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Integrating multi-omics data for cancer subtype recognition is an important

task in bioinformatics. Recently, deep learning has been applied to recognize

the subtype of cancers. However, existing studies almost integrate the multi-

omics data simply by concatenation as the single data and then learn a latent

low-dimensional representation through a deep learning model, which did not

consider the distribution differently of omics data. Moreover, these methods

ignore the relationship of samples. To tackle these problems, we proposed

SADLN: A self-attention based deep learning network of integrating multi-

omics data for cancer subtype recognition. SADLN combined encoder, self-

attention, decoder, and discriminator into a unified framework, which can not

only integrate multi-omics data but also adaptively model the sample’s

relationship for learning an accurately latent low-dimensional representation.

With the integrated representation learned from the network, SADLN used

Gaussian Mixture Model to identify cancer subtypes. Experiments on ten cancer

datasets of TCGA demonstrated the advantages of SADLN compared to ten

methods. The Self-Attention Based Deep Learning Network (SADLN) is an

effective method of integrating multi-omics data for cancer subtype

recognition.

KEYWORDS

self-attention, deep learning, multi-omics data, Gaussian mixture model, cancer
subtype recognition

1 Introduction

Cancer is one of the most common and fatal diseases with high heterogeneity, that is

same cancer will produce subtypes with different phenotypes, which will affect the clinical

treatment and prognosis (Bray et al., 2018; Siegel et al., 2020). Therefore, the recognition

of the cancer subtype is of great significance for the choice of treatment and prognosis of

cancer patients (Hong Zhao et al., 2014). With the developments of high-throughput

sequencing technology, there yield large amounts of multi-omics data, such as miRNA

expression data, mRNA expression data, DNA methylation data, and copy number
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variation etc. (Song et al., 2020). These multi-omics data can be

obtained by some publicly available projects. For example, The

Cancer Genome Atlas (TCGA) (Sayáns et al., 2019) stories more

than 30 cancers over 11,000 patients’ data and provides valuable

opportunities for cancer subtype recognition. Existing studies

have demonstrated that incorporating multi-omics data can

obtain better performances and improve the understanding of

cancer progression compared to using single-omic data

(Hawkins et al., 2010; Kristensen et al., 2014; Hasin et al.,

2017). Therefore, there is a strong need for integrated analysis

of multi-omics data in cancer subtype recognition (Simidjievski

et al., 2019; Xu et al., 2019; Picard et al., 2021).

The clustering algorithm is often used to recognize cancer

subtypes. Researchers have proposed many clustering methods

for multi-omics data integration. These methods can be divided

into three categories: early integration, late integration, and

intermediate integration (Rappoport and Shamir, 2018).

Early integration methods simply concatenate different

omics’ feature matrices to a single matrix and use the single

omics clustering algorithm to subtype the matrix (Rappoport and

Shamir, 2018). For example, K-means, LRAcluster, and Spectral

clustering all belong to this category. Early integration methods

do not consider the differences in the distribution and

information contribution of each omics data, they increase the

dimension of input data and exacerbate the dimension problem.

In late integration, each omic data is clustered separately and the

clustering solutions are integrated to obtain a single clustering

solution. For example, COCA (Le et al., 2016) and PINS (Nguyen

et al., 2017) belong to this category. Late integration methods

ensure robustness against noise and bias, but the performance

may be greatly affected when each omics data have different

degrees of information contribution.

On the other hand, intermediate integration attempts to

build a model that integrates all omics, including the method

of integrating sample similarity, the method of using joint size

reduction, and the method of using data statistical modeling.

Similarity-based ensemble methods construct and fuse the

sample similarity at each omics level to obtain consistent

sample-sample relationships, and then perform cluster

analysis. Typical methods include SNF (Wang et al., 2014)

and NEMO (Rappoport and Shamir, 2019). These methods

are very sensitive to data noise or network parameters due to

the instability of the kernel distance function. An ensemble

method based on dimensionality reduction is used to project

each omics data into a common low-dimensional space, typical

methods are CCA and MCCA (Witten and Tibshirani, 2009).

However, these methods are susceptible to data noise and feature

heterogeneity. Statistics-based ensemble methods build a

statistical model to tackle ensemble challenges, including

cluster (Shen et al., 2009), iClusterPlus and iClusterBayes.

As machine learning development, deep learning has been

widely used in healthcare, such as imaging-based computer-

aided diagnosis (Yu et al., 2021), digital pathology (Parodi

et al., 2015), drug design (Peng et al., 2020), prediction of

hospital admission (Zhang et al., 2022), classification of cancer

(Zeng et al., 2021), and so on. With the advancement of the high

learning capability and flexibility of deep neural networks, more

and more deep learning based multi-omics integration methods

have been proposed for cancer subtype recognition (Poirion

et al., 2018; Guo et al., 2019). Most of them adopted

autoencoder (AE) architecture, such as multi-omics

autoencoder integration (MAUI) (Song et al., 2021), stacked

sparse autoencoder (SSAE) (Xu et al., 2016), denoising

autoencoder for accurate cancer prognosis prediction (DCAP)

