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Abstract: In a time series context, the study of the partial autocorrelation function (PACF) is helpful
for model identification. Especially in the case of autoregressive (AR) models, it is widely used for
order selection. During the last decades, the use of AR-type count processes, i.e., which also fulfil the
Yule–Walker equations and thus provide the same PACF characterization as AR models, increased a
lot. This motivates the use of the PACF test also for such count processes. By computing the sample
PACF based on the raw data or the Pearson residuals, respectively, findings are usually evaluated
based on well-known asymptotic results. However, the conditions for these asymptotics are generally
not fulfilled for AR-type count processes, which deteriorates the performance of the PACF test in
such cases. Thus, we present different implementations of the PACF test for AR-type count processes,
which rely on several bootstrap schemes for count times series. We compare them in simulations
with the asymptotic results, and we illustrate them with an application to a real-world data example.

Keywords: autoregressive model; count time series; INAR bootstrap; partial autocorrelation function;
Yule–Walker equations

1. Introduction

Autoregressive (AR) models for time series date back to Walker [1], Yule [2], and they
assume the current observation of the considered process to be generated from its own
past by a linear scheme. The ordinary pth-order AR-model for a real-valued process
(Zt)t∈Z={...,−1,0,1,...}, abbreviated as AR(p) model, is defined by the recursive scheme

Zt = α1 · Zt−1 + . . . + αp · Zt−p + εt (αp 6= 0), (1)

where the innovations (εt)Z are independent and identically distributed (i. i. d.) real-valued
random variables (rv), which are also assumed to be square-integrable (“white noise”).
To ensure a (weakly) stationary and causal solution for the AR(p) recursion (1), the AR-
parameters α1, . . . , αp ∈ R have to be chosen such that the roots of the characteristic
polynomial α(z) = 1− α1 z− . . .− αp zp are outside the unit circle. Then, if the innovations
(εt)Z follow a normal distribution, also the observations (Zt)Z are normal, leading to the
Gaussian AR(p) process.

A characteristic property of the AR(p) process is given by the fact that its autocorrela-
tion function (ACF), ρ(h) = Corr[Zt, Zt−h] with h ∈ N = {1, 2, . . .} and ρ(0) = 1, satisfies
the following set of linear equations:

ρ(h) = ∑
p
i=1 αi ρ

(
|h− i|

)
for h = 1, 2, . . . (2)

These Yule–Walker (YW) equations, in turn, give rise to define the partial autocorrelation
function (PACF), ρpart(h) with time lags h ∈ N, in the following way (see Appendix A

for further details): if Rk :=
(
ρ(|i − j|)

)
i,j=1,...,k and rk :=

(
ρ(1), . . . , ρ(k)

)> ∈ Rk for

k = 1, 2, . . ., and if ak ∈ Rk denotes the solution of the equation Rk ak = rk, then the
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PACF at lag k is defined as the last component of ak, i.e., ρpart(k) := ak,k. Hence, if the
YW-equations (2) hold, it follows that

ρpart(p) = αp, ρpart(h) = 0 for all h > p. (3)

This characteristic abrupt drop-down of the PACF towards zero after lag h = p is commonly
used for model identification in practice, namely by inspecting the sample PACF for such
a pattern, see the Box–Jenkins program dating back to Box & Jenkins [3]. Details on
the PACF’s computation are summarized in Appendix A. There, we also provide a brief
discussion on some equivalences between ACF, PACF, and the AR-coefficients, in the sense
that the AR(p) model (1) is characterized equivalently by either α1, . . . , αp, or ρ(1), . . . , ρ(p),
or ρpart(1), . . . , ρpart(p).

Since the introduction of the ordinary AR(p) model, several other AR-type models
have been proposed in the literature, not only for real-valued processes, but also for
different types of quantitative processes such as count processes (and even for categorical
processes), see the surveys by Holan et al. [4], Weiß [5]. In the present work, the focus is on
(stationary and square-integrable) AR-type count processes (Xt)Z, i.e., where the Xt have a
quantitative range contained in N0 = {0, 1, . . .}. Here, the AR(p) structure is implied by
requiring the conditional mean at each time t to be linear in the last p observations [6], i.e.,

E[Xt | Xt−1, . . .] = α0 + α1 Xt−1 + . . . + αp Xt−p, (4)

because then, the YW-equations (2) immediately follow by using the law of total covari-
ance. Note that one also has to require α0 > 0 and α1, . . . , αp ≥ 0, as the counts Xt are
non-negative rvs having a truly positive mean, computed as µ = α0/(1− α1 − . . .− αp).
The considered class of count processes satisfying (4) covers many popular special cases,
such as the INAR(p) model (integer-valued AR) by Du & Li [7], the INARCH(p) model
(‘CH’ = conditional heteroscedasticity) by Ferland et al. [8], or their bounded-counts coun-
terparts discussed in Kim et al. [9]; see Section 2 for further details. These count processes
satisfying (4), however, are not truly linear processes: by contrast to (1), there is no linear
relation between their observations.

As all these AR(p)-like count processes satisfy the YW-equations (2) and, thus, the PACF
characterization (3), it is common practice to employ the sample PACF (SPACF) for model
identification given a count time series X1, . . . , Xn. More precisely, one commonly computes
the SPACF from X1, . . . , Xn, ρ̂part(h) for h = 1, 2, . . ., and checks for the pattern (3) among
those SPACF values that are classified as being significantly different from zero. An analogous
procedure is common during a later step of the Box–Jenkins program. After having fitted
a model to the data, one commonly computes the Pearson residuals to check the model
adequacy; see Weiß [5], Jung & Tremayne [10] as well as Section 2. While, for an adequate
model fit, the Pearson residuals are expected to be uncorrelated, significant SPACF values
computed thereof would indicate that the fitted model does not adequately capture the true
dependence structure. In both cases, practitioners usually evaluate the significance of ρ̂part(h)
based on the following asymptotic result (see [11] (Theorem 8.1.2)):

√
n ρ̂part(h)

a∼ N(0, 1) for lags h ≥ p, (5)

i.e., the value ρ̂part(h) is compared to the critical values±z1−α/2/
√

n to test the null hypoth-
esis of an AR(h− 1) process on level α. Here, N(µ, σ2) denotes the normal distribution with
mean µ and variance σ2, and zγ abbreviates the γ-quantile of N(0, 1). The aforementioned
critical values are automatically plotted in SPACF plots by common statistical software,
e.g., if one uses the command pacf in R. However, Theorem 8.1.2 in Brockwell & Davis [11]
assumes that the SPACF is computed from a truly linear AR(p) process as in (1), which
is neither the case for the aforementioned AR-type count processes, nor for the Pearson
residuals computed thereof. Thus, it is not clear if the approximation (5) is asymptotically
correct and sufficiently precise in finite samples. In fact, some special asymptotic results
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in Kim & Weiß [12], Mills & Seneta [13], see Section 3 for further details, as well as some
simulation results for Pearson residuals in Weiß et al. [14] indicate that this is generally
indeed not the case.

Therefore, several alternative ways of implementing the PACF-test are presented in
Section 4, namely relying on different types of bootstrap schemes for count time series.
The performance of these bootstrap implementations compared to the asymptotic ones is
analyzed in a comprehensive simulation study. In Section 5, we start with the case where
the SPACF is applied to the original count time series (Xt) with the aim of identifying the
AR model order. Afterwards in Section 6, we consider the case of applying the SPACF to
the (non-integer) Pearson residuals computed based on a model fit, i.e., the SPACF is used
for checking the model adequacy. Our findings are also illustrated by a real-data example
on claims counts in Section 7. Here, the computations and simulations in Sections 5–7 have
been performed with the software R, and the documented R-code for Section 7 is provided
in the Supplementary Materials to this article. Further R-codes can be obtained from the
corresponding author upon request. We conclude the article in Section 8.

2. On AR-Type Count Time Series and Pearson Residuals

Several (stationary and square-integrable) AR-type count processes (Xt)Z, which also
have a conditional linear mean according to (4), have been discussed in the literature.
Most of these processes either follow a model recursion using so-called thinning operators
(typically referred to as INAR models), or they are defined by specifying the conditional
distribution of Xt|Xt−1, . . . together with condition (4), leading to INARCH models, see
Weiß [5] for a survey. For this research, we focus on the most popular instance of these two
classes, namely the INAR(p) model of Du & Li [7] on the one hand, and the INARCH(p)
model of Ferland et al. [8] on the other hand.

The INAR(p) model of Du & Li [7] makes use of the binomial thinning operator “◦”
introduced by Steutel & van Harn [15]. Having the parameter α ∈ (0; 1) and being applied
to a count rv X, it is defined by the conditional binomial distribution α ◦ X|X ∼ Bin(X, α),
where the boundary cases are included as 0 ◦ X = 0 and 1 ◦ X = X. Let (εt)Z be square-
integrable i. i. d. count rv, denote µε = E[εt] and σ2

ε = V[εt]. Then, the INAR(p) process
(Xt)Z is defined by the recursion

Xt = α1 ◦ Xt−1 + . . . + αp ◦ Xt−p + εt, (6)

where all thinnings are executed independently of each other, and where α• := ∑
p
j=1 αj < 1

is assumed to ensure a stationary solution. The INAR(p) process (6) constitutes a pth-order
Markov process, the transition probabilities of which are a convolution between the p binomial
distributions Bin(Xt−1, α1), . . . , Bin(Xt−p, αp) and the innovations’ distribution [16] (p. 469).
The conditional mean satisfies (4) with α0 = µε, and the conditional variance is given by

V[Xt | Xt−1, . . .] = σ2
ε +

p
∑

j=1
αj(1− αj) Xt−j, (7)

see Drost et al. [16] (p. 469). The default choice for εt in the literature is a Poisson (Poi)
distribution (which is the integer counterpart to the normal distribution), leading to the
Poi-INAR(p) process. However, any other (non-degenerate) count distribution for εt might
be used as well, such as the negative-binomial (NB) distribution for increased dispersion,
leading to the NB-INAR(p) process. In the case of such a parametric specification for εt,
ones computes the moments µε, σ2

ε according to this model, and then the conditional mean
and variance according to (4) and (7), respectively.

