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Abstract: Biological genotypes do not code directly for phenotypes; developmental physiology is 
the control layer that separates genomes from capacities ascertained by selection. A key aspect is 
cellular competency, since cells are not passive materials but descendants of unicellular organisms 
with complex context-sensitive behavioral capabilities. To probe the effects of different degrees of 
cellular competency on evolutionary dynamics, we used an evolutionary simulation in the context 
of minimal artificial embryogeny. Virtual embryos consisted of a single axis of positional infor-
mation values provided by cells’ ‘structural genes’, operated upon by an evolutionary cycle in which 
embryos’ fitness was proportional to monotonicity of the axial gradient. Evolutionary dynamics 
were evaluated in two modes: hardwired development (genotype directly encodes phenotype), and 
a more realistic mode in which cells interact prior to evaluation by the fitness function (“regulative” 
development). We find that even minimal ability of cells with to improve their position in the em-
bryo results in better performance of the evolutionary search. Crucially, we observed that increasing 
the behavioral competency masks the raw fitness encoded by structural genes, with selection favor-
ing improvements to its developmental problem-solving capacities over improvements to its struc-
tural genome. This suggests the existence of a powerful ratchet mechanism: evolution progressively 
becomes locked in to improvements in the intelligence of its agential substrate, with reduced pres-
sure on the structural genome. This kind of feedback loop in which evolution increasingly puts more 
effort into the developmental software than perfecting the hardware explains the very puzzling di-
vergence of genome from anatomy in species like planaria. In addition, it identifies a possible driver 
for scaling intelligence over evolutionary time, and suggests strategies for engineering novel sys-
tems in silico and in bioengineering. 

Keywords: artificial life; in silico; artificial embryogeny; evolutionary computation; development; 
morphogenesis; basal cognition 
 

1. Introduction 
One critical aspect of real biology which is not always taken into account in evolu-

tionary computation and theoretical biology efforts, is that the mapping between geno-
type and phenotype is not direct [1–13]. Genes generally do not directly encode for struc-
ture and function of the organism. Instead, it has become increasingly clear that develop-
mental physiology provides a critical layer of control that sits between genomes (on which 
mutation operates) and anatomy (the phenotype which is the subject of selection). During 
development, organisms emerge as the result of a complex set of interactions among cells, 
with anatomical order and functionality being the result of cellular activities. While ge-
nomes specify the cellular hardware (proteins), it is the software (cellular activity) studied 
by developmental biologists that is ultimately responsible for the organism’s overall 
structure and behavior [14–18]. 
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The simple story of genomes determining anatomy is shown to be incomplete by ex-
amples such as the highly regenerative planaria [19]: due to reproduction by fissioning 
and regeneration, they retain mutations made in the parent body and pass them on to 
their offspring (somatic inheritance). As a result, planaria have an incredibly messy ge-
nome (indeed, worms are mixoploid—different numbers of chromosomes in each cell). 
Despite this, they have the most reliable anatomy: every fragment of a planarian regener-
ates a perfect worm each time. They are essentially immortal, and highly resistant to can-
cer [20]. How can the animal with the most chaotic genome have the most reliable, robust 
anatomy? Fundamental knowledge gaps in this area not only impede our understanding 
of basic evolutionary developmental biology but also limit our ability to make desired 
system-level changes to complex anatomy in the context of regenerative medicine [21–23]. 

The indirect relationship between genotype and phenotype has a number of im-
portant implications. For example, it is currently impossible to guess the anatomy of an 
organism by examining its genome—overall symmetry type, number and kinds of organs, 
size, regenerative capacity, etc.—can only be estimated if one compares a genome to that 
of another organism for which all of these are already known. Likewise, even when one 
has access to complete genomes, for example of the frog and axolotl, one cannot guess the 
shape of a chimeric embryo: will a “frogolotl”, consisting of 50% of each kind of cells, 
make legs (like an axolotl larva) or not (like a tadpole)? This is because, while much re-
search has shed light on molecular mechanisms necessary for morphogenesis, the field 
still largely lacks an understanding of the key dynamics that determine form and function: 
large-scale anatomical decision-making by cellular collectives [19,24,25]. 

Importantly, the cells that make up these collectives evolved from independent uni-
cellular organisms with extensive capabilities for sensing their environments and re-
sponding. The key role of these capabilities in morphogenesis reframes cells as an agential 
[26], not a passive, material. There are numerous examples: one of the most remarkable 
qualities of morphogenesis is its competency in reaching an adaptive anatomical outcome 
despite novel starting states and perturbations [24,27,28]. For example, mammalian em-
bryos can be split into pieces, and each piece gives rise to a complete organism (monozy-
gotic twinning). Some animals retain these regenerative capacities into adulthood—sala-
manders whose limbs (or eyes, jaws, tails, etc.) are amputated will re-grow exactly the 
missing portion and then stop when the correct structure is complete [29]. Tadpoles with 
scrambled faces become largely normal frogs, as the craniofacial organs move in novel 
paths until the correct configuration is achieved [30–32]. Tadpoles with eyes placed on 
their tails (and not in their heads) can see [33]. All of this means that mutations resulting 
in noise or changes in initial positions of the organs, which would have been disastrous 
for a hardwired architecture, will not have a strong effect on survival because the tissues 
will make needed reconfigurations to compensate for errors in initial state. It is clear that 
this rapid, built-in capacity for anatomical homeostasis and problem-solving must have 
implications for the evolutionary process, but this has not been extensively explored. 