(Chai et al., 2021), which can efficiently leverage multi-omics

datasets to learn latent factors of observed data in lower

dimensions. However, these methods are almost based on

early integration and ignore the distributions of different

omics which would underestimate heterogeneous omics data

(Wang et al., 2020). To solve these problems, some researchers

have proposed deep learning based middle integration methods

(Sharifi-Noghabi et al., 2019; Adossa et al., 2021; Picard et al.,

2021). These methods separately learned each omics data

through some subnetwork, and then integrated the output of

every sub-network into a unified representation. For example,

Tong et al. (2020) proposed ConcatAE, a method of

concatenating features learned from each omics using an

autoencoder. Yang et al. (2021a) proposed Subtype-GAN, an

approach that used multi-input multi-output neural networks

separately to model multi-omics data. Although these methods

have demonstrated good performance in cancer subtype

recognition, they ignore the relationship between samples

when learning valuable feature representation. Different omics

data types could provide unique characteristics to the patients’

space. Therefore, it is crucial to utilize the relationship of patients

to further boost learning performance.

More recently, attention mechanism has become a new

technology in the field of deep learning. The dominant thought

is to measure the similarity between the Key and the Query (Mercer

and Neufeld, 2021). Attention mechanism has been applied in

speech NLP, image and other fields (Luo et al., 2018; Yuan et al.,

2018; Li et al., 2020a; Liu et al., 2020), since it can select the most

informative features of an input, adaptively consider the importance

of a single feature and allow the model to make a more accurate

judgment. As a special, self-attention (Shaw et al., 2018; Hou et al.,

2019), which calculates the response at a position in the sequence by

attending to all positions within the same sequence has achieved

notable success in modeling complicated relations (Gao et al., 2019).

For instance, it displays the superiority in machine translation

(Zhang et al., 2020), sentence embedding (Li et al., 2020b) of

modeling arbitrary word dependency and has been successfully

applied to capture node similarities in graph embedding (Mustafa

Abualsaud, 2019). Research shows that the attention-based encoder

is more fit for learning high-level features (Chen et al., 2021).

To this end, we proposed SADLN: a self-attention based deep

learning network integrating multi-omics data for cancer subtype
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recognition. SADLN is a middle integration method by

consolidates the adversarial generation network and the self-

attention mechanism to describe the different distributions of

multi-omics data and fusion samples’ relationship. It used an

independent sub network to learn omics-specific features and

concatenated omics-specific features to an integration

representation. Then used a self-attention to learn the

relationship of samples on the integration representation and

obtained a feature representation that fused the sample

relationship. Finally, it used the Gaussian Mixture Model

(GMM) to obtain the subtyping label of each sample.

The main contribution is summarized as follows:

1) We proposed a novel deep learning method, SADLN, which

combines encoder, self-attention, decoder, and discriminator

into a unified framework. It can simultaneously integrate

multi-omics representation and sample relations.

2) We firstly introduced the self-attention into the deep learning

based method for the cancer subtyping recognition task

which allows the model to automatically learn the

similarity of samples for better representation.

3) We conducted experiments on ten cancer datasets of TCGA,

and SADLN achieved outstanding performance compared

with ten integration methods. It provided the theoretical basis

and a newmethod for clinical diagnosis and precise treatment

of cancer, which has great theoretical significance and clinical

application value.

2 Methodology

Our proposed method consists of two steps. Firstly, we used

the SADLN model to learn an integrated feature representation

from multi-omics data. Secondly, with the learned feature

representation, we used the GMM to identify sample’s

subtypes. In the SADLN model, the input is the sample’s

multi-omics data and the output is the sample’s integrated

low-dimensional feature representation. The model consists of

three main blocks: self-attention based encoder, decoder and

discriminator. Figure 1 gives the overview architecture of our

proposed method. In the following, we describe each block in

more detail.

FIGURE 1
The overview architecture of SADLN.
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2.1 Self-attention based encoder

To be able to generate higher quality data distribution, we

design a self-attention based encoder in our SADLN model as

shown in Figure 1. The self attention based encoder transforms

the multi-omics data into a low-dimensional latent space

representation z with distribution N(μ, σ) using multiple

independent network layers, a fully connected layer and the

self attention layer. We used four sub-independent dense

network to extract features from each original omics data. For

each sub-independent layer, let xm � {xm1 , . . . , xm
N} ∈ RN×D

denotes the input of the network for the m-th omics data, ym �
{ym

1 , . . . , y
m
N} ∈ RN×d denotes the output of the m-th omics

through the sub-independent layer, where N is the number of

data samples, D and d are the feature dimension of the input data

and the output data respectively. ym can be express as:

ym � wmx
m + bm (1)

where wm is the weight matrix, bm is the bias.

To fusion features from different omics data, we concatenate

four features matrices into a feature representation matrix. The

integrating feature matrix Y can be expressed as:

Y � Concat y1, . . . , y4( ) (2)

For example, if the outputs of the sub-networks is a N × d

feature matrix, after concatenation, the output will be one N × 4d

feature representation matrix. To prevent the model overfitting,

we appended batch normalization layers and used the Gaussian

Error Linear Unit (GELU) function as the non-linear activation

function. That is:

Y′ � GELU Y( ) (3)

Although the concatenation operation can integrate multi-

omics data, the relationship between samples is not considered. In

this study, we introduced self-attention mechanism to construct

the relationship between samples. Self-attention is typically used to

model the relationship of words in a sentence, we treat each

sample’s features vector as a word and learn the samples’

weight matrix through the sample’s feature vectors.

