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Simple Summary: The complete resection of the malignant tumor during surgery is crucial for the
patient’s survival. To date, surgeons have been intraoperatively supported by information from a
pathologist, who performs a frozen section analysis of resected tissue. This tumor margin evaluation
is subjective, methodologically limited and underlies a selection bias. Hyperspectral imaging (HSI) is
an established and rapid supporting technique. New artificial-intelligence-based techniques such as
machine learning (ML) can harness this complex spectral information for the verification of cancer
tissue. We performed HSI on 23 unstained tissue sections from seven patients with oral squamous
cell carcinoma and trained the ML model for tumor recognition resulting in an accuracy of 0.76,
a specificity of 0.89 and a sensitivity of 0.48. The results were in accordance with the histopathological
annotations and do, therefore, enable the delineation of tumor margins with high speed and accuracy
during surgery.

Abstract: The intraoperative assessment of tumor margins of head and neck cancer is crucial for
complete tumor resection and patient outcome. The current standard is to take tumor biopsies
during surgery for frozen section analysis by a pathologist after H&E staining. This evaluation is
time-consuming, subjective, methodologically limited and underlies a selection bias. Optical methods
such as hyperspectral imaging (HSI) are therefore of high interest to overcome these limitations. We
aimed to analyze the feasibility and accuracy of an intraoperative HSI assessment on unstained tissue
sections taken from seven patients with oral squamous cell carcinoma. Afterwards, the tissue sections
were subjected to standard histopathological processing and evaluation. We trained different machine
learning models on the HSI data, including a supervised 3D convolutional neural network to perform
tumor detection. The results were congruent with the histopathological annotations. Therefore,
this approach enables the delineation of tumor margins with artificial HSI-based histopathological
information during surgery with high speed and accuracy on par with traditional intraoperative
tumor margin assessment (Accuracy: 0.76, Specificity: 0.89, Sensitivity: 0.48). With this, we introduce
HSI in combination with ML hyperspectral imaging as a potential new tool for intraoperative tumor
margin assessment.

Keywords: oral squamous cell carcinoma; hyperspectral imaging; machine learning; intraoperative
assessment; tumor detection; tumor margins

1. Introduction

Surgery is a cornerstone of the standard therapy of patients with oral squamous cell
carcinoma (OSCC). The complete resection (R0 status) has a high impact on patient outcome.
Survival of patients with incomplete tumor resection is significantly lower [1–3]. The
main challenge is a reliable intraoperative asessment the complete resection of the tumor.
Currently used intraoperative in vivo imaging devices are lacking the ability to clearly
define the tumor margins. The current standard of care for intraoperative tumor margin
assessment is the frozen section analysis of biopsies taken from the resection margins. This
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intraoperative histopathological evaluation is highly subjective with an overall accuracy of
only 71.3% [4,5]. Therefore, an objective and fast application and workflow are needed to
achieve adequate tumor margin detection.

Hyperspectral imaging (HSI) is an optical method to detect wavelengths beyond the
visible spectrum. Light interacts with biological tissues. Different molecular compositions
of tumor cells in contrast to non-tumor cells result in different absorption peaks. These
can be used as spectral fingerprints for tumor cells. The implementation of HSI makes it
possible to enlarge microscopic RGB images by additional channels up to the near-infrared
spectral region [6]. Summarized by Ortega et al. [7] it could be shown that the additional
information is effective in tumor detection on whole sample specimen.

Published studies for HSI-based segmentation of OSCC and other tumor entities focus
on a general assessment of the presence or absence of tumor tissue [8–10]. In all these
approaches the surface of a bulk biopsy was measured. An exact correlation of HSI and
histopathological data has not been performed to date. Other studies that performed HSI
measurements on histological slides were either exclusively conducted on already stained
sections [11–14] or for clinical questions other than OSCC tumor detection, e.g., Alzheimer’s
disease, nerve lesion detection, thyroid tumor or breast tumor detection [15–18].

