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Abstract: This study proposes a task-offloading and resource allocation strategy in multidomain 

cooperation (TARMC) for the industrial Internet of Things (IIoT) to resolve the problem of the non-

uniform distribution of task computation among various cluster domain networks in the IIoT and 

the solidification of traditional industrial wireless network architecture, which produces low effi-

ciency of static resource allocation and high delay in closed-loop data processing. Based on the 

closed-loop process of task interaction of intelligent terminals in wireless networks, the proposed 

strategy constructs a network model of multidomain collaborative task-offloading and resource al-

location in IIoT for flexible and dynamic resource allocation among intelligent terminals, edge serv-

ers, and cluster networks. Considering the partial offloading mechanism, various tasks were seg-

mented into multiple subtasks marked at bit-level per demand, which enabled local and edge serv-

ers to process all subtasks in parallel. Moreover, this study established a utility function for the 

closed-loop delay and terminal energy consumption of task processing, which transformed the pro-

cess of multidomain collaborative task-offloading and resource allocation into the problem of task 

computing revenue. Furthermore, an improved Cuckoo Search algorithm was developed to derive 

the optimal offloading position and resource allocation decision through an alternating iterative 

method. The simulation results revealed that TARMC performed better than strategies. 
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1. Introduction 

With the rapid development of advanced industrial manufacturing modes such as 

Industry 4.0, intelligent factory, and flexible manufacturing, communication technology 

and the manufacturing industry have become deeply integrated in recent years. Conse-

quently, the digital and integrated industrial Internet of Things (IIoT) has emerged as a 

research hotspot [1–5]. However, the advantages of the three major application scenarios 

of 5G are incompatible and cannot coexist simultaneously. Moreover, the synchronous 

realization of ultralow closed-loop delay transmission, large connection, and large-band-

width transmission is challenging for large-scale machine differentiated services. There-

fore, further research is required to transform existing industrial wireless network archi-

tectures and resource allocation methods. 

Currently, the mainstream wireless edge network adopts a centralized network 

mode on the terminal side, [6,7], and the information is transmitted between the nodes 

via the access edge server and cloud platform, which considerably increases the delay of 

data transmission between the nodes. For the large-scale wireless edge network, this rigid 

and centralized network mode poses problems such as high network-computation cost, 

serious resource conflict, and reduced network performance, which yields inferior scala-

bility of the edge networks. This further raises the difficulty of supporting flexible, adap-
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tive resource scheduling and ubiquitous computing functions of industrial edge net-

works. To support a large IIoT, the cluster domain network [8,9] contains numerous ter-

minal nodes distributed in a certain region for constructing hierarchical networks using 

the clustering algorithm [10,11]. In addition, mobile edge computing (MEC) [12,13] ex-

tends cloud services to network edges that effectively coordinate the distributed edge re-

sources. With the increasing performance requirements for computation-intensive and 

delay-sensitive loads in IIoT, cluster domain networks and MEC have emerged as poten-

tial solutions to accommodate complex IIoT applications for the integrated management 

of IIoT communications, sensing, and computing resources [14]. 

The traditional industrial wireless network based on the IEEE 802 protocol [15] can 

achieve only a 10 ms level delay in one-way communication transmission, which is vastly 

inadequate to achieve the performance requirements of IIoT. On one hand, the hierar-

chical network control mode relying on the core network yields low resource-manage-

ment efficiency and does not fulfill the communication requirements of differentiated ma-

chine services. On the other hand, considering the extremely low delay requirements of 

closed-loop management for several IIoT applications in the manufacturing workshop, 

computing tasks require more fine-grained offloading strategies. To fulfill the demand for 

efficient interaction of information flow between massive machines in IIoT, the edge net-

work should allow a portion of the computing tasks in mobile devices to be processed 

locally, and the remaining computing tasks are offloaded onto the server. According to 

the strict requirements for reliable real-time performance in industrial scenarios, compu-

ting tasks should be processed for real-time stored industrial data. Therefore, low-delay 

computing task-offloading methods and resource allocation strategies must be studied 

based on cluster domain network structure. 

2. Related Work 

In recent years, the study of computational offloading strategies has emerged as a 

research hotspot in the field of edge computing [16,17]. With various objectives, research-

ers have proposed several computational offloading strategies. To minimize task execu-

tion delay, Yang et al. [18] formulated a selection strategy for optimal offloading node as 

a Markov decision process and minimized the offloading delay by adopting a value iter-

ation algorithm. Li et al. [19] studied a paradigm for dual computational offloading and 

proposes a hierarchical, cell-based distributed algorithm to obtain the optimal dual of-

floading scheme for implementing the overall delay minimization of task-offloading. Zhu 

et.al [20] studied the single-user multi-edge-server MEC system based on downlink 

NOMA to minimize task computation delay by jointly optimizing the NOMA-based 

transmission duration (TD) and workload offloading allocation (WOA) among edge com-

puting servers. Luo et al. [21] proposed a self-taught-based distributed computational of-

floading algorithm to minimize its delay and information cost. Huang et al. [22] proposed 

an efficient multidevice and multi-BSs task-offloading scheme to minimize the delay of 

computational tasks. Gao et al. [23] proposed a two-stage computational offloading 

scheme to minimize task processing delay. Liao et al. [24] proposed a novel UAV-assisted 

edge computational framework that provided edge computational offloading based on 

the user distribution of time-varying hotspots to minimize average user delay. The current 

research primarily focuses on the simple network structure model, which is limited to the 

optimization of the one-way empty port-time delay that contradicts the closed-loop inter-

action characteristics of the information flow of the industrial intelligent machine net-

work. 