Let dk = 4d, K � [k1, k2, . . . , kN] ∈ RN×dk is a set of keys, Q �
[q1, q2, . . . , qN] ∈ RN×dk is a set of queries, V �
[v1, v2, . . . , vN] ∈ RN×dk is a set of values, K = Q = V = Y′,
K =Y′WK,Q = Y′WQ,V = Y′WV.WK,WQ,WV are the parameters

of linear projection layers. Z � {z1, z2, . . . , zN} ∈ RN×dk denotes

the finally integrating representation, the jth feature vector zj is

computed as the following steps (Yang et al., 2021b). Firstly, we use

the dot-product between qi and kj to compute the similarity of the

sample i and j. To ensure the result does not get excessively large,

we scale it by
��
dk

√
. That is:

ri,j �
qi × kTj��

dk

√ (4)

Secondly, softmax function was used to obtain the similarity

weight. That is:

ωi � softmax
qi × kT1��

dk

√ ,
qi × kT2��

dk

√ , . . . ,
qi × kTN��

dk

√{ } (5)

Thirdly, the integrated feature vector zi of sample i can be

obtained by a weighted sum of the values. That is:

zi � Attention qi,K,V( ) � ∑N
j�1

ωivj (6)

Finally, the integrated feature representation can be

express as:

Z � Attention Q,K,V( ) � z1, z2, . . . zN[ ] ∈ RN×dk (7)

To keep the data distribution unchanged, we added batch

normalization layers after the self-attention model.

Suppose Z obeys Gaussian distribution Z ~ N(μ, σ2), where μ

is the mean and σ2 is the variance. In this paper, we obtained μ

and σ2 through two fully-connected layers.

2.2 Decoder

Decoder, in our SADLN model attempts to reconstruct the

original multi-omics data from the integrating representation Z.

As shown in the upper right halves of Figure 1, it contains fully

connected layers and an output layer. Let XI � {x1I , x2I , x3I , x4I}
denotes the input of encoder, XO � {x1O, x2O, x3O, x4O} denotes the
output of decoder. To minimize the error between the input XI

and the output XO (Badrinarayanan et al., 2017), the square

Euclidean distance was applied to calculate the loss LDecoder, it can

be expressed as:

LDecoder � ‖XI − XO‖22 �
1
4
∑4
k�1

‖xkI − xkO‖22 (8)

2.3 Discriminator

To force the distribution of the integrated feature

representation matches the prior Gaussian distribution, we

added a discriminator D to the model, which is a part of the

GAN network. A typical GAN network is composed of a

generator G and a discriminator D. In this work, we regard

the self-attention base encoder part as the generator G, the input

of the discriminator D is the output of the encoder part, and the

randomly sampled data with Gaussian distribution. Let G(z)

denote the function of the generator, and P(z) denote the prior

Gaussian distribution. The discriminator D is used to distinguish

the samples from P(z) or the G(z) (Yang et al., 2021a). Through

adversarial learning, G(z) is as close to P(z) as possible.
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The objective function optimization of discriminator D

adopts the method of maximization and minimization. It can

be expressed as:

min
G

max
D

Ez′~P z( ) logD z′( )[ ] + Ez~G z( ) log 1 −D z( )( )[ ] (9)

where E represents the expected value of the distribution

function. We use the binary_crossentropy function to train

the discriminator learning process. The loss of the

discriminator is:

LDiscr � −Ez′~P z( ) logD z′( )[ ] − Ez~G z( ) log 1 −D z( )( )[ ]
− Ez~G z( ) log D z( )( )[ ] (10)

Our model parameters of the whole network are jointly

trained by minimizing the following total loss:

L � λ1LDecoder + λ2LDiscr (11)

where LDecoder and LDiscr are defined in Eq.8 and Eq. 11,

respectively. λ1 and λ2 ∈ [0, 1] are trade-off parameters.

2.4 The GMM clustering of SADLN

For the generated feature representation Z � {zn}Nn�1, we use
GMM to identify sample’s subtypes. GMM is a probabilistic

clustering method, which also belongs to the generative model. It

assumes that all the data points are generated from a mixture of a

finite number of Gaussian distributions (Gu et al., 2020). GMM

model has excellent clustering performance. In this paper, we use

GMM as the clustering module. Let K denotes the number of

clusters, π = (π1, π2, . . ., πk) represent the weight of each cluster,

μ = (μ1, μ2, . . ., μk) is the mean vector,∑ = (∑1,∑2, . . .,∑k) is the

covariance vector, Z � {zn}Nn�1 is the final integrated feature

representation, p(zn) is the probability distribution function as

a mixture of K Gaussian distributions. That is:

p zn( ) � ∑K
k�1

πkpk zn( ) � ∑K
k�1

πkN zn|μk,∑k
( ) (12)

GMM used the EM algorithm to update the parameters π, μ

and ∑. According to the maximum probability density of the

sample in different clusters, the most suitable subtype labels are

obtained.

