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Abstract: Due to the widespread presence of disturbances in practical engineering and widespread ap-
plications of high-order systems, this paper first pays attention to a class of high-order strict-feedback
nonlinear systems subject to bounded disturbance and investigates the prescribed performance
tracking control and anti-disturbance control problems. A novel composite control protocol using
the technique of a disturbance observer—prescribed performance control—is designed using the
back-stepping method. The disturbance observer is introduced for estimating and compensating
for unknown disturbances in each step, and the prescribed performance specifications guarantee
both transient and steady-state performance of the tracking error to improve the control performance
and result in better disturbance rejection. Moreover, the technique of adding a power integrator is
modified to tackle controller design problems for the high-order systems. The Lyapunov function
method is utilized for rigorous stability analysis. It is revealed that while the control performance
completely remains in the prescribed bound, all states in the closed-loop system are input-to-state
stable, and the tracking error and the disturbances estimating error asymptotically converge to zero
simultaneously. Then, the feasibility and effectiveness of the proposed control protocol are verified
by a simulation result.

Keywords: input-to-state stability; disturbance observer; prescribed performance; back-stepping
control; high-order systems

1. Introduction

Any practical system in life has different degrees of nonlinear properties. Since the
Dutch meteorologist Lorenz opened the door to mankind’s understanding of the nonlinear
world in the 1960s, the control problem of nonlinear systems has been in full swing [1–4].
There are many main research methods, such as differential geometry methods, passivity
theory, Lyapunov stability theory, and so on. Due to the complexity and diversity of
nonlinear systems, different methods are applicable to different problems.

In many practical control problems, one often needs to quantitatively characterize the
impact of errors and disturbances in measurement elements or execution mechanisms in
the system, so the stability of the forced system is the most fundamental issue in control
theory. There are two approaches to describing the stability of forced systems with different
ideas: one uses the operator theory technique. The input–output stability based on the
small gain theorem can obtain great results in applying to a infinite network [5]. The other
is the application of the state space approach. Sontag in [6] introduced the concept of input-
to-state stability for the first time to systematically describe the stability of a forced system
by the state space approach. This approach replaces the finite gain with a nonlinear gain
function, resulting in fewer limitations, and the advantage of having multiple equivalent
representations (e.g., Lyapunov-like description of the function) makes it more compatible
with existing control theory. Nowadays, it has been widely used in neural networks [7],
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H∞ control [8], inverse optimal control [9], stochastic systems [10], time-delay systems [11],
switching systems [12], discrete systems [13], etc.

Moreover, due to practical engineering needs, tracking control is often one of the
main control objectives for nonlinear forced dynamic systems—for example, see [14–16]
and references therein—which aims to make the system output asymptotically track our
expected dynamic signal by applying inputs to the system.

Although there have been many related studies about tracking control, in order to
better apply it to engineering systems, studies in the past decades started to be keen on
solving the tracking control problem with external disturbances in the system. With the
increasing requirements for control accuracy, many control methods have been proposed
for systems with various disturbances and parameter uncertainties: for example, nonlinear
H∞ control [8], sliding mode control [17], output regulation theory [18], and adaptive
methods [19]. Although the above methods effectively attenuate or reject disturbances, the
output regulation theory requires the derivative of the controller [20], whereas most other
methods sacrifice nominal system performance when achieving robustness [21]. To avoid
above effects, Nakao et al. proposed disturbance observer-based control (DOBC) in the late
1980s, which can estimate unknown disturbances that are difficult to be measured directly
by sensors, and compensates for the equivalent disturbances in the feed-forward channel.
Owing to its excellent interference rejection capability, DOBC has been widely used in
various practical systems, such as servo systems [22] and robot systems [23]. Reference [24]
proposed a method combining DOBC and sliding mode control to estimate the disturbance
and attenuate it using a designed sliding surface. However, the tracking errors in the
existing studies [25] do not reach asymptotic convergence. Subsequently, the back-stepping
method was proposed [26]. This method decomposes a complex nonlinear system into
subsystems and uses the introduction of virtual control law and the design of Lyapunov
functions for each subsystem to complete the controller design for the entire main system.
With the development of the back-stepping method, the construction of controllers have a
systematic approach, which was then introduced in the literature [27] along with DOBC for
the disturbed nonlinear problems.