To minimize total energy consumption, Fang et al. [25] proposed a content-aware 

multi-subtask-offloading problem based on the individual features of subtasks with vari-

ous delay requirements, under which the offloading decision and channel allocation were 

optimized. Aiming to obtain resource allocation and offloading decisions, Wu et al. [26] 

developed an efficient two-layer optimization algorithm for resolving the residual energy 
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maximization problem. Chen et al. [27] formulated the offloading task as a stochastic op-

timization problem and proposed an energy-efficient dynamic offloading algorithm that 

minimized the energy consumption of task-offloading. In addition, Bozorgchenani et al. 

[28] modeled task-offloading in MEC as a constrained multi-objective optimization prob-

lem that minimizes both the energy consumption and task processing delay of the mobile 

devices. More recently, Zhang et.al [29] proposed an energy-saving algorithm based on 

deep reinforcement learning to optimize the overall energy cost in real-time multi-user 

MEC systems. However, the delay and energy consumption performance may bear dis-

tinct weight coefficients, for instance, the system focuses on the delay performance by 

increasing the delay weight, which consequently places higher requirements for optimiz-

ing and offloading the system task. 

To reduce service response delay and energy expenditure, the user can opt to offload 

the task to the edge server or the cloud server for execution. Therefore, offloading schemes 

that combine delay demand and energy consumption demand should be considered. Lu 

et al. [30] designed a multitask-offloading policy that could handle dense offloading re-

quests from various mobile devices to optimize the overall execution delay and energy 

consumption. Wang et al. [31] developed an efficient multi-objective evolutionary algo-

rithm to solve the problems of minimizing the response time, minimizing the energy con-

sumption, and minimizing the cost. Guan et al. [32] proposed a novel MEC-based mobil-

ity-aware offloading model to address the in-cloud offloading scheduling problem and 

the load between cloud sensing problems by offloading execution efficiency, task pro-

cessing delay, and energy efficiency. Aiming to reduce system energy consumption as 

well as computational task delay, Chen et al. [33] proposed a robust computational of-

floading strategy with fault recovery capabilities in intermittently connected small cloud 

systems. Fang et al. [34] investigated the multi-user computational task offload problem 

in device-enhanced MEC based on the perspective of joint optimization of channel alloca-

tion, device pairing, and offload modes, considering the significance of delay and energy 

consumption to maximize the total offload benefit of all computationally-intensive users 

in the network. 

The existing work mainly studies the offloading scheme of minimizing time delay, 

energy consumption or synthesis under the traditional industrial wireless network archi-

tecture, and solves some optimization problems of one-way air port delay and energy 

consumption under the simple network structure. However, the joint optimization of 

task-offloading delay and energy consumption can be realized only with the traditional 

network architecture. In case of multidomain network collaboration and extremely low 

closed-loop delay demand of IIoT, the utility aspect of network closed-loop delay and 

terminal energy consumption cannot still be effectively balanced. So, we developed an 

improved multidomain collaborative task-offloading mechanism to deeply analyze the 

impact of the multidomain resource linkage collaboration mode on the task-offloading 

process of intelligent terminals in the workshop in order to solve the problem of non-

uniform distribution of task computation in the traditional hierarchical network and im-

prove the utilization of idle resources in the full-domain network in the workshop. On the 

other hand, we established a utility function on task processing closed-loop time delay 

and terminal energy consumption to transform the multidomain collaborative task-of-

floading and resource allocation process into a task computation gain problem in order to 

solve the problems of low static resource allocation efficiency and high data processing 

closed-loop time delay in traditional industrial wireless networks. An improved Cuckoo 

Search algorithm is proposed to calculate the optimal offloading location and resource 

allocation decision to effectively weigh the network closed-loop delay and terminal en-

ergy consumption to improve the network communication performance of a flexible man-

ufacturing workshop. 

The primary contributions of this paper are summarized as follows: 

(1) This study proposes a task-offloading and resource allocation strategy in mul-

tidomain cooperation (TARMC), to investigate the closed-loop process of intelligent 



Processes 2023, 11, 132 4 of 18 
 

 

terminal task interaction in wireless networks and the partial offloading mechanism 

of edge network for IIoT. 

(2) A utility function was established for the closed-loop delay and terminal energy con-

sumption of task processing to transform the multidomain collaborative task-of-

floading and resource allocation process into a task computing revenue problem. 

(3) An improved Cuckoo Search algorithm was developed to compute the optimal of-

floading location and resource allocation decisions. In addition to strengthening the 

network load balance, this algorithm effectively reduced the delay and energy con-

sumption of task processing. 

(4) An experiment was designed to compare TARMC, a genetic algorithm (GA) and sim-

ulated annealing algorithm (SA), to validate the optimization of delay and energy 

consumption in the multidomain collaboration method based on a real IIoT environ-

ment. 

