d=1

(nk/n)5 fk(wt) (13)

Figure 7. Gradient aggregation for the cross-cluster architecture [175].

The proposed approach adds the updated models of the BFL cluster to the CFL. In
total, if we consider F BFL healthcare setups, where each cluster contains Ti training data
with mi samples, with the condition 1 ≤ j ≤ F. We build a CFL, where the model requires
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the connection of M BFL clusters and aggregates each cluster’s information with each
update. Equations (14) and (15) show the condition that, whenever gradients are updated,
we present two parameters and k and ki, which indicates the ci. Here, ki denotes the total
number of devices in ci, and k is the total number of nodes. If we consider n as the total
number of samples in all clusters, then n = ∑F

j=1 ni, and k = ∑F
j=1 Dj is considered:

wt+1 ← wt − γ
D

∑
j=1

(nj/n) (14)

wt − γ
D

∑
d=1

(nd/n)5 fd(wt) (15)

Here, the Di and D denote the number of nodes in the cluster and the number of
nodes in the cluster. n represents the number of cluster samples. Now, this can be validated
that CFL generates a comparable model to the BFL if the same sample data sets are the
foundation for both. The blockchain setup is permission-based, and proper authorization
is required to access the local gradients of another system.

Working of the Cross-Cluster Gradients Aggregation (CCGA): We compute the produced
gradients for two hospitals, say A and B. At the first hospital A, at the local level, every
device performs local training at the device level, and then it disseminates the updated
gradients to hospital B. Before the dissemination, the model updates are stored via an
intra-consensus mechanism to ensure trust in the shared updates. In this manner, the
updated gradients are aggregated from various on-devices and sent for further processing.
The gradient exchange (AB) refers to the data shared from A to B, denoted as A→ B, and
vice versa.

As soon as hospital B receives the updates from hospital A, it runs a verification
process where it matches the sent data with the stored data on the blockchain ledger.
Normally, due to the restricted memory of the blockchain, the data are stored off-chain,
and the content key hash is only stored on the ledger record. Hospital B uses the content
key of off-chain and the public key of A to decrypt the stored off-chain data. This dual
verification process is called consensus undertaking, and once the details are verified, it is
logged as a received transaction. An acknowledgement from hospital B is issued to A as a
receipt exchange, and the different local gadgets of A and B are synchronized to operate in
unison. The synchronization process is timestamped and recorded as a transactional entry
in the blockchain.

Hasty Consensus (HstCon): The intrachain consensus and interchain consensus are
two sub-protocols that make up the CFL consensus process. The latter is performed using
a two-phase cross-chain consensus (2PCC) process. The classic single-chain blockchain
consensus may be used to implement the former as practical Byzantine fault tolerance
(PBFT). The two-phase commit (2PC) protocol used in the dataset of industry served as
the model for the 2PCC protocol, which provides secure data sharing between two clus-
ters. Regarding the union of 2PCC and traditional single-chain consensus, as soon as they
obtain the model changes, nodes in this protocol operate quickly. The workflow of the
algorithm’s protocol is shown in Figure 8. In the figure, the protocol considers two phase
of operation, namely, the prepare and merging and discarding phases. In the merging
phase, a single chain consensus is preferred, and the updates made to the local models are
validated. The updates sent to the validators in the merging phase are usually received
from various other clusters. While receiving the updates, the local data would be sent to
the merge/discard remote cluster decisions. The received updates and local updates are
combined based on the criteria that, for subsequent rounds of learning, the local results
and the results obtained from the remote model (normally a global server) should match.
It is then considered an acceptable state in the process. If this does not match, then the
local updates would be discarded by the cluster, which is considered as the discarding
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phase. Two binary protocols, named the interchain and intrachain consensus, are the part
of the CFL consensus mechanism. These protocols operate on the practical Byzantine
fault tolerance and the 2PCC protocol in the cross-cluster gradient mechanism. The latter
secures information communication between any two clusters. As mentioned before, the
aggregated updates are collected from the various nodes available in the cluster, and these
are referred to as a consensus. Due to the extensive presence of nodes, this takes a long
time for the operational consensus in the blockchain. This results in the lower efficiency of
the HstCon.

To address this, another proposed consensus, termed DefCon, provides a represen-
tation for every cluster and creates a proportional reward/punishment system. A closer
examination of the 2PCC mechanism reveals that it comprises two phases, similar to
HstCon: (1) preparation and (2) merging/discarding. The model updates that each clus-
ter obtained from another cluster are verified using single-chain consensus during the
preparation phase.

Figure 8. The HstCon algorithm’s process flow [175].