3 Experiments and analysis

3.1 Network structure and
hyperparameter setting

The SADLN model has 19 layers, including 10 layers of the

encoder, five layers of the decoder, and four layers of the

discriminator. The specific network structure of SADLN is

shown in Table 1. The model is built based on python 3.6.12,

Keras 2.2.4, and TensorFlow 1.14.0 (the CPU version). The

operating system is Windows 10. In terms of hardware, the

CPU is Intel(R) Core (TM) i7-105 10U.

Optimizing hyperparameters are the key to training neural

network models. Choosing appropriate hyperparameters can

significantly improve the performance of the model. In this

paper, the hyperparameters of the SADLN model mainly

include the feature dimension of the independent sub network

(d), the initial epoch, batch size, random seed, optimizer,

activation function, learning rate and loss. Table 2 shows the

hyperparameter settings of the SADLN model.

3.2 Datasets and evaluation metrics

To evaluate the performance of our proposed method

SADLN, we used ten TCGA cancers datasets provided by

(Yang et al., 2021a) from https://github.com/haiyang1986/

Subtype-GAN. The datasets include BRCA, LUAD, BLCA,

PAAD, KIRC, STAD, UVM, GBM, SKCM, and UCEC. These

ten datasets contain sufficient samples and have reasonable

numbers of subtypes. There are four types of omics data for

each cancer: copy number, DNA methylation, mRNA and

miRNA. The datasets have been preprocessed and feature

selection was performed. The preprocessing steps of four types

data are as follows (Hoadley et al., 2018). The DNA methylation

data were combined from two generations of Infinium arrays,

HumanMethylation27 (HM27) and HumanMethylation450

(HM450). Firstly, the HM27 data against the HM450 data was

normalized of 0–1 for β-values using a probe-by-probe

proportional rescaling method. Then, 3,139 CpG sites were

selected that were methylated at a β-value of ≥ 0.3. For

mRNA and miRNA data, firstly, the log transformation was

performed separately, then poorly expressed genes were excluded

based on median-normalized counts, and finally variance

filtering was used to reduced features. Pre-processing led to

3,217 mRNA and 382 miRNA features. For copy number

data, firstly, genomic regions along a chromosome defined by

consecutive positions with amaximumEuclidean distance (based

on copy number log-ratio segmented values) between any

adjacent two probes smaller than 0.01 were formed; this

resulted in a total of 3,105 copy number regions. Then each

region was represented by its medoid signature, led to 3,105 copy

number features. Finally, 3,105 copy number features,

3,217 mRNA features, 383 miRNA features and 3139 DNA

methylation features were extracted from the original data

source.

We used two evaluation metrics to evaluate the effect of

cancer subtype recognition: survival analysis and clinical

enrichment analysis. Survival analysis was obtained by the

Cox log-rank test (Rainer and Muche and hosmer, 2001) to

measure differential survival between subtypes. Smaller p-value

indicates significant differences in survival profiles of different
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subtypes. In the clinical enrichment analysis, the differences in

clinical indicators between subtypes were measured by the p-

value obtained by Kruskal-Wallis test and Chi-square test for

numerical and discrete clinical labels of cancer, respectively.

Smaller p-value indicates significant differences between

subtypes on this clinical label. Six clinical labels (Rappoport

and Shamir, 2018) including age at diagnosis, gender,

pathologic T, pathologic N, pathologic M, and pathologic

stage were used for testing. The four latter parameters are

discrete pathological parameters, measuring the size and

extend of the primary tumor (T), the number of nearby

lymph nodes that have cancer (N), whether the cancer has

TABLE 1 The network structure of SADLN.

Architectures SADLN

Self-attention based encoder 3,105 + 3,217 + 383+3,139 (Input)

25 + 25+25 + 25 (concatenate)

100 (Batch normalization)

100 (Activation)

100 (Attention)

100 (Batch normalization)

100 (Fully-connected)

100 (Fully-connected, Mean) 100 (Fully-connected, VAR)

100 (Output)

Decoder 100 (Input)

100 (Fully-connected)

100 (Batch normalization)

100 (Activation)

3,105 + 3,217 + 383 + 3,139 (Output)

Discriminator 100 (Input)

1 (Fully-connected)

1 (Sigmoid)

1 (Output)

TABLE 2 Hyperparameter settings of SADLN model.

Hyperparameter Setting

d 25

Epoch 600

Batch size 64

Random seed 2

Optimizer Adam optimizer

Activation function Gaussian error linear unit

Learning rate (lr) 1e-4, 2e-4, 3e-4, 4e-4, 5e-4, 1e-5, 2e-5, 3e-5, 4e-5, 5e-5

Loss λ1 1

Loss λ2 0.0001
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metastasized (M)and the total progression (pathologic stage).

Cancer’s clinical parameters were not all available, such as GBM

and UCEC only have two clinical parameters.

To avoid the influence of small cluster size on the accuracy of

evaluation metrics, the permutation test (Rappoport and Shamir,

2018) was applied to calculate the p-value of Cox log-rank test in

survival analysis and Chi-square test in clinical enrichment

analysis. Permutation test obtains an empirical p-value using

the test statistic by permuting the cluster labels between samples.