3. System Model 

3.1. System Model 

The TARMC network model comprises the terminal layer, network layer and re-

source management layer, as depicted in Figure 1. The terminal layer includes industrial 

intelligent terminals (e.g., robotic arms, AGV) with varying computing needs. In addition, 

it covers the corresponding application scenarios (e.g., industrial vision, AGV collabora-

tion, and industrial detection), responsible for real-time local processing of computing 

tasks, establishing communication links with network layer equipment, and requesting 

collaborative task-offloading services. The set of industrial intelligent terminals is defined 

as  1 2, , , , ,i ND D D D D= , which is responsible for offloading the task to the edge server 

on the router end. The network layer contains multiple routers with edge servers de-

ployed around it, which is responsible for communicating and exchanging data with other 

cluster domain networks. This feature enables high real-time information interaction and 

multidomain collaborative task-offloading services for the terminal layer. The set of edge 

servers can be expressed as  1 2, , , , ,j JS S S S S=  and is responsible for providing com-

puting resources to complete the computing task. Furthermore, the resource management 

layer hosts a 5G intelligent control base station and cloud platform, which analyzes the 

computing requirements of various industrial terminals and offers resource allocation 

strategies to edge servers. 

 

Figure 1. System model for task-offloading and resource allocation. 

Upon assigning a computing task to the industrial intelligent terminal, a computing 

task service request will be uploaded, and the service demand will be reported by the 5G 

intelligent control base station through the access network. Thereafter, the edge server on 

the base station end receives the task request and sends a service response. The task is 

computed in the local processing if the industrial intelligent terminal can compute tasks 
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within the scope of local computing power. In case the local computing power is insuffi-

cient, the 5G intelligent control base station offloads the task to an edge server installed in 

the remaining cluster domain networks within the communication range for processing. 

After processing, the calculation results will be fed back to each intelligent terminal. For 

non-real-time service requirements, the 5G intelligent control base station offloads the 

tasks to the cloud platform under a more accurate resource scheduling strategy and ac-

cessed from the cloud network. 

The total frequency spectrum of the network system is segmented into orthogonal 

sub-channels, each with a bandwidth of B  Hz. Under normal operation of the system, 

each industrial intelligent terminal provides a computing task for processing. Let us as-

sume that the computing task quantity of the industrial intelligent terminal iD  is il , 

measured in Mbits; i  denotes the ratio of output and input data for task iD , i.e., the 

feedback received after task calculation is i il . The computing tasks of the industrial in-

telligent terminal iD  can be either locally processed or offloaded to the edge server for 

processing. ib  represents the local offloading ratio for an industrial intelligent terminal 

computing task, where (  0,1ib  ). 

Subsequently, the industrial intelligent terminal forwards the computing task to the 

edge server on the 5G intelligent control base station for task-offloading, and the data 

require to be transmitted through the subchannel corresponding to the 5G intelligent con-

trol base station. According to [35], the uplink transmission rate from the industrial intel-

ligent terminal iD to the edge server 
jS  is expressed using Shannon’s formula as: 

,

, 2

0

log 1

k

i i j

i j

p h
r B

N

 
= + 

 
 

 (1) 

where ip  denotes the transmission power of the industrial intelligent terminal iD , ,

k

i jh  

represents the channel gain of the industrial intelligent terminal iD  and the edge server 

jS  on the sub-channel k . 2

, 0 ,i j i jh d  −= , where 0  is the path loss at a distance of one 

meter; ,i jd −  symbolizes the propagation loss, d indicates the propagation distance,   

denotes the path loss exponent; 
2 represents the Rayleigh fading parameters; 0N  in-

dicates the noise power of Gaussian channel. 

The computing resource allocated by the industrial intelligent terminal iD for local 

processing of the computing task is denoted as (CPU cycles/second), and the CPU cycles 

required for processing 1 bit data is expressed as Local . Thus, the delay in local task pro-

cessing can be derived as 

local i i Local
i

i

l b
t

f


=  (2) 

If the power of the industrial intelligent terminal iD at idle is local

iP , the energy con-

sumption of processing the calculation task can be locally evaluated as follows: 

3locallocal local local

i i i i iE P t f t= +  (3) 

where 3 local

i if t denotes the additional energy consumption during the terminal compu-

ting task,  indicates the CPU architecture constant and 2710 −= . The industrial intelli-

gent terminal iD can process the computational tasks through collaboration between local 

computing and edge computing. If the industrial intelligent terminal iD  is processing a 

portion of the local computing tasks, all the remaining computing tasks are transmitted to 
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the edge server 
jS  most proximate to the terminal, which schedules and assigns the re-

maining computing tasks to the other edge servers and jointly completes the task offload. 