The INARCH(p) model of Ferland et al. [8] directly assumes the conditional linear
mean (4) to hold, and then specifies the conditional distribution of Xt|Xt−1, . . . In Ferland
et al. [8], the case of a conditional Poi-distribution is assumed, i.e., altogether

Xt|Xt−1, . . . ∼ Poi(α0 + α1 Xt−1 + . . . + αp Xt−p), (8)
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such that the conditional variance of this Poi-INARCH(p) process equals V[Xt | Xt−1, . . .] =
E[Xt | Xt−1, . . .]. However, other choices for the conditional distribution of Xt|Xt−1, . . .
have been investigated in the literature; see [5] (Section 4.2).

For parameter estimation, one commonly uses either simple method-of-moment
(MM) estimators (i.e., derived from marginal sample moments and the sample ACF, also
see Appendix A), or the more advanced conditional maximum likelihood (CML) estima-
tors, which are computed by using a numerical optimization routine (see [5] (Section 2.2)).
It should be noted that for the INAR(p) model, also a semi-parametric specification
exists (where the innovations’ distribution is left unspecified). The corresponding semi-
parametric CML estimator was analyzed by Drost et al. [16]; see also the small-sample
refinement by Faymonville et al. [17]. It leads to non-parametric estimates for the proba-
bilities pε,k = P(εt = k) for k between some finite bounds 0 ≤ l < u < ∞ (and pε,k = 0
for k 6∈ {l, . . . , u}), which can then be used for computing µε, σ2

ε as required for the
conditional moments (4) and (7). More precisely, the rth moment, r ∈ N, is given by
E[εr

t ] = ∑u
k=l kr pε,k.

After having fitted a model to the count time series X1, . . . , Xn, a widely used ap-
proach for checking the model adequacy is to investigate the corresponding (standardized)
Pearson residuals [5,10,14,18,19]. Let the parameters of the considered AR(p)-type model
be comprised in the vector θ, and let θ̂ denote the estimated parameters of the fitted model.
Furthermore, let us write the conditional mean as E[Xt | Xt−1, . . . ; θ] and the conditional
variance as V[Xt | Xt−1, . . . ; θ] to express their dependence on the actual parameter values.
Then, the Pearson residuals are defined as

Rt := Rt(θ̂) =
Xt − E

[
Xt | Xt−1, . . . ; θ̂

]√
V
[
Xt | Xt−1, . . . ; θ̂

] for t = p + 1, . . . , n. (9)

If the fitted AR(p)-type model is adequate for X1, . . . , Xn, then Rp+1, . . . , Rn should have
a sample mean (variance) close to zero (one), and they should be uncorrelated. These
necessary criteria are then used as adequacy checks. In the present research, our focus is
on the SPACF computed from Rp+1, . . . , Rn, which, for an adequate model fit, should not
have values being significantly different from zero.

3. Some Asymptotic Results for the Sample PACF

The basic asymptotic result (5), which has been shown for the SPACF being computed
from a true AR(p) process, has been extended in several directions. First, some refinements
have been derived by Anderson [20,21] and further investigated by Kwan [22], who,
however, assume the data-generating process (DGP) to be i. i. d. Gaussian, i.e., neither
AR dependence nor count rvs are covered by their results. More precisely, Anderson [20]
complements the asymptotic variance 1/n in (5) by the following O(n−2) approximation
of the mean:

E
[
ρ̂part(h)

] a
=

{
−1/n + O(n−2) if h odd,
−2/n + O(n−2) if h even.

(10)

While the Gaussian assumption is weakened by the statement that the result (10) “seems
likely to have some validity for many non-Gaussian distributions” [20] (p. 406), the i. i. d.-
assumption is not relaxed.

The O(n−2) approximation in (10) is extended to a corresponding O(n−3) approxima-
tion in Anderson [21] (pp. 565–566).

E
[
ρ̂part(h)

] a
=


− 1

n
− h− 1

n2 + O(n−3) if h odd,

− 2
n
− h/2− 2

n2 + O(n−3) if h even,

V
[
ρ̂part(h)

] a
=

1
n
− h + 2

n2 + O(n−3).

(11)
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While the O(n−3) extension in (11) seems relevant only for very small sample sizes n,
the alternating pattern for the mean in (10) might affect the performance of the normal
approximation also for larger n.

Another extension of the basic asymptotic result (5) is due to Kim & Weiß [12], Mills &
Seneta [13]. These authors consider two particular types of AR(1) count process, namely a
Poi-INAR(1) and a binomial AR(1) process, respectively, and derive an O(n−2) approxi-
mation of V

[
ρ̂part(h)

]
for h ≥ 2. While their exact formulae are not relevant for the present

research, the crucial point is as follows: In both cases, the approximate variance is of the
form (1 + c)/n, where c is inverse proportional to the mean µ, and also depends on the
value of ρ(1). Especially for low means µ, the numerator 1 + c deviates notably from 1.
Hence, the basic asymptotics (5) do not hold for these types of count process. An analogous
conclusion can be drawn from the simulation results in Weiß et al. [14] (Table 1), where the
rejection rate for the SPACF of the Pearson residuals (with CML-fitted Poi-INAR(p) model)
under the basic asymptotic critical values (5) is analyzed. These rejection rates are often
below the intended level, which indicates that (5) does not hold here.

These possible drawbacks of existing asymptotic results are illustrated by Figure 1.
The upper panel refers to the mean of SPACF(h), which is either computed from 104

simulated Poi-INAR(1) time series (black and dark grey bars), or according to the refined
asymptotic result (11) (light grey bars). Note that the sample size n = 1000 was chosen
rather large such that sample properties and (true) asymptotic properties should agree
reasonably well. In Figure 1a, where the SPACF is computed from the raw counts (Xt),
we omit plotting the mean at h = 1 as this would violate the graphic’s Y-range (recall
that ρpart(1) = α). From (a) and (b), we recognize that the simple asymptotics (5), where
the mean of SPACF is approximated by zero, would be misleading in practice, because a
negative bias with an oscillating pattern (odd vs. even lags) is observed. As a consequence,
if testing the PACF based on (5) and thus ignoring the bias, we may get unreliable sizes,
which is also later observed in our simulation studies. The alternating pattern of the bias
in (a) and (b) is similar to the refined asymptotics (11). However, we do not observe an
exact agreement to (11), as the simulated means seem to depend on the actual value of
the AR-parameter α. The effect of α gets much stronger in (c), where even positive bias
values for low h are observed, contradicting (11). This is caused by the use of the MM
estimator, which is known to be increasingly biased with increasing α [23]; a possible
solution for practice could be to use a bias-corrected version of the MM estimator. The
lower panel in Figure 1 shows the corresponding standard deviations (SDs). The strongest
deviation between simulated and asymptotic results is observed for lag h = 1, followed
by lag h = 2. In particular, for both types of Pearson residuals and both h = 1, 2, the
asymptotic SD from (11) is too large (and the asymptotic SD according to (5) would
even be larger) such that a corresponding PACF-test is expected to be conservative
(which is later confirmed by our simulation study). Therefore, it seems advisable to
look for other ways of implementing the PACF-test, neither relying on (5) nor (11). An
approximation based on asymptotic results does not look promising in general, as we
expect the asymptotics to highly depend on the actual DGP, recall the aforementioned
results by Kim & Weiß [12], Mills & Seneta [13]. Thus, in what follows, our idea is to try
out different types of bootstrap implementations, i.e., the true distribution of the SPACF
is approximated by appropriate resampling schemes. This might also allow to account
for the effect of the selected estimator when computing the Pearson residuals.
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Figure 1. Means in (a–c) and SDs in (d–f) of SPACF(h) for sample size n = 1000, either simulated
values for Poi-INAR(1) DGP with µ = 5 and AR-parameter α, or asymptotic values from (11). SPACF
computed from raw counts, and from Pearson residuals with CML or MM estimation.

4. Bootstrap Approaches for the Sample PACF

Let ϑ denote the parameter of interest for the actual DGP (Yt), and let ϑ̂ = T(Y1, . . . , Yn)
denote an estimate of it (in the present research, this parameter is the (S)PACF at some
lag h ∈ N). Analogously, let (Y∗t ) denote a corresponding bootstrap DGP, and let ϑ̂∗ =
T(Y∗1 , . . . , Y∗n ) be the estimator obtained from a bootstrap sample. If E∗[·] denotes the ex-
pectation operator of the bootstrap DGP, that is, conditional on the data X1, . . . , Xn, then
the centered bootstrap estimate is given by ϑ̂∗cent := ϑ̂∗ − E∗

[
ϑ̂∗
]
. A common approach

for constructing a two-sided bootstrap confidence interval (CI) for ϑ with confidence level
1− α ∈ (0; 1) is given by [

ϑ̂− q1−α/2
(
ϑ̂∗cent

)
; ϑ̂− qα/2

(
ϑ̂∗cent

)]
, (12)

where qγ(·) denotes the γ-quantile, see Hall [24]. The bootstrap CI (12) is used for testing
the null hypothesis “H0 : ϑ = ϑ0” on level α by applying the following decision rule:
reject H0 if ϑ0 is not contained in the CI (12). This implies the equivalent decision rule to
reject H0 if

ϑ̂− ϑ0 < qα/2
(
ϑ̂∗cent

)
or ϑ̂− ϑ0 > q1−α/2

(
ϑ̂∗cent

)
. (13)

In the present article, ϑ refers to the PACF at lag h, computed from either the original count
process (Xt), or from the Pearson residuals (Rt) obtained after model fitting. In both cases,
the PACF at lag h is tested against the hypothetical value ϑ0 = 0, as it would be the case for
an AR-type process of order < h.

If we apply the PACF to the original count time series X1, . . . , Xn, then the following
setups are considered:



Entropy 2023, 25, 105 7 of 21

• fully parametric setup: a fully parametric count AR(p) model with p ≤ 2 is fitted to
the data and then used as the bootstrap DGP; the PACF at certain lags h > p is tested
against zero. Here, we focus on the Poi-INAR(p) model, and we use the parametric
INAR-bootstrap of Jentsch & Weiß [25].

• semi-parametric setup: a semi-parametric count AR(p) model is fitted to the data [16]
and then used as the bootstrap DGP; the PACF at lags h > p is tested against zero.
Here, we focus on the INAR(p) model with unspecified innovations, and we use the
semi-parametric INAR-bootstrap of Jentsch & Weiß [25].