We previously proposed that the competency of the developmental layer results 
from the navigation policies of a collective intelligence of cells in anatomical mor-
phospace—an evolutionary precursor to the intelligence of neural cells which are well 
known to navigate 3-dimensional and other problem spaces [24,27]. We refer to these nav-
igation policies as competency of the cellular collective—the capacity to sense their envi-
ronment and each other, and to communicate to effectively solve problems in mor-
phospace during development (i.e., reach appropriate target morphology despite pertur-
bations and changing internal and external conditions). Such collective cellular intelli-
gence is an essential aspect of morphogenesis during development, regeneration, and can-
cer suppression, and is central to the genome-form-function relationship. As has been 
claimed for learning [22,34,35], these collective competencies could greatly smooth the 
evolutionary landscape and enable access to regions of the phenotype space that would 
otherwise have been hard or impossible to reach. 
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The evolutionary importance of information not encoded in the genome directly has 
been studied previously by evolutionary biologists and in the field of artificial life, pri-
marily in the context of learning [24,27]. Many organisms can modify their behavior in 
light of experience, improving their fitness via information that was not provided by the 
genome. As early as 1896, Baldwin proposed that such adaptive behaviors, while not en-
coded by the genome, are assimilated into the genome (hardcoded) over evolutionary 
timescales, a phenomenon known as the Baldwin Effect [24,27]. Classic simulations of the 
interplay between learning and evolution demonstrated that the Baldwin Effect does in-
deed change the evolutionary landscape of organisms capable of learning [24,27]. This 
dynamic offers competing tendencies, in which learning takes pressure off the genome 
via a shielding effect [24,27] at first, by providing behaviors that do not need to be discov-
ered by evolution of the genome. Subsequently, genetic assimilation takes the pressure off 
the need for learning, by eventually finding ways to hardcode those behaviors. This learn-
ing paradigm emphasizes two different kinds of fitness [24,27]. Genotypic fitness is the 
quality of the structural genome—what the organism would have been able to accomplish 
given only the static information in its genome. Phenotypic fitness is what selection actually 
‘sees’—the performance of the organism after both hardwired and learned repertoires 
have had their chance to shine. 

Here, we introduce cellular competency as another important contributor to pheno-
typic fitness. Cellular competency [25,34,35] has a number of important differences from 
learning. First, the ability of cells and tissues to attain and maintain setpoints in morpho-
logical spaces is independent of learning at the level of the individual. Second, learning at 
the level of the organism needs a mechanism (e.g., nervous system architecture) that must 
itself be painstakingly evolved—evolution must discover, maintain, and pay the costs of 
new capabilities such as brains and exploratory behaviors. In contrast, cellular competen-
cies come “by default” because organisms consist of cellular components that already 
have many capabilities evolved during their ancestral lifetime as independent organisms. 
Thus, it is important to begin to study how cellular competencies affect evolution, to com-
plement approaches focused on learning, evolvability mechanisms [36–41], and the mate-
rial properties of morphological computation [42–46]. All of these factors interact in vivo, 
and will need to be studied separately and together. 

The question we address here is: How do diverse levels of competency in the cellular 
collective during morphogenesis impact the rate and course of the evolutionary process? 
We undertook a quantitative investigation of this question using a minimal model of ar-
tificial embryogeny. Our model did not include learning or classical behavior at the indi-
vidual level, but instead solved a problem in morphogenetic space. Our system simulates 
an animal with a single axis of positional information values (such as the anterior-poste-
rior axis) [47,48]. Virtual embryos consist of a 1-dimensional array of integers, with their 
evolutionary fitness being proportional to the degree of monotonicity of those values. In 
the baseline case, we use a direct encoding where the phenotype is a direct consequence 
of the genotype—the values of the array directly specify the order of values in each em-
bryo. Under these conditions, a genetic algorithm eventually produces structural genes in 
which all the values are in the correct (monotonic) order. We compare these outcomes to 
a more realistic case, in which the mapping is not direct: we introduce a development 
algorithm in which individual cells have some degree of competency to rearrange them-
selves based on their local environment. Cells can move to numerically more-advanta-
geous positions before evaluation of phenotypic fitness. We accomplish this through a 
restricted bubble sort procedure [49], highlighting the conceptual similarity between sort-
ing algorithms and navigation in a geometric problem space. This corresponds to embry-
ogenesis in vivo, in which cells act before the mature animal’s fitness is ascertained in the 
environment. Importantly, our system does not include Lamarckian inheritance. Instead, 
it features a strong barrier between soma and germline: the rearrangements occur for each 
individual but the only thing that gets passed on to their offspring is their original pre-
swap structural genome [50,51]. 



Entropy 2023, 25, 131 4 of 24 
 

We varied the degree of cellular competency, and tracked the dynamics of the result-
ing evolution, both in terms of raw genotypic fitness and phenotypic fitness. We also ex-
plored the effects of adding a competency cost. We observed a number of interesting out-
comes. First, including a developmental layer that models a range of cellular competencies 
improves evolutionary efficiency in proportion to the degree of cellular competency. Sec-
ond, in mixed populations, competent individuals tend to eventually dominate the pop-
ulation. Third, when the degree of competency is itself allowed to evolve, populations 
settle on a specific, sub-maximal level of competency. Finally, and most critically, we ob-
served that because competency hides genetic deficiencies from selection, pressure to im-
prove the structural genome is released, while pressure to improve the morphogenetic 
competency of cells is increased. These dynamics establish a positive feedback loop in 
which populations advance by progressively improving cellular capacities, not just the 
genes dictating the actual initial structure of each embryo. This provides an explanation 
for the otherwise mysterious disconnect between planarian genomes and their amazing 
anatomical robustness, and suggests the existence of an evolutionary ratchet working to 
optimize intelligence in even very basal forms [52–57]. 

2. Methods 
We simulate the evolution of artificial 1-dimensional embryos in silico. The following 

sections describe the structure of each embryo, our paradigm for modeling developmental 
morphogenesis towards a target adult anatomy, and the process of selection employed to 
study their dynamics over time. 