Deferred consensus (DefCon): Although CFL and HstCon appear to operate, the system
efficiency issue poses a significant obstacle. In DefCon, every cluster’s representative is
introduced and creates an appropriate positive reward and punishment system. DefCon
often selects a similar characteristics-based representative to reduce the detrimental effects
of frequent consensuses. DefCon frequently chooses a representative in each cluster to
orchestrate and coordinate inter-cluster and intra-cluster learning. The configuration for the
same is shown in Figure 9. Thus, DefCon improves the system’s competence. The workflow
is classified as successive sequences and is related to the representative of the corresponding
tenure. A single cycle contains modified 2PCC* and the cross-cluster tentative learning task
with the k rounds. Each supervisor conducts two confirmations, to be exact. Just before the
cycle begins, one evaluates the model, and the other does the same at its end. The peer will
agree to approve all previous actions if the latter validating findings are greater than the
earlier ones. The peer will choose to disapprove of it if it does not. Additionally, the new
representative’s election is held during the preparation step. To stop the representative from
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doing anything bad when establishing the reward/penalty system for the representative,
DefCon asks them to mortgage certain assets.

Figure 9 systematically presents the DefCon procedure with the representative to
increase system effectiveness. The process is broken down into several periodic rotations
according to each representative’s period in the service. A cycle in Defcon comprises k
rounds of the modified 2PCC technique and tentative cross-cluster learning tasks. In this
cycle, the latter is used to validate tentative learning assignments’ outcomes. The intrachain
and interchain consensus is not involved in a round in DefCon, unlike a cross-cluster FL
round in HstCon. Instead, the representative’s job is to compile the updates from the
cluster’s various nodes. Additionally, it chooses whether to include the updates from the
far-off cluster. No ineffective consensus may be reached during a round. Therefore, it is
anticipated that CFL with DefCon will operate more efficiently.

Figure 9. The DefCon algorithm’s process flow [175].

Details of Consensus Round in DefCon—After k local rounds, the consensus protocol
has an election for representative selection. Any collaborating peer node can apply for
the election, in exchange for some assets to be mortgaged in the process. This is similar to



Mathematics 2023, 11, 151 38 of 47

investment-based consensus approaches, where the node gets motivated to perform in a
fair manner owing to the applied stake. In general, any candidate has a mortgage value,
and all such mortgage values are stored in a set data structure. A sorting mechanism is
applied, where the number of candidates is fixed. For example, q top-order candidates are
allowed in the nomination process and are added to the representative pool. A randomized
algorithm (designed on the ash process of the last added block at time t) is taken and is
rounded off to map to a candidate serial number in the nomination pool. This makes the
election process fair, random, verifiable, and traceable in the entire chain.

At the end of any working DefCon cycle, the efficiency of the 2PCC is examined, and
in case of any inconsistency, the last verified state is rolled back. All the operations in the
current cycle are deemed invalid. To validate the honesty of any miner node, a time-based
difference ∆ is computed, which is based on the current mining difficulty, and the previous
nonce value. The block is added, and the miner is rewarded iff the time to add the new
block Tb ≤ ∆. This step assures the elimination of foul play, and scenarios of collusion
attacks are minimized. In case later it is found out that any false block is added, a factor
µ(t) is computed, which is multiplied by the mortgaged amount µ(t)× A, and the value
is decremented from the associated node as a penalty. Thus, in the next cycle, the node
would have less stake and might be eliminated during the sorting cycle of top q miners.
This reward/penalty scheme in DefCon allows the nodes to behave properly, and thus the
gradient computation remains fair and valid.

10.1. Performance Evaluation

The installation of the CFL prototypes has been set up in the server machines to
test the efficacy of our framework. Two prototypes—CFL-HstCon and CFL-DefCon—are
implemented under the various consensus mechanisms intended for CFL. The authors
have performed results based on the observations taken from [175], and have designed
the same setup for the case-study. Table 12 shows the simulation parameters for the
node and cluster setup. The experiments primarily focus on CFL- DefCon because it is
more effective than CFL-HstCon. The CFL-DefCon outcome analysis has been discussed
throughout the remainder of this section. To conduct the same, three different approaches,
Blockchain − FL26, which creates a network of 26 nodes, with 13 nodes in every shard,
and HstCon and DefCon have been compared. In addition, the authors have identified
trust probability as an important aspect in the event of a collusion attack. They have
performed the effectiveness of the HstCon and DefCon consensus in the scenario when
malicious nodes increase in the system, which is not conducted in the earlier study by [175].
The result signifies that consensus mechanisms must be robust to deal with fake transactions
generated from the device to corrupt the learning process.

Table 12. Simulation parameter table.