The high amount of data acquired with microscopic HSI makes manual interpretation
of the results challenging if not impossible and automated processing a necessity. Machine
learning (ML) and digital pathology are the next big step in the field of pathology [19]. The
most successful modern ML applications are based on so-called deep learning [20]. The
name is derived from how these algorithms are built by stacking multiple hidden layers to
solve a multitude of problems, both in the medical field as well as in other areas. Common
medical tasks include tumor classification and segmentation [21,22]. Additionally, in some
of them, such as breast cancer metastasis detection, machine-learning-based approaches
already rival or outperform human experts [23].

To the best of our knowledge, no study has applied machine learning on hyperspectral
or traditional RGB images of fresh-frozen unstained tissue sections for interoperative tumor
margin assessment. Even for stained fresh-frozen tissue sections, there is a lack of available,
annotated data. Therefore, there are few machine-learning-based solutions [24].

This study investigated the potential use of HSI to address the limitations of the rapid
intraoperative H&E-based assessment. More precisely, we aim to perform an automated
detection of tumor tissue at microscopic resolution using fresh-frozen unstained tissue
slices. The detected wavelengths covered the range from 500 to 1000 nm. In this range
100 channels were recorded for further analysis. We performed whole-slide scans with a
blank acquisition time of 20 min per cm2. The data used are data cubes containing HSI
spectra combined with high resolution brightfield scans of the corresponding H&E stained
section. We used unsupervised algorithms for data visualization and dimensionality
reduction and employed a supervised 3D convolutional neural network (CNN) for tumor
classification and segmentation. The results were compared with manual histopathological
annotation performed by two experienced pathologists.

The high amount of data acquired with microscopic hyperspectral imaging makes manual
interpretation of the results challenging if not impossible and automated processing a necessity.

2. Materials and Methods
2.1. Clinical Samples

We used tissue samples from seven patients with OSCC. The study was approved by the
ethics committee of the Jena University Hospital (No. 2018-1166-material). Written informed
consent was obtained from all patients. Five patients were male, and two were female. All
samples originated from the oropharyngeal area. After resection, all samples were directly
snap-frozen with liquid nitrogen and stored at −80 ◦C until measurement. Tissue samples
were cut into sections of 12 µm thickness with a cryotome. Every 120 µm, a section was
mounted on a glass slide for each tissue sample. This led to two to six sections per patient.
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2.2. HSI Setup and Measurements

All images were captured using an inverted light microscope system (Axio Scope A1;
Carl Zeiss AG, Jena, Germany) with a 10× lens (EC Plan Neofluar 10×/0.30 M27; Carl Zeiss
AG). RGB images were captured with a CCD-sensor camera (Axiocam MRc; Carl Zeiss
AG) with an optical resolution of 1388 × 1040 pixels. HSI images were captured using an
integrated HSI platform (TIVITA Mini; Diaspective Vision GmbH, Am Salzhaff, Germany)
with its camera connected to the microscope system. The HSI-camera system has an optical
resolution of 720 × 540 pixels and a spectral resolution ranging from 500 nm to 1000 nm
in 10 nm steps. To calibrate the HSI camera, an HSI datacube was captured from a blank
slide with the microscope lamp turned on as a white reference. The illumination intensity
of the used halogen lamp was manually adjusted to 95% of the HSI-sensor maximum. An
HSI datacube was captured from a blank slide with the microscope lamp turned off as a
dark/black reference. Both cameras, the CCD-sensor camera and the HSI camera, were
connected to the microscope via a T2-C 1.0× microscope camera adapter.

Due to its size, we systematically scanned the tissue sections completely with the
microscope in meandering positions with an overlap of 15%. ZEN blue 2012 edition
imaging software (Carl Zeiss AG) was used to systematically scan and acquire microscope
imaging positions. RGB images were captured on each imaging position. Using the same
imaging position provided by the ZEN imaging software, corresponding HSI images were
then captured for each tissue section. The measurement per hyperspectral image took
4 s and the total acquisition time including stage movement took around 5 to 15 min per
sample according to their size.

2.3. Histopathological Annotation

We stained the tissue sections with hematoxylin and eosin (H&E) after HSI mea-
surements. Histopathological annotation was performed manually by two experienced
pathologists. The annotated H&E images were then co-registered with the corresponding
RGB images and the HSI datacubes.

