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Abstract: We study the dynamical generation of entanglement for a two-body interacting system,
starting from a separable coherent state. We show analytically that in the quasiclassical regime the
entanglement growth rate can be simply computed by means of the underlying classical dynamics.
Furthermore, this rate is given by the Kolmogorov–Sinai entropy, which characterizes the dynamical
complexity of classical motion. Our results, illustrated by numerical simulations on a model of
coupled rotators, establish in the quasiclassical regime a link between the generation of entanglement,
a purely quantum phenomenon, and classical complexity.

Keywords: quantum complexity; quantum to classical transition

1. Introduction

The characterization of complexity in quantum systems is a key problem, not only
for fundamental reasons but also for the development of quantum technologies [1–3].
While for classical dynamical systems a well-established notion of complexity exists, based
on Kolmogorov–Sinai (KS) entropy [4], which in turn is related to the exponential insta-
bility of orbits, in the quantum realm the measure of complexity has proven to be an
elusive problem.

First, we cannot sic et simpliciter use trajectories, due the Heisenberg uncertainty prin-
ciple. To circumvent such problem, phase-space approaches have been proposed [5–20],
based on the evolution of phase space distributions. Second, entanglement, the key re-
source in the quest for quantum advantage, is peculiar to quantum composite systems and
therefore is a source of quantum complexity without a classical analogue. Since for pure
bipartite systems the reduced von Neumann entropy, known as entanglement entropy, is
the well-established measure of entanglement [21], it is interesting to investigate whether
its growth in a dynamical system is related to the KS entropy of the underlying classical
dynamics [22].

For bosonic systems with an unstable quadratic Hamiltonian, entanglement entropy
grows linearly in time, with a rate upper bounded by the KS entropy, the bound being
saturated under suitable conditions on the size of the bipartitions [23]. The question then
arises, whether the entanglement growth of chaotic quantum systems in the quasiclassical
regime is also determined by the KS entropy. This issue was investigated more than two
decades ago, with numerical results suggesting that the entanglement generation rate
is given by the KS entropy [24]. On the other hand, such results were obtained in the
weakly chaotic regime, with coexistence of chaotic seas and tori, while another study
in the strongly chaotic region, where the effect of tori is negligible, showed instead no
increase of the entanglement production rate upon an increase of the maximum Lyapunov
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exponents [25]. This apparent contradiction was explained by a quasiclassical calculation
for the linear entropy, approximating the entanglement entropy, under the condition of
weak coupling between the subsystems in the underlying classical dynamics [26,27]. This
work showed that the entanglement growth rate is determined by the minimal value of the
three rates given by the standard one deduced from the interaction term and the largest
Lyapunov exponents of the two subsystems, respectively.

In this paper, we remove the above restriction on the coupling strength and compare
the quantum evolution starting from separable coherent states with the classical evolution
of initially Gaussian distributions, of a size determined by the effective Planck constant of
the corresponding quantum dynamics. We show that in the quasiclassical regime quantum
and classical linear entropy are in agreement and grow with the rate given by the KS entropy
of classical dynamics. Our analytical results are illustrated by numerical simulations for a
model of kicked-coupled rotators.

This work is dedicated to our friend and colleague Giulio Casati, who has always had
a deep interest in understanding the complexity of quantum motion.

2. Analytical Results

In this section, we connect, for an overall pure bipartite system, the growth rate of
linear entropy to the KS entropy of the classical underlying dynamics. We consider a two
body system, whose Hamiltonian reads

Ĥ = Ĥ1(q̂1, p̂1) + Ĥ2(q̂2, p̂2) + Ĥ12(q̂1, p̂1, q̂2, p̂2). (1)

The corresponding classical Hamiltonian is written as

H(q1, p1, q2, p2) = H1(q1, p1) + H2(q2, p2) + H12(q1, p1, q2, p2). (2)

We compute as entanglement measure the linear entropy (also known as second Rényi
entropy) of a subsystem (for example, system 1), which is defined as

S(ρ̂1) = − ln(Tr(ρ̂2
1)). (3)

Here ρ̂1 is the reduced density matrix of the system 1, ρ̂1 = Tr2(ρ̂), where the partial trace
is taken over system 2 and ρ̂ is the density matrix of the composite system. Note that
equivalently we could have considered system 2, since S(ρ̂2) = S(ρ̂1), with ρ̂2 = Tr1(ρ̂).
The linear entropy is much more convenient for numerical and analytical investigations
than the reduced von Neumann entropy SvN(ρ̂1) = −Tr(ρ̂1 ln ρ̂1). At the same time, it is a
very useful entanglement probe. Indeed, if the linear entropy of a part is larger than the
linear entropy of the overall system, bipartite entanglement exists between that part and
the rest of the system. Moreover, for maximally mixed states of a subsystem of dimension
N, the linear entropy and the reduced von Neumann entropy are both maximized and
equal to ln N.