• non-parametric setup: we use the circular block bootstrap as considered by Politis
& White [26], where an automatic block-length selection might be done by using
the function b.star in R-package “np” (https://CRAN.R-project.org/package=np,
accessed on 31 March 2022).

In case of an INAR(p) bootstrap DGP, the centering at lag h is done by the lag-h PACF
corresponding to the fitted model, i.e., which satisfies the YW-equations (2) under estimated
parameters, see Appendix A for computational details. In case of the non-parametric block
bootstrap, the sample PACF at lag h is used for centering the bootstrap values.

If we apply the PACF to the Pearson residuals (Rt), then again (semi-)parametric
setups are considered, where also model fitting is replicated based on the bootstrap time
series, as well as the subsequent computation of Pearson residuals based on the bootstrap
model fit. This time, a centering is not necessary. Non-parametric bootstrap schemes can
be directly applied to the original Pearson residuals (without the need for model fitting
during bootstrap replication). Under the null of model adequacy, we expect the available
Pearson residuals to be uncorrelated. Thus, a first idea is to apply the classical Efron
bootstrap [27], although this bootstrap scheme actually requires i. i. d. data. Therefore, as
a second idea, we also apply the aforementioned block bootstrap to (Rt) to account for
possible non-linear dependencies.

Remark 1. For implementing the (semi-)parametric INAR bootstraps, or for computing the Pearson
residuals with respect to an INAR model, the model parameters have to be estimated. The following
approaches are used for this purpose:

• If the fully parametric Poi-INAR(p) model is fitted, we use either the MM estimator of θ =
(α1, . . . , αp, µε), which is obtained by solving the mean equation µ = µε/(1− α1− . . .− αp)
as well as the YW-equations (2) for h = 1, . . . , p in µε, α1, . . . , αp and by plugging-in
the sample counterparts for µ, ρ(1), . . . , ρ(p), or the CML estimator of θ. The latter is ob-
tained by numerically maximizing the conditional log-likelihood function `(θ | xp, . . . , x1) =

∑T
t=p+1 ln p(xt | xt−1, . . . , xt−p, θ), where the transition probabilities p(xt | xt−1, . . . , xt−p)

are computed by evaluating the convolution of the p thinnings’ binomial distributions and the
innovations’ Poisson distribution, i.e., Bin(xt−1, α1) ? . . . ? Bin(xt−p, αp) ? Poi(µε).

• If the semi-parametric Poi-INAR(p) model is fitted, then the innovations’ distribution is not
specified. As a result, the parameter vector now equals θsp = (α1, . . . , αp, pε,0, pε,1, . . .), and
we use the semi-parametric CML approach of Drost et al. [16] for estimation. In this case, the
transition probabilities for the log-likelihood function `(θsp | xp, . . . , x1) are obtained from
the convolution Bin(xt−1, α1) ? . . . ? Bin(xt−p, αp) ? Gε, where Gε expresses the unspecified
innovations’ distribution with probability masses pε,0, pε,1, . . .

5. PACF Diagnostics for Raw Counts

In the first part of our simulation study, we analyze the performance of the asymptotic
and (semi-)parametric implementations of PACF-tests if these are applied to the raw counts
(Xt) (the results of the non-parametric bootstrap schemes are discussed separately in
Remark 2). We consider 1st- and 2nd-order AR-type DGPs, where the aim of applying
the PACF-tests (nominal level 0.05) is the identification of the correct AR-order p. As
the bootstrap versions of these tests are computationally very demanding (especially the
semi-parametric INAR bootstrap), we use the warp-speed method of Giacomini et al. [28]
for executing the simulations. This, in turn, allows us to use 104 replications throughout our

https://CRAN.R-project.org/package=np
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simulation study. We also cross-checked that the achieved rejection rates are close to those
obtained by a traditional bootstrap implementation with B = 500 bootstrap replications
per simulation run. All simulations have been done with the software R, and R-codes can
be obtained from the corresponding author upon request.

Table 1 shows the rejection rates of the PACF-tests for different types of AR(1)-like
count DGP, recall Section 2. There, the PACFs are computed from a simulated count
time series x1, . . . , xn of length n, where the choice n = 100 (n = 1000) represents the
small (large) sample behaviour. The results refer to the medium autocorrelation case
ρ(1) = 0.5, but further results for ρ(1) ∈ {0.25, 0.75} are summarized in Appendix B,
see Table A1. Five implementations of the PACF-test are considered: using the simple
asymptotic approximation (5) or the refined one (11) (recall Section 3), using the parametric
Poi-INAR(1) bootstrap with either MM or CML estimates, and using the semi-parametric
INAR(1) bootstrap with CML estimates (recall Section 4). If first looking at the block
“Poi-INAR(1) DGP” in Table 1, we recognize that all implementations perform roughly
the same, i.e., the rejection rate at lag h = 1 (expressing the power of the PACF-test) is
close to 1, and the rejection rates at lags h ≥ 2 (expressing the size) are close to the 0.05-
level. It should be noted, however, that for ρ(1) = 0.25, see Table A1, the asymptotic
implementations have notably less power at lag h = 1. An analogous conclusion holds
for the NB-INAR(1) block in Table 1, although now, the model behind the parametric
Poi-INAR(1) bootstrap is misspecified. So the parametric bootstrap exhibits robustness
properties in finite samples. In the third block, “Poi-INARCH(1)”, also the semi-parametric
bootstrap is misspecified, but again the rejection rates are robust for ρ(1) = 0.5. For
ρ(1) = 0.75 in Table A1, however, we observe size exceedences for lags h ≥ 2, i.e., the
misspecification of Poi-INARCH(1) as Poi-INAR(1) is not negligible anymore for this DGP.
This is plausible in view of Remark 4.1.7 in Weiß [5], where it is shown that these models
lead to different sample paths for high autocorrelation. Much more surprising, also both
asymptotic implementations deteriorate (even more severely) for a Poi-INARCH(1) DGP
with ρ(1) = 0.75, see Table A1, i.e., we get too many false rejections in any case. Thus, if one
anticipates that the data are generated by an INARCH process, a tailor-made parametric
bootstrap implementation of the PACF-tests should be used.

Table 1. Rejection rates of PACF-tests applied to DGP with µ = 5 and ρ(1) = 0.5, where semi-
parametric (parametric) bootstrap relies on null of (Poi-)INAR(1) process.

True DGP: Poi-INAR(1) NB-INAR(1), σ2

µ = 1.5 Poi-INARCH(1)
PACF at Lag h = PACF at Lag h = PACF at Lag h =

Method n 1 2 3 4 1 2 3 4 1 2 3 4

asym. 100 0.998 0.053 0.040 0.044 0.998 0.054 0.043 0.046 0.995 0.054 0.046 0.044
(5) 1000 1.000 0.056 0.047 0.049 1.000 0.057 0.051 0.053 1.000 0.056 0.053 0.050

asym. 100 0.998 0.054 0.047 0.048 0.997 0.052 0.050 0.051 0.997 0.047 0.049 0.048
(11) 1000 1.000 0.050 0.049 0.051 1.000 0.061 0.053 0.049 1.000 0.060 0.051 0.048

param. 100 1.000 0.052 0.055 0.056 0.999 0.053 0.052 0.055 1.000 0.048 0.053 0.049
MM 1000 1.000 0.055 0.052 0.049 1.000 0.047 0.052 0.046 1.000 0.046 0.056 0.046

param. 100 1.000 0.054 0.051 0.054 0.999 0.049 0.053 0.050 0.999 0.059 0.046 0.049
CML 1000 1.000 0.048 0.049 0.057 1.000 0.050 0.055 0.051 1.000 0.052 0.052 0.047

semi-p. 100 1.000 0.053 0.053 0.051 1.000 0.054 0.051 0.049 0.999 0.044 0.048 0.054
CML 1000 1.000 0.047 0.054 0.054 1.000 0.051 0.049 0.057 1.000 0.052 0.054 0.052

Let us continue our performance analyses by turning to 2nd-order DGPs. In Table 2,
the (semi-)parametric bootstrap schemes are still executed by (erroneously) assuming a
1st-order INAR DGP (like in Table 1), i.e., they are affected by a (further) source of model
misspecification. But as seen from the rejection rates in Table 2, we still have good size
(h ≥ 3) and power values (h = 1, 2), comparable to those of the refined asymptotic imple-
mentation (11). By contrast, the simple asymptotic (5) leads to a clearly reduced power
at lag h = 2. Finally, in Table 3, the bootstrap schemes now correctly assume a 2nd-order
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INAR DGP, i.e., we only have the following misspecifications left: parametric Poi-INAR(2)
bootstrap applied to NB-INAR(2) or Poi-INARCH(2) DGP, and semi-parametric INAR(2)
bootstrap applied to Poi-INARCH(2) DGP. It can be seen that the parametric bootstrap
using MM estimates as well as the semi-parametric bootstrap lead to improved power
at lag h = 2, whereas the parametric CML-setup even deteriorates (especially under Poi-
INARCH(2) misspecification). The latter observation fits well to later results in Section 6,
where the parametric bootstrap with CML estimates does again worse than its MM- or
semi-CML-counterparts. This can be explained by the fact that for a fully parametric CML
approach, model misspecification affects the estimates of all parameters simultaneously,
while for the MM approach, for example, the estimation of mean and dependence param-
eters coincide across all three types of DGP. So it does not seem advisable to use a fully
parametric bootstrap in combination with CML estimation for PACF diagnostics.

Table 2. Like Table 1, but 2nd-order DGPs with α2 = 0.2.