2.4. Data Preprocessing

We filtered the HSI datacubes for measurement artifacts that appear in the individual
pixel in some of the images. Additionally, we removed all samples that contain either
no tissue at all, tissue that could not definitely be classified as healthy or tumorous, and
samples that contain more than 75% background. We performed no further preprocessing.
In particular, we did not perform any type of normalization, since normalization leads
to a classification based purely on the shape of the spectra while we assume that there
are also intensity differences in the spectra of different regions [25]. In total, we acquired
3591 hyperspectral images, of which 2194 images could be used for our study.

We applied a sixfold cross-validation, always omitting one random slide of five
randomly chosen patients. We chose six folds since the highest number of samples for
one patient is six, which allows us to use each slide at least once in the validation set. The
same sample split was used for all following experiments. We chose to leave out individual
sections instead of patients to keep the size of the training and validations set similar
between different folds. For the deep learning task of tumor classification, we treated each
individual HSI datacube as independent measurement with a single label. A more detailed
overview of the data structure is given in Tables S1 and S2 in the supplements.

2.5. Visualization as False Color Images for Tumor Classification

To visually inspect the hyperspectral datacubes, we performed an unsupervised
nonlinear dimensionality reduction using uniform manifold approximation and projection
(Umap, Vancouver, BC, Canada) [26]. We trained the dimensionality reduction algorithm
on the first 200 non-background spectra of each validation image with the following settings
number of components: 3, number of neighbors: 50, minimum distance: 0.5 a spread of
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2 and the l2 metric. These parameters are partially based on results published in [27] and
we implemented the algorithm using GPU acceleration as described in [28].

2.6. Machine-Learning-Based Classification
2.6.1. Linear Support Vector Machine Classifier (SVM)

As a baseline we trained a linear support vector machine classifier (SVM) using
statistical gradient descent on each individual spectrum without taking morphological
information into account [29]. SVMs have seen wide-spread use for hyperspectral image
classification tasks [30] and are in theory well suited. We used the implementation given
in [30] with the corresponding parameters.

2.6.2. Fine Tuning on False Color Images and RGB-Microscopy Images

Additionally, we fine-tuned a traditional ResNet architecture for image classification,
pre-trained on the Imagenet dataset [31], on the 3 channel outputs of the dimensionality
reduction and the traditional RGB images taken with the microscope camera. We utilized
label smoothing [32] and data augmentation based on Trivial Augment [33]. On each fold
we trained for 30 epochs using the Adam optimizer [34] with a learning rate of 0.001.

2.6.3. Using a 3D Convolutional Neural Network for Classification

We implemented an adapted version of the 3D CNN shown in [35], which is based on
a deep residual network (ResNet) [36]. We utilized label smoothing and performed data
augmentation in the form of random horizontal or vertical flips of the image, randomly
applying gaussian blur as well as randomly modifying the brightness of the hyperspectral
image. We trained for 45 epochs using the Adam optimizer with a learning rate of 0.001.

3. Results
3.1. Traditional Machine Learning for Spectral-Based Tumor Classification

The linear SVM based on each individual spectrum yet lacking additional information
about the morphology of the tissue was not able to distinguish healthy from tumorous
tissue. This led to either classifying 100% of the samples as healthy or classifying 100%
of the samples as tumor. Further analysis shows that the individual intensities differ
more between samples than between different tissue types, due to the manual setting of
illumination strength. This inhomogeneity in the data and the lack of a clear correlation
between tissue types and measured spectra lead us to explore more complex algorithms
such as deep learning for this classification task. We show the average spectra for healthy
and tumor tissue in Figure 1.
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Figure 1. The average spectrum for all pixels labelled either healthy or tumor. A detailed view of
each spectrum, including the standard deviation, can be found in the supplements in Figure S1.
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3.2. Visualization as False Color Images for Human Interpretability and Tumor Classification

