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	       ABSTRACT
The health of humankind is intrinsically associated with the health of the marine and ocean 
ecosystems. The pollution of the coastal region due to urbanization, for example, principally 
harms the growth of the ecosystem with poor-quality of water, which aggravates the survival 
of marine organisms and animals. The toxicity of the contaminated seafood would affect 
the human-ocean ecosystem thereby bringing down the economic rank of the region as 
well. Therefore, it is mandatory to assess the quality of the marine and ocean water to 
initiate any statutory measures to protect the regional marine water against pollution and 
dumping of toxic matter. This paper, therefore, presented an architecture of machine learning 
techniques to assist in classifying marine water quality. The proposed framework evaluated 
various classification models and selected the best fit out of the top-performing algorithms 
through training and optimizing. The finalized model was a stacked classifier, which was then 
deployed to predict the marine water quality index from the physicochemical and biological 
properties of the water.

INTRODUCTION

Physical, chemical, and biological processes undertake to 
transform a marine ecosystem into a complex one. Light, 
food, and nutrients are vital elements to a healthy marine 
ecosystem. Also, water temperature, depth, and salinity, 
as well as the local landscape have an impact on marine 
ecosystems. Variations of these conditions can result in new 
compositions of species as part of the marine community. 
Besides, a microbe present in the marine environment is 
an important biological indicator of water quality. Say, 
phytoplankton microbes constitute the basis of the food chain 
structure in marine environments, which serve as food for 
aquatic species such as zooplankton, shellfish, and finfish 
(Sridhar et al. 2006), and keep the biological balance of water 
quality. Marine microorganisms adapt quickly to changes in 
nutrients (Robertson & Blaber 1993). According to plant-
animal relations showcased by Sverdrup et al. (1942), plants, 
as autotrophic organisms, transform inorganic material into 
organic particulate as food for marine animals. Therefore, 

it is vital phenomenon to monitor the quality of marine  
water so that the dependents including humankind in the  
food chain will be able to survive without infections and 
toxicity. 

The water quality index (WQI) is an empirical expression, 
as per McClelland (1974), which integrates physical, 
chemical, and microbiological parameters of water quality 
to derive into a single number. Since 1965, several numerical 
water quality indices have originated on various approaches 
depending on the applications and water parameters. Horton 
started with a simple WQI model (Horton 1965) followed by 
Brown et al. (1970, 1972) to propose a general WQI. WQIs 
were derived from associating observed parameter values 
and the local norms. Different WQI approaches existing 
currently were derived from either the weighted sum method 
or amplitude technique. The weighted-sum method was 
used to generate a sub-index, which helped to normalize the 
water quality parameters differing in units of measurement 
(Banda & Kumarasamy 2015). On the other method, the 
overall WQI was calculated using the deviations of water 
quality metrics quantitatively from the targets (CCME 2001, 
Khan et al. 2005, Mostafaei 2014). Akhtar et al. (2021) have 
elaborated the multi-criteria decision-making (MCDM) 
approach, which included the processes namely MACBETH 
and AHP to distinguish the various water usages such as 
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drinking, domestic, irrigation, and industrial requirements. 
The process involved the steps: collecting the users’ demand 
for each of the criteria to be selected; selecting alternatives 
to the high-ranked criteria; getting the consumers’ ranking 
of the criteria and alternatives; and a comparison of criteria 
and their counterparts. 

This paper has reviewed the salient features of 
novel techniques used for arriving at WQI that were 
proposed by research scientists and brought out a suitable  
computational model developed over the machine learning 
platform for classifying the marine water quality and 
predicting further, the marine water quality index (MWQI) 
of seawater.  

REVIEW OF METHODOLOGIES FOR WATER 
QUALITY INDEX ESTIMATION

Horton’s Model for WQI

In 1965, Horton developed and extended the concept of 
WQI (Horton 1965). Horton followed the steps for creating 
an index as (i) selected the water quality indicators such 
as dissolved oxygen, pH, E.coli, specific conductivity, 
alkalinity, and chloride, commonly available in Europe, 
Africa, and Asia countries; (ii) selected rating scales for each 
indicator so that the sub-index ranges from 0 to 100, where 
the highest quality was rated 100; and (iii) fixed the weight 
of the parameters that ranged from 1 to 4. 