2.1. Creating Populations for Evolution 
A population consists of a number of embryos. Each embryo is represented as a one-

dimensional array of fixed size (matching the cell count in the 1-dimensional embryo). 
Each cell of this array is initialized with a different integer value representing the posi-
tional value gene for the corresponding cell of the embryonic axis (see Supplement S1). In 
this minimal model, there is no further chromosomal structure or transcriptional change, 
and we simply refer to the structural genes as directly specifying the positional preference 
of a given cell. Each embryo undergoes a developmental cycle (described below) to be-
come a mature “individual”. We model evolution in three kinds of populations: a “hard-
wired” population consisting of only hardwired embryos, a “competent” population of 
only competent embryos, and a “mixed” population which contains both kinds of em-
bryos, in varying proportions. Our mixed populations have 200 embryos, the rest have 
100. 

2.2. Hardwired and Competent Embryos 
We define two types of embryos, a “hardwired embryo” and a “competent embryo” 

(Figure 1A,B). The difference between them lies in the way they develop during the evo-
lutionary cycle. A competent embryo consists of cells capable of sensing neighboring cells 
and adapting morphology by moving around prior to the adult stage in which fitness is 
evaluated. “Competency” is the capability of these embryos to carry out such reorganiza-
tion, and they carry a gene that dictates their degree of motility (fixed, in some experi-
ments, but free to evolve in others). Our competent embryos leverage sensing and motility 
to reorganize their cells during ‘development’ in a way that boosts fitness (see below and 
Supplement S1). We vary the degree to which they can reorganize (competency level). A 
hardwired embryo lacks this capability; its structure from birth to maturity is constant. 
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Figure 1. Schematic of experimental setup. (A): Definition of a hardwired embryo: Each hardwired 
embryo is a 1-D array consisting of 50 cells (10 shown here as example). Each cell takes an integer 
value between [1, 50], and is considered to be its Structural Gene. The fitness of an individual is 
defined as the degree of order within its genes (0 implying descending order, 0.5 implying random 
order and 1.0 implying ascending order). In the example shown here, the embryo is randomly ini-
tialized and hence has a fitness close to 0.5. (B): Definition of a competent embryo: Each competent 
embryo is identical to a hardwired embryo except that it carries an additional “functional” gene 
indicating how many cell movements it can carry out during a developmental cycle to achieve or-
dered ascending arrangement before phenotypic assessment. The functional gene can be locked 
down to a pre-specified value for an entire population or can be evolvable. (C): Description of the 
genetic algorithm used to evolve hardwired and competent embryos. See Methods for details. 

2.3. Developmental Cycle 
Soon after initialization, embryos undergo a developmental cycle. During this pro-

cess, competent (but not hardwired) embryos undergo a restricted bubble-sort procedure 
(see Supplement S1) to rearrange their cells in a way that boosts fitness (i.e., to increase 
ascending order of its array of integers). At the end of the developmental cycle, embryos 
are considered “individuals”. 

2.4. Fitness of Embryos and Individuals 
We define fitness as the degree to which an embryo’s array of integers is in ascending 

order. Individuals with cells arranged in ascending order by value are attributed a fitness 
of 1.0 (maximum), those whose cells are randomly ordered are attributed a fitness of 0.5. 
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We calculate the fitness (the degree of order) of an array by counting the number of non-
inversions present (see Supplement S1). At the beginning of each evolutionary cycle, all 
embryos are considered “just born”; their morphological structure determined by their 
parents from the previous generation. Therefore, we call their fitness at the start of each 
cycle the genotypic fitness. At the end of the developmental cycle, the fitness of each re-
sulting individual is calculated again, which we call the phenotypic fitness. For hardwired 
individuals, phenotypic and genotypic fitnesses are always identical. For competent indi-
viduals, however, phenotypic fitness reflects the reorganization that occurs based on their 
competency level. 

2.5. Competency Level 
At the start of each developmental cycle, a competent embryo is assigned an integer 

representing its competency level. This integer determines how many successive bubble-
sort swaps will take place during its developmental cycle. Usually, competency levels are 
much lower than the total number of bubble-sort swaps required by an embryo to attain 
maximum fitness, for this reason it is called “restricted” bubble-sort. 

2.6. Genetic Algorithm 
To evolve populations (hardwired or competent), we iteratively pass them through 

three stages (Figure 1C): 
1. Selection: The fittest 10% of individuals in a population are selected to move on to 

the next generation. Selection in a population is based on its individuals’ phenotypic 
fitness. 

2. Cross-Over: In order to repopulate a population back to its original strength, we carry 
out a process of reproduction called cross-over. It occurs as follows: Two individuals 
are involved, each of these are split at a random location along their length. One half 
of Individual 1 is swapped with the same half of Individual 2 to give rise to two 
children. Figure 1 contains an illustration of this process. 

3. Mutation: The repopulated population is subjected to random point mutations. We 
set the probability of an individual receiving a point mutation to be 0.6. 

3. Results 
3.1. A Minimal System for Investigating Effects of Cellular Competency on Evolution 

We built a virtual embryogeny model in which fitness was defined by the degree of 
monotonicity of a 1D array of numbers, simulating a minimal metazoan bodyplan—a sin-
gle axis of positional information (Figure 1). The initial sequence of numbers for each em-
bryo was assigned randomly. Since these sequences decided the embryo’s structure (cell 
order), they are referred to as its structural genes. As described above, in hardwired em-
bryos, that sequence is fixed: their genome directly encoded their phenotype. For compe-
tent embryos, we implemented different degrees of competency during a developmental 
period in which cells were allowed some degree of movement relative to their neighbors, 
allowing them to reorganize to improve monotonicity prior to evaluation of phenotypic 
fitness. This enabled phenotypic fitness for competent individuals to diverge from raw 
genotypic fitness, with the extent of divergence depending on how much cell movement 
was permitted. This corresponds to different degrees of capacity for cells in vivo to opti-
mize homeostatically preferred local conditions with respect to informational signals such 
as positional cues and polling of neighboring cell states [58]. An evolutionary cycle was 
implemented around these developmental events [58]. In the initial experiments, the com-
petency gene is fixed across the evolutionary run, enabling study of the evolutionary dy-
namics over time as a function of different degrees of cellular competency. 
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3.2. Developmental Competency Accelerates Evolutionary Search 
We first compared, over 250 generations, the time-course of evolutionary search to-

wards a fully ordered axis in hardwired vs. competent individuals. After 100 generations, 
the hardwired population had the least fitness compared to populations with varying de-
grees of competency (Figure 2 and Table 1). Table 1 provides a summary of the generation 
number at which each population crossed different fitness thresholds. We compared fit-
ness of the best individual in competent and hardwired populations at generations 2, 10, 
and 20 (because these points exhibited the greatest sample variances.) At each of these, 
the difference in fitness between hardwired and competent populations was significant 
(p-values << 1 × 10−3 for all points, Student’s t-test; for details see Supplement S2.1.1). 