To perform permutation tests, we randomly permuted the

clustering assignments of the different samples. For the log-

rank test, the number of permutations we performed for each

clustering solution was first min((max 10
originalp−value, 1e4), 1e6)

and then another 1e5 permutations until the stopping

condition was met. The stopping condition was having both

the lower and upper ends of the 95% confidence interval for the

p-value to be within 10% of its estimate, and such that the interval

did not cross .05. For the clinical enrichment test, we continued

on performing 1e3 permutations until the 95% confidence

interval did not cross 0.05, up to a maximum of 1e5

iterations. This maximum number of iterations was only

needed in case the p-value was extremely close to 0.05.

3.3 Ablation studies

To evaluate the contributions of key component of our

model, we perform ablation studies in this section. There are

three key modules in SADLN, self attention, decoder and

discriminator. We separately removed these modules from

SADLN, Table 3 gives the results of ablation studies in ten

cancer datasets on TCGA.

From Table 3, we can see that, compared with the model

without the attention module, namely SADLN (NO SA), SADLN

achieved better values on seven cancer datasets (BRCA, KIRC,

GBM, LUAD, PAAD, STAD, and UVM). Compared with

removing the discriminator module (λ2 = 0), SADLN obtained

better value on eight cancer datasets (BRCA, GBM, KIRC,

LUAD, PAAD, SKCM, UCEC, and UVM). The −log10p

values of removing the decoder module (λ1 = 0) are lower

than SADLN. These results indicates that three modules play

an important role in addressing the issue of feature generation.

3.4 Comparison with other state-of-the-
art algorithms

To verify the performance of SADLN, we compared it with

ten state-of-the-art methods. Three deep learning based methods

include AE, VAE and Subtype-GAN and seven non-deep

learning based methods include K-means, LRAcluster,

iCluster, Spectral, NEMO (Rappoport and Shamir, 2019),

MCCA (Witten and Tibshirani, 2009) and SNF (Wang et al.,

2014). These ten methods can represent different types of

approaches for integrating multi-omics data. AE and VAE

belong to early integration methods, both input and output

are integrated multi-omics data. Subtype-GAN belong to

middle integration method, the input and output are multi-

omics features. For ten comparison algorithms, (Yang et al.,

2021a) detailed the network structure, parameter selection and

execution details its Supplementary Materials Note 1 and Note 2.

In this study, we rigorously implement these algorithms

following the guidelines of (Yang et al., 2021a).

To reduce the influence of different clustering numbers on

the results of subtyping, following the work (Yang et al., 2021a),

we set the cluster number of BRCA, LUAD, BLCA, PAAD, KIRC,

STAD, UVM, GBM, SKCM and UCEC were 5, 3, 5, 2, 4, 3, 4, 4, 4,

4, respectively. These cluster numbers of different cancers have

TABLE 3 The −log10p values of ablation studies in ten cancer datasets on TCGA (bold indicates that this method performs best on the corresponding cancer
dataset).

Cancer SADLN SADLN (NO SA) SADLN (λ2 = 0) SADLN (λ1 = 0)

BLCA 2.4 2.5 1.7 0.3

BRCA 2.6 2.3 0.4 0.4

GBM 1.8 1.7 0.4 0.2

KIRC 6.6 5.7 5.4 1.9

LUAD 3.1 2.4 0.3 0.04

PAAD 3.2 1.7 2.2 0.3

SKCM 3.0 4.5 0.9 0.8

STAD 1.4 1.3 2.0 0.3

UCEC 4.0 5.4 4.7 1.8

UVM 4.5 4.2 2.2 0.2
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been proved to be clinically informed (Berger et al., 2018; The

Cancer Genome Atlas Research Network, 2013; Robertson et al.,

2017a; The Cancer Genome Atlas Research Network, 2014;

Levine, 2013; Akbani et al., 2015; Li and Wang, 2021;

Verhaak et al., 2010; Raphael et al., 2017; Robertson et al.,

2017b). Table 4 gives the cluster number and subtypes of ten

cancers. For example, in a previous study, GBM was classified

into Classical, Mesenchymal, Neural, and Proneural subtypes

based on mRNA expression data (Verhaak et al., 2010).

Table 5 gives the −log10p values of survival analysis for

eleven methods of ten cancer datasets on TCGA. The clustering

results of the other ten compared methods come from Yang’s

literature (Yang et al., 2021a). Bold indicates that this method

performs best on the corresponding cancer dataset.

As shown in Table 5, SADLN achieved the most significant

results on PAAD, STAD, LUAD and UVM cancer datasets.

Compared with Subtype-GAN, SADLN obtained better value

on seven cancer datasets (BRCA, GBM, KIRC, LUAD, PAAD,

STAD, and UVM). Compared with AE, SADLN obtained the

best −log10p-value in ten cancer datasets. Compared with non-

deep learning based methods, although same methods had best

results in specific cancer datasets, the −log10p-value was highest

on most cancer datasets.

Table 6 gives the clinical parameters enrichment analysis

result of SADLN and other compared methods of ten cancer

datasets.

From Table 6, we can see that SADLN obtained the best

results on four datasets (KIRC, GBM, STAD, UCEC). Therefore,

TABLE 4 The cluster number and subtypes of ten cancers.