The Horton WQI model employed physicochemical 
indicators of water quality such as DO, pH, coliforms, 
specific conductance, carbon, chloroforms extract, alkalinity, 
and chlorides. The parameters were chosen based on their 
importance, the relative effect of other parameters, and the 
reliability of the data. Horton applied a linear scaling function 
and assigned sub-index values ​​based on concentration level 
or contamination level. The sub-index value ranged from 0 to 
100, where 0 indicated worst quality and 100 to excellence. 
The parameter weights were determined using the Delphi 
method (Taylor et al. 2003). Th e  panel of experts was 
asked to assign a weight of 1 to 4 to various water quality 
parameters. Final WQI was obtai n ed by aggregating an 
additive function given by Equation (1) as,

	 𝑊𝑊𝑊𝑊𝑊𝑊 = [
∑ 𝑊𝑊𝑖𝑖𝑆𝑆𝑖𝑖𝑛𝑛
𝑖𝑖=1
∑ 𝑊𝑊𝑖𝑖
𝑛𝑛
𝑖𝑖=1

]𝑚𝑚1𝑚𝑚2 	 …(1)

where Si is the sub-index of the ith variable; Wi is the relative 
weight of the ith variable; m1 is a temperature correction fac-
tor, which is equal to 0.5 for temperatures below 34oC; and 
otherwise, it is 1; m2 is a pollution correction factor equal 
to 0.5 or 1. Selecting the right parameters for WQI was one 
of the challenges in the Horton model.

National Sanitation Foundation Water Quality Index 
(NSFWQI) Method

NSFWQI used the weighted arithmetic mean function 
to assess the significance of all water quality parameters 
obtained from 142 water quality assessment experts. To 
convert the score to weights, the most important parameter 
was assigned a temporary weight of 1, and the weights of 
all other parameters were derived by dividing the weight 
of the highest parameter by the average of the individual 
importance scores. The final weight for each parameter was 
obtained by dividing the individual temporary weights by 
the sum of the temporary weights so that the final sum of 
the weights, sum of the weights, ∑ 𝑊𝑊𝑖𝑖 = 1𝑛𝑛

𝑖𝑖=1 . NSFWQI was  NSFWQI was estimated using 
Equation (2) as,

	 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑞𝑞𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 𝑊𝑊𝑊𝑊𝑊𝑊 =  ∑ 𝑊𝑊𝑖𝑖
𝑛𝑛
𝑖𝑖=1 𝑄𝑄𝑖𝑖  	 …(2)

where Wi is the unit weight of the ith parameter; Qi is the sub-
index of the quality parameter derived from the parameter-to-
value conversion curve in the interval of 0 to 100, and n is the 
number of parameters. Based on the WQI values obtained in 
the range of 0 to 100, quality classes would then be assigned 
as excellent, good, fair, and bid accordingly. McClelland 
(1974) found that though the additive model is a good choice 
when all the parameters are within a reasonable range it lacks 
the sensitivity of a low-impacted parameter on the overall 
water quality. Hence, a multiplicative model was originated 
(McClelland 1974), which is given by Equation (3),

	 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 𝑊𝑊𝑊𝑊𝑊𝑊 =  ∏ 𝑄𝑄𝑖𝑖
𝑤𝑤𝑖𝑖𝑛𝑛

𝑖𝑖=1  	 …(3)

where Qi is the quality of the ith parameter, a value between 
0 to 100; Wi is the unit weight of the ith parameter, and n is 
the number of parameters.