Table 1. The number of generations different populations take to break through a particular fit-
ness threshold. The break-through times reported are for the best individual in the population. 
Competency level indicates the number of swaps available to each embryo when initialized. 

Competency Level Fitness Threshold 
0.65 0.75 0.8 0.9 0.97 1.0 

No competency (Hardwired) 10 18 24 42 72 250 
Level 20 9 16 21 36 55 93 
Level 100 5 9 12 19 26 37 
Level 400 2 2 2 2 3 5 

Figure 2 also shows that the 95% confidence interval bands over 100 repeat runs de-
creased with increasing competency level, suggesting that more competent architectures 
are also more consistent in performance over time. Note that hardwired individuals grad-
ually improved to reach peak fitness, taking well over 200 generations to do so, whereas 
the most competent individuals (with a competency level of 400) did so in under 6 gener-
ations. These data demonstrate the role competency plays in non-linearly improving the 
rate of fitness of a population and support a clear conclusion: the higher the competency, 
the better the performance. 

Based on the impact of competency, one could hypothesize that progressively in-
creasing competency would lead to a progressive decrease in selective pressure for good 
structural genes to appear. An embryo with high competency would have no selective 
pressure to improve its structural genes beyond a certain level because it can rely on its 
competency to re-order its cells to reach peak fitness. This is in fact what we observed 
(Figure 3). We compared the genotypic fitnesses of the best individual in three popula-
tions with different levels of competency (20, 100, and 400) to that of a hardwired popula-
tion. In all three competent populations, genotypic fitness rose with that of the hardwired 
population for a few generations, after which it plateaued, indicating that at this point, 
the structural genes were good enough for competency to achieve a phenotypic fitness 
that insured selection. Further, with increased competency, the 95% confidence interval 
bands for genotypic fitness grew wider. Thus, as hypothesized, increasing competency in 
our simulation enabled excellent performance but reduced selective pressure on the em-
bryo’s structural genes. 
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Figure 2. Competent individuals have a higher rate of fitness than their Hardwired counterparts. 
Three populations with different competency levels [Levels 20, 100, and 400] and a single hardwired 
population were initialized. Competency level refers to the maximum number of cell-swaps a com-
petent embryo can execute during its developmental cycle. The individual with the maximum fit-
ness in each population was plotted over 250 generations. Shaded areas represent 95% confidence 
interval bands over n = 100 repeats of each experimental condition. 
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Figure 3. Competency comes at the expense of reduced genotypic fitness. Genotypic fitnesses of 
the best individual in three different competent populations (competency levels 20, 100, and 400) 
were compared with that of a hardwired population over 250 generations. Genotypic fitness is cal-
culated by computing what the phenotypic fitness of an individual would have been if it were not 
allowed to enact its competencies. Shaded areas in the figure represent 95% confidence interval 
bands over n = 100 repeats. 

3.3. Competent Individuals Take over Mixed Populations 
Given these tradeoffs, we next asked how mixed populations (200 embryos per pop-

ulation) of competent and hardwired embryos would evolve (Figure 4). We varied both 
the level of competency and the percentage of competent embryos in the hybrid popula-
tion at the start of the simulation. To probe the levels of competency required for embryos 
to dominate the population over the evolutionary simulation, competent embryos were 
always initialized as a minority of the starting population. Relationships between compe-
tency, initial population proportion and dominance were observed over several runs. 
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Figure 4. Competent individuals dominate over hardwired individuals in a mixed setting when 
given adequate competency. Each column represents the percentage of competent embryos in a 
hybrid population (n = 200 total) at initialization, increasing from left to right. Each row shows data 
from experiments at different competency levels, which increase from the top to bottom. Simula-
tions were run for 30 generations. Shaded area represents variance over 20 repeat runs of each ex-
periment. 

When competent embryos constituted just 2.5% of the initial population, they failed 
to dominate even at the highest level of competency tested: embryos with a competency 
level of 95 merely reached equal percentages with hardwired embryos. As their initial 
proportion in the population increased, competent embryos required progressively less 
competency to dominate over their hardwired competitors. At 10%, embryos with a com-
petency level of 75 could dominate; at 20%, the competency level required for domination 
decreased to 40; and at 30%, competent embryos dominated with a competency as low as 
10 (Figure 4). In all starting conditions that resulted in dominance of competent embryos, 
it occurred rapidly, in just two or at most three generations (Table 2). 
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Table 2. Time taken by competent embryos to dominate over hardwired embryos when mixed 
together in different ratios. Each column indicates the proportion of competent embryos in a hybrid 
population of size 200. The remaining embryos of the population are hardwired. Each hybrid pop-
ulation was evolved over 30 generations with a fixed level of competency (rows). Competent em-
bryos are said to dominate when their prevalence rises over that of hardwired embryos and contin-
ues to rise or remains stable without dropping. Values indicate the number of generations required 
for competent individuals to dominate over hardwired individuals. “x” indicates no dominance. 