In order to obtain the classical analog of the linear entropy, we make use of the Husimi
function [28] of the density matrix ρ̂, given by

WH(γ) =
1

(2πh̄)2 〈γ|ρ̂|γ〉, (4)

where γ = (q1, p1, q2, p2), |γ〉 denotes the coherent state of the composite system centered
at γ, and h̄ is the effective Planck constant. In the quasiclassical limit h̄→ 0, the trace of ρ̂2

1
can be carried out by making use of the Husimi function W1

H of ρ̂1 as

Tr(ρ̂2
1) =

∫
dγ1[W1

H(γ1)]
2, (5)
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where γ1 = (q1, p1), |γ1〉 denotes the coherent state of system 1 centered at γ1, and

W1
H(γ1) =

1
2πh̄
〈γ1|ρ̂1|γ1〉. (6)

Furthermore, the reduced density matrix ρ̂1 can also be obtained in terms of the coherent
states of the system 2, denoted by |γ2〉, as

ρ̂1 = Tr2(ρ̂) =
1

2πh̄

∫
dγ2〈γ2|ρ̂|γ2〉. (7)

Substituting Equation (7) into Equation (6), we have

W1
H(γ1) =

∫
dγ2WH(γ), (8)

yielding with Equation (5)

Tr(ρ̂2
1) =

∫
dγ1

∣∣∣∣∫ WH(γ)dγ2

∣∣∣∣2. (9)

Hence, we obtain

S(ρ̂1) = − ln

[∫
dγ1

(∫
dγ2WH(γ)

)2
]

. (10)

After replacing the Husimi function WH(γ) with the classical distribution function
ρ(γ), the classical analog of linear entropy can be written as

Scl(ρ1) = − ln
[∫

dγ1(ρ
1
re(γ1))

2
]

, (11)

where ρ1
re(γ1) indicates the marginal distribution function of γ1,

ρ1
re(γ1) =

∫
dγ2ρ(γ). (12)

It is expected that
S(ρ̂1) ≈ Scl(ρ1) (13)

holds in the quasiclassical limit in which the effective Planck constant h̄→ 0.
An explicit expression can be derived for the classical entropy Scl(ρ1) as follows. We

consider the initial state as the “most classical" state, that is, a coherent state |γ〉, whose
corresponding classical distribution function can be written as

ρ0(γ) =
1

(πh̄c)2 exp
(
− 1

h̄c
|γ− γ0|2

)
, (14)

which has a Gaussian form whose center is denoted by γ0, h̄c = h̄ is chosen to be the same
as the effective Planck constant in the quantum case, and |γ− γ0| indicates the norm of the
vector δγ = γ− γ0. In the quasiclassical limit, one has h̄c → 0, which means that, for times
smaller than the Ehrenfest time scale tE (with tE → ∞ as h̄c → 0), almost all the states in
the ensemble remain close to the center γ0(t). This implies that the distribution of states at
time t, ρt(γ), is significantly different from zero only for small |δγ|. In this case, the time
evolution of δγ is determined by the so-called stability matrix

Mij
t =

∂(δγi(t))
∂(δγj(0))

∣∣∣∣∣
δγ(0)=0

, (15)
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with
δγ(t) = Mtδγ(0). (16)

As the classical linear entropy is independent of the coordinate’s origin, for the convenience
of the following discussion, we choose the position of the center γ0(t) as the origin of
coordinates. In this local coordinate system along γ0(t), we can replace δγ(t) = γ(t)−
γ0(t) by γ(t).

Then making use of Liouville’s theorem, the distribution at time t can be written as

ρt(γ) = ρ0(M−1
t γ), (17)

and therefore

ρt(γ) =
1

(πh̄c)2 exp
(
− 1

h̄c
|M−1

t γ|2
)

. (18)

Using the positive definite symmetric matrix

At ≡ (M−1
t )T M−1

t , (19)

the density distribution at time t can be written as

ρt(x) =
1

(πh̄c)2 exp

(
− 1

h̄c

4

∑
i,j=1

xi A
ij
t (t)xj

)
, (20)

which is a Gaussian distribution, with x corresponding to γ, that is, (x1, x2, x3, x4) =
(q1, p1, q2, p2). In order to calculate the classical linear entropy, we first calculate the
marginal distribution function of ρt(x) for system 1:

ρ1
t (x1, x2) =

∫
ρt(x1, x2, x3, x4)dx3dx4. (21)

Then the classical linear entropy at time t can be written as

Scl(ρt) = − ln
[∫

dx1dx2

(
ρ1

t (x1, x2)
)2
]

. (22)

As outlined in the Appendix A, by writing At in block form,

At =

(
â b̂

b̂
T

d̂

)
, (23)

we obtain our first main result

Scl(ρt) = ln(2πh̄) +
1
2

ln[det(d̂)]. (24)

In the derivation we restrict to the case of a two-particle system, however, the generalization
to N particles is straightforward.

In order to compute det d̂, we sum the eigenvalues of the operator d̂ (denoted by dk,
in order of descending energy), which are in close relation to the eigenvalues of At. We
diagonalize the symmetric matrix At as

At = Vdiag{A1, A2, A3, A4}V T , (25)

where diag indicates a diagonal matrix, Ak is the k-th eigenvalue of At, and V is an
orthogonal matrix. If the system is chaotic, Ak ∝ e2λkt, where λk is the k-th Lyapunov
exponent, with λ1 > λ2 > 0 > λ3 > λ4, and λ3 = −λ2, λ4 = −λ1.
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Hence, in the typical case in which the eigenvectors (denoted by |Ak〉, k = 1, 2) of At
corresponding to the eigenvalues A1 and A2 have non-zero components within the Hilbert
space of system 2, we have

d1 ∝ e2λ1t, d2 ∝ e2λ2t. (26)

As a result,
det d̂ ∝ exp 2(λ1 + λ2)t, (27)

which directly leads to
Scl(ρt)− Scl(ρ0) = (λ1 + λ2)t, (28)

indicating that the growth rate of the linear entropy is given by the Kolmogorov–Sinai
entropy of the overall system, which is the second main result of our work.

3. Numerical Results

In this section, we numerically illustrate the prediction of equivalence between the
classical and quantum growth of linear entropies, Equation (13), as well as the growth as
predicted in Equation (28), by means of a two-body system which has a clearly defined
classical counterpart. More specifically, we consider two coupled rotators (or coupled
tops) [29,30], with respective angular momentum operators Ŝ = (Ŝx, Ŝy, Ŝz)T and L̂ =
(L̂x, L̂y, L̂z)T , and a time-dependent Hamiltonian with kicked interaction:

Ĥ =
a
j
(Ŝz + L̂z) +

c
j2

Ŝx L̂x

∞

∑
n=−∞

δ(t− n), (29)

where j is the (half-integer or integer) total angular momentum quantum number of both
tops. The Hamiltonian possesses constants of motion, Ŝ2

and L̂2. The Hilbert space is
expanded by making use of |s, ms, l, ml〉 ≡ |s, ms〉 ⊗ |l, ml〉, which are the joint eigenvectors
of Ŝ2

, Ŝz, L̂2, L̂z,

Ŝ2|s, ms, l, ml〉 = s(s + 1)|s, ms, l, ml〉,
Ŝz|s, ms, l, ml〉 = ms|s, ms, l, ml〉,

L̂2|s, ms, l, ml〉 = l(l + 1)|s, ms, l, ml〉,
L̂z|s, ms, l, ml〉 = ls|s, ms, l, ml〉. (30)

where ms ∈ {−s,−s + 1, · · · , s− 1, s}, and ls ∈ {−l,−l + 1, · · · , l − 1, l}. Here we choose
s = l = j.

The Floquet operator, that is the unitary evolution operator between consecutive kicks,
can be written as

F̂ = exp[−ia(Ŝz + L̂z)] exp[−i
c
j
Ŝx L̂x]. (31)

The classical counterpart can be obtained by taking the quasiclassical limit h̄ = 1
j → 0.

Introducing the rescaled angular momenta Ŝk = Ŝk
j and L̂k = L̂k

j , and considering the
quasiclassical limit j→ ∞, yields the classical analog of the model,

Hc = a(Sz + Lz) + cSxLx

∞

∑
n=−∞

δ(t− n), (32)

where S2
x + S2

y + S2
z = L2

x +L2
y +L2

z = 1. Depending on the coupling strength the classical
motion can be either chaotic or nearly-integrable, as shown by the three-dimensional
Poincaré surfaces of sections of Figure 1.
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Figure 1. Three-dimensional Poincaré surface of section for the chaotic case (a): a = 5, c = 3 and
the near-integrable case (b): a = 5, c = 0.5, where we fix φ2 = 0. Here we only consider a single
trajectory starting from (θ1, φ1, θ2, φ2) = (π

4 , 0, 3π
4 , 0) (see text for the definition of the angles θk and

φK , k = 1, 2).