The use of a dimensionality reduction technique such as Umap allows us to present
hyperspectral data as a false color RGB image. While this inadvertently leads to a loss of
information, it enables the visual inspection of the data samples. The focus on the most
important features of the spectra further increases the interpretability. In comparison with
H&E stained sections a correlation of the learned features with morphological structures
could be seen in Figure 2. The three features of the learned dimensionality reduction are
shown as a false color image (Figure 2D). The first feature is shown in red and coincides
well with the cytoplasm. The green channel shows the second feature and aligns with the
background, collagen and the extracellular matrix. The last feature is represented in blue
and match with the location of the nuclei.
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Figure 2. False color image representing the results of the Umap dimensionality reduction.
(A) unstained tissue section. (B) H&E stained tissue section. (C) Manual histopathological annotations
on H&E-stained tissue section. (D) False color image to visualize the results of the dimensionality re-
duction algorithm. Red feature: cytoplasm, green feature: background, collagen and the extracellular
matrix, blue feature: nuclei. The empty white tile in (D) was removed from the dataset due to a lack
of tissue or poor matching between HSI and microscopic imaging.

With this representation resembling natural images as well as medical images from
other modalities, we can perform further processing using established ML algorithms.

3.3. Deep-Learning-Based Tumor Detection

Using these false color images to fine tune a ResNet image classification network we
achieve a sensitivity of 0.40 ± 0.28, specificity of 0.92 ± 0.07, an accuracy of 0.76 ± 0.11 and
a F1-Score of 0.73 ± 0.15. The network was already pretrained to recognize a multitude
of objects in natural images allowing us to train it to recognize two more classes, tumor
and healthy tissue, with few computational resources (Figure 3). One exemplary tissue
section with the classification resulting from this approach is shown in Figure 3D. Without
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the hyperspectral information, using only the RGB images, we achieve a sensitivity of
0.21 ± 0.24, a specificity of 0.94 ± 0.07, an accuracy of 0.76 ± 0.10 and a F1-Score of 0.66 ± 0.14.
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Figure 3. Visualization of the tumor classification results of 3.1.3 and 3.1.4 on an exemplary tissue
section. (A) unstained tissue section. (B) H&E stained tissue section. (C) Manual histopathological
annotations. (D) Tumor classification using a fine-tuned ResNet architecture on false color images.
(E) Tumor classifications results using a 3D CNN on the full hyperspectral data cubes. Green: healthy
tissue. Red: Tumor tissue.

By combining the full spectral information with the morphological features of the
HSI-data cubes we achieved an average sensitivity of 0.48 ± 0.24, average specificity of
0.89 ± 0.05, an accuracy of 0.76 ± 0.10 and a F1-Score of 0.74 ± 0.14. One exemplary tissue
section with the classification results is shown in Figure 3E. Compared to the first ResNet
approach where we transformed the HSI data cubes to a more common RGB image format,
we observed that the use of the full spectral information increases sensitivity at the expense
of specificity. Furthermore, this approach comes at a significantly higher computational
cost. All classifications results are summarized in Table S3 in the supplements.

In Figure 4, we show a detailed zoom on two regions with misclassifications. They
were given to a second pathologist for evaluation. According to this reevaluation the false
negative classification does not correspond to any histopathological features. The false
positive, on the other hand, is in an area with some cell complexes that are ambiguous and
cannot be ruled out as tumor tissue purely based on histopathological assessment.
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Figure 4. Detailed evaluation of the 3d CNN-based tumor classification with a false positive (B) and
a false negative (C) sample. Both regions were given to a pathologist for reevaluation. The annotation
(D) was confirmed by the second pathologist. The red regions in (A) mark features that the second
pathologist labelled as ambiguous.

4. Discussion

In this study we used HSI for the automated detection of OSCC tumor areas within
unstained frozen tissue sections. By showing that we can detect tumor tissue with an
accuracy, specificity and sensitivity that is on par with traditional interoperative tumor
margin assessment, we introduce hyperspectral imaging as one potential new tool for this
task. Both implemented neural networks showed promising results.

Before approaching this task using complex deep learning models we evaluated if the
pure spectral information alone would be sufficient to differentiate tumor and non-tumor
tissue. Here, we found that a linear support vector machine trained on the individual
spectra cannot perform this classification task. While investigating these results we found
that the spectral features differ strongly between different measurements due to the manual
illumination present in our setup. To overcome this, we used two different deep learning
approaches. Deep-learning-based classification algorithms have been shown to be able
to handle sample inhomogeneity well as they make use of contextual and morphological
features on top of the spectra.