Competency Level Percentage of Competent Embryos 
2.5% 10% 20% 30% 

Level 10 x x x 3 
Level 25 x x x 3 
Level 40 x x 3 3 
Level 75 x 3 3 2 
Level 95 x 3 2 2 

3.4. Evolution Results in a High, Constant Level of Competency 
To determine how competency might spontaneously evolve over generations, we in-

troduced competency as an evolvable trait by letting each embryo’s competency level be 
determined by a single ‘competency gene’ with value in the range [1, 500]. During initial-
ization, the competency genes of all embryos were set randomly to low values in the range 
[1, 15]. Then, during evolution cycles, we allowed each competency gene to be mutated, 
potentially taking values across the range of [1, 500], and tracked the competency gene 
values of the best individual over 1000 generations (Figure 5). The prevalence of the com-
petency allele rapidly rose, meandering and exploring values up to 485 during evolution 
(shaded area in Figure 5A) before plateauing at ~470. We provide a possible explanation 
for this outcome in the Discussion section. 

To understand how allowing the competency gene to evolve over 1000 generations 
affects genotypic fitness, we looked at the phenotypic and genotypic values for the fittest 
individual in each generation (Figure 5B). Values for the fittest individual quickly settled 
at consistent configurations in which the phenotypic and genotypic fitnesses diverged 
considerably. This is a fascinating outcome because it suggests that a certain level of com-
petency reduces the pressure for improvements in an embryo’s structural genes. Once 
selection can no longer distinguish whether fitness is achieved by a set of good structural 
genes or by a high competency level that compensates for a poor set of structural genes, 
it can only improve the population by increasing competency, not by selecting better ge-
netics. 

To quantify this effect and determine how well selection, which ‘sees’ phenotypic 
fitness only, selects for genotypes when competency is allowed to evolve, we plotted the 
degree of correlation between genotypic and phenotypic fitness for all individuals in these 
populations (Figure 5C). Correlation dropped to 0 within about 20 generations as individ-
uals who succeeded because of their developmental competencies rapidly dominated the 
population. We conclude that allowing competency to evolve disrupts the ability to select 
for the best structural genes. We further validated this by examining the frequency, over 
1000 cycles of evolution, with which positional changes to a single ‘cell’ resulted from 
tweaks to the competency gene vs. from tweaks to one of the structural genes. Figure 6 
shows that the frequency of changes to the competency gene was much higher than the 
average of all fifty structural genes across 1000 generations in our simulation. 
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Figure 5. Allowing evolution to set competency level: a perfect genome is not required to boost 
fitness. Competency gene values for embryos (n = 100) were randomly initialized in the range of [1, 
15]. Over the course of evolution each competency gene was allowed to mutate to a value in the 
range of [1, 500]. (A): Competency gene value of the most fit embryo over the course of evolution. 
Shaded area represents the range of competency gene values in the population. (B): Fitnesses of the 
best individual in a population of competent embryos with evolvable competency. Shaded area rep-
resents variance over 100 runs. (C): Correlation of the genotypic and phenotypic values of the pop-
ulation (shown as average values over sequences of 10 generations). 
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Figure 6. Evolution spends a greater proportion of time tweaking the competency gene compared 
to any structural gene. Employing the experimental setup of Figure 5, we checked how often 
changes occur within the structural genome of embryos vs. the competency gene, to determine 
where the evolutionary process focuses most of its effort under various conditions. (A): Frequency 
of changes that 50 structural genes undergo versus the frequency of change that 1 competency gene 
underwent, averaged over time. Error bars represent standard deviation over n = 100 repeat runs of 
the experiment. (B): Comparison of frequency of changes in 50 structural genes versus 1 competency 
gene, as a function of evolutionary time. The graph is cumulative, i.e., the number of changes made 
in the previous generation carry forward to the next. Shaded area represents variance over n = 100 
repeat runs of the experiment. 

3.5. A Fitness Penalty for Competency Leads to Continued Improvement of an Embryo’s 
Structural Genes 

The Baldwin Effect [59] is the now broadly accepted phenomenon in which individ-
ual organisms can achieve greater reproductive success based on behavioral adaptations, 
and that these adaptations can eventually become hardwired into the genome in subse-
quent evolutionary cycles. Hinton and Nowlan [58] found that introducing an algorithm 
for behavioral learning into evolutionary simulations produced outcomes consistent with 
the Baldwin Effect. Our initial simulations of the evolutionary impact of cellular compe-
tency did not exhibit the Baldwin Effect. This could have been due to the fact that our 
minimal model did not simulate any cost associated with increasing cellular competency, 
and thus there was no selective pressure towards genomic changes. Although the actual 
energetic (or other) costs of cellular competencies are not known for any living model 
system, it is possible that the cellular computations required for axial patterning require 
additional resources over and above developmental events (competent or not) that are 
essential for any embryo. Thus, we next studied the effects of introducing a competency 
cost by penalizing the fitness of embryos in our model by a factor of their competency-
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value. Using penalty factors in the range of [1 ×10−7, 0.5], we did see a Baldwin effect: the 
rate of rise of genotypic fitness corresponded positively with the increase in penalty fac-
tors. For penalty factors over 0.5, the genotypic fitness rose well above the phenotypic 
fitness, leading to disappearance of the Baldwin effect. 

The results of simulation using a penalty factor of 1 × 10−4 over 3000 generations are 
shown in Figure 7. As described above for simulations with no competency cost, pheno-
typic fitness reached its maximum in under 20 generations. However, unlike the previous 
experiment, the fitness of the structural genes did not plateau after a brief increase, but 
continued to improve over the course of evolution (Figure 7A). Further, as the genotypic 
fitness rose, selection preferred progressively lower competency values (Figure 7B). Phe-
notypic fitness was maintained at the maximum level, but the way in which embryos 
achieved phenotypic fitness evolved to value structural genes over the competency gene. 
Over time, selection ensured that the genotype improved to a stage where competency 
became redundant—the Baldwin effect [59]. We conclude that in the context of expensive 
competencies, selection is faced with a tradeoff between competency and the structural 
genome: it can either pick high competencies and bear subsequent penalties, or, it can pick 
low competencies and improve its structural genome. Since improving the structural ge-
nome does not bear a cost, selection prioritizes improvement of the structural genome, 
and over time, nullifies the effect of competency. Thus early gains based on the compe-
tency gene are later assimilated into the structural genes, paralleling what has been de-
scribed previously in the context of organism-level learning [59]. 