True DGP: Poi-INAR(2) NB-INAR(2), σ2

µ = 1.5 Poi-INARCH(2)
PACF at Lag h = PACF at Lag h = PACF at Lag h =

Method n 1 2 3 4 1 2 3 4 1 2 3 4

asym. 100 0.984 0.383 0.048 0.047 0.983 0.390 0.047 0.048 0.983 0.384 0.049 0.048
(5) 1000 1.000 1.000 0.053 0.053 1.000 1.000 0.056 0.052 1.000 1.000 0.055 0.053

asym. 100 0.990 0.478 0.048 0.049 0.987 0.480 0.053 0.047 0.986 0.480 0.053 0.054
(11) 1000 1.000 1.000 0.052 0.051 1.000 1.000 0.056 0.051 1.000 1.000 0.056 0.062

param. 100 0.996 0.470 0.055 0.058 0.995 0.465 0.053 0.054 0.995 0.482 0.048 0.054
MM 1000 1.000 1.000 0.056 0.058 1.000 1.000 0.053 0.051 1.000 1.000 0.055 0.054

param. 100 0.995 0.470 0.044 0.050 0.994 0.465 0.054 0.051 0.994 0.471 0.052 0.054
CML 1000 1.000 1.000 0.052 0.053 1.000 1.000 0.051 0.057 1.000 1.000 0.055 0.058

semi-p. 100 0.995 0.475 0.055 0.054 0.996 0.472 0.047 0.053 0.994 0.485 0.049 0.058
CML 1000 1.000 1.000 0.054 0.052 1.000 1.000 0.054 0.056 1.000 1.000 0.054 0.053

Table 3. Rejection rates of PACF-tests applied to DGP with µ = 5, ρ(1) = 0.5 and α2 = 0.2, where
semi-parametric (parametric) bootstrap relies on null of (Poi-)INAR(2) process.

True DGP: Poi-INAR(2) NB-INAR(2), σ2

µ = 1.5 Poi-INARCH(2)
PACF at Lag h = PACF at Lag h = PACF at Lag h =

Method n 1 2 3 4 1 2 3 4 1 2 3 4

asym. 100 0.984 0.383 0.048 0.047 0.983 0.390 0.047 0.048 0.983 0.384 0.049 0.048
(5) 1000 1.000 1.000 0.053 0.053 1.000 1.000 0.056 0.052 1.000 1.000 0.055 0.053

asym. 100 0.990 0.478 0.048 0.049 0.987 0.480 0.053 0.047 0.986 0.480 0.053 0.054
(11) 1000 1.000 1.000 0.052 0.051 1.000 1.000 0.056 0.051 1.000 1.000 0.056 0.062

param. 100 0.992 0.510 0.044 0.050 0.992 0.516 0.049 0.048 0.992 0.531 0.054 0.056
MM 1000 1.000 1.000 0.046 0.051 1.000 1.000 0.055 0.054 1.000 1.000 0.058 0.052

param. 100 0.977 0.447 0.057 0.048 0.994 0.478 0.052 0.050 0.991 0.446 0.055 0.056
CML 1000 1.000 1.000 0.050 0.053 1.000 1.000 0.053 0.051 1.000 1.000 0.054 0.051

semi-p. 100 0.993 0.548 0.053 0.047 0.990 0.521 0.053 0.054 0.992 0.498 0.051 0.049
CML 1000 1.000 1.000 0.055 0.047 1.000 1.000 0.049 0.047 1.000 1.000 0.051 0.051

To sum up, if computing the SPACF from the raw counts (Xt), with the aim of identi-
fying the AR-order of the given count DGP, the overally best performance is shown by the
MM-based parametric and CML-based semi-parametric bootstrap implementation of the
PACF-test, but also the refined asymptotic implementation relying on (11) does reasonably
well. The latter is remarkable as these asymptotics are not the correct ones regarding the
considered count DGPs (also recall the discussion of Figure 1), but it appears that their
approximation quality is sufficient anyway. The simple asymptotic implementation (5), by
contrast, as it is used by statistical software packages by default, leads to reduced power in
some cases. From a practical point of view, as the additional benefit of the (semi-)parametric
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bootstrap schemes compared to the refined asymptotic implementation (11) is not that large,
especially in view of the necessary computational effort, it seems advisable for practice to
use (11) for doing the PACF-test. Recall that this recommendation refers to the case, where
the SPACF is computed from the raw counts (Xt) to identify the DGP’s AR-order. The
case of applying the PACF-test to Pearson residuals for checking the model adequacy is
analyzed in the following Section 6.

6. PACF Diagnostics for Pearson Residuals

While the raw counts’ SPACF is typically computed before model fitting (namely for
identifying appropriate candidate models), the PACF-analysis of the Pearson residuals is
relevant after model fitting, namely for checking the fitted model’s adequacy. Thus, the
main difference of the simulations in the present section, compared to those of Section 5,
is given by the fact that this time, we first fit a (Poi-)INAR model to the data, and then
we apply the SPACF to the Pearson residuals computed thereof. For Poi-INAR model
fitting, we again use either MM- or CML-estimation, and then we apply the asymptotic
or corresponding parametric bootstrap implementations (like before, we use the warp-
speed method). An exception is given by the semi-parametric CML estimation, as in
this case, also the semi-parametric bootstrap is used for methodological consistency (and
Pearson residuals are computed with respect to an unspecified INAR model). We also
consider the same scenarios of model orders as before, i.e., 1st-order DGPs and INAR(1)-fit
(Tables 4 and 7), 2nd-order DGPs but still INAR(1)-fit (Tables 5 and 8), and 2nd-order
DGPs and INAR(2)-fit (Tables 6 and 9). Recall that the fitted model is now used for both
the computation of the Pearson residuals and the implementation of (semi-)parametric
bootstrap schemes.

Table 4. Rejection rates of PACF-tests applied to Pearson residuals using MM estimates (DGPs with µ = 5
and ρ(1) = 0.5), where both residuals and parametric bootstrap rely on null of Poi-INAR(1) process.

True DGP: Poi-INAR(1) NB-INAR(1), σ2

µ = 1.5 Poi-INARCH(1)
PACF at Lag h = PACF at Lag h = PACF at Lag h =

Method n 1 2 3 4 1 2 3 4 1 2 3 4

asym. 100 0.000 0.026 0.040 0.043 0.001 0.026 0.038 0.044 0.000 0.031 0.041 0.044
(5) 1000 0.000 0.029 0.044 0.053 0.000 0.030 0.043 0.052 0.001 0.033 0.044 0.050

asym. 100 0.001 0.030 0.046 0.050 0.001 0.032 0.042 0.049 0.001 0.037 0.049 0.049
(11) 1000 0.000 0.030 0.047 0.048 0.000 0.030 0.047 0.051 0.000 0.032 0.047 0.050

param. 100 0.056 0.051 0.052 0.048 0.050 0.049 0.049 0.045 0.066 0.050 0.047 0.051
MM 1000 0.051 0.053 0.049 0.045 0.050 0.051 0.053 0.051 0.060 0.046 0.050 0.044

Let us start with the case of fitting a Poi-INAR model by MM estimation, see Tables 4–6.
In Table 4 (1st-order models and DGPs; also see Table A3 in the Appendix B), we recognize
that both asymptotic implementations lead to undersizing at lags h = 1, 2 (particularly
severe at h = 1). This is in close agreement to our conclusions drawn from Figure 1 as
well as to the findings of Weiß et al. [14]. An analogous observation can be done in Table 6
(2nd-order models and DGPs), but now for lags h = 1, 2, 3 (particularly severe at h = 1, 2).
In both cases, however, the MM-based parametric bootstrap holds the nominal 0.05-level
reasonably well. The drawback resulting from this undersizing gets clear in Table 5, where
the wrong AR-order was selected during model fitting: the asymptotic implementations
lead to a very low power for sample size n = 100, implying that one will hardly recognize
the inadequate model choice. Thus, if model assumptions are used anyway for computing
the Pearson residuals, the asymptotic implementation should be avoided, but the model
assumptions should also be utilized for executing the PACF-test by using the parametric
bootstrap scheme. As a final remark, strictly speaking, we are always concerned with model
misspecification if having an NB-INAR or Poi-INARCH DGP. However, all three DGPs
per table have the same conditional mean and, thus, the same autocorrelation structure,
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only their conditional variances differ. Also the MM-estimates required for computing the
conditional mean are identical across all models. Thus, it is not surprising that the rejection
rates of the PACF-tests do not differ much among these three types of DGP (but again with
slight oversizing for the Poi-INARCH DGPs).

Finally, we did the same simulations again, but using CML instead of MM estimation.
Table 7 (as well as Table A5 in the Appendix B) refer to the case of both 1st-order models and
1st-order DGPs. In the first block, where the parametric Pearson residuals are computed
by correctly assuming a Poi-INAR(1) DGP, we have again strong undersizing at lag 1 for
the asymptotic implementation, but a close agreement to the nominal 0.05-level for the
parametric bootstrap. The remaining blocks with NB-INAR(1) and Poi-INARCH(1) DGP,
however, differ notably from the corresponding blocks in Tables 7 and A5, respectively. This
is plausible as the parametric CML approach for a misspecified model leads to misleading
estimates for all parameters. While MM estimation leads to the same estimates for the
dependence parameters across the three 1st-order models, these differ for parametric CML
estimation. Therefore, we have high rejection rates especially at lag 1 (especially if using
the parametric bootstrap), which is desirable on the one hand as the fitted model is indeed
not adequate. On the other hand, we did not misspecify the (P)ACF structure (a 1st-order
model is correct for all DGPs) but the actual data-generating mechanism, i.e., a user might
draw the wrong conclusion from this rejection based on the lag-1 PACF. At this point,
it is interesting to look at the semi-parametric model fit and bootstrap in Table 7. For
both INAR(1) DGPs, the rejection rates are close to the 0.05-level, which is the desirable
result as we are concerned with an adequate model fit. For the Poi-INARCH(1) DGP, by
contrast, we get moderately increased rejection rates at lag 1, which again has to be assessed
ambivalently: on the one hand, the fitted INAR(1) model is indeed not adequate, but on
the other hand, the inadequacy does not refer to the autocorrelation structure.

Table 5. Like Table 4, but 2nd-order DGPs with α2 = 0.2.