Cancer Cluster number Subtypes

BRCA 5 LumA, LumB, Her2, Basal, Normal

LUAD 3 Terminal respiratory unit, Proximal inflammatory, Proximal proliferative

BLCA 5 Luminal-papillary, Luminal-infilitrated, Luminal, Basal/Squamous, Neuronal

PAAD 2 Basal-like/Squamous, Classical/Progenitor

KIRC 4 KIRC-M1, KIRC-M2, KIRC-M3, KIRC-M4

STAD 3 Immunity-Deprived (ImD), Stroma-Enriched (StE), Immunity-Enriched (ImE)

UVM 4 Disomy 3 (D3)-UVM-1, D3-UVM-2, Monosomy 3 (M3)-UVM-3, M3-UVM-4

GBM 4 Proneural, Neural, Classical, Mesenchymal

SKCM 4 Mutant BRAF, Mutant RAS, Mutant NF1, Triple-WT (wild-type)

UCEC 4 POLE (ultramutated), MSI (hypermutated), Copy-number high (serous-like), Copy-number low (endometrioid)

TABLE 5 The −log10p values of survival analysis based on Cox log-rank model of ten cancers datasets on TCGA (bold indicates that this method performs best
on the corresponding cancer dataset).

Cancer SADLN Subtype-GAN AE VAE K-means Spectral LRA-cluster SNF NEMO MCCA iCluster

BLCA 2.4 2.5 0.1 0.1 0.6 1.8 0.1 1.2 2.3 1.1 1.0

BRCA 2.6 2.3 0.1 0.3 0.2 0.1 0.2 2.2 1.0 2.7 0.7

GBM 1.8 1.7 1.1 1.0 2.3 2.6 0.9 1.2 2.4 1.0 2.1

KIRC 6.6 5.7 2.6 6.0 4.2 4.6 7.0 4.4 4.3 7.0 3.9

LUAD 3.1 2.4 0.7 1.4 1.0 0.6 0.3 1.5 2.2 0.9 0.6

PAAD 3.2 1.7 0.1 2.5 2.3 2.0 2.2 2.1 2.0 2.1 1.0

SKCM 3.0 4.5 0.0 2.4 2.1 1.9 1.5 3.8 4.7 0.9 1.1

STAD 1.4 1.3 0.1 0.0 0.1 0.3 0.1 0.5 1.1 1.3 0.4

UCEC 4.0 5.4 0.4 5.4 5.7 0.8 4.2 5.0 6.0 5.0 1.3

UVM 4.5 4.2 2.7 2.1 1.6 1.9 2.3 2.5 2.3 2.4 1.1
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we believe that SADLN is competitive with other methods in

cancer subtype recognition.

Friedman (1937) analysis was also used to evaluate the

performance (Figure 2). From Figure 2, we can see that the

performance of SADLN is better than the three methods iCluster,

LRAcluster and AE (p < 0.05), but not better than other methods.

We found that the performance of the methods is not exactly

consistent under the two evaluation strategies.

3.5 Comparison of multiple omics data
and single omics data

SADLN integrated four types of omics data. To demonstrate

the necessity of integrating multiple omics data for subtype

recognition, we compared multiple omics data and single

omics data of SADLN (denoted as SADLN-single) on

subtyping results. We use the random forest (RF) method to

analyze the contribution of different omics data on the subtyping

results of SADLN. The input of RF is the four original omics

features and the subtype labels of SADLN. The output of RF was

the Gini importance scores of the features. We perform RF using

scikit-learn (1.0.1) package of python, where the key parameter

max_depth is set to six and the other parameters are set to the

default values. We summed all the Gini importance scores

belonging to each type of omics data and quantified the

contribution of different omics data to the final subtyping

results. The results are shown in Figure 3.

From Figure 3 we can see that the greatest contribution of

BRCA, BLCA, LUAD, SKCM, UCEC, and UVM datasets was

mRNA data, the greatest contribution of GBM was CNV data

and the greatest contribution of KIRC, PAAD, and STAD was

DNA methylation data. For different cancers, we choose the

greatest contribution of omics data as the input of SADLN-single.

The settings of parameters remain the same as SADLN. We also

use the metric of p-value of survival analysis in Cox log-rank

model to compare the performance of SADLN and SADLN-

single (Table 7).

From Table 7, we can see that the p-values of SADLN are all

smaller than the values of SADLN-single on ten cancer datasets.

These results demonstrated that the integration of multiple omics

data can help improve the performance of subtyping.

3.6 Survival analysis and visualization of
clustering results

Survival curves can also be used to express the heterogeneity

of different subtypes. Figures 4A–J shows the ten cancers’ Kaplan

Meier survival alanalysis curves. From Figure 4, we can see that

different clusters have significantly differences in survival curves

(p-value < 0.05). Take BRCA cancer for example (Figure 4A),

C1 has the longest average survival time, followed by C5, C2 and

C3, C4 has a poor survival time.

To visualize the clustering results, we used the t-SNE

embedding method to display the final integrated feature

representation of the SADLN (Figure 5). From Figure 5, we

can see that samples of the same cluster are almost grouped

together, and samples of different clusters are almost departed.

3.7 Case study

In this section, BRCA data is used to analyze the cancer

subtypes obtained by the proposed method SADLN. Firstly, we

analyzed the overlaps of the identified subtype clusters with the

TABLE 6 The clinical parameters enrichment analysis of SADLN and other methods of ten cancer datasets on TCGA (bold indicates that this method performs
best on the corresponding cancer dataset).