Most existing tracking control problems have focused on solving stability problems
without considering constraints on the transient performance of the system before reaching
steady state, which is often limited by factors such as hardware and interaction with
humans. More than a decade ago, Bechlioulis and Rovithakis first proposed prescribed
performance control (PPC) in [28,29] for nonlinear simple input simple output (SISO)
system and multi-input multi-output (MIMO) systems, where the transient and steady-
state performance of the system can be constrained simultaneously using the performance
function, and asymptotic tracking control is achieved. PPC is gradually being used to solve
various control problems [30,31]. In [32], Chen and Yang introduced a novel performance
function into PPC and developed a controller based on the back-stepping method to achieve
tracking control with prescribed performance.

It should be noted that, on the one hand although the PPC approach allows the
tracking error to be always kept within the prescribed constraint, it is still difficult to design
a specific composite controller to simultaneously guarantee the prescribed performance and
achieve tracking control if external disturbances are present in the system. Bai et al. only
considered the prescribed performance tracking control problem for high-order nonlinear
systems without and external disturbances [31]. On the other hand, most studies of
control methods that introduce disturbance observers, to our knowledge, did not consider
prescribed performance specifications [22–25]. In addition, it is also noted that there has
been few previous studies dealing with the problem of high-order nonlinear systems. Chen
et al. investigated an adaptive output feedback control law for first-order, unknown, pure-
feedback nonlinear systems with external disturbances [32]. As far as we know, there has
been no work so far considering simultaneous prescribed performance tracking control
and anti-disturbance control problems for high-order nonlinear systems, which gave the
motivation to carry out this work.
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Inspired by this, a composite controller was designed for a class of high-order strict
feedback systems with external disturbances to address the prescribed performance-
tracking problem. Concretely, a disturbance observer is used to estimate and compen-
sate for external disturbances; a prescribed performance function and a transformation
function are used to convert the original prescribed performance tracking control into
an unconstrained system with the same stability; and finally, the DOB technique and a
back-stepping method incorporating adding a power-integrator technique for dealing
with high-order systems problems are used in the controller. This control scheme ensures
the prescribed transient and steady-state behaviors of the tracking errors while enabling
a high-order nonlinear system with stronger disturbance rejection. This article has the
following contributions relative to existing results:

(1) The proposed composite controller solves the output tracking problem of a class of
high-order nonlinear systems, where the system states are stabilized and the tracking
error converges to zero.

(2) Differently from the methods designed to attenuate disturbances to a specified area [33,34],
the error systems of nonvanishing disturbance estimating converge to zero. That is,
this control scheme can eliminate the affect of disturbances on output.

(3) Without the external disturbances, the nominal control performance of the proposed
protocol remained.

(4) Unlike the previous results in [30,35], the performance indices of the system regarding
transient steady-state behavior are not only allowed to evolve within a prescribed
bound, but also guarantee zero steady-state output tracking error.

The rest of this article is organized as follows. In Section 2, the problem formulation
and preliminaries are given. In Section 3, the composite control protocol is constructed by
utilizing back-stepping technique, and the stability and the prescribed performance are
analyzed. In Section 4, an example is given to show the effectiveness. A short conclusion is
given in Section 5.

2. Problem Formulation and Preliminaries
2.1. Problem Formulation

Following notation is used throughout the paper. For a given vector x = (x1, . . . , xn)T ,
‖x‖ = (x2

1 + · · ·+ x2
n)

1
2 is the Euclidean norm of vector x. xi = (x1, . . . , xi)

T , i = 1, . . . , n.
Consider a class of high-order strict-feedback nonlinear systems modeled by

ẋ1(t) = xp1
2 (t) + φ1(x1(t)) + d1(t),

ẋi(t) = xpi
i+1(t) + φi(xi(t)) + di(t), i = 2, . . . , n− 1,

ẋn(t) = upn(t) + φn(xn(t)) + dn(t),

y(t) = x1(t),

(1)

where xi(t) ∈ R, i = 1, . . . , n denotes the system state, and u(t) ∈ R, di(t) ∈ R, and
y(t) ∈ R, respectively, represent control input, unknown disturbances, and system output.
z, i = 1, . . . , n are some positive odd integers, and φi(·), i = 1, . . . , n are known nonlinear
continuous functions. Moreover, we define yd(t) as the given reference signal and E(t) as
the tracking error between y(t) and yd(t).