Oregon Water Quality Index (OWQI) Method

Originally developed in 1970 by Brown et al. (Brown 
1970, Brown 1972, Cude 2001), OWQI had been improved 
in subsequent years after understanding more about the 
water quality behavior. The OWQI, a statistical tool is used 
to analyze a defined set of water quality parameters and 
generate a rating that describes the overall water quality of 
a particular monitoring site. The OWQI score takes a value 
from 10 to 100. The OWQI is also helpful for assessing water 
quality for recreational purposes like fishing and swimming. 
The OWQI approach utilized the arithmetic mean and is 
given by Equation (4),

	 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 =   √ 𝑛𝑛
∑ 1

𝑆𝑆𝑆𝑆𝑖𝑖
2

𝑛𝑛
𝑖𝑖=1

 	 …(4)

where n is the number of parameters, and SIi is the sub-index 
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of the ith parameter (Darvishi et al. 2016). The weighted har-
monic helped the impaired parameter to influence the OWQI 
by its presence and also observed that OWQI was dependent 
on the environmental changes hence their impacts on water 
quality were considered. However, all the toxic elements 
for health such as bacteria, metals, and toxins (Tyagi et al. 
2013) were not part of it.

Weighted Arithmetic Water Quality Index (WAWQI) 
Method

WAWQI’s strategy classified water quality from the most 
influential water quality indicators. It is a simple and easy 
technique to utilize. It is observed that most scientists have 
utilized the WAWQI to decide the water quality of surface 
waters and groundwater. The algorithm of WAWQI is given 
below:

	 •	 Identify the water quality indicators for WQI calculation 

	 •	 Calculate the proportionality constant, k value from, 

  𝑘𝑘 = 1
∑ 1

𝑆𝑆𝑖𝑖
𝑛𝑛
𝑖𝑖=1

   where Si is the standard value for the ith  

		  parameter and n is the number of parameters considered.

	 •	 Qi, the quality rating for the ith parameter is estimated 

by, 𝑄𝑄𝑖𝑖 = 100 ∗ {𝑉𝑉𝑜𝑜𝑜𝑜 − 𝑉𝑉𝑖𝑖 
𝑉𝑉𝑆𝑆𝑆𝑆 − 𝑉𝑉𝑖𝑖

}  where Voi is the observed  

		  value from the sample for the ith parameter; Vi is the 
ideal value of the ith parameter in distilled water; Vsi is 
the standard or permissible value for the ith parameter

	 •	 Wi, the unit weight of the individual parameter is derived 
from, W

i
 = k/S

i
 

	 •	 Finally, the water quality index (WQI) is arrived at by 
Equation (5) as,

	 𝑊𝑊𝑊𝑊𝑊𝑊 = ((∑ 𝑊𝑊𝑖𝑖𝑄𝑄𝑖𝑖)/∑ 𝑊𝑊𝑖𝑖
𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1 )              

 
 

	 …(5)         

The authors of (Chandra et al. 2017) have studied the 
groundwater quality of Vijayawada, India using the WAWQI 
model for analyzing the physicochemical properties such as 
pH, total dissolved solids (TDS), Cl, SO4, Na, K, Ca, Mg, 
and total hardness (TH) at nineteen different stations of the 
study area. Oni et al. (2016) studied the impact of municipal 
solid waste on the quality of the groundwater and surface 
water bodies at Ado Ekiti, Nigeria by using the algorithm 
of WAWQI. However, this index did not include all the 
parameters, which could describe the quality of a water 
source and this index only quantified the direct impact of 
physiochemical indicators (Tyagi et al. 2013)

Canadian Council of Ministers of the Environment 
Water Quality Index (CCME WQI) Method

CCME WQI (CWQI 2022, CCME 2001) is implemented 

generally to test a multi-boundary water quality against 
the permissible limit kept by the user. The WQI considers 
three variables such as scope, frequency, and amplitude to 
produce the water quality at that particular location with the 
benchmarks chosen. The output is a number ranging from 0 
to 100, where a score of 100 indicates that all variables meet 
the selected benchmarks. F1 represents the scope variable 
in terms of failed parameters, which does not satisfy the 
benchmark at least once, and Equation (6) is arrived as,

	 𝐹𝐹1 = 𝑁𝑁𝑁𝑁.  𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛.  𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∗ 100 	 …(6)

F2 indicates the frequency variable, in terms of failed 
tests, which do not meet the target as given in Equation (7), 