As the edge servers communicate through a wired network, the transmission time is neg-

ligible, and further potential delays (e.g., packet preprocessing and queuing delays) can 

be neglected. The transmission delay generated when the smart terminal iD  transmits 

all the remaining computing tasks to the nearest edge server 
jS can be derived as follows: 

( )

,

1s i i

i

i j

l b
t

r

−
=  (4) 

Therefore, the transmission energy consumption of the computing task offloaded by 

iD  to 
jS can be derived as follows: 

i j

e s

D S i iE p t=  (5) 

The computing resource allocated by the edge server 
jS  to the industrial intelligent 

terminal iD  is i

jf , the CPU of the edge server to process 1 bit data is MEC , and the 

power required to perform the computing task is i

jP . After offloading the task, multiple 

edge servers can perform the computing task, and the processing time of the computing 

task on the edge server 
jS  can be evaluated as follows: 

( ),

,

1i j i i MECm

i j i

j

l b
t

f

 −
=  (6) 

where ,i j  denotes the ratio of computing tasks on edge server jS  to total computing 

task of iD  offloaded to servers. Let us assume that the transmitting power of the edge 

server jS  to jp .After processing the task, the multiple collaborative edge servers will 

feedback the results of the remaining tasks to the edge server jS  located near the intel-

ligent terminal. Thus, the transmission delay occurring when 
jS  feeds back all the re-

maining task results to the terminal iD  can be expressed as follows: 

( )

,

1c i i i

i

i j

b l
t

r

−
=  (7) 

Therefore, if the intelligent terminal iD  receives the edge server jS  feedback re-

sult, the corresponding transmission energy consumption will be: 

offload c

i i iE p t=   (8) 

Considering the simultaneous processing of the computing tasks on multiple edge 

servers, the industrial intelligent terminal iD  records the total processing duration of 

offloading the remaining tasks to the edge server for auxiliary computing process as 
m

iT

, and ,
1,2,...,M
maxm m

i i j
j

T t
=

= . Therefore, in case the remaining computing task is offloaded to the 

edge server and the feedback data is received, the multidomain collaborative task-pro-

cessing delay can be expressed as follows: 

offload s m c

i i i it t T t= + +  (9) 

In case the industrial intelligent terminal iD  completes the corresponding compu-

ting task in local processing, it waits for the edge server to process together and provides 

feedback to iD  for the final result. In another case, if the industrial intelligent terminal 
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iD  has not yet completed the local processing of the corresponding computing task, 

whereas the edge server has completed collaborative computing, the industrial intelligent 

terminal iD receives the feedback of the final result after processing the local computing 

task. Therefore, the closed-loop time delay of the task processing at the industrial intelli-

gent terminal iD  can be stated as follows: 

,

,

offload local offload

i i i

i local local offload

i i i

t t t
t

t t t

 
= 


 (10) 

For the industrial intelligent terminal iD , the total energy consumption is stated as 

follows 

,

( ),

i j

local

i j

local e offload s m local

i D S i i i i

i local e offload s m local s m local

i D S i i i i i i i i

E E E t T t
E

E E E P t T t t T t

 + + + 
= 

+ + + + − + 

 (11) 

The total closed-loop time for task processing of all industrial intelligent terminals in 

the system can be expressed as: 

1

N

total i

i

T t
=

=  (12) 

The total power consumption of all industrial intelligent terminals to complete the 

task-offloading can be stated as 

( )
1

N

total i

i

E E
=

=  (13) 

3.2. Optimization Objective 

In practice, the delay and energy consumption performance can exhibit varying 

weight coefficients, for instance, the system improves the delay weight to focus on the 

delay performance when the AGV is included in route planning. Let us assume that the 

two weight coefficients are denotes as T and E , respectively. The impact of such delay 

and energy consumption on the performance of industrial intelligent terminals can be ad-

justed through T  and E , and such a design can expand the applicability of the model. 

This study considers the premise of ensuring the energy consumption of all industrial 

intelligent terminals to complete task-offloading, minimizes the closed-loop delay of task 

processing, and obtains the optimal resource allocation strategy along with the computing 

task-offloading scheme of the edge server. The utility function is defined as follows: 

( )
1 1

1
,

N N

T i E i

i i

f b f t E
N

 
= =

 
= + 

 
   (14) 

The optimization objective can be expressed as: 

( )

 

, ,

,max

,max

,max

min ,

. .  1: 0,1 ,

      2 : 0 ,

      3 : 0 ,

      4 : , ,

b p f

i

i i

i

j j

i i

f b f

s t C b i

C f f i

C f f i

C t t i j

 

  

  

 

 (15) 

where constraint 1C  represents the range of offloading ratio for the industrial intelligent 

terminal computing task; 2C  indicates that the industrial intelligent terminals do not ex-

ceed the maximum allocated local computing resources; 3C represents that the compu-

ting resources allocated to the edge server for industrial intelligent terminal tasks do not 
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exceed the maximum allocated computing resources of the edge server; 4C  indicates the 

maximum value of the task calculation delay for the industrial intelligent terminal. 

4. Improved Cuckoo Search Algorithm 

Unlike the NP difficult problem under complete offloading mechanism, Equation 

(15) can be reduced to the ordinary combination optimization problem under partial of-

floading mechanism. To this end, an improved Cuckoo Search algorithm is proposed in 

this paper. In principle, the algorithm can weigh the number of local and global searches 

through adaptive discovery probability and step size, as well as conduct a local fine search 

representing the global optimal solution to improve the operation accuracy and search 

efficiency. The idea of a differential evolution algorithm is introduced to adjust, cross, and 

select the process of nest update position. By inheriting the optimal solution genetic infor-

mation, the algorithm avoids intersection with the local optimal and converges speedily 

to provide the optimal resource allocation results. 