In order to solve the anti-disturbance and prescribed performance tracking control
problem of system (1), we aimed to develop a novel composite controller that meets the
following control objectives for system (1):

1. The tracking error E(t) converges to zero and achieves the prescribed performance in
both transient state and steady state.

2. All states in the closed-loop system are stable.

Assumption 1. Define pi, i = 1, . . . , n as positive odd integers:

(i) p is considered as p = max{pi}, i = 1, . . . , n.
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(ii) pi satisfies: p+1
pi
≥ p− pi+1 + 1, i = 1, . . . , n− 1.

Assumption 2. The disturbances satisfy the following conditions:

(i) di(t) and the derivatives of ḋi(t) are bounded, and di(t) are nonvanishing.
(ii) ḋi(t)→ 0 as t→ ∞.

Assumption 3. The expected signal yd(t) and its i-order derivative y(i)d (t) are bounded, and they
are known.

Remark 1. Assumption 1 is utilized to ensure the reasonableness of the adding a power-integrator
technology. Assumption 2 is widely used in the field of disturbance estimation for the reason that
the derivatives of the disturbances will affect the convergence of error dynamics equation, and this
assumption is essential in analyzing the stability of disturbance estimation error. It is worth pointing
out that Assumption 3 is a standard assumption for output tracking control of nonlinear systems,
and similar assumptions can be found in the literature [14–16].

Definition 1. A continuous function η(t) : [0, b) → [0, ∞) is said to belong to class K if it is
strictly increasing and η(0) = 0. Additionally, it is said to belong to class K∞ if b = ∞ and
η(s)→ ∞ as s→ ∞.

Lemma 1 ([36]). Consider the following system:

ẋ(t) = f (t, x(t), u(t)), x(t) ∈ Rn, u(t) ∈ Rm. (2)

Let V(t, x) be a continuously differentiable function such that

π1(‖ x(t) ‖) ≤ V(t, x) ≤ π2(‖ x(t) ‖),
∂V
∂t

+
∂V
∂x

f (t, x(t), u(t)) ≤ −π3(x(t)), ∀ ‖ x(t) ‖≥ π4(‖ u(t) ‖) > 0,

where π1(·) and π2(·) are class K∞ functions, π3(·) is a continuous positive definite function, and
π4(·) is a class K function. Then, system (2) is input-to-state stable (ISS).

Lemma 2 ([36]). Consider system (2). If it is globally input-to-state stable, lim
t→∞

u(t) = 0, then

the state of system (2) will asymptotically converge to zero; that is, lim
t→∞

x(t) = 0.

To complete this section, we give other existing inequalities as lemmas, which the
main method of the modified adding a power-integrator technology is based on, and it will
be utilized to deal with the error system.

Lemma 3 ([37]). For any real valued function x,y and any positive odd integer q ≥ 1, the inequality
is as follows: | xq − yq |≤ q | x− y | (xq−1 + yq−1).

Lemma 4 ([37]). For any designed constant q ≥ 0, the following inequality hold:

| x + y |q≤ max{2q−1, 1}(| x |q + | y |q).

In this paper, because of the uncertainty of q = pi − 1, the relation between q and 1 requires
further discussion. Thus, to simplify the proof later, the situation that includes both above cases
(q < 1 and q ≥ 1) is summed up in the following inequality:

| x + y |q≤ 2q(| x |q + | y |q).