	 𝐹𝐹2 = 𝑁𝑁𝑁𝑁  𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛.  𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∗ 100 	 …(7)

F3 refers to the amplitude of the test values, by which 
they did not meet the benchmark. The non-compliance with 
the test values is calculated as:

	(i)	 The test value should not exceed the target: 

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖 = {𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 } − 1.0 

 

	(ii)	 The test value should not fall below the target: 

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖 = { 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣} − 1.0 

		
Then, the sum of excursions under the non-compliance 
category is calculated as, Normalized sum of excursions 

(nse) 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (𝑛𝑛𝑛𝑛𝑛𝑛) =
∑ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖

𝑛𝑛
𝑖𝑖=1
𝑁𝑁𝑁𝑁. 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

F3 is then calculated as given in Equation (8),

	 𝐹𝐹3 = { 𝑛𝑛𝑛𝑛𝑛𝑛
0.01𝑛𝑛𝑛𝑛𝑛𝑛 + 0.01 } 	 …(8)

CCME WQI method suits to calculate the quality index 
for different water bodies and it does not get influenced by the 
presence of missing data. The limitation of the method stated 
by the authors (Călmuc et al. 2018) is that physiochemical 
indicators included in the estimation of WQI are selected in 
such a way that they do have the same level of influence. 
The water quality estimated is also partial since the other 
physiochemical indicators and biological indicators are not 
considered in the algorithm. Lastly, the F1 variable is not 
consistent when the quality indicator list has only very few 
parameters

Bhargava Method 

The Bhargava approach considered the parameters corre-
sponding to each of the applications separately and applied 
the sensitivity function that selects a value between 0 and 1 
and the results are accumulated using the geometric mean 
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(Bhargava 1983a, 1983b, Noori et al. 2017). The geometric 
mean-based WQI suggested by Bhargava is expressed in 
Equation (9) as,

	  𝑊𝑊𝑊𝑊𝑊𝑊 = (∏ 𝑓𝑓𝑖𝑖(𝑛𝑛
𝑖𝑖=1 ))1/𝑛𝑛 ∗ 100                    	 …(9)

where function fi () indicates the sensitivity function for the 
ith parameter, which is related to the weighting of the ith pa-
rameter and varies from 0 to 1; and n is the number of water 
quality parameters considered. Water quality index (WQI), 
used six water quality parameters namely dissolved oxygen 
(DO), biochemical oxygen Demand (BOD), most probable 
number (MPN), turbidity, total dissolved solids (TDS), and 
pH measured at eight different stations along the river basin. 
Rating curves were drawn based on the quality of river water 
and gave importance with weight to every parameter. Lastly, 
a rating scale in the order of 0 to 4 was used to classify water 
quality in each of the study areas such as, excellent to poor 
range by the Bhargava WQI method. 

Recreational Water Quality Index (RWQI) Method

Recreational water bodies are characterized and classified 
to determine their suitability for recreational use, based 
on susceptibility to fecal contamination, development of 
HABs, and proliferation of specific free-living microbial 
pathogens (WHO 2003). The water quality criterion is 
to set a recreational water quality index for fresh bathing 
waters. The World Health Organization (WHO) aggressively 
promoted the safety of human health while using recreational 
waters. In (WHO 2003, WHO 2005, WHO 2021) reports, 
WHO laid out the guidelines that provide an assessment 
of the health risks associated with the recreational use of 
water. Risks arising from contacting the contaminated water 
include infection from microbes and toxicity of physical and 
chemical properties of the water.

The RWQI was developed by Almeida et al. (2012) 
using physical, chemical, and microbiological parameters. 
The opinions of 17 experts were used from the rating curves 

and all rating curves were fitted with a coefficient regression 
bigger than 0.98 for each one. WHO has fixed a maximum 
value (Almeida et al. 2012) for recreational waters as 2 
mg.L-1 for Qi, which is equivalent to 100; with 75 for values 
up to 0.1 mg.L-1; and the Qi reaches10 for values above 2 
mg.L-1. The RWQI included the water quality indicators 
namely pH, turbidity, detergents, nitrate, COD, PO4

3-, total 
coliforms, coliforms, and enterococci. Equation (10) shows 
the calculation of RWQI as,

	

 

  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  ∏ 𝑄𝑄𝑖𝑖
𝑊𝑊𝑖𝑖𝑛𝑛

𝑖𝑖=1            	  …(10)

where Qi is the rating value of the ith parameter expressed as 
concentration or other analytical measurements and Wi is the 
weightage given to the ith parameter in such a way, ΣW

i
 = 1. 