In our first approach we used a combination of two different ML approaches. In the
first step we used a ML-based dimensionality reduction technique to turn the 100 channel
HSI images into false color images. By employing a ML approach for this step, we kept
enough information to then apply a well proven deep-learning-based image classification
algorithm and accurately classify tumor and healthy samples. Additionally, the false color
images let the human back into the loop by turning high-dimensional HSI images into
interpretable false color images that show known morphological features of the samples.
This combined approach reaches a sensitivity of 0.40 ± 0.28 and a specificity of 0.92 ± 0.07.
We were able to achieve these results with relatively little computational cost since the
neural network was pretrained on existing datasets and we only needed to fine-tune it to
the HSI classification task. Compared with this, the classification based on the pure RGB
images, without any hyperspectral information shows worse classification performance
and specifically suffers from a poor sensitivity of just 0.21 ± 0.24. (Specificity: 0.94 ± 0.07,
Accuracy: 0.73 ± 0.09, F1-Score: 0.66 ± 0.14).
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In our second experiment we skipped the dimensionality reduction and instead
trained a neural network specifically design to handle inputs with many channels such as
HSI images. While this approach achieved comparable performance with a sensitivity of
0.48 ± 0.24 and an average specificity of 0.89 ± 0.05, this approach has its restrictions in
terms of available computational resources and limited sample availability. The network
architecture would benefit form more training data and a higher amount of samples.

One interesting result of our study emerged when we decided to have the misclassified
samples partially investigated by a second pathologist who had not seen them before. It
turned out that while most false negative samples brought no further insight a considerable
amount of the false positive classification areas contained ambiguous cell complexes which
could not be determined as guaranteed tumor-free cells. This shows the potential for ML to
guide the pathologist towards even small areas of interest that would otherwise be given
too little attention.

This result combined with the non-destructive, label-free and fast nature of the hyper-
spectral imaging process shows great potential in future applications. HSI combined with
deep learning can serve as a first classification step in interoperative tumor margin assess-
ment and additionally improve the following histopathological evaluation by highlighting
potential areas of interest.

Our tile-based approach that divides the tissue section into roughly 100–200 individual
regions classifying every single one of them provides sufficient spatial resolution for both
applications. This approach could be further improved by training a neural network for
segmentation instead of classification. We speculate that accuracy levels comparable to those
of an experienced pathologist can be achieved given enough computational resources and
an increased number of patients and samples. Given the well-studied adaptability of deep
learning methods and the right samples our results should hold true for other tumor entities.

In addition to investigating the presence or absence of tumor, HSI may be useful
to detect new molecular signatures. Currently, the detection of molecular alterations at
the tumor border are not visible to the pathologists and further tests are needed. The
manual analysis is not feasible within the duration of a surgical intervention. Using HSI,
the intraoperative molecular analysis of surgical margins may become feasible.

Until now, most deep learning attempts with biological material require further studies
and will benefit from more samples because tissue is not a standardizable matter. With
more samples the used standard, not domain specific, machine learning approaches could
be refined or replaced by more specialized approaches.

Another area for improvement for further research is the image acquisition process
as it currently it relies on the combination of two vendor specific programs and manual
operation of the hyperspectral camera. This process could be streamlined for further
applications.

5. Conclusions

In this study, we showed that combining microscopic hyperspectral imaging on un-
stained fresh-frozen tumor samples with an automated, deep-learning-based tumor classifi-
cation model should be considered a potential future approach for intraoperative tumor
margin assessment. Thanks to the easy-to-use, simple hardware and comparatively fast
image acquisition and processing times of around 10 min per slice, hyperspectral imaging
could become an additional tool for intraoperative tumor margin detection.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers15010213/s1, Table S1: No. of slides and tiles per patient;
Table S2: No. of ‘tumor’ and ’healthy’ tiles in each fold; Table S3: Tumor classification sensitivity,
specificity, accuracy and F1-score; Figure S1: Mean spectra of healthy and tumor tissue. Detailed
view with standard deviation of mean spectra.
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