Parameters Value

Processor 2 eight-core Intel Xeon E5-2670

RAM 64 GB

Harddisk 8 TB

OS Cent OS 7.2

No. of nodes used 13

The network capacity of the nodes across the racks 100 Mb

Latency added 200 ms

Figure 10a represents the learning latency of all three approaches. It is evident that, as
we increase the number of rounds for collaborative aggregation, the system’s latency also
grows, consisting of training time and consensus time. The consensus time comprises both
mainnet and crossnet, which verifies the block with certain rules. The Blockchain− FL26
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has higher latency than the cross-cluster (Hasty-Consensus). As we approach the 80 rounds
of training, the algorithm takes ≈ 35% less time as compared to Blockchain− FL26; cross-
cluster also outperforms the HstCon version in training the model.

Figure 10b represents the model comparison of different approaches where the dataset
shards are divided into 13 random nodes, as Blockchain− FL26 consists of two shards of 26
nodes. To reduce experimental error, every experiment is performed five times. Hence, this
represents the mean value of five experiments and training rounds. With these settings, a
significant improvement in accuracy is registered from 38% to 74%.

Figure 10c represents the trust model percentage of Proof-of-Work (PoW), Proof-of-
Stake (PoS), and distributed lightweight consensus protocol (DLCP). The figure shows
that PoW and PoS cannot identify the difference between genuine and fake transactions.
As the number of fake transactions increases, the trust drops drastically in PoW and PoS
approaches. Thus, these consensus algorithms cannot detect genuine transactions and add
them to the main chain, which reduces trust in the blockchain network. The simulation
is conducted on a PC with a virtual machine installed with certain assumptions. We
assume that a single node can contain 1000 transactions, where we allowed 100 to 900 fake
transactions to attack the consensus mechanism. The trust percentage is computed based
on each device’s trust rating, which is updated periodically if the transaction is successfully
added to the block. Any new transaction generated by any device is forwarded to the
neighboring node. In this case, the peer node checks the trust rating of initiating node and
classifies the trustworthiness of the initiator.
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Figure 10. Performance Evaluation of the case-study. (a) System latency of different approaches.
(b) Accuracy of model performance. (c) Trust percentage of consensus mechanism against fake
transaction.

10.2. Learning Outcome of the Case Study

Integrating FL-IoMT in distributed setups opens up many new opportunities, but
the data sharing and gradient exchange need to be secured and trusted. To alleviate the
problem, BFL allows auditability and provenance in network setup. In BFL, however,
resources are scarce, and thus communication-efficient consensus schemes are designed
that address the issue of low efficiency and data sparsity. For an effective training outcome,
it is crucial to identify and populate nodes geographically dispersed across a wide area into
several small BFL clusters and use CFL to link these clusters. The aggregated improvements
are transferred between the connected clusters to enhance the quality of the information
samples for every cluster. As a result, aggregated updates’ size becomes minimal, which
lowers communication costs and significantly boosts the system’s performance.

Despite the benefits, there are some unresolved challenges with BFL clusters trained
via CFL setups. Even though CFL and BFL can enhance training results by communi-
cating model updates, they might pose a significant communication and computational
burden on these connected nodes, owing to the computational mining requirements, which
eat up power and I/O resources in the network to assign common transactional ledger
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snapshot state at all nodes. On the contrary, most IoMT devices typically have limited
resources and thus cannot support these demands. To solve the issue, a fog-edge based
computational might perform mining-as-a-service to nearby BFL nodes, simplifying the
communication costs.

11. Conclusions and Future Scope

FL has been a game-changer in distributed AI learning paradigms. Owing to the large
data conflux, the healthcare industry has shifted its core towards resource-effective FL
algorithms. In IoMT ecosystems, however, with ease of learning comes the added burden
of security and challenges of statistical disparity due to diverse and heterogeneous data
at different nodes. FL addresses the dual issues of minimizing the learning convergence
of models and keeping data in local silos, assuring data privacy and security. Coupled
with blockchain, FL addresses the impending issue of trust, and recent research promises
interesting blockchain-based FL architectures. The proposed survey orients its readers
towards the key FL principles where discussion on resource requirements and analysis of
cloud, edge, fog, and dew computing is discussed. We presented the FL-IoMT architecture,
with an added emphasis on security and networking requirements, supported with practical
use-case setups. We highlighted a useful case study of cross-FL in IoMT and presented the
recent challenges in computation, data divergence, security, and networking issues.

In the future, we would explore the potential of secured multi-party communication
with blockchain-based FL in the medical imaging domain. A differential-privacy preserving
FL scheme would be proposed, with optimization conditions over the networking channels
to address the network bandwidth and latency usage issues.
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