True DGP: Poi-INAR(2) NB-INAR(2), σ2

µ = 1.5 Poi-INARCH(2)
PACF at Lag h = PACF at Lag h = PACF at Lag h =

Method n 1 2 3 4 1 2 3 4 1 2 3 4

asym. 100 0.016 0.264 0.079 0.043 0.014 0.266 0.077 0.043 0.018 0.275 0.080 0.045
(5) 1000 0.975 0.998 0.648 0.191 0.958 0.998 0.625 0.192 0.966 0.999 0.642 0.191

asym. 100 0.013 0.359 0.104 0.061 0.010 0.356 0.100 0.059 0.014 0.369 0.105 0.060
(11) 1000 0.972 0.998 0.662 0.212 0.954 0.998 0.640 0.210 0.962 0.999 0.655 0.210

param. 100 0.395 0.365 0.102 0.063 0.369 0.356 0.094 0.064 0.396 0.378 0.092 0.069
MM 1000 1.000 0.999 0.664 0.201 1.000 0.999 0.646 0.204 1.000 0.999 0.662 0.211

Table 6. Rejection rates of PACF-tests applied to Pearson residuals using MM estimates (DGPs with
µ = 5, ρ(1) = 0.5, and α2 = 0.2), where both residuals and parametric bootstrap rely on null of
Poi-INAR(2) process.

True DGP: Poi-INAR(2) NB-INAR(2), σ2

µ = 1.5 Poi-INARCH(2)
PACF at Lag h = PACF at Lag h = PACF at Lag h =

Method n 1 2 3 4 1 2 3 4 1 2 3 4

asym. 100 0.000 0.001 0.033 0.034 0.000 0.002 0.035 0.038 0.000 0.002 0.034 0.036
(5) 1000 0.000 0.001 0.036 0.042 0.000 0.001 0.033 0.042 0.000 0.001 0.036 0.040

asym. 100 0.000 0.003 0.041 0.043 0.000 0.003 0.040 0.044 0.000 0.002 0.042 0.046
(11) 1000 0.000 0.001 0.036 0.042 0.000 0.001 0.035 0.044 0.000 0.001 0.036 0.045

param. 100 0.050 0.037 0.044 0.048 0.053 0.038 0.047 0.050 0.052 0.038 0.059 0.050
MM 1000 0.049 0.049 0.046 0.052 0.059 0.049 0.052 0.052 0.067 0.054 0.055 0.053
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Table 7. Rejection rates of PACF-tests applied to Pearson residuals using CML estimates (DGPs with
µ = 5 and ρ(1) = 0.5), where both residuals and bootstrap rely on null of Poi-INAR(1) process
(parametric bootstrap) or unspecified INAR(1) process (semi-parametric bootstrap), respectively.

True DGP: Poi-INAR(1) NB-INAR(1), σ2

µ = 1.5 Poi-INARCH(1)
PACF at Lag h = PACF at Lag h = PACF at Lag h =

Method n 1 2 3 4 1 2 3 4 1 2 3 4

asym. 100 0.009 0.035 0.041 0.046 0.028 0.036 0.041 0.039 0.023 0.038 0.045 0.042
(5) 1000 0.008 0.035 0.045 0.048 0.902 0.182 0.069 0.053 0.745 0.148 0.072 0.051

asym. 100 0.009 0.041 0.046 0.048 0.043 0.055 0.047 0.050 0.034 0.053 0.048 0.051
(11) 1000 0.009 0.039 0.046 0.053 0.909 0.198 0.077 0.058 0.753 0.167 0.072 0.055

param. 100 0.052 0.049 0.049 0.045 0.238 0.062 0.048 0.049 0.209 0.064 0.053 0.050
CML 1000 0.049 0.053 0.049 0.053 0.993 0.226 0.075 0.051 0.963 0.188 0.082 0.048

semi-p. 100 0.050 0.051 0.054 0.053 0.057 0.048 0.052 0.044 0.070 0.052 0.049 0.051
CML 1000 0.039 0.053 0.056 0.048 0.052 0.053 0.055 0.049 0.225 0.067 0.058 0.050

Table 8. Like Table 7, but 2nd-order DGPs with α2 = 0.2.

True DGP: Poi-INAR(2) NB-INAR(2), σ2

µ = 1.5 Poi-INARCH(2)
PACF at Lag h = PACF at Lag h = PACF at Lag h =

Method n 1 2 3 4 1 2 3 4 1 2 3 4

asym. 100 0.026 0.301 0.084 0.043 0.001 0.403 0.090 0.044 0.001 0.404 0.092 0.045
(5) 1000 0.522 0.999 0.696 0.192 0.001 1.000 0.718 0.178 0.000 1.000 0.726 0.174

asym. 100 0.020 0.391 0.110 0.061 0.002 0.502 0.114 0.059 0.001 0.492 0.125 0.064
(11) 1000 0.508 0.999 0.709 0.212 0.001 1.000 0.733 0.193 0.000 1.000 0.727 0.193

param. 100 0.099 0.399 0.114 0.059 0.031 0.514 0.105 0.062 0.028 0.495 0.131 0.063
CML 1000 0.840 1.000 0.710 0.235 0.041 1.000 0.755 0.183 0.023 1.000 0.737 0.194

semi-p. 100 0.222 0.350 0.106 0.063 0.172 0.384 0.098 0.054 0.134 0.410 0.109 0.066
CML 1000 0.999 0.999 0.664 0.222 0.976 0.999 0.665 0.204 0.917 1.000 0.720 0.208

Table 9. Rejection rates of PACF-tests applied to Pearson residuals using CML estimates (DGPs with
µ = 5, ρ(1) = 0.5, and α2 = 0.2), where both residuals and bootstrap rely on null of Poi-INAR(2) process
(parametric bootstrap) or unspecified INAR(2) process (semi-parametric bootstrap), respectively.

True DGP: Poi-INAR(2) NB-INAR(2), σ2

µ = 1.5 Poi-INARCH(2)
PACF at Lag h = PACF at Lag h = PACF at Lag h =

Method n 1 2 3 4 1 2 3 4 1 2 3 4

asym. 100 0.002 0.002 0.033 0.036 0.003 0.001 0.037 0.038 0.001 0.001 0.037 0.036
(5) 1000 0.000 0.000 0.037 0.044 0.303 0.021 0.082 0.063 0.158 0.005 0.063 0.047

asym. 100 0.002 0.002 0.039 0.041 0.005 0.004 0.047 0.049 0.002 0.002 0.042 0.046
(11) 1000 0.000 0.001 0.038 0.044 0.332 0.028 0.089 0.070 0.174 0.006 0.074 0.055

param. 100 0.002 0.002 0.037 0.043 0.003 0.003 0.051 0.047 0.002 0.002 0.048 0.051
CML 1000 0.000 0.001 0.038 0.044 0.344 0.023 0.086 0.067 0.186 0.007 0.065 0.058

semi-p. 100 0.043 0.038 0.050 0.044 0.044 0.036 0.047 0.043 0.038 0.039 0.052 0.050
CML 1000 0.035 0.045 0.053 0.053 0.051 0.054 0.055 0.051 0.149 0.056 0.054 0.053

Essentially analogous conclusions can be drawn from Table 9, where we are concerned
with both 2nd-order models and 2nd-order DGPs. So let us turn to Table 8, where 1st-
order models are fitted to 2nd-order DGPs. Thus, we are concerned with at least an
inadequate autocorrelation structure (and sometimes also further model misspecification)
such that high rejection rates are desirable. Let us start with the first block about the
Poi-INAR(2) DGP. As a consequence of the strong undersizing at lag 1, the parametric
bootstrap, and especially the asymptotic implementations, show relatively low power
values, especially for the small sample size n = 100. The semi-parametric bootstrap, by
contrast, has substantially higer power values at lag 1. For lags h ≥ 2, the rejection rates
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are similar between the different implementations, with a slight advantage for the refined
asymptotics as well as the parametric bootstrap. The discrepancy at lag 1 gets even more
extreme for the NB-INAR(2) and Poi-INARCH(2) DGP, then all other implementations
than the semi-parametric one lead to power close to zero. For lags 2 and 3, by contrast, the
refined asymptotics as well as the parametric bootstrap are again more powerful. However,
looking back to Table 5, it seems that the overall most appealing power is shown by the
MM-based parametric bootstrap. This type of bootstrap also has the advantage that the
necessary computational effort is much less than for the CML-based bootstraps. Thus,
altogether, while we recommended to use the refined asymptotics (11) if testing the PACF
computed from the raw counts, the PACF analysis of Pearson residuals should be done
by the MM-based parametric bootstrap: if computing the Pearson residuals from an MM-
fitted Poi-INAR model, and if using this model fit for parametric bootstrap, one has good
size properties and an appealing power performance at the same time. Certainly, this
recommendation does not exclude to do CML-fitting in a second step, once the correct
AR-order has been identified. But during the phase of model diagnostics, at least if n is not
particularly large, the parametric-MM solution seems to be best suited.

Remark 2. As mentioned in Section 4, we also tried out fully non-parametric bootstrap schemes.
For the case where the PACF-tests are applied to the raw counts (Xt), as discussed in Section 5, the
circular block bootstrap was used as a fully non-parametric setup, see Table A2 in the Appendix B
for the obtained results. While these implementations lead to an appealing power at lag h = 1,
strong size deteriorations are observed for h ≥ 2. The strongest deviations are observed for the fixed
block length b = 5. Increasing b, first the low-lag rejection rates stabilize at 0.05, while we have
undersizing for large lags. For b = 20, 25, we have good sizes for h = 5, 6, but now the low lags
lead to exceedances of 0.05. Thus, tailor-made block lengths would be required for different lags h.
The automatic block-length selection via b.star typically leads to block lengths between 5 and 10
(depending on the actual extent of ρ(1)), but this causes undersizing throughout, getting more severe
for increasing h. The reason why b.star tends to pick block lengths that are too small to capture
dependence at larger lags is given by the fact that it is designed to select a block length suitable
for inference about the sample mean, but not for the sample PACF. In view of the aforementioned
size problems and the unclear choice of block lengths, we discourage from using block-bootstrap
implementations of the PACF-test for analyzing the raw counts data.

If doing a PACF-analysis of the Pearson residuals, as we investigate it in the present Section 6,
then, besides block-bootstrap implementations, also the Efron bootstrap appears reasonable for
this task. For the case where the Pearson residuals rely on MM estimates, simulation results
are summarized in Table A4 in the Appendix B. If doing an automatic block-length selection via
b.star, we often end up with block length 1 (as the Pearson residuals are uncorrelated under
model adequacy). Thus, the b.star-block bootstrap shows nearly the same rejection rates as the
Efron bootstrap, but these are too low at lags h = 1, 2, like for the asymptotic implementations.
Increasing the block length to the fixed values b = 5 or b = 10, we get an even further decrease in
size. Therefore, neither Efron nor block bootstrap offer any advantage compared to the asymptotic
implementations. Analogous conclusions hold if model fitting is done by CML estimation, see
Table A6 in the Appendix B, so we discourage from the use of Efron and block bootstrap also if doing
a PACF-test of the Pearson residuals.