Entropy 2023, 25, 103 5 of 19

Lemma 5 ([38]). For any positive real numbers m and n and any real number ε > 0, there are
always any real variables x and y and a function a(x, y) such that the following inequality with two
forms holds:

| x |m| y |n≤ m
m + n

ε | x |m+n +
m

m + n
ε−

m
n | y |m+n,

| a(x, y)xmyn |≤ c(x, y) | x |m+n +
m

m + n

(
m

(m + n)c(x, y)

)−m
n

| a(x, y) |
m+n

n | y |m+n,

where c(x, y) > 0.

2.2. Prescribed Performance

In order to guarantee the transient and steady-state performance of tracking error
E(t) = y(t)− yd(t) simultaneously, a positive decreasing smooth function ν(t) : R+ → R+

was chosen as the prescribed performance function (PPF) with lim
t→∞

ν(t) = ν∞ > 0. In this

research, ν(t) was chosen as

ν(t) = (ν0 − ν∞)e−ρ(t)t + ν∞,

ρ(t) =
ρ∞
[

tanh(ε0(t− t0)) + 1
]

2
,

where ρ∞, ε0, t0 and ν0 > ν∞ are positive parameters which will be designed according to
practical requirements.

Utilizing the similar idea from research [29], the prescribed performance can be guar-
anteed by achieving

−δν(t) < E(t) < δν(t), ∀t > 0, (3)

where δ > 0 and δ > 0 are constants. Additionally, it must be pointed out that ν0, δ and δ
should be chosen such that −δν(0) < E(0) < δν(0).

Remark 2. The principle of PPC is to transform the tracking error constrained by the performance
function into an unconstrained error that is better handled. Reference [29] stated that the prescribed
performance is guaranteed when the tracking error converges to an arbitrarily small set of residuals
and the convergence rate and maximum overshoot are less than prescribed values. Therefore, to
solve the control problem with prescribed performance (3), a smooth and strictly increasing function
T(χ(t)) of the transformed error χ(t) ∈ R is defined which satisfies

(i) −δ < T(χ(t)) < δ, ∀χ(t) ∈ L∞,
(ii) lim

χ(t)→+∞
T(χ(t)) = δ, lim

χ(t)→−∞
T(χ(t)) = δ.

For the properties of T(χ(t)), condition (3) equals

E(t) = ν(t)T(χ(t)). (4)

As T(χ(t)) is strictly monotonically increasing and ν(t) ≥ ν∞ > 0, the inverse function
can be written as

χ(t) = T−1
(

E(t)
ν(t)

)
. (5)

From the above analysis, it can be observed that if χ(t) is bounded, then the prescribed
performance (3) can be guaranteed. To facilitate the control design to stabilize χ(t) in (4),
the transformed function T(χ(t)) can be chosen as

T(χ(t)) =
δeχ(t) − δe−χ(t)

eχ(t) + e−χ(t)
;
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moreover, from (5), the transformed error χ(t) can be deduced as

χ(t) = T−1
(

E(t)
ν(t)

)
=

1
2

ln
T(χ(t)) + δ

δ− T(χ(t))
.

Therefore, based on (1), (4), and (5), the derivation of transformed error χ(t) is derived as

χ̇(t) =
1
2

(
ln

T(χ(t)) + δ

δ− T(χ(t))

)′
=

1
2

(
ln
(
T(χ(t)) + δ

)
− ln

(
δ− T(χ(t))

))′
=

1
2

(
1

T(χ(t)) + δ
− 1

δ− T(χ(t))

)
Ṫ(χ(t)) (6)

=
1
2

(
1

T(χ(t)) + δ
− 1

δ− T(χ(t))

)
Ė(t)ν(t)− E(t)ν̇(t)

ν2(t)

=Γ
(

xp1
2 (t) + φ1(x1(t)) + d1(t)− ˙yd(t)− Υ

)
,

where Γ = 1
2ν(t)

(
1

E(t)
ν(t)+δ

− 1
δ− E(t)

ν(t)

)
> 0 and Υ = Eν̇(t)

ν(t) .