Methods BRCA LUAD BLCA PAAD KIRC STAD UVM GBM SKCM UCEC

SADLN 5 3 5 2 6 3 0 1 1 1

Subtype-GAN 6 5 5 2 6 2 2 1 4 1

AE 0 1 0 1 5 1 0 1 0 0

VAE 5 2 6 1 6 2 1 0 1 1

K-means 5 1 3 0 6 2 0 1 1 1

Spectral 3 1 4 0 6 2 0 1 2 1

LRAcluster 5 1 3 1 6 1 0 0 0 1

SNF 5 3 6 2 4 1 0 0 4 1

NEMO 5 4 6 2 5 1 1 1 3 1

MCCA 5 4 3 4 3 2 1 1 0 1

iCluster 4 1 1 0 4 2 0 1 1 1
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FIGURE 2
The p-values of the Friedman test on ten cancer datasets.

FIGURE 3
Contribution of mRNA, miRNA, CNV, and DNA methylation to the subtyping results of SADLN on ten cancer datasets.
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PAM50 cancer subtypes (Parker et al., 2009). There are five

PAM50 cancer subtypes (Normal, LumA, LumB, Basal, and

Her2), among 1,031 BRCA samples, only 803 samples have

PAM50 subtypes including 128 Basal, 66 Her2, 405 LumA,

182 LumB, and 22 Normal. Table 8 shows the results of the

overlap. From Table 8, we can see that, cluster C3 is enriched with

LumA, of the 252 samples, 223 samples (88.49%) are LumA.

Cluster C2 is enriched with LumA and LumB, of the 170 samples,

109 samples (64.12%) are LumA and 54 samples (31.76%) are

LumB. Cluster C4 is enriched with LumB and LumA, of the

101 samples, 61 samples (60.40%) are LumB and 30 samples

(29.70%) are LumA. Her2 and Basal samples are centrally

distributed in clusters C1 and C5.

In order to illustrate the difference between the identified

subtype clusters of SADLN, we also analyzed the mutation

profiles of BRCA using mutation data (the mutation data can

be found at https://portal.gdc.cancer.gov). Among 1,031 samples

in BRCA datasets, 820 samples have the mutation data. Figure 6

gives the 20 significantly mutated genes of the identified subtype

clusters. From Figure 6, we can see that, clusters C2 and C3 have a

significant difference in the frequency of PIK3CA and

CDH1 genes, although clusters C2 and C3 are all dominated

by LumA subtype. The C1 and C5 clusters have a high frequency

of TP53 gene mutations, this also explains why clusters C1 and

C5 are dominated by Basal and Her2 subtypes.

To illustrate the difference between clusters C1 and C5, we

used RF method to analyzed the differential genes using mRNA

expression data. Figure 7 gives the result.

Among these differential expression data, study has shown that

the expression of ALDH3B2 was higher in SK-BR-3 cells compared

with in other subtypes of breast cell lines, as determined by reverse

transcription-polymerase chain reaction and western blot analysis.

In addition, the expression levels of ALDH3B2 were higher in Her2

positive breast cancer compared with in other subtypes of breast

cancer, as determined by immunohistochemistry, which may be

used as a prognostic indicator for breast cancer (Feng et al., 2019).

The expression level of CLEC10A to be positively associated with the

level of different tumor-infiltrating immune cells in BRCA including

CD8 T cells, B cells, macrophages, and NK cells. These results

suggest that the relationship between lower CLEC10A expression

level and poor prognosis in BRCA may be due to the role of

TABLE 7 The p values of survival analysis in Cox log-rank model of SADLN
based multiple omics data and single omics data (bold indicates that this
method performs better on the corresponding cancer dataset).

Cancer SADLN SADLN-single

BRCA 2.40e-03 4.23e-01

BLCA 4.39e-03 2.30e-02

LUAD 7.69e-04 3.00e-02

SKCM 9.22e-04 2.37e-01

STAD 4.30e-02 2.37e-01

UVM 3.38e-05 6.74e-01

GBM 1.77e-02 1.33e-01

KIRC 2.77e-07 1.74e-01

UCEC 9.52e-05 1.24e-01

PAAD 6.39e-04 1.40e-02

FIGURE 4
The Kaplan–Meier survival curves of ten cancer datasets. (A) BRCA, (B) BLCA, (C) GBM, (D) KIRC, (E) LUAD, (F) PAAD, (G) SKCM, (H) STAD, (I)
UCEC, (J) UVM.
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FIGURE 5
t-SNE visualization of the final integrated features by SADLN on ten cancer datasets. (A) BRCA, (B) BLCA, (C)GBM, (D) KIRC, (E) LUAD, (F) PAAD,
(G) SKCM, (H) STAD, (I) UCEC, (J) UVM.

TABLE 8 The overlaps of the identified subtype clusters with PAM50 subtypes in BRCA cancer datasets.