 
Figure 7. Penalizing competency leads to its redundancy over time: the Baldwin Effect. Compe-
tent embryos (n = 100) were initialized with an evolvable competency gene. At each developmental 
cycle, a fitness penalty of 1 × 10−4 times the competency value was applied. (A): Fitnesses of the best 
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individual in a population of competent embryos with evolvable competency penalized by a factor 
of 1 × 10−4. Shaded area represents variance over 100 runs. (B): Competency gene value chosen by 
the most fit embryo over the course of evolution. Shaded area represents the range of competency 
gene values in the population at each time point. (C): Correlation of the genotypic and phenotypic 
values of the population (shown as average values over sequences of 50 generations). 

4. Discussion 
Here, we focused on a specific and novel question: the implications, for the rate and 

course of evolution, of a developmental process that exhibits competency at problem-solv-
ing in anatomical morphospace [59]. We produced a minimal simulation (Figure 1) that 
abstracted away many biological details to focus on a simple architecture: a phenotype 
easily optimized by traditional genetic algorithms, and a new component: competency of 
the individual cells to move based on interactions with neighboring cells, simulating a 
single body axis morphogenetic gradient of positional information [59]. 

4.1. Genotypic vs. Phenotypic Fitness: Cellular Competencies and Learning 
Our approach is related to the work on the role of learning in evolution [58,60–67]. 

What is similar is the emphasis on genetics as the specification for a system that will then 
exhibit diverse behaviors that are not themselves hardcoded in the genome. Additionally, 
similar is the fact that DNA, as a code for specifying protein sequences, actually cannot 
encode directly for behavioral repertoires any more than it can directly encode morphol-
ogy. What is crucially different is that traditional approaches focus on animal-scale be-
havior, which requires a novel and specific mechanism to evolve, such as nervous systems 
wired so as to facilitate specific types of learning. In our model, there is no learning 
needed; moreover, our system’s competency arises from a basic property of single cells: 
the ability to sense their neighbors, prefer those of similar type, and migrate as needed to 
reduce stress based on unmet expectations (e.g., intercalary regeneration in the limb [68–
71]). Because cells were once themselves individual organisms and are organized into net-
works with homeostasis, allostasis, and homeorhesis properties [72–77], evolution is 
working with an agential material [24,26], which has competencies that do not need to be 
evolved directly (are present from the start). 

However, it is likely that the cellular competency we examine here, and the behav-
ioral learning that has been modeled by others, interact in ways that have evolutionary 
impact. For example, cellular activities can be the subject of behavior shaping by signals 
(implemented by evolutionarily-sculpted properties of the subcellular hardware such as 
signaling machinery and GRNs). In other words, much as organism-level learning enables 
an individual’s function to be molded by signals from conspecifics and parasites; simi-
larly, cellular competencies open cells up to beneficial or detrimental signals from other 
cells in the organism itself that can control them via real-time triggers. It will be interesting 
in future work to understand how many results from the evolutionary learning field carry 
over to the evolutionary implications of competency, and how these two different aspects 
of the divergence of genotype from phenotype interact with each other in hybrid models 
that have both features. 

4.2. Limitations of the Study 
Our framework was more complete than many evolutionary simulations because it 

included an explicit developmental layer between the genotype and phenotype. It was 
multiscale in the sense that important changes occurred on an evolutionary scale across 
individuals, but also ones driven by components of those individuals within their life-
time—the cells, which had their own perspective and local goals. However, our system 
clearly omitted a huge amount of biological detail with respect to cellular mechanisms of 
sensing, competition, cooperation, etc. We intentionally designed a minimal model to spe-
cifically focus on a few sufficient dynamics, and this likely under-emphasized the differ-
ence between cellular competencies and, for example, effects of learning at the organism 
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level on evolution. Fundamentally we explored a toy model virtual world in which the 
individual roles of selection and competency could be quantitatively dissected in the ab-
sence of confounding complexity—we sought generic laws and dynamics [78–82], not a 
simulation of the detailed trajectory of any existing biological species. 

Future work will add physiological layers, diverse cell types, computation at gene-
regulatory and cellular-network levels, and a multi-dimensional target morphology (e.g., 
2D or 3D pattern instead of just one primary axis) to more closely model biological reality. 
There is also much that can be improved with respect to the specific mechanisms that cells 
use to implement their competency: a rich set of diverse genes will be added in the future 
to enable evolution to manipulate different types of local goals and competencies. More-
over, recent discoveries in transgenerational inheritance [78–82] suggest that barrier be-
tween the genome and the phenotype is at least somewhat porous, and the effects of prop-
agating sort order to offspring should be investigated. 

4.3. The Role of Cellular Competency in Evolution 
We found that providing cells with a minimal homeostatic competency to improve 

their position in the virtual embryo results in better performance of the evolutionary 
search. Populations reach better fitness values faster when cellular activity is able to make 
up for genetic deficiencies (Figure 2). Indeed, in mixed populations, competent individu-
als tend to dominate and rapidly take over (Figure 4), as long as they have a minimal level 
of competency and/or are present in adequate numbers (Table 2). The simulation high-
lighted the distinction between two properties of each individual that are often conflated 
or obscured in simulations that do not include an explicit competency step: genotypic vs. 
phenotypic fitness. 

Indeed, biology has many examples of evolution’s attempts to gauge genomes that it 
cannot see directly, for example by fluctuating asymmetry [83,84] and the near universal 
standards of sexual selection for left-right symmetrical features (which in turn is corre-
lated with lack of genetic damage) [85–87]. In this system, we see that competency results 
in good phenotypic fitness but takes selective pressure off of genotypic fitness, which set-
tles at a sub-optimal level (Figure 3). 