Remark 3. It is noted that δν(0) specifies the upper bound of the maximum overshoot, and −δν(0)
represents the lower one; the decreasing rate of ν(t) embodies a lower bound on the needed speed of
convergence of E(t), which is drawn to ρ(t). Furthermore, on behalf of the maximum allowable size
of the tracking error at the steady state, the positive parameter ν∞ = lim

t→∞
ν(t) can be selected to be

arbitrarily small to promote the tracking accuracy.

2.3. Disturbance Observer

In system (1), the disturbance di(t) is unknown. For estimating d̂i(t), the following
nonlinear DOB is designed as

d̂i(t) = λi(xi(t)− pi(t)), (7)

ṗi(t) = xpi
i+1(t) + φi(xi(t)) + d̂i(t),

where xn+1(t) = u(t), pi(t) represents the internal states of the DOB, and λi > 0.
From (7), we know

˙̂di(t) = λi(xi(t)− pi(t)) = λi(di(t)− d̂i(t)). (8)

Let ei(t) = di(t)− d̂i(t), based on (1), (7) and (8). Then, the disturbance estimation error
system can be described as

ėi(t) = ḋi(t)− ˙̂di(t) = −λiei(t) + ḋi(t). (9)

Remark 4. In the actual control system, it is necessary to design a controller with robustness for
avoiding the influences of model uncertainty, parameter perturbation, external disturbances, and
other factors. The DOB-based controller can effectively eliminate the influence caused by the above
factors. In addition, the composite controller with DOB can be divided into two parts, inner ring
and outer ring, which is convenient for design and implementation. Concretely speaking, the inner
ring can improve the robustness of the system, and the outer one can be flexibly designed to achieve
control objection. Additionally, through the compensation of equivalent disturbance by DOB, the
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system can present the nominal performance, thereby facilitating the design of the outer-ring of
controller.

3. Main Results

This section can be divided into two parts. First, a composite controller is recursively
designed by means of the back-stepping method and the nonlinear disturbance observer
constructed above. Secondly, the main results of this paper are derived from two theorems
with strict proofs.

3.1. Composite Controller
χ̇1 = Γ

(
xp1

2 (t) + φ1(x1(t)) + d1(t)− ẏd(t)− Υ
)

,

ẋi(t) = xpi
i+1(t) + φi(xi(t)) + di(t), i = 2, . . . , n− 1,

ẋn(t) = upn(t) + φn(xn(t)) + dn(t).

y(t) = x1(t).

(10)

Then, as the preparatory design of the whole composite controller, we introduce
s1(t) = χ(t)− 1

2
ln

δ

δ
,

si(t) = xi(t)− αi(t), i = 2, . . . , n,

xn+1(t) = αn+1(t) = u(t),

(11)

where αi(t) denotes the virtual control input to be determined for the ith subsystem.
For simplifying the expression of functions, a function f (x(t)) can be rewritten as f (x)

or f in the following analysis. The design procedures of back-stepping composite controller
are given as follows:

STEP 1. Consider the first subsystem as

ṡ1(t) = Γ
(

xp1
2 (t) + φ1(x1(t)) + d1(t)− ẏd(t)− Υ

)
. (12)

Choose a Lyapunov function as

V1 =
sp−p1+2

1 (t)
p− p1 + 2

+
ep−p1+2

1 (t)
p− p1 + 2

. (13)

According to (9) and (12), the time derivative of V1 yields

V̇1 =sp−p1+1
1 ṡ1 + ep−p1+1

1 ė1

=sp−p1+1
1

[
Γ
(
xp1

2 + φ1(x1) + d1 − ẏd − Υ
)]
− λ1ep−p1+2

1 + ep−p1+1
1 ḋ1

=sp−p1+1
1 Γ

(
α

p1
2 + φ1(x1) + d̂1 − ẏd − Υ

)
− λ1ep−p1+2

1 + ep−p1+1
1 ḋ1

+ sp−p1+1
1 Γe1 + sp−p1+1

1 Γ
(
xp1

2 − α
p1
2
)
,

(14)

through the help of Lemmas 3 and 4, and (11), one gets
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∣∣∣sp−p1+1
1 Γ