Wi is calculated as, 𝑊𝑊𝑖𝑖 =
1

𝑎𝑎𝑖𝑖
∑ 1

𝑎𝑎𝑖𝑖
 , , where ai is the coefficient that 

varies from 1 to 4 as per the significance of the parameter i. 
RWQI is a result ranging from 0 to 100.  

THE FRAMEWORK OF MACHINE LEARNING 
TECHNIQUES FOR THE CLASSIFICATION AND 
PREDICTION OF MARINE WQI

This Section discusses the design of a framework of machine 
learning techniques for classifying and further predicting 
marine water quality index (MWQI) using eight water 
quality parameters like salinity, dissolved oxygen (DO), 
dissolved inorganic carbon (DIC), alkalinity, phosphate, 
nitrate+nitrite, dissolved organic carbon (DOC), and 
heterotrophic bacteria from the dataset collected by the 
Center for Microbial Oceanography Research & Education 
Data System (C-MORE DS 2021). The framework has 
embedded the machine learning platform to predict marine 
water quality. In this framework, different supervised 
machine-learning models were examined to predict water 
quality more accurately. Fig.1 illustrates the process flow for 
arriving at the MWQI. The observations of physiochemical 
and biological parameters collected from 11 cruises were 

 
Fig. 1: Process flow of arriving MWQI from the input observations.
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used in this study. The data pre-processing phase involved 
data cleansing using outlier detection, missing data, and 
normalization. After pre-processing, the dataset taken for the 
study contained 1361 observations. The weighted arithmetic 
water quality index (WAWQI) algorithm discussed in Section 
2 (iv) was embedded in this framework. The parameters used 
for estimating MWQI have been thoroughly explored with 
their significance to marine water quality.

Correlation analysis is to determine the association 
among water quality parameters involved in the study. 
Correlation analysis as given in Fig. 2 helps to conclude 
the positive, negative, or no-correlation effects of those 
chosen parameters. Table 1 gives the statistic of input 
parameter values and the outcome of the correlation. The 
standard deviation shows the average distance of each 
observation from the mean. A larger value indicates that 
the data are more spread out. Salinity, for example, showed 
a low variation, which made 25%, 50%, and 75% of the 
observations stick around the mean value. Looking at the 
minimum and maximum range of the DO, DIC, Alkalinity, 
DOC, and h-bacteria, the standard deviations also proved 
that the data are widely spread out. The parameters such as 
DIC, alkalinity, phosphate, nitrate +nitrite, and DOC showed 
the minimum value and 25%, 50%, and 75% observations 
as zero, which was reflected in their correlation too. The 
coefficient of variation (CV) and the index of dispersion 
(ID) displayed the relative dispersion of the observations 
around the mean. 

The correlation matrix given in Table 2 shows the degree 
of linear correlation by means of coefficient R between any 
two parameters. R-value helps to identify the water quality 

parameters, which may influence the seawater quality. Some 
of them exhibit negative correlations too. Salinity, DO, DIC, 
nitrate+nitrite, phosphate, alkalinity, DOC, and h-bacteria 
from the given dataset were found to be more significant in 
the water quality. Marine water quality standards of those 
chosen parameters were also considered for estimating the 
relative weights and sub-indices and aggregating these two 
computed outcomes. The estimated value of water quality 
of each observation was found to be lying in the range of 
0 to 100. The water quality results were then classified as 
excellent, good, and poor represented numerically as classes 
2, 1, and 0 respectively. The classes that arrived are therefore 
called marine water quality index (MWQI).