7. Real-Data Application

For illustration, we pick up a widely discussed data example from the literature,
namely the claims counts data introduced by Freeland [29]. These counts express the
monthly number of claims caused by burn-related injuries in the heavy manufacturing
industry for the period 1987–1994, i.e., the count time series is of length n = 96; see Figure 2.
Recall that the R-code used for the subsequent computations is provided in the Supple-
mentary Materials. Freeland [29] suggested to model these data by a Poi-INAR(1) model,
but following the discussions of subsequent authors, this model choice is not without
controversy. For example, the marginal distribution exhibits moderate overdispersion, as
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the sample variance 11.357 exceeds the mean 8.604. Therefore, some authors suggested
to consider an NB-INAR(1) or Poi-INARCH(1) model instead. Furthermore, one may
doubt the 1st-order AR-structure, see Weiß et al. [30], as the SPACF in Figure 2 is only
slightly non-significant at lag h = 2, where the plotted critical values (dashed lines) refer
to the PACF-test on level 0.05 based on the simple asymptotic implementation (5). Thus,
altogether, we are concerned with a scenario that fits very well to our simulation study in
Sections 5 and 6: the null hypothesis for the data is that of a Poi-INAR(1) model, but this
model might be misspecified in terms of marginal distribution, model order, or the actual
AR-type data-generating mechanism. Moreover, the sample size n = 96 and the lag-1
sample ACF 0.452 are close to the parametrizations considered there. In what follows, we
apply the different implementations of the PACF-test to (the Pearson residuals computed
from) the claims data. Certainly, as we do not know the true model behind the data, we are
not in a position to pass definitive judgement on whether or not a test lead to the correct or
wrong decision. But we shall discuss the PACF-tests with respect to our simulation results.
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Figure 2. Time series plot and SPACF(h) of claims counts, see Section 7.

Let us start with an analysis of the raw counts’ SPACF, in analogy to Section 5. Table 10
summarizes the SPACF(h) values for h = 1, . . . , 5 (bold font) as well as the corresponding
critical values (level 0.05). The latter are computed by the five methods considered in
Section 5, with the number of bootstrap replications chosen as B = 1000. For the simple
asymptotic implementation (5), as we have already seen in Figure 2, we get a rejection
only at lag 1, whereas the remaining methods reject also at lag 2. Thus, there is indeed
evidence that the data might stem from a higher-order model. In addition, the different lag-
2 decisions for (5) vs. the remaining implementations appear plausible in view of Table 2,
where we found clearly lower power for (5) at h = 2. Note that all critical values except (5)
are visibly asymmetric, so the SPACF appears rather biased for n = 96. Furthermore, all
bootstrap implementations lead to quite similar critical values, and the refined asymptotic
implementation (11) is also similar to them except for the upper critical value at h = 1.

Next, we fit either a Poi-INAR(1) model to the claims counts (via MM or CML), or an
unspecified INAR(1) model by the semi-parametric CML approach. Using the resulting
model fits, we first compute a set of Pearson residuals for each model, and then the SPACF
thereof, like in Section 6. The critical values are determined by both asymptotic approaches
as well as by the bootstrap approach corresponding to the respective estimation method.
Results are summarized in Table 11. We get only a few rejections anymore, namely for the
CML-fit of the Poi-INAR(1) model at lag h = 2, both for the refined asymptotics and the
parametric bootstrap. The remaining model fits do not lead to a rejection, and one might
ask, why? The reason seems to be the respective estimate of the AR(1)-parameter α1 = ρ(1),
which equals only 0.396 for CML, but 0.452 for MM and 0.434 for semi-CML. So the CML-fit
explains less of the dependency in the data. The deeper reason for this ambiguous outcome
seems to be the low sample size n = 96; according to Section 6, we can generally expect
only mild power values. It is again interesting to compare the different critical values.
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For the Poi-INAR(1) CML-fit, bootstrap and refined asymptotics lead to rather similar
critical values, in agreement with our simulation results in Section 6, where a similar
performance of both methods was observed. For the remaining estimation approaches, the
bootstrap critical values tend to be more narrow than the asymptotic ones, especially at
lags 1 and 2. The strongest “shrinkage” of the critical values is observed for h = 1, which
goes along with our findings in Section 6, where the asymptotic implementation lead to
severe undersizing at lag 1, whereas the bootstrap approaches held the nominal level quite
well. Furthermore, due to the narrower critical values, the MM and semi-CML bootstraps
are also more powerful at lags 1 and 2.

Table 10. SPACF(h) of claims counts (bold font), lower and upper critical values (level 0.05) by
different methods, where italic font indicates that critical value is violated.

Lag h: 1 2 3 4 5

Upper asym. (5) 0.200 0.200 0.200 0.200 0.200
critical value asym. (11) 0.186 0.175 0.184 0.173 0.182
by method . . . param., MM 0.134 0.175 0.184 0.181 0.186

param., CML 0.148 0.167 0.179 0.182 0.185
semi-p., CML 0.138 0.171 0.166 0.162 0.192

SPACF(h) 0.452 0.198 −0.010 −0.038 0.040

Lower asym. (5) −0.200 −0.200 −0.200 −0.200 −0.200
critical value asym. (11) −0.207 −0.217 −0.205 −0.215 −0.203
by method . . . param., MM −0.211 −0.224 −0.206 −0.202 −0.199

param., CML −0.224 −0.223 −0.218 −0.204 −0.197
semi-p., CML −0.213 −0.213 −0.198 −0.220 −0.199

Table 11. SPACF(h) of Pearson residuals after fitting a (Poi-)INAR(1) model to the claims counts
(bold font). Lower and upper critical values (level 0.05) by different methods, where italic font
indicates that critical value is violated.

Poi-INAR(1), MM Lag h: 1 2 3 4 5

Upper asym. (5) 0.201 0.201 0.201 0.201 0.201
critical value asym. (11) 0.187 0.176 0.185 0.174 0.183
by method . . . param., MM 0.108 0.167 0.195 0.184 0.189

SPACF(h) −0.060 0.156 0.061 −0.032 −0.007

Lower asym. (5) −0.201 −0.201 −0.201 −0.201 −0.201
critical value asym. (11) −0.208 −0.218 −0.206 −0.216 −0.205
by method . . . param., MM −0.076 −0.190 −0.195 −0.195 −0.202

Poi-INAR(1), CML Lag h: 1 2 3 4 5

Upper asym. (5) 0.201 0.201 0.201 0.201 0.201
critical value asym. (11) 0.187 0.176 0.185 0.174 0.183
by method . . . param., CML 0.172 0.166 0.183 0.180 0.193

SPACF(h) 0.009 0.185 0.062 −0.031 −0.002

Lower asym. (5) −0.201 −0.201 −0.201 −0.201 −0.201
critical value asym. (11) −0.208 −0.218 −0.206 −0.216 −0.205
by method . . . param., CML −0.208 −0.213 −0.219 −0.205 −0.201

INAR(1), semi-CML Lag h: 1 2 3 4 5

Upper asym. (5) 0.201 0.201 0.201 0.201 0.201
critical value asym. (11) 0.187 0.176 0.185 0.174 0.183
by method . . . semi-p., CML 0.158 0.171 0.178 0.162 0.203

SPACF(h) −0.041 0.165 0.064 −0.029 −0.006

Lower asym. (5) −0.201 −0.201 −0.201 −0.201 −0.201
critical value asym. (11) −0.208 −0.218 −0.206 −0.216 −0.205
by method . . . semi-p., CML −0.142 −0.204 −0.196 −0.215 −0.210

8. Conclusions

In this paper, we considered PACF model diagnostics for AR-type count processes
based on raw data and on Pearson residuals, respectively. At first, we illustrated the
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limitations of the widely used and well-known asymptotic distribution result (as well as
some refinements thereof) for the sample PACF values. Then, we introduced appropriate
bootstrap schemes for the approximation of the correct sample PACF distribution. We
considered a fully parametric bootstrap combined with MM and CML estimation, a semi-
parametric bootstrap combined with CML estimation, and a fully non-parametric bootstrap
scheme. We compared the performance of the different procedures for first- and second-
order AR-type count processes. In the case where we apply the PACF test directly to the raw
count data, the best performance was observed for the MM-based parametric bootstrap,
CML-based semi-parametric bootstrap, and the refined asymptotic results, where the latter
are preferable for computing time reasons. By contrast, when applying the PACF test to the
Pearson residuals, we advise using the MM-based parametric bootstrap procedure which
simultaneously provides good size properties and power performance. Finally, we applied
our different PACF procedures to a well-known data set on claims counts and found some
evidence for a higher-order model.
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Appendix A. On the Equivalence of ACF, PACF, and AR Coefficients

The first p Yule–Walker (YW) equations in

ρ(h) = ∑
p
i=1 αi ρ

(
|h− i|

)
for h = 1, 2, . . . (A1)

can be rewritten in vector-matrix notation as follows: For k ∈ N, let αk :=
(
α1, . . . , αk

)> ∈
Rk with αi = 0 for i > p, let rk :=

(
ρ(1), . . . , ρ(k)

)> ∈ Rk, and

Rk :=
(

ρ
(
|i− j|

))
i,j=1,...,k

=


1 ρ(1) · · · ρ(k− 1)

ρ(1) 1
. . .

...
...