Subtype ID C1 (N = 134) C2 (N = 170) C3 (N = 252) C4 (N = 101) C5 (N = 146)

Basal (128) 60 (44.78%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 68 (46.58%)

Her2(66) 26 (19.40%) 5 (2.94%) 2 (0.79%) 9 (8.91%) 24 (16.44%)

LumA (405) 20 (14.93%) 109 (64.12%) 223 (88.49%) 30 (29.70%) 23 (15.75%)

LumB (182) 20 (14.93%) 54 (31.76%) 17 (6.75%) 61 (60.40%) 30 (20.55%)

Normal (22) 8 (5.97%) 2 (1.18%) 10 (3.97%) 1 (0.99%) 1 (0.68%)

FIGURE 6
The mutation profiles of BRCA datasets with 20 significantly mutated genes using mRNA expression data.
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CLEC10A in the tumor immune microenvironment (Tang et al.,

2022).

3.8 Identify the key biomarkers in each
cancer

To identify the key biomarkers that determine the subtyping

results in each cancer, we ranked the importance of mRNA features

of each cancer dataset using the clustering labels of SADLN and RF

method to achieve the five most essential biomarkers. For each

cancer, Table 9 gives the five biomarkersmost relevant to ten cancers.

For BRCA as an example, the five key biomarkers are AGR3,

GDF10, EEF1A2, ATP6V0A4, and GIPC2. By literature review, we

found that the AGR3 gene (de Moraes et al., 2022) affects the

prognosis of luminal breast cancer patients. EEF1A2 gene (Hassan

et al., 2020) and the GDF10 (Zhou et al., 2019) gene have influenced

the prognosis of triple-negative breast cancer patients. The study has

shown that the expression of the ATP6V0A4 gene (Savci-Heijink

et al., 2019) is a signature of visceral organ metastasis in breast

cancer. Although the GIPC2 gene (Dong et al., 2021) has not been

found in BRCA but has been shown that it acts on the pathogenesis

and development of a pheochromocytoma. All these literature

reviews demonstrated the results of SADLN on the BRCA

dataset are reliable.

4 Discussion

Recently, integrating multi-omics data for cancer subtyping

is an important task in bioinformatics. In this paper, we proposed

SADLN, a novel deep learning based integrated method for

cancer subtyping. The method firstly introduced self-attention

into the encoder-decoder based network architecture. It

attempted to describe complex and diverse multi-omics data

accurately and adaptively build the samples’ relationship when

learning a shared low-dimensional representation during

molecular subtyping. Compared with three deep learning and

seven non-deep learning based integration algorithms, SADLN

has two characteristics: 1) Unlike the early integration methods

such as AE and VAE, SADLN characterizes multi-omics data

respectively which enables the model to effectively describe

different omics data with distinct distributions, meanwhile,

the output integrating representation fits the prior

distribution. 2) The self-attention module in SADLN taking

full use of the sample’s multi-omics information, can

FIGURE 7
Gini importance scores of differential genes in C1 and C5 clusters.

TABLE 9 The five biomarkers most relevant to ten cancers.

Cancers Biomarkers

BRCA AGR3, GDF10, EEF1A2, ATP6V0A4, GIPC2

BLCA GFPT2, SNX31, RASSF9, MUC4, CACNG3

GBM SHROOM3, PLEKHG4B, CNTNAP4, KCP, PEG10

KIRC ITPKA, PTPN3, SEMA3B, LRRC55, DNASE1L3

LUAD HPGDS, UGT1A4, C1orf116, STAT4, ZG16

PAAD RIMSI, HAL, PAX8, THEM5, EDN2

SKCM PGLYRP3, TFAP2A, IGSF3, COL17A1, OGDHL

STAD MEOX2, LIMS2, BEND7, TPSG1, APLN

UCEC SPDEF, SORBS2, C1orf192, CD163L1, BCL2L14

UVM PYGM, SCNN1A, SERPINA3, SLC47A22, PRPH
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automatically learn the weight matrix between samples andmake

the results of feature integration more convincing.

We demonstrated the power of SADLN using ten datasets of

TCGA. The experiments of survival analysis and Friedman analysis

show that SADLN has a good clustering consequence. Meanwhile,

the experiments of SADLN and SADLN-single show that integrating

multiple omics data is a necessity and useful. The BRCA results

indicated that SADLN can efficiently distinguish cancer subtypes.

SADLN found 50 biomarkers for all cancers. Some

biomarkers have been verified in previous studies. In clinical

research, researchers can conduct more subtype analysis studies

on related cancers based on the biomarkers obtained by SADLN.

For example, SADLN believes that MEOX2 is an important

biomarker of STAD. The study (Wang et al., 2021) has shown

that MEOX2 is a novel biomarker associated with macrophage

infiltration in digestive system cancer.

Although SADLN has enhanced the performance of cancer

subtyping recognition, it also has limitations. Firstly, it is

unsuited to integrate binary data. Secondly, it could not find

the genes modules that affect each subtype. Thirdly, the

relationship between omics data was not considered. For the

next research, we will continue our efforts to develop an attention

based method to simultaneously learn the relationship between

multi-omic and samples to explore cancer heterogeneity.

5 Conclusion

In this paper, we proposed Self-Attention Based Deep

Learning Network (SADLN) for integrating multi-omics data

for cancer subtype recognition. The novel method is based on

recent advances in deep learning and self-attention. It can jointly

learn different multi-omic data representations and relations

between samples. In comparison to the state-of-the-art

methods, experiments on ten datasets of TCGA have

demonstrated the effectiveness of SADLN.
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