In the numerical simulations of both the quantum and classical cases, the linear
entropy is averaged over Np different initial states. In the quantum case, we consider the
initial states |θ1, φ1, θ2, φ2〉 ≡ |θ1, φ1〉 ⊗ |θ2, φ2〉, where |θ1, φ1〉 and |θ2, φ2〉 indicate the spin
coherent state of the first rotator,

|θ1, φ1〉 = eiθ1Ŝz eiφ1Ŝy |j, j〉, (33)

and an analogous expression holds for the second rotor. Then, the quantum averaged linear
entropy is calculated as follows,

Sq(t) =
1

Np
∑
p

Tr((ρ̂p
1 (t))

2), (34)

where
ρ̂

p
1 (t) = Tr2(F̂t|θp

1 , φ
p
1 , θ

p
2 , φ

p
2 〉〈θ

p
1 , φ

p
1 , θ

p
2 , φ

p
2 |(F̂†)t), (35)

and (θ
p
1 , φ

p
1 , θ

p
2 , φ

p
2 ) are chosen randomly. In the classical case, we consider an initial ensem-

ble of Gaussian states,

ρ0(θ
′
1, φ′1, θ′2, φ′2) = A exp

(
− (θ′1 − θ1)

2

h̄c
− sin2(θ1)(φ

′
1 − φ1)

2

h̄c

)

× exp

(
− (θ′2 − θ2)

2

h̄c
− sin2(θ2)(φ

′
2 − φ2)

2

h̄c

)
, (36)

which in case of h̄c → 0 can be written in terms of canonical variables (q1, p1, q2, p2) =
(φ1, cos θ1, φ2, cos θ2) as

ρ0(q′1, p′1, q′2, p′2) = A′ exp

(
− (q′1 − q1)

2

h̄c(1− p2
1)
− (1− p2

1)(p′1 − p1)
2

h̄c

)

× exp

(
− (q′2 − q2)

2

h̄c(1− p2
2)
− (1− p2

2)(p′2 − p2)
2

h̄c

)
. (37)

Here A and A′ are normalization constants. Then the classical averaged linear entropy is
calculated as

Scl(t) =
1

Np
∑
p

Scl(ρ
p
t ), (38)
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where Scl(ρ
p
t ) indicates the classical linear entropy (defined in Equation (11)), starting

from the initial ensemble, centered at (qk
1, pk

1, qk
2, pk

2). In our numerical simulations, we
considered 107 trajectories for each initial ensemble, and the integral in Equation (11) is
calculated by summing over the whole phase space with respect to system 1, which is
divided into 4× 106 phase cells.

Results for the chaotic regime are shown in Figure 2. Note that λ2 is comparable to λ1,
and the behavior S(t)− S(0) = (λ1 +λ2)t predicted in Equation (28) on the basis of a purely
classical calculation, can be clearly seen both for quantum and classical simulations. The
growth rate, in very good agreement with the KS entropy λ1 + λ2, is clearly distinguished
from the growth rate given by the largest Lyapunov exponent λ1 alone. Note that by
increasing the coupling strength c the entanglement growth rate increases, in accordance
with the increase of the classical KS entropy. Moreover, it can be clearly seen that the
agreement between the classical and quantum linear entropy extends to longer times as
h̄ = h̄c is reduced.

0 1 2 3 4 5 6 7

0

1

2

3

4

5

S
(t

)

(a)

h̄ = 0.02
h̄ = 0.01
h̄ = 0.004
h̄ = 0.002

h̄ = 0.001
h̄ = 0.0005
h̄ = 0.00017

h̄C = 0.00017
h̄C = 1e− 05
S = λ1t

S = (λ1 + λ2)t

0 1 2 3 4 5 6 7

t

0

2

4

6

8

S
(t

)

(b)

Figure 2. Quantum (circles with solid line) and classical (triangles with solid line) averaged linear
entropy for different h̄ and h̄c in the kicked coupled tops model defined in Equation (29), for (a):
a = 5, c = 3 and (b): a = 5, c = 5. The dashed lines indicate the functions S = (λ1 + λ2)t (red) and
S = λ1t (light blue). The initial values of S(t = 0) are subtracted.