. . . . . . ρ(1)
ρ(k− 1) · · · ρ(1) 1

 ∈ Rk×k. (A2)

Then, (A1) implies that the AR(p) process satisfies the linear equation

Rp αp = rp. (A3)

Note that Rk constitutes a symmetric Toeplitz matrix, i.e., it is characterized by having
constant diagonals. This type of matrix structure was first considered by Toeplitz [31,32],
and it is crucial for efficiently solving (A3) in αp (see the details below).

https://www.mdpi.com/article/10.3390/e25010105/s1
https://www.mdpi.com/article/10.3390/e25010105/s1
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Assume that Rk is invertible, and let ak ∈ Rk be the unique solution of the equation

Rk ak = rk, i.e., ak = R−1
k rk. (A4)

Then, the PACF at lag k is defined by ρpart(k) := ak,k (last component of ak); let us denote

πk :=
(
ρpart(1), . . . , ρpart(k)

)> ∈ Rk.
If (Xt)Z follows an AR(p) model, then (A3) implies that

ρpart(p) = αp, ρpart(h) = 0 for all h > p, (A5)

holds; in particular, we have ap = αp. Because of the Toeplitz structure of Rk, the YW-
equations (A3) can be solved recursively for k = 1, 2, . . ., which was first recognized by
Durbin [33], Levinson [34]. The recursive scheme, which is commonly referred to as the
Durbin–Levinson (DL) algorithm, can be expressed as

ak+1,k+1 =
ρ(k + 1) − ∑k

i=1 ak,i ρ(k + 1− i)

1 − ∑k
i=1 ak,i ρ(i)

,

 ak+1,1
...

ak+1,k

 =

 ak,1
...

ak,k

 − ak+1,k+1

 ak,k
...

ak,1

.

(A6)

Given the (sample) ACF, the DL-algorithm (A6) is used to recursively compute the (sample)
PACF for k = 1, 2, . . ., where ρpart(1) = a1,1 = ρ(1).

Furthermore, applying the DL-algorithm to (A3), we can compute the AR parameters
α1, . . . , αp corresponding to the ACF values ρ(1), . . . , ρ(p) (or if using the sample ACF, we
end up with moment estimates for the AR parameters, referred to as YW-estimates). In R,
this is readily implemented via acf2AR. Given the AR parameters, in turn, (A1) or (A3)
can also be solved in the ACF, see Section 3.3 in Brockwell & Davis [11] as well as the
R command ARMAacf.

The previous discussion shows that an AR(p) model can be characterized equivalently
by either αp or rp. According to Barndorff-Nielsen & Schou [35], this type of “equivalent
parametrization” can be further extended by the one-to-one relationship between αp and
πp, i.e., we have one-to-one relations between rp ↔ αp ↔ πp. For computing αp from πp,
Barndorff-Nielsen & Schou [35] suggest to use the DL-algorithm (A6) together with (A4)
as follows:

ak+1,1
...

ak+1,k
ak+1,k+1

 =


ak,1

...
ak,k
0

 − ρpart(k + 1)


ak,k

...
ak,1
−1

 for k = 1, 2, . . . , (A7)

which is initialized by setting a1,1 = ρpart(1). Then, αp = ap. Altogether, the application of
the DL-algorithm allows the transformations

rp
(A3)−−−→ αp

(A6)↘ ↗ (A7)

πp

By contrast, recall that αp → rp (and thus πp → αp → rp) is done by solving (A1) or
(A3) in the ACF, e.g., by using the “third method” in Brockwell & Davis [11] (Section 3.3)
or R’s ARMAacf.
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Appendix B. Further Simulation Results

Table A1. Rejection rates of PACF-test applied to DGP with µ = 5, where semi-parametric (paramet-
ric) bootstrap relies on null of (Poi-)INAR(1) process.

True DGP: Poi-INAR(1) NB-INAR(1), σ2
µ = 1.5 Poi-INARCH(1)

PACF at Lag h = PACF at Lag h = PACF at Lag h =

Method ρ(1) n 1 2 3 4 1 2 3 4 1 2 3 4

asym. 0.25 100 0.629 0.050 0.047 0.043 0.646 0.050 0.042 0.044 0.639 0.049 0.046 0.045
(1.5) 1000 1.000 0.049 0.050 0.046 1.000 0.054 0.052 0.049 1.000 0.054 0.047 0.050

0.5 100 0.998 0.053 0.040 0.044 0.998 0.054 0.043 0.046 0.995 0.054 0.046 0.044
1000 1.000 0.056 0.047 0.049 1.000 0.057 0.051 0.053 1.000 0.056 0.053 0.050

0.75 100 1.000 0.050 0.042 0.043 1.000 0.057 0.048 0.045 1.000 0.062 0.053 0.047
1000 1.000 0.050 0.048 0.054 1.000 0.060 0.056 0.055 1.000 0.071 0.063 0.061

asym. 0.25 100 0.692 0.045 0.046 0.054 0.688 0.051 0.048 0.052 0.690 0.054 0.052 0.047
(3.2) 1000 1.000 0.053 0.050 0.052 1.000 0.053 0.051 0.047 1.000 0.051 0.050 0.049

0.5 100 0.998 0.054 0.047 0.048 0.997 0.052 0.050 0.051 0.997 0.047 0.049 0.048
1000 1.000 0.050 0.049 0.051 1.000 0.061 0.053 0.049 1.000 0.060 0.051 0.048

0.75 100 1.000 0.047 0.051 0.046 1.000 0.054 0.054 0.050 1.000 0.060 0.061 0.053
1000 1.000 0.055 0.054 0.054 1.000 0.062 0.058 0.056 1.000 0.073 0.066 0.060

param. 0.25 100 0.742 0.046 0.046 0.050 0.736 0.045 0.054 0.051 0.747 0.053 0.048 0.048
MM 1000 1.000 0.054 0.048 0.043 1.000 0.048 0.055 0.054 1.000 0.050 0.048 0.050

0.5 100 1.000 0.052 0.055 0.056 0.999 0.053 0.052 0.055 1.000 0.048 0.053 0.049
1000 1.000 0.055 0.052 0.049 1.000 0.047 0.052 0.046 1.000 0.046 0.056 0.046

0.75 100 1.000 0.050 0.057 0.056 1.000 0.052 0.047 0.047 1.000 0.064 0.067 0.061
1000 1.000 0.061 0.049 0.049 1.000 0.060 0.059 0.054 1.000 0.067 0.062 0.059

param. 0.25 100 0.747 0.049 0.049 0.054 0.735 0.046 0.049 0.051 0.726 0.053 0.052 0.055
CML 1000 1.000 0.051 0.049 0.047 1.000 0.049 0.058 0.049 1.000 0.044 0.051 0.048

0.5 100 1.000 0.054 0.051 0.054 0.999 0.049 0.053 0.050 0.999 0.059 0.046 0.049
1000 1.000 0.048 0.049 0.057 1.000 0.050 0.055 0.051 1.000 0.052 0.052 0.047

0.75 100 1.000 0.052 0.050 0.051 1.000 0.051 0.051 0.050 1.000 0.061 0.055 0.053
1000 1.000 0.050 0.050 0.052 1.000 0.052 0.058 0.053 1.000 0.069 0.066 0.066

semi-p. 0.25 100 0.736 0.043 0.046 0.048 0.723 0.049 0.052 0.051 0.733 0.053 0.053 0.056
CML 1000 1.000 0.048 0.052 0.047 1.000 0.046 0.053 0.057 1.000 0.054 0.059 0.046

0.5 100 1.000 0.053 0.053 0.051 1.000 0.054 0.051 0.049 0.999 0.044 0.048 0.054
1000 1.000 0.047 0.054 0.054 1.000 0.051 0.049 0.057 1.000 0.052 0.054 0.052

0.75 100 1.000 0.052 0.054 0.054 1.000 0.051 0.051 0.041 1.000 0.064 0.063 0.057
1000 1.000 0.048 0.046 0.051 1.000 0.051 0.048 0.048 1.000 0.060 0.057 0.060

Table A2. Rejection rates of PACF-test applied to Poi-INAR(1) DGP with µ = 5, where circular block
bootstrap with automatically selected (“b.star”) or fixed block length b is used.

PACF at Lag h =
Method ρ(1) n 1 2 3 4 5 6

b.star 0.25 100 0.922 0.010 0.006 0.007 0.007 0.007
1000 1.000 0.037 0.025 0.016 0.011 0.006

0.5 100 1.000 0.024 0.012 0.008 0.008 0.007
1000 1.000 0.050 0.041 0.032 0.032 0.023

0.75 100 1.000 0.041 0.027 0.019 0.015 0.010
1000 1.000 0.045 0.050 0.042 0.037 0.035

b = 5 0.25 100 0.857 0.031 0.024 0.011 0.005 0.005
1000 1.000 0.038 0.023 0.011 0.003 0.004

0.5 100 1.000 0.036 0.020 0.014 0.004 0.008
1000 1.000 0.042 0.026 0.013 0.004 0.006

0.75 100 1.000 0.028 0.021 0.008 0.002 0.008
1000 1.000 0.125 0.074 0.038 0.016 0.029

b = 10 0.25 100 0.833 0.052 0.047 0.036 0.026 0.022
1000 1.000 0.045 0.041 0.036 0.031 0.025

0.5 100 1.000 0.053 0.042 0.032 0.026 0.020
1000 1.000 0.047 0.040 0.034 0.027 0.024

0.75 100 1.000 0.045 0.041 0.035 0.023 0.020
1000 1.000 0.054 0.040 0.034 0.029 0.019

b = 15 0.25 100 0.831 0.058 0.050 0.051 0.037 0.031
1000 1.000 0.043 0.048 0.045 0.037 0.030

0.5 100 1.000 0.058 0.054 0.051 0.042 0.029
1000 1.000 0.058 0.045 0.046 0.038 0.031

0.75 100 1.000 0.054 0.042 0.035 0.036 0.034
1000 1.000 0.053 0.044 0.039 0.031 0.036

b = 20 0.25 100 0.813 0.064 0.060 0.055 0.051 0.047
1000 1.000 0.053 0.046 0.045 0.046 0.041

0.5 100 1.000 0.067 0.065 0.056 0.050 0.044
1000 1.000 0.052 0.048 0.038 0.045 0.039

0.75 100 1.000 0.059 0.064 0.051 0.043 0.041
1000 1.000 0.049 0.048 0.047 0.034 0.038
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Table A2. Cont.

PACF at Lag h =
Method ρ(1) n 1 2 3 4 5 6

b = 25 0.25 100 0.819 0.080 0.072 0.058 0.058 0.056
1000 1.000 0.054 0.058 0.051 0.047 0.044

0.5 100 1.000 0.078 0.065 0.065 0.052 0.048
1000 1.000 0.049 0.060 0.050 0.046 0.052

0.75 100 1.000 0.070 0.064 0.058 0.048 0.051
1000 1.000 0.054 0.050 0.050 0.048 0.040

Table A3. Rejection rates of PACF-test applied to Pearson residuals using MM estimates (DGPs with
µ = 5), where both residuals and parametric bootstrap rely on null of Poi-INAR(1) process.