Let us assume the nest location t

ix  of the i-th nest in generation t and M denotes 

the dimensionality, where  1 2= , ,..., ,...,t t t t t

i i i im iMx x x x x . According to [36], the cuckoo’s updated ex-

pression of the path and location for deriving a parasitic nest follows: 

1

1, , ( ), 0,1,2,...,t t

i m i m Lx x Ran e i Jd vy + = +   =  (16) 

where 
1t

ix +
 denotes the new position of the i-th nest at nest position 

t

ix  in generation t 

after a global update. ,

t

i mx  denotes the value of the i-th nest in the m-dimension in the nest 

position at generation t.   indicates a step factor and Rand  symbolizes a uniform distri-

bution between (0,1) . 
1( )Levy   represents a random wandering process formed by the 

flight of cuckoo Levy , ( )1

1 1( ) , 1 3Levy u t  −=   , where 
1  represents the impact factor, 

typically, 
1 1.5 = ; According to the [36], the expression for the Levy  distribution is stated 

as follows. 

( ) ( )
1

1 , ,1/
, , 0,1,2,=0.01 ...,t t

j m g m

u
Levy x j g Jb

v


  − =  (17) 

where u and v both follow a normal distribution, i.e.,
2~ (0, )uu N  ,

2~ (0, )vv N  ,

( )

( ) ( )

3

1

1/

1 1

1 /2

1 1

1 sin( / 2)

1 / 2 2
u





  


 
−

  +   
=  

 +      

, 1v = . 

 ,1 ,2 , ,= ,..., ...,t t t t t

g g g g m g Mb b b b b，  denotes the current optimal solution space covered by the al-

gorithm in the current search state, and if the current nest location corresponds with the 

optimal solution space, the magnitude of step adjustment is 0, i.e., ( )1 =0Levy  . In addition, 

the host bird of a parasitized nest will abandon the nest with an P  probability of recog-

nizing an egg parasitized by a cuckoo. 

4.1. Adaptive Adjustment of Discovery Probabilities 

In the original cuckoo algorithm, a given discovery probability is generally used to 

control the global search and preference random wandering process, which is conducive 

toward the balance between global and local search as the number of iterations increases. 

Thus, to improve the algorithm’s search performance, this study applies dynamic discov-

ery probability instead of fixed discovery probability P  

2

1

2

1
, 0

1

1 ,
it

it

it it
it

it

t

T it
it it it

it

t T
t

e
TP

t
e T t T

T





 
−


 

+ 
= 

 − +   


 
(18) 
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where   denotes the correction factor, generally, 0.1 = , and 2  indicates the trade-off 

factor, mostly, 20.5 1  . This segmentation function represents a progressive decline in 

the probability of discovery P till the number of iterations itt  reaches 2 itT , and it is suit-

able for global searches over a large area with improved search efficiency. As the number 

of iterations itt exceeds that of 2 itT , the probability of discovery decreases significantly, 

thereby enabling local search in a small area to improve the search accuracy. 

4.2. Adaptive Adjustment of Step Size 

Similarly, the step size of the Levy flight can be continuously decreased with the 

adaptive adjustment of the step-size factor in each iteration. Specifically, a larger step-size 

factor in the early iterations of the algorithm is conducive toward improving the global 

search capability of the algorithm and ensuring speedy convergence in the early stages of 

the algorithm. In the later stages of the algorithm iteration, the scope of the local search is 

narrowed by decreasing the step size for enhancing the local search performance of the 

algorithm. 

( 1)

3

it

it

t

T
e 

− +

=  (19) 

where 3  denotes the correction factor, typically, 3=0.5 . In addition, after a global 

search in the Levy flight, certain solutions will further perform a local search to update 

the location, thereby retaining a more accurate set of solutions. During this local search, 

differential evolution of ,

t

i mx is performed by analyzing the differences between current 

and excellent individuals in the population to ensure that a great amount of genetic infor-

mation from the excellent individuals is inherited by their offspring. The specific process 

is stated as follows. 

4.3. Differential Evolution 

First, the genetic information of multiple individuals can be obtained by mutating 

the individuals through a differential strategy, wherein the mutated individual ,

t

i mu  is ex-

pressed as 

( ), , , ,= , , 0,1,2,...,t t t t

i m i m p m q mu x x x p q J+  − =  (20) 

where   denotes the scaling factor, ,

t

p mx  represents the value in the m-th dimension of 

the nest position in generation t. After variation, individual ,

t

i mu  retains an amount of in-

formation regarding maternal ,

t

i mx , and, simultaneously, inherits information from individ-

uals ,

t

p mx and ,

t

q mx to realize the transmission of the information between individuals. 

Thereafter, the candidate individual ,

t

i mv  is generated by crossing over the maternal and 

intervariant information, thus ensuring that at least one set of individual information in 

the succeeding generation is contributed by the variant individual. The ,

t

i mv  can be ex-

pressed as: 

2 4,

,

,

,
=

,

t

i mt

i m t

i m

CR or mu
v

otherwisex

   =



 (21) 

where  0,1CR  denotes the cross probability, 
2 = (0,1)rand  represents the random number 

generated in  0,1  interval, and 
4 (= )unidrnd M  indicates the random positive integer gen-

erated in  1,M  interval. 
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Finally, the dominant relationship between individual ,

t

i mv and parent ,

t

i mx is deter-

mined by comparing the optimized objective function size, and a new generation of indi-

vidual 
1

,

t

i mx +
 is generated to inherit the traits of excellent individuals in the succeeding gen-

eration. 