(
xp1

2 − α
p1
2
)∣∣∣

≤Γp1|s1|p−p1+1|x2 − α2|(xp1−1
2 + α

p1−1
2 )

=Γp1|s1|p−p1+1|s2|
[
(s2 + α2)

p1−1 + α
p1−1
2

]
≤Γp1|s1|p−p1+1|s2|

[
2p1−1(|s2|p1−1 + |α2|p1−1)+ |α2|p1−1

]
=2p1−1Γp1|s1|p−p1+1|s2|p1 +

(
2p1−1 + 1

)
Γp1|s1|p−p1+1|s2||α2|p1−1, (15)

and by applying the first inequality of Lemma 5 with m = p− p1 + 1, n = p1, ε = p+1
p−p1+1

1
p12p1 ,

we obtain

Γp1|s1|p−p1+12p1−1|s2|p1 ≤p12p1−1 p− p1 + 1
p + 1

( p + 1
p− p1 + 1

1
p12p1

)
|s1|p+1

+ p12p1−1
( p + 1

p− p1 + 1
1

p12p1

)− p−p1+1
p+1 |Γ

1
p1 s2|p+1

≤1
2

sp+1
1 + sp+1

2 Γ
p+1
p1 β11, (16)

where β11 = p12p1−1
(

p+1
p−p1+1

1
p12p1

)− p−p1+1
p+1

.

Using the same m, n, let ε = p+1
p−p1+1

1
p1(2p1+2) of the first inequality of Lemma 5. This

yields

Γp1|s1|p−p1+1(2p1−1 + 1)|s2||α2|p1−1

≤p1(2p1−1 + 1)
p− p1 + 1

p + 1

( p + 1
p− p1 + 1

1
p1(2p1 + 2)

)
|s1|p+1

+ p1(2p1−1 + 1)
p1

p + 1

( p + 1
p− p1 + 1

1
p1(2p1 + 2)

)− p−p1+1
p+1 |Γ

1
p1 s

1
p1
2 α

p1−1
p1

2 |p+1

≤1
2

sp+1
1 + s

p+1
p1

2 Γ
p+1
p1 β12, (17)

where β12 =
(2p1−1+1)p2

1
p+1

(
p+1

p−p1+1
1

p1(2p1+2)

)− p−p1+1
p1 α

(p+1)(p1−1)
p1

2 .
Meanwhile, with the help of the second inequality of Lemma 5, let m = 1 and

n = p− p1 + 1, a(x, y) = Γ. We get

|e1Γsp−p1+1
1 | ≤ c1|e1|p−p1+2 + a1Γ

p−p1+2
p−p1+1 |s1|p−p1+2, (18)

where a1 = 1
p−p1+2

(
1

(p−p1+2)c1

) 1
p−p1+1

, c1 > 0.
Now, we select

α2 =
(
−

k1s1 + sp1
1

Γ
− φ(x1)− d̂1 + yd + Υ− a1Γ

p−p1+2
p−p1+1 s1

) 1
p1 , (19)

where k1 > 0.
By substituting (15)–(18) and the control law (19) into (14), the latter is rewritten as

V̇1 ≤ −k1sp−p1+2
1 + sp+1

2 Γ
p+1
p1 β11 + s

p+1
p1

2 Γ
p+1
p1 β12 − (λ1 − c1)e

p−p1+2
1 + ep−p1+1

1 ḋ1. (20)
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STEP 2. Based on s2 = x2 − α2, (10) and (19), we have

ṡ2 =ẋ2 − α̇2 (21)

=xp2
3 + φ2(x2) + d2 −

1

∑
j=0

∂α2

∂ν(t)(j)
ν(t)(j+1) −

1

∑
j=0

∂α2

∂y(j)
d

y(j+1)
d

− ∂α2

∂x1

(
xp1

2 + φ1(x1) + d1
)
− ∂α2

∂d̂1
λ1e1.