Perhaps the most interesting aspect was the role that competency plays in exacerbat-
ing the inability of selection to evaluate the genetic material that gets passed on to subse-
quent generations. We observed that increases in competency made it harder and harder 
for selection to pick the best structural genes. Specifically, the correlation between geno-
typic and phenotypic fitness drops to insignificant levels very rapidly (Figure 5C). This 
could be expected to result in complex dynamics, because competency improves fitness 
of individuals but impairs the ability of the evolutionary hill-climbing search in fitness 
space to pick out the most elite structural genomes. Thus, we studied what happens when 
evolution is also allowed to control the degree of competency, which is biologically real-
istic since cellular capacities for sensing, computation, and action are themselves under 
evolutionary selection. We observed that the population drives towards picking the high-
est competency gene value in the population (Figure 5A), settling at a value close to 470. 
While this value of competency is sufficient to boost an embryo’s fitness to maximum, it 
is not necessary. We propose the following explanation. 

Initially when evolution begins, the ordering of the cells is far enough from ascending 
order that a high competency gene value is required to create individuals with high fit-
ness. At generation 20 or so, maximum fitness is achieved by choosing high competency 
gene values, and by simultaneously improving structural genome quality to 57% geno-
typic fitness. After generation 20, the genotypic fitness drops to a value of 52% and stabi-
lizes with no further improvements. From this value of genotypic fitness, a competency 
value of 364 would theoretically be adequate to reach peak fitness. As a result, there is no 
selection pressure for evolution to always pick the highest possible competency value (i.e, 
a value of 480 seen in the shaded area of Figure 5A), because a value of 480 confers no 
additional phenotypic fitness over a value of 364. They are perceived as equal by the 
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selection process and hence a random walk between these values would suffice. The rea-
son we notice evolution picking values close to 480 at the end of 1000 generations could 
be because of a stochastic component to selection of embryos with competency gene val-
ues above 364. In our experiments, if >10% of the population have a fitness of 1.0 before 
selection, we pick the first 10%. This leads to the random selection of competency genes 
within the range of [364, 480]. 

In our models, we had to make a number of quantitative choices with respect to the 
evolutionary process. Thus, we checked how sensitive our conclusions were to these de-
cisions via a hyperparameter scan: re-running the simulations with different choices for 
various hyperparameters (see Supplement S2.3.1). Specifically, we identified mutation 
probability and selection stringency as key hyperparameters which could influence the 
results of evolution. In an effort to probe their influence on the final competency gene 
value attained, we ran this experiment for 132 different combinations of mutation proba-
bility and selection stringency in the range of [0.2, 0.8] and recorded the stable-competency 
value attained for each hyperparameter combination (Figure S1 in Supplement S2.3.1). 
Correlation analysis revealed that a correlation of −0.4 existed between mutation proba-
bility and stable-competency-gene-value. However, no relationship was found between 
selection stringency and the stable-competency-gene-value. A possible reason for this 
could be that after generation 20, almost every embryo in the population achieves maxi-
mum phenotypic fitness, therefore there is no difference in choosing the top 20% of the 
population or the top 80% of the population. Mutation probability on the other hand has 
a direct influence on changing individual fitness, which explains its moderately signifi-
cant relationship with the stable-competency-gene-value. 

4.4. The Paradox of Robustness: Why the Animal with the Worst Genome Has the Best Anatomy 
The competency of a population can be seen as granting robustness against pertur-

bations, i.e., competency resolves aberrations in the genome and lessens the burden on 
evolution. The role of robustness in evolution has been a popular topic of discussion [88–
92]. A population’s robustness is hypothesized to cause an evolutionary reduction in its 
adaptive performance; a sort of maladaptation caused when improved robustness traits 
layer on top of one another over evolutionary time and hide the underlying adaptive 
traits. This paradox has been shown to have broad implications on organismal design and 
is supposed to be a key aspect of evolution. Our results are in line with this paradox. Fig-
ure 3 is a clear depiction of the role robustness plays in hindering the quality of the ge-
nome. At each generation, increasing competency adds robustness that shields genomes 
which otherwise would have been culled by evolution. When compared to a population 
with no competency (hardwired), genomes in competent populations stabilize to a medi-
ocre value whereas the untampered hardwired genomes rise steadily to maximum fitness. 
However, it must be noted that this is not necessarily a disadvantage. The paradox reveals 
the efficiency of competency: genomes need not be perfect; a stable threshold value of the 
structural genome is all that is required for competency to boost an individual’s fitness to 
maximum. Genetic information and problem-solving capacity of the cells work together 
to achieve a perfect solution to this fitness function. 

This dynamic relationship between genotype and cell competency demonstrated in 
our simulation uniquely explains the remarkable example of planarian biology described 
in the introduction [19]. How can animals with a chaotic genome have such robust anato-
mies? We propose that planaria are an example of runaway competency: when cells get 
really good at making up for deficiencies in the structural genes, evolution has such a hard 
time selecting for the best genomes that further improvements instead increase generic 
competency to reach their target morphology despite perturbations. This positive feed-
back loop results in biological hardware that is highly successful at maintaining a specific 
morphology in a wide range of circumstances. 

Tolerance to genetic and environmental insults is seen to some extent in other species; 
for example, human embryos are tolerant to being split at early stages, creating normal 
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monozygotic twins, while mutations in important genes can sometimes be overcome by 
development [93–95]. However, in the amazingly regenerative planaria the effect was ap-
parently much stronger. We propose this also as an explanation for another curious aspect 
of planaria. In every other model species, mutant lines are available—fruit flies with dif-
ferent number of wings or color of eyes, mice with abnormal tails, and many more genetic 
strains that are available from stock centers. In planaria this does not exist—no morpho-
logically abnormal genetic strains have been reported. In fact, the only available abnormal 
line of planaria is a permanently two-headed form [96–98], which was produced not ge-
netically but by manipulating bioelectrical signaling—the modality that is used to coordi-
nate cellular competency [99–101], as is predicted by our model for species like planaria. 
Given their resistance to mutation, it’s unclear how speciation in planaria happens, but it 
should be noted that the same bioelectrical strategy that controls computation and cogni-
tion (i.e., behavioral competencies) in brains has been shown to coax genetically wild-type 
planaria to grow the heads appropriate to other species [102,103]. 