,1 , ,

,

,

, ( ) ( )

,

t t t
i mt i m i m

i m t

i m

v v x
x

x otherwise

+
   

= 


 (22) 

In summary, the specific flow of the improved Cuckoo Search algorithm is stated as 

follows in Algorithm 1. 

Algorithm 1 Improved Cuckoo Search Algorithm 

InpuT: System parameters include set D  of industrial intelligent terminal, set S  of 

edge server, calculation task amount 
il of industrial intelligent terminal 

iD  and other 

indicators; 

The cuckoo algorithm parameters include the nest position set  1 2= , ,..., ,...,t t t t t

i i i im iMx x x x x , the 

maximum number of iterations
maxt , etc. 

Initialization: Initialize the nest position and other parameters to record the current op-

timal solution. 

Output: begin 

1. for maxt t  do 

2. Update Bird’s Nest location according to Equation (16)  

3. Calculate and obtain the optimal solution according to Equation (15), and pre-

serving the optimal solution space. 

4. Adaptive adjustment of discovery probability and step size according to Equa-

tion (18) and Equation (19)  

5. if (0,1)rand P  then  

6. Differential evolution according to Equations (20) and (21) and Equation (21) to 

locally update the nest position and obtain the optimal solution. 

7. end if 

8. end for 

9. Outputs optimal task-offloading and resource allocation results. 

10. end 

Due to the combinatorial nature of the optimization problem, this paper first analyzes 

the time complexity of each embedded subprocess in the improved Cuckoo Search algo-

rithm, and finally performs an overall analysis. Assume that the time to generate distrib-

uted random numbers is 1 , the population size is N , and the dimensionality of the prob-

lem is M . In the first iteration, the complexity of updating the positions of all nests is 

1( )O NM + , the complexity of computing the optimal solution is ( )O NM , the complexity of 

adaptively adjusting the discovery probability and step size is (1)O , and the complexity 

of the global search is ( )O N . Because the discovery probability P  changes adaptively, 

the number of populations in the differential evolution process also changes dynamically, 

the number of evolving populations is set to P N  , and the complexity of differential 

evolution is ( )O P NM , where ( )0,P NM NM  . Therefore, the complexity of the improved 

Cuckoo Search algorithm after one iteration is (2 ) ( )O NM O NM= in the worst case. Moreover, 

we considered that the number of iterations of the algorithm cannot give a closed-form 
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solution, this paper assumes that the maximum number of iterations is 
maxt . The complex-

ity of the improved Cuckoo Search algorithm in the worst case is ( )maxO t NM  when it iter-

ating to the last convergence at same time. In addition, because the processes of global 

search and local search in this algorithm are jointly optimization, its convergence speed is 

fast, and we will verify the algorithm convergence by simulation in the next section. 

5. Simulation and Results 

An industrial manufacturing scenario within 300 m 300 m area was simulated in 

MATLAB to cross-sectional to compare the performance of the TARMC strategy with 

those of GA algorithm [37] and SA algorithm [38]. The variations in closed-loop delay and 

endpoint energy consumption in processing tasks were obtained from simulations of non-

cross-domain and cross-domain collaborative network architectures. In addition, we ana-

lyzed the impact of various resource allocation algorithms on the closed-loop delay and 

terminal energy consumption of task processing in case of interaction with multiple or-

ders of magnitude of industrial smart terminals. The specific simulation parameters are 

summarized in Table 1. 

Table 1. Simulation parameters. 

Parameters Numerical Values 

Sub-channel bandwidth, B  1 MHz 

Number of CPU cycles in industrial intelligent terminals, Local   500,2000  cycles/bit 

Number of CPU cycles for edge servers, MEC   500,2000  cycles/bit 

Industrial intelligent terminal idle operating power, local

iP  0.3 W 

Industrial intelligent terminal transmission power, ip  1.3 W 

Industrial Smart Terminal Computing Resources, ,maxif  4 GHz 

Edge server computing resources, ,maxjf  20 GHz 

Channel gain, ,i jh  510−  

Gaussian white noise, 0N  -1310  W 

The trend of variations in the average closed-loop delay during processing tasks un-

der the simulated resource allocation strategies is presented in Figure 2, where the hori-

zontal axis represents the number of iterations and the vertical axis represents the average 

closed-loop delay of task processing. Furthermore, the plots with diamond, circular, star, 

vertical, triangular, and rectangular curves represent the TARMC strategy, TARMC strat-

egy under non-cross-domain networks, GA strategy, and GA strategy under non-cross-

domain networks, SA strategy, and SA strategy under non-cross-domain networks, re-

spectively. As observed, the average closed-loop delay for processing tasks with TARMC, 