The framework has further employed the machine 
learning model to classify and predict MWQI, which is 
shown in Fig. 2. Lastly, the correlation of each parameter 
with MWQI was studied to understand the linear association 
between each parameter with MWQI and is represented in 
Table 3. Determination of the best-fit classification model 
for the marine water quality adapted training, evaluation, and 
optimization as discussed in the following sections.

Training and Optimizing the Classification Models

Process flow to determine the best-fit machine learning 
algorithm for predicting the MWQI has followed: (i) create 
models, (ii) tune models, (iii) compare models, and (iv) 
ensemble model. An integrated software development 
tool, namely, the Anaconda platform unified with python 
programming (Python 2020) and PyCaret (PyCaret 2022) 
was used in the model evaluation and optimization. The 
dataset (C-MORE DS 2021) after pre-processing was split 

 
Fig. 2: Framework of machine learning techniques for classifying and predicting MWQI.
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Table 1: Descriptive statistics to analyse the input parameters for prediction.

Descriptive 
Statistics

Salinity
µmol.kg-1

DO 
µmol.kg-1

DIC
µmol.kg-1

Alkalinity
µmol.kg-1

Phos
µmol.kg-1

Nitrate 
+Nitrite
µmol.kg-1

DOC
µmol.kg-1

H-Bact
CFU.100mL-1

Water 
quality 
%

Observations 1361 1361 1361 1361 1361 1361 1361 1361 1361

Mean 35.12 200.86 437.43 498.65 0.086 0.353 3.563 455.80 59.25

Std dev 0.253 40.11 837.76 954.50 0.274 1.946 15.46 188.68 6.25

Min 34.039 0.0 0.0 0.0 0.0 0.0 0.0 123.70 50.47

25% 34.95 204.10 0.0 0.0 0.0 0.0 0.0 337.40 55.62

50% 35.203 208.20 0.0 0.0 0.0 0.0 0.0 441.10 57.68 

75% 35.293 213.60 0.0 0.00 0.10 0.07 0.0 528.90 60.65

Max 35.988 265.90 2328.1 2409.0 2.71 29.64 83.50 2469.7 100.0

CV 0.007 0.199 1.915 1.914 3.175 5.519 4.339 0.4139 0.105

ID 0.002 8.011 1604.4 1827.07 0.870 10.74 67.11 78.11 0.659

Table 2: Correlation matrix of marine water quality indicators.

            Salinity DO DIC Alkalinity Phos Nit+Nit DOC H-bact

Salinity 1.0000

DO 0.3689 1.0000

DIC 0.0280 0.0204 1.0000

Alkalinity 0.0320 0.0308 0.9994 1.0000

Phos -0.2338 -0.3443 0.3305 0.3050 1.0000

Nit+Nit -0.2276 -0.3943 0.2107 0.1855 0.9410 1.0000

DOC -0.1097 0.0554 -0.1230 -0.1231 -0.0688 -0.0383 1.0000

H-Bact -0.3420 -0.0166 0.1131 0.1109 0.2651 0.1355 -0.0496 1.0000

into training, validation, and test data with eight water 
quality parameters. Training and validation data were used to 
evaluate the classification models under the machine learning 
framework. Training the classification models is to select an 
optimum one in classifying marine water quality. PyCaret 
is a python-based machine learning library, that assists the 
framework for fitting the best model. To optimize the selection 
further, tuning the hyperparameters of the individual model 
was also added. The performance metrics namely, accuracy, 

Table 3: Correlation of MWQI with each Water Quality Indicator.

MWQI 1.000

Hbact 0.646

Phos 0.562

Nit 0.525

Doc 0.264

Dic 0.135

alk 0.122

Csal -0.478

Coxy -0.661

AUC, recall, precision, F1, kappa, MCC, and TT helped to 
appraise the top-performing models as demonstrated in Table 
4. From the comparison, it is found that the decision tree 
algorithm was the best-fit one. Additionally, ensemble and 
stacking processes would also help to identify a more suitable  
algorithm.