4.5. Genes Can Specify Direct Features, or Problem-Solving Behaviors 
Of course, competency is itself carried out by molecular hardware which itself is sub-

ject to evolution and is encoded in the genome. However, it has long been clear that gen-
otype does not uniquely determine the phenotype [104–106]). Development (and thus, 
evolution) can make use of many principles of physics (bioelectric computations, biome-
chanics, GRN memory, and other inherent properties [14–16,107–114]) that are not di-
rectly encoded anywhere but are exploited by the genome-specified machine. Our simu-
lations study the effects of one type of such “free lunch”: cellular positional preferences 
and ancestral capability of motility during development, which are distinct from the en-
vironmental influences studied during typical epigenetics research. Our distinction is be-
tween structural genes (which directly specify phenotypic features) and competency 
genes (which specify a problem-solving machine that can exert context-sensitive activity). 
This is a powerful distinction for the same reason that the hardware-software distinction 
has driven a revolution in information technology. While the hardware (genome) is es-
sential and important, software (competency) harnesses novel laws of physics, computa-
tion, and information processing that are not directly encoded by the hardware. This is 
akin to the way a logic table is implemented, but not directly encoded by, the specification 
of the transistors that make up a logic gate. This has been emphasized by fascinating work 
on the “arrival of the fittest” (evolutionary exploitation of “free lunches” provided by ge-
neric laws such as network properties [107,113–119]). While genes determine enzyme 
function fairly directly, the relationship between genes and complex morphology and be-
havior is extremely indirect [120]. However, the distinction between these modalities is 
not binary. Thus, a more nuanced future framework will quantify (and exploit) a contin-
uum of degrees of directness with which a generative encoding determines form and func-
tion from a given informational seed. 

4.6. Where the Hard Work Is Done: An Intelligence Ratchet 
In planaria, most of the evolutionary “effort” seems to have gone into perfecting the 

algorithm (the ability of cells to create a normal worm morphology), vs. keeping a clean 
genome, because of the vicious cycle of competency increases. We found that the compe-
tency gene is changed significantly more often over the course of evolution than any struc-
tural gene (Figure 6). When gains can no longer be made efficiently by tweaking the ge-
nome (once selection cannot reliably pick out the good genotypes), all the effort goes in to 
increasing the competency level. This suggests the existence of a powerful ratchet mech-
anism in which evolution progressively becomes locked into improvements in the intelli-
gence of the agential material with which it works, with reduced pressure on the struc-
tural genes. A positive feedback loop in which evolution increasingly puts more effort 
into the developmental software than perfecting the hardware points to a possible drive 
for scaling intelligence in morphological and other spaces [53–55,121–123]. It is possible 
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that a drive for increased competency is an ancient and ubiquitous pressure [72], which 
plays out to different degrees in different biological lineages based on other aspects of 
their environmental and reproductive hyper-parameters. 

4.7. The Costs of Competency 
One factor resisting the runaway positive feedback for multiscale intelligence is the 

cost of competencies. When included in our models (Figure 7B), it induced a classic Bald-
win effect of assimilation into the genome and subsequent lessening of the drive for com-
petency. However, whether this is realistic remains to be determined by measurements in 
vivo that have not yet been done. On the one hand, it is reasonable to posit that specific 
developmental computations (that might be needed for anatomical homeostasis for exam-
ple [124,125]) could carry a metabolic or other cost. On the other hand, these may be ca-
pacities that cells are already doing regardless—they may be impossible to turn off, and 
may represent a use of internal processes that carries no extra penalty. Examples include 
bioelectric signaling that controls morphogenesis via ion channels needed for housekeep-
ing physiology and cancer suppression [99,126], and learning properties of gene regula-
tory networks [127,128], which are emergent and require no new mechanisms for struc-
tural plasticity. Moreover, some properties (such as behaviors and morphogenetic out-
comes) may simply be too hard to encode genetically, since genes directly specify pro-
teins—not complex anatomical states. Our simple model of a 1D positional information 
axis did not enable that distinction (which may have otherwise limited the Baldwin effect 
and kept up the pressure for competency, for the same reason that brainy and highly mor-
phologically plastic animals have advantages, despite the possibility of assimilation). 

Another reason to include a competency penalty is to account for the extra develop-
mental time that may be needed for the cellular activities to take place. However, it is not 
clear that this is a fair adjustment. We know of no data to suggest that the cleverer activity 
of competent morphogenetic processes takes longer than is required by minimal, feed-
forward developmental mechanisms. Thus, giving a hardwired individual credit for com-
pleting development faster (equivalent to the penalty for competency in our Baldwin ef-
fect experiments) may not be an accurate modeling of the biology. Thus, we believe con-
clusions about the Baldwin effect and the limitations on competency observed in Figure 7 
should be re-investigated in future work, when the real-world costs of these processes can 
be measured. 

5. Conclusions 
These results suggest a diverse research program on the evolutionary interplay be-

tween biological hardware and software. We suggest that the field of basal cognition [52–
54,57,121,122,129–131] is an important part of understanding evolutionary developmental 
biology [73,132–135], and that intelligence (problem-solving competency) was an evolu-
tionary driver long before complex brains and muscle-driven behavior arose 
[52,53,56,136–143]. Beyond understanding natural evolution, we suggest that the design 
of autonomous robotics [144,145], synthetic life [146], and interventions for regenerative 
medicine [35] can all benefit from deciphering and exploiting the multiscale competency 
architecture so richly exhibited by living forms. 
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