GA skimming, and SA strategies under cross-domain networks was much less than that 

of TARMC, GA and SA strategies under non-cross-domain networks. This is because the 

number and types of industrial terminals vary for each cluster domain network in the 

actual industrial production, and the corresponding task calculation quantity varies as 

well. If the task is calculated only in the current cluster domain network, the computa-

tional resource allocation of the global network in this industrial area is non-uniform, 

thereby resulting in low resource utilization and increased average closed-loop delay of 

task processing. A multidomain collaborative network enables cross-domain computing 

processing in performing tasks, which allocates numerous real-time tasks to cluster do-

main networks with more idle resources for collaborative computing. Thus, this feature 
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reduces the task processing delay and diminishes the corresponding average closed-loop 

delay for task processing. In addition, the average closed-loop delay of processing tasks 

with the TARMC strategy is substantially less than that of the GA and SA strategies. This 

is because the TARMC strategy considers the task between large-scale industrial intelli-

gent terminals, edge servers, and the cluster domain network communication interaction 

process according to the intelligent manufacturing workshop closed-loop control business 

requirements. In addition, it formulates the average closed-loop delay of task processing 

as an optimization function to ensure the communication performance of new IIoT net-

works, which effectively reduces the average closed-loop delay of task processing. How-

ever, the GA and SA strategies are based on a simple network model, considering the one-

way empty port delay as the optimization goal and ignoring the impact of the task inter-

action between edge servers and cluster domain network on the overall delay. Thus, they 

are unable to satisfy the network requirements of intelligent manufacturing workshop, 

which increases the average closed-loop delay of task processing. As observed in Figure 

2, the average closed-loop delay for task processing with TARMC strategy under mul-

tidomain synergy was 1.8401 s, whereas that for TARMC strategy under non-cross-do-

main networks was 2.6372 s, demonstrating an improvement of 30.2%. In addition, the 

average closed-loop delay in processing tasks with GA and SA strategies under mul-

tidomain collaboration was 3.2867 s and 2.0797 s, respectively, which corresponds to a 

performance improvement of 44.0% and 11.5% in comparison with the latter. 

 

Figure 2. Variations in closed-loop delay of task processing under various resource allocation poli-

cies. 

The trend of variations in average energy consumption between multiple resource 

allocation strategies is discussed herein. In Figure 3, the horizontal axis represents the 

number of iterations, and the vertical axis denotes the average energy consumption. Fur-

thermore, the plots with diamond, circular, star, vertical, triangular, and rectangular 

curves represent the TARMC strategy, TARMC strategy under non-cross-domain net-

works, GA strategy, and GA strategy under non-cross-domain networks, SA strategy, and 

SA strategy under non-cross-domain networks, respectively. As observed, the average 

energy consumption of the TARMC, GA skimming and SA strategies under cross-domain 

networks is considerably less than the TARMC, GA strategy, and SA strategy under non-



Processes 2023, 11, 132 13 of 18 
 

 

cross-domain networks. This is because the multidomain collaborative network can com-

pletely schedule the computing resources in the entire region, reduce the delay of indus-

trial intelligent terminals in the local processing tasks, decrease the computing energy 

consumption of industrial intelligent terminals, and eventually, improve the average en-

ergy consumption of industrial intelligent terminals compared to the non-cross-domain 

network mode. In addition, the average energy consumption of the TARMC strategy is 

much less than that of the GA and SA strategies, as indicated in the figure. This is because 

the TARMC strategy can adaptively adjust the weight of the closed-loop delay and aver-

age energy consumption of task processing according to the requirements of the industrial 

intelligent terminal business, evaluate the priority of optimizing the average energy con-

sumption, and thus, effectively reduce the average energy consumption. However, the 

GA and SA strategies only consider the impact of one-way air interface delay on the data 

processing process of industrial intelligent terminals, which inevitably sacrifices energy 

consumption in the optimization process, resulting in high average energy consumption. 

Moreover, as noted from Figure 3, the average energy consumption of the TARMC strat-

egy under multidomain collaboration was 0.5091 J, whereas that under non-cross-domain 

networks was 1.2462 J, corresponding to an improvement of 59.2%. In addition, the aver-

age energy consumption of GA and SA strategies under multidomain collaboration was 

1.3090 J and 0.9193 J, respectively, which improved by 61.1% and 44.6% in comparison to 

the latter. 

 

Figure 3. Average energy consumption of industrial intelligent terminals varies with resource allo-

cation strategies. 

The variations in delay of processing various tasks in multiple stages with several 

data sizes are plotted in Figure 4, wherein the horizontal axis represents the average size 

of the task data volume, and the vertical axis represents the delay. In the bar graph, the 

delay in task processing in various processes is stated as follows (from left to right): 

closed-loop processing, multidomain collaborative computing process, and local compu-

ting process. As observed from the figure, compared to the delay in the first two processes, 

the task exhibits the lowest processing delay during the local calculation process, and it 

gradually increases with the amount of task data, before eventually its convergence. This 

is because the local limited resources fail to execute the task of higher data volume. If the 
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amount of data of the pending task attains the maximum limit of local computing pro-

cessing, it will request multidomain collaborative processing instead of allocating new 

tasks to local processing. During this process, the delay in processing the task of local 

calculation gradually increases before stabilizing. Moreover, in the process of the mul-

tidomain collaboration task, the processing delay increases with the amount of data re-

lated to the task under process, and accordingly, the delay of the closed-loop process in-

creases. Therefore, the processing delay in the calculation process is reasonably less than 

that of the other two processes, with a slow growth rate. 

 

Figure 4. Variations in delay under various task processing stages for multiple task sizes. 

This paper considered the energy consumption of industrial intelligent terminals at 

various stages of several task data sizes. In Figure 5, the horizontal axis represents the 

average size of task data volume, and the vertical axis represents energy consumption. In 

the bar chart, the energy consumption of industrial intelligent terminals in the closed-loop 

process of task processing, energy consumption in the process of multidomain collabora-

tive computing, and energy consumption in the local calculation process are presented. 