Ensemble Learning Techniques in Prediction

Machine learning models sometimes favor biasing and 
therefore, ensemble learning is preferred to recover from 
biasing. An ensemble is a machine-learning approach, in 
which several machine-learning algorithms are bundled 
together and trained. The top four classification methods from 
Table 4 namely, decision tree, ada boost, gradient boosting, 
and random forest were tuned first and then ensembled using 
bagging or boosting algorithms. Stacking was finally applied 
to combine the four ensembled algorithms. Evaluation of 
the stacked classifier by their performance was appraised 
as portrayed in Table 5. The finalized prediction algorithm 
was saved as MWQI Classifier in the server where the 
algorithm could be deployed and worked stand-alone  
thereon.
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Testing the Prediction Algorithm

MWQI classifier was loaded in the integrated machine 
learning platform of Anaconda, Python, and PyCaret and 
tested the sample data accessed from the given water quality 
dataset. Table 6 displays a sample output from the prediction. 
The outcome of the prediction was 100% accurate. 

CONCLUSION

This paper proposed a machine learning framework 
for evaluating the classification models, optimizing the 
models, and finally selecting the best-fit model with 
higher performance for the given dataset and application. 
The chosen model was then applied for prediction. The 

classification method called stacked classifier was proposed 
as a top-performing machine learning model under the 
supervised learning category to classify the marine water 
quality. The application dataset from C-MORE DS with 
eight selected physio, chemical, and biological properties are 
involved to train, evaluate and test the model for arriving at 
the marine water quality index (MWQI). The estimated and 
predicted values of MWQI matched with 100% accuracy. 
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Table 4: Comparison of the performance of classification models.

Classifier Model Accuracy AUC Recall Precision F1 Kappa MCC TT (Sec)

Decision tree 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0110

Ada boost 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0120

Gradient boosting 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0830

Random forest 0.9987 1.0000 0.9986 1.0000 0.9993 0.9850 0.9860 0.2040

Extra trees 0.9974 0.9995 0.9973 1.0000 0.9986 0.9701 0.9720 0.1700

Logistic regression 0.9961 1.0000 0.9986 0.9973 0.9979 0.9494 0.9531 0.0490

Light gradient boosting machine 0.9948 1.0000 0.9973 0.9973 0.9973 0.9345 0.9391 0.0310

SVM - linear kernel 0.9935 0.0000 0.9959 0.9973 0.9966 0.9252 0.9301 0.0140

Ridge classifier 0.9935 0.0000 0.9986 0.9946 0.9966 0.9041 0.9150 0.0150

Linear discriminant analysis 0.9935 1.0000 0.9973 0.9959 0.9966 0.9195 0.9251 0.0110

K Neighbors 0.9895 0.9691 0.9973 0.9919 0.9945 0.8453 0.8611 0.0280

Naive Bayes 0.9777 0.9986 0.9767 1.0000 0.9881 0.8031 0.8246 0.0100

Dummy classifier 0.9580 0.5000 1.0000 0.9580 0.9786 0.0000 0.0000 0.0100

Quadratic discriminant analysis 0.8777 0.8787 0.8849 0.9881 0.9181 0.4815 0.5397 0.0120

Table 5: Performance of the Stacked Classifier Model Finalized for Marine Water Quality Prediction.

Model Accuracy AUC Recall Prec. F1 Kappa MCC

Stacking Classifier 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table 6: A sample of predicted output. 

Salinity
µmol.kg-1

DO µmol.
kg-1

DIC
µmol.
kg-1

Alkalinity
µmol.kg-1

Phos
µmol.kg-1

Nitrate 
+Nitrite
µmol.kg-1

DOC
µmol.kg-1

H-Bacteria
CFU.100mL-1

MWQI 
calculated

MWQI
predicted 

Score

34.578 211.2 0 1.33 6.75 0 1543.9 85.307 0 0 1

34.94 214.1 0 0 0 0 538.9 58.658 1 1 1

35.289 211.2 0 0 0 0 665.5 62.060 1 1 1

34.854 265.8 0 0.77 0 0 1540.1 75.588 0 0 1

35.175 210.7 0 0.12 0.01 0 575.1 60.025 1 1 1

35.195 212.2 0 0 0 0 140.8 50.468 0 1 1
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