In Figure 3, we show data in the regular regime with weaker coupling strength, for
which invariant tori of the integrable model at c = 0 are deformed but survive. The volume
occupied by the tori is the largest portion of the phase space and this affects the growth
of the linear entropy, which is logarithmic rather than linear. Our numerical results show
that, for large enough h̄, the entropy S(t) ∝ log tα, with α ≈ 1, while α slowly increases
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with reducing h̄. Note that the separation between nearby trajectories increases linearly
in time for integrable dynamics. Therefore, the number of cells of area h̄ occupied in the
two-dimensional phase-space for system 1 is proportional to t2, leading to the expected
growth S(t) ∝ log t2. We therefore conjecture that such growth would be achieved in the
limit h̄→ 0.

101 102

t

0

1

2

3

4

5

6
S

(t
)

h̄ = 0.02

h̄ = 0.01

h̄ = 0.004

h̄ = 0.002

h̄ = 0.0005

h̄C = 0.0005

h̄C = 2e− 05

S = ln t

S = 2 ln t

Figure 3. Same as in Figure 2, but for weaker coupling strength c = 0.5, for which motion is
quasi-integrable. The lines S(t) ∝ log t and S(t) ∝ log t2 are also drawn.

4. Conclusions

We have shown that in the quasiclassical regime the entanglement growth rate is
given by the Kolmogorov–Sinai entropy of the underlying classical dynamics. Note that we
are considering initial separable coherent states, so that the quantum wave packet closely
follows the underlying classical phase space distribution up to the Ehrenfest time, which
diverges as the effective Planck constant h̄ → 0. In spite of the lack of entanglement in
classical mechanics, our results prove, in the quasiclassical regime, the close connection
between entanglement generation and complexity of classical motion. Moreover, our
derivation based on purely classical grounds provides an intuitive picture that could hardly
be obtained on the basis of purely quantum calculations. Finally, the entanglement growth
is linear in the classically chaotic and logarithmic in the regular regime, thus showing the
entangling power of chaos.

Author Contributions: J.W. developed analytical calculations and performed numerical simulations.
The work was supervised by G.B., with inputs from B.D. and D.R. All authors discussed the results
and contributed to writing and revising the manuscript. All authors have read and agreed to the
published version of the manuscript

Funding: J.W. is supported by the Deutsche Forschungsgemeinschaft (DFG) within the Research
Unit FOR 2692 under Grant No. 397107022 (GE 1657/3-2)and No. 397067869 (STE 2243/3-2), B.D.
and D.R. acknowledge support from the Institute for Basic Science in Korea (IBSR024-D1). G.B.
acknowledges the financial support of the INFN through the project QUANTUM.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.



Entropy 2023, 25, 97 9 of 10

Appendix A. Derivation of Equation (24)

We write At in block form,

At =

(
â b̂

b̂
T

d̂

)
, (A1)

where â = âT , d̂ = d̂
T

, and b̂ are 2 × 2 matrices. Furthermore, we introduce two-
dimensional vectors q1

T = (x1, x2) and q2
T = (x3, x4). The matrix Equation (A1) can

be brought to the form

(
q1

T , qT
2

)( â b̂

b̂
T

d̂

)(
q1
q̃2

)
=
(

q1
T , q̃T

2

)( ˆ̃a 0̂
0̂ d̂

)(
q1
q̃2

)
, (A2)

with
q̃2 = Ŷq1 + q2, Ŷ = d̂

−1
b̂

T
, (A3)

and
ˆ̃a = â− b̂d̂

−1
b̂

T
. (A4)

Then, Equation (20) becomes

ρ1
t (q1) =

1
(πh̄c)2 exp

(
− 1

h̄c
qT

1
ˆ̃aq1

) ∫
dq̃2 exp

(
− 1

h̄c
q̃T

2 d̂q̃2

)
. (A5)

The integrals can be performed after introducing the integration variable transformation
q̃2 → R̂2q̃2, with

d̂ = R̂T
2 Λ2R̂2, Λ2 =

(
d1 0
0 d2

)
, (A6)

yielding

ρ1
t (q1) =

1
πh̄c

1√
det
(

d̂
) exp

(
− 1

h̄c
qT

1
ˆ̃aq1

)
. (A7)

Using that det(At) = 1 = det
(

d̂
)

det
(

ˆ̃a
)
, one has

∫
dq1

(
ρ1

t (q1)
)2

=
det
(

ˆ̃a
)

(πh̄c)2

∫
dq1 exp

(
− 2

h̄c
qT

1
ˆ̃aq1

)
=

1
2πh̄c

√
det( ˆ̃a) =

1
2πh̄c

1√
det(d̂)

, (A8)

which leads to Equation (24).
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