As observed, the industrial intelligent terminal consumes the least energy in the mul-

tidomain collaborative computing process compared with that in the previous two pro-

cesses, and the energy consumption of the industrial intelligent terminal in all processes 

increased with the task data volume. This is because the energy consumption of the in-

dustrial intelligent terminal in the process of multidomain collaborative computing pri-

marily includes industrial terminal local computing after the end of standby energy con-

sumption, transmit-and-accept-task data energy consumption, and local computing en-

ergy consumption. In the process of task computing and CPU computing energy con-

sumption, task closed-loop process includes the energy consumption of the above-men-

tioned two processes. Owing to the extremely short time span of transmitting and receiv-

ing data, the process exhibits the lowest energy consumption, which often results in the 

lowest energy consumption in the domain collaborative computing process. Simultane-

ously, an increase in the amount of task data increases the time to transmit and receive 
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the data, increases CPU computing time, the increases computing energy consumption, 

and eventually, increases energy consumption in all the processes. 

 

Figure 5. Variations in energy consumption of multiple task processing stages for various task sizes. 

The variations in delay of processing tasks at various stages for multiple industrial 

intelligent terminals is presented in Figure 6, where the horizontal axis indicates the num-

ber of industrial intelligent terminals, and the vertical axis represents the delay. In the bar 

graph, from left to right: delays of processing task in closed-loop process, the task during 

multidomain collaborative computing process, and the processing delay of task during 

local computing process. As depicted in Figure 6, the delay in processing tasks at various 

stages increases with the number of terminals. This is because the network task data dou-

bles upon increasing the number of industrial intelligent terminals. In global network re-

sources allocation, considering each task provides maximum delay and the network load 

should be balanced, the collaborative computing resources are allocated with several ter-

minals to ensure the normal operation of various intelligent terminals, which increases 

the network delay. 

 

Figure 6. Delay variations in various task processing stages for multiple industrial intelligent termi-

nals. 

In this study, the energy consumption varied with the number of industrial intelli-

gent terminals and the task processing was considered in multiple stages. In Figure 7, the 

horizontal axis represents the number of industrial smart terminals and the vertical axis 

represents energy consumption. In the bars graph, the energy consumption for various 

cases is stated as follows (from left to right): industrial intelligent terminal in the closed-

loop process of task processing, the process of multidomain collaborative computing, and 
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the process of local computing. As observed from the graph, the energy consumption of 

industrial intelligent terminals in the closed-loop process of task processing is not easily 

affected by the variations in the number of intelligent terminals and is minimized if the 

number of terminals reaches 150. This is because the proposed TARMC strategy can cate-

gorize various tasks into several subtasks with an extremely small volume of data. As the 

number of intelligent terminals increases, the amount of task data in the global network 

increases. However, the data amount of the segmented subtasks for multidomain collab-

orative computing remains negligibly small, and the impact of subtask data growth can 

be minimized by flexibly scheduling the global network computing resources. At this in-

stant, the delays in processing and data of the industrial terminal transmission process are 

low, and the corresponding energy consumption is not easily affected by the growth of 

the number of intelligent terminals. In addition, as the improved Cuckoo Search algorithm 

of this strategy obtained a global approximate optimal solution through continuous iter-

ation, the energy consumption fluctuated as the number of intelligent terminals increased, 

and it was minimized as the number of terminals reached 150. 

 

Figure 7. Variations in energy consumption across multiple task processing stages under various 

industrial intelligent terminals. 

6. Conclusions 

This study proposed a task-offloading and resource allocation strategy in mul-

tidomain cooperation for the IIoT. First, this strategy deeply examines the closed-loop 

process of information flow interaction between various layers of intelligent terminals in 

the wireless network, constructs a multidomain collaborative task-offloading and re-

source allocation network model for the IIoT, and efficiently allocates the resources be-

tween intelligent terminals, edge servers, and cluster domain networks according to the 

dynamic changes of the network load. Subsequently, various tasks are segmented and 

identified, enabling local and edge servers to process all subtasks in parallel. Simultane-

ously, the joint task-processing closed-loop delay and terminal energy consumption util-

ity function of the intelligent terminal are developed around the machine, transforming 

the multidomain collaborative task-offloading and resource allocation process into the 

problem of task calculation revenue. Moreover, a modified Cuckoo Search algorithm was 

developed through the iterative alternating solution, which calculated the optimal of-

floading location and resource allocation decisions. The simulation results revealed that 

the TARMC strategy effectively improved the closed-loop delay and energy consumption 

of task processing compared with the GA- and SA-based resource allocation strategies. 

Furthermore, it verified that the delay and energy consumption optimization performance 

of multidomain collaborative methods is much higher than that of non-cross-domain 

methods. In future, we will continue to develop flexible manufacturing scenarios of the 
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wireless-network resource-scheduling scheme, considering the workshop-level massive 

heterogeneous data information fusion method. In addition, the coupling correlation be-

tween the variations in physical environment and digital space should be further explored 

to improve the efficiency of multidimensional resource scheduling, enhance the overall 

real-time data interaction from factory production lines (businesses, control instructions, 

etc.), and increase production decision-making efficiency. 
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