True DGP: Poi-INAR(1) NB-INAR(1), σ2
µ = 1.5 Poi-INARCH(1)

PACF at Lag h = PACF at Lag h = PACF at Lag h =

Method ρ(1) n 1 2 3 4 1 2 3 4 1 2 3 4

asym. 0.25 100 0.000 0.038 0.044 0.047 0.000 0.041 0.040 0.046 0.000 0.042 0.046 0.046
(1.5) 1000 0.000 0.043 0.050 0.050 0.000 0.043 0.049 0.050 0.000 0.045 0.047 0.051

0.5 100 0.000 0.026 0.040 0.043 0.001 0.026 0.038 0.044 0.000 0.031 0.041 0.044
1000 0.000 0.029 0.044 0.053 0.000 0.030 0.043 0.052 0.001 0.033 0.044 0.050

0.75 100 0.011 0.022 0.034 0.037 0.010 0.022 0.030 0.035 0.013 0.026 0.036 0.041
1000 0.011 0.026 0.036 0.042 0.009 0.024 0.035 0.044 0.017 0.028 0.039 0.045

asym. 0.25 100 0.000 0.039 0.046 0.048 0.000 0.043 0.049 0.048 0.000 0.046 0.049 0.045
(3.2) 1000 0.000 0.046 0.052 0.055 0.000 0.044 0.048 0.048 0.000 0.047 0.047 0.053

0.5 100 0.001 0.030 0.046 0.050 0.001 0.032 0.042 0.049 0.001 0.037 0.049 0.049
1000 0.000 0.030 0.047 0.048 0.000 0.030 0.047 0.051 0.000 0.032 0.047 0.050

0.75 100 0.014 0.031 0.038 0.047 0.015 0.030 0.037 0.045 0.019 0.036 0.045 0.053
1000 0.011 0.026 0.036 0.042 0.010 0.024 0.034 0.043 0.018 0.029 0.040 0.045

param. 0.25 100 0.029 0.050 0.046 0.052 0.030 0.041 0.052 0.047 0.025 0.050 0.046 0.052
MM 1000 0.047 0.047 0.049 0.050 0.047 0.053 0.047 0.046 0.057 0.053 0.057 0.049

0.5 100 0.056 0.051 0.052 0.048 0.050 0.049 0.049 0.045 0.066 0.050 0.047 0.051
1000 0.051 0.053 0.049 0.045 0.050 0.051 0.053 0.051 0.060 0.046 0.050 0.044

0.75 100 0.059 0.042 0.050 0.053 0.058 0.044 0.046 0.045 0.071 0.056 0.055 0.050
1000 0.051 0.051 0.047 0.049 0.043 0.046 0.046 0.045 0.064 0.054 0.061 0.053

Table A4. Rejection rates of PACF-test applied to Pearson residuals using MM estimates (Poi-INAR(1)
DGPs with µ = 5), where circular block bootstrap with automatically selected (“b.star”) or fixed block
length b is used.

PACF at Lag h =
Method ρ(1) n 1 2 3 4 5 6

Efron 0.25 100 0.000 0.047 0.046 0.047 0.051 0.049
1000 0.000 0.040 0.047 0.051 0.048 0.046

0.5 100 0.001 0.033 0.054 0.048 0.044 0.050
1000 0.000 0.033 0.043 0.050 0.050 0.055

0.75 100 0.014 0.030 0.041 0.044 0.047 0.053
1000 0.011 0.028 0.032 0.044 0.043 0.046

b.star 0.25 100 0.000 0.041 0.041 0.048 0.045 0.054
1000 0.000 0.049 0.052 0.047 0.049 0.053

0.5 100 0.000 0.034 0.044 0.046 0.045 0.054
1000 0.001 0.030 0.048 0.048 0.047 0.054

0.75 100 0.008 0.037 0.040 0.044 0.044 0.049
1000 0.007 0.027 0.033 0.041 0.044 0.049

b = 5 0.25 100 0.000 0.024 0.035 0.048 0.044 0.047
1000 0.000 0.023 0.035 0.044 0.055 0.053

0.5 100 0.001 0.022 0.034 0.044 0.047 0.042
1000 0.000 0.017 0.033 0.047 0.046 0.049

0.75 100 0.003 0.017 0.035 0.042 0.050 0.047
1000 0.003 0.013 0.028 0.039 0.044 0.051

b = 10 0.25 100 0.000 0.015 0.019 0.027 0.032 0.035
1000 0.000 0.010 0.017 0.025 0.028 0.033

0.5 100 0.000 0.016 0.020 0.030 0.033 0.043
1000 0.000 0.008 0.017 0.021 0.028 0.037

0.75 100 0.003 0.012 0.018 0.023 0.030 0.034
1000 0.002 0.008 0.013 0.020 0.025 0.035
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Table A5. Rejection rates of PACF-test applied to Pearson residuals using CML estimates (DGPs
with µ = 5), where both residuals and bootstrap rely on null of Poi-INAR(1) process (parametric
bootstrap) or unspecified INAR(1) process (semi-parametric bootstrap), respectively.

True DGP: Poi-INAR(1) NB-INAR(1), σ2
µ = 1.5 Poi-INARCH(1)

PACF at Lag h = PACF at Lag h = PACF at Lag h =

Method ρ(1) n 1 2 3 4 1 2 3 4 1 2 3 4

asym. 0.25 100 0.001 0.044 0.043 0.047 0.001 0.042 0.040 0.046 0.001 0.045 0.047 0.047
(1.5) 1000 0.000 0.045 0.051 0.052 0.236 0.057 0.049 0.050 0.000 0.048 0.048 0.052

0.5 100 0.009 0.035 0.041 0.046 0.028 0.036 0.041 0.039 0.023 0.038 0.045 0.042
1000 0.008 0.035 0.045 0.048 0.902 0.182 0.069 0.053 0.745 0.148 0.072 0.051

0.75 100 0.032 0.042 0.043 0.042 0.057 0.041 0.044 0.040 0.364 0.113 0.070 0.047
1000 0.033 0.040 0.048 0.050 0.581 0.288 0.162 0.094 1.000 0.913 0.488 0.204

asym. 0.25 100 0.001 0.043 0.047 0.049 0.002 0.049 0.050 0.048 0.000 0.046 0.049 0.049
(3.2) 1000 0.000 0.042 0.049 0.048 0.270 0.060 0.049 0.048 0.000 0.045 0.050 0.050

0.5 100 0.009 0.041 0.046 0.048 0.043 0.055 0.047 0.050 0.034 0.053 0.048 0.051
1000 0.009 0.039 0.046 0.053 0.909 0.198 0.077 0.058 0.753 0.167 0.072 0.055

0.75 100 0.034 0.043 0.046 0.048 0.075 0.062 0.052 0.055 0.425 0.165 0.094 0.067
1000 0.035 0.040 0.046 0.046 0.609 0.310 0.173 0.112 1.000 0.921 0.502 0.221

param. 0.25 100 0.040 0.052 0.049 0.048 0.262 0.050 0.051 0.056 0.046 0.051 0.051 0.056
CML 1000 0.049 0.046 0.053 0.049 1.000 0.065 0.051 0.054 0.194 0.047 0.050 0.047

0.5 100 0.052 0.049 0.049 0.045 0.238 0.062 0.048 0.049 0.209 0.064 0.053 0.050
1000 0.049 0.053 0.049 0.053 0.993 0.226 0.075 0.051 0.963 0.188 0.082 0.048

0.75 100 0.046 0.046 0.050 0.051 0.123 0.079 0.054 0.052 0.606 0.190 0.097 0.068
1000 0.048 0.053 0.048 0.047 0.709 0.338 0.169 0.121 1.000 0.936 0.522 0.221

semi-p. 0.25 100 0.037 0.045 0.047 0.050 0.049 0.044 0.050 0.054 0.045 0.051 0.052 0.051
CML 1000 0.037 0.054 0.050 0.047 0.037 0.047 0.052 0.052 0.031 0.051 0.054 0.054

0.5 100 0.050 0.051 0.054 0.053 0.057 0.048 0.052 0.044 0.070 0.052 0.049 0.051
1000 0.039 0.053 0.056 0.048 0.052 0.053 0.055 0.049 0.225 0.067 0.058 0.050

0.75 100 0.051 0.044 0.049 0.050 0.049 0.049 0.046 0.047 0.223 0.104 0.072 0.061
1000 0.046 0.049 0.049 0.051 0.055 0.053 0.050 0.050 0.377 0.217 0.129 0.080

Table A6. Rejection rates of PACF-test applied to Pearson residuals using CML estimates (Poi-
INAR(1) DGPs with µ = 5), where circular block bootstrap with automatically selected (“b.star”) or
fixed block length b is used.

PACF at Lag h =
Method ρ(1) n 1 2 3 4 5 6

b.star 0.25 100 0.001 0.046 0.050 0.050 0.052 0.049
1000 0.000 0.050 0.053 0.050 0.050 0.051

0.5 100 0.007 0.036 0.046 0.054 0.045 0.052
1000 0.005 0.034 0.046 0.047 0.050 0.050

0.75 100 0.023 0.038 0.043 0.045 0.042 0.058
1000 0.022 0.049 0.046 0.047 0.050 0.052

b = 5 0.25 100 0.001 0.024 0.037 0.048 0.046 0.048
1000 0.000 0.020 0.033 0.048 0.045 0.056

0.5 100 0.003 0.020 0.038 0.039 0.050 0.050
1000 0.002 0.018 0.035 0.045 0.051 0.049

0.75 100 0.010 0.023 0.042 0.047 0.050 0.048
1000 0.009 0.018 0.032 0.045 0.049 0.044

b = 10 0.25 100 0.001 0.016 0.020 0.030 0.033 0.042
1000 0.000 0.012 0.018 0.028 0.029 0.034

0.5 100 0.003 0.014 0.019 0.030 0.031 0.036
1000 0.001 0.010 0.015 0.020 0.027 0.031

0.75 100 0.010 0.016 0.018 0.025 0.040 0.039
1000 0.006 0.011 0.015 0.023 0.023 0.032
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