Choose the following Lyapunov function

V2 = V1 +
sp−p2+2

2
p− p2 + 2

+
ep−p2+2

2
p− p2 + 2

. (22)

Combine (9), (20) and (21). The derivative of V2 is depicted by

V̇2 =V̇1 + sp−p2+1
2 ṡ2 + ep−p2+1

2 ė2

≤− k1sp−p1+2
1 + sp+1

2 Γ
p+1
p1 β11 + s

p+1
p1

2 Γ
p+1
p1 β12

+ sp−p2+1
2

(
xp2

3 + φ2(x2) + d2 −
1

∑
j=0

∂α2

∂ν(t)(j)
ν(t)(j+1) −

1

∑
j=0

∂α2

∂y(j)
d

y(j+1)
d

− ∂α2

∂x1

(
xp1

2 + φ1(x1) + d1
)
− ∂α2

∂d̂1
λ1e1

)
− (λ1 − c1)e

p−p1+2
1 + ep−p1+1

1 ḋ1 − λ2ep−p2+2
2 + ep−p2+1

2 ḋ2

≤− k1sp−p1+2
1 − sp−p2+1

2
∂α2

∂x1
e1 + sp−p2+1

2 (xp2
3 − α

p2
3 )

+ sp−p2+1
2

[
α

p2
3 + sp2

2 Γ
p+1
p1 β11 + sP2

2 Γ
p+1
p1 β12 + φ2x2 + e2 + d̂2

−
1

∑
j=0

∂α2

∂ν(t)(j)
ν(t)(j+1) −

1

∑
j=0

∂α2

∂y(j)
d

y(j+1)
d − ∂α2

∂x1

(
xp1

2 + φ1(x1) + d̂1
)
− ∂α2

∂d̂1
λ1e1

]
− (λ1 − c1)e

p−p1+2
1 + ep−p1+1

1 ḋ1 − λ2ep−p1+2
2 + ep−p1+1

2 ḋ2, (23)

where p2 = p+1
p1
− (p− p2 + 1) is a non-negative constant under the second condition of

Assumption 1.
Currently, α3 is designed as

α3 =

[
− sp2

2 − (a2 + â2 + k2)s2 − sp2
2 Γ

p+1
p1 β11 − sP2

2 Γ
p+1
p1 β12 − φ2x2 − d̂2 (24)

+
1

∑
j=0

∂α2

∂ν(t)(j)
ν(t)(j+1) +

1

∑
j=0

∂α2

∂y(j)
d

y(j+1)
d +

∂α2

∂x1

(
xp1

2 + φ1(x1) + d̂1
)
+

∂α2

∂d̂1
λ1e1

] 1
p2

,

where k2 > 0, a2, and â2 are designed next.
Meanwhile, by applying Lemma 5, it follows that

|e2sp−p2+1
2 | ≤ c2|e2|p−p2+2 + a2|s2|p−p2+2,

− sp−p2+1
2

(∂α2

∂x1
+

∂α2

∂d̂1
λ1

)
e1 ≤ c1ep−p2+2

1 + â2sp−p2+2
2 ,

(25)
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where c2 > 0,

a2 = p−p2+1
p−p2+2

(
1

(p−p2+2)c2

) 1
p−p2+1

, â2 = p−p2+1
p−p2+2

(
1

(p−p2+2)c1

) 1
p−p2+1

(
∂α2
∂x1

+ ∂α2
∂d̂1

λ1

)p−p2+2
.

A similar argument for (15)–(17) in Step 1 leads to

sp−p2+1
2 (xp2

3 − α
p2
3 ) ≤2p2−1 p2|s2|p−p2+1|s3|p2 +

(
2p2−1 + 1

)
p2|s2|p−p2+1|s3||α3|p2−1

≤sp+1
2 + sp+1

3 β21 + s
p+1
p2

3 β22, (26)

where β21 = p22p2−1 p2
p+1

(
p+1

p−p2+1
1

p22p2

)− p−p2+1
p2 , and β22 =

(2p2−1+1)p2
2

p+1(
p+1

p−p2+1
1

p2(2p2+2)

)− p−p2+1
p2 α

(p+1)(p2−1)
p2

3 .
By substituting (25) and (26) and the control law (24) into (23), it is rewritten as

V̇2 ≤
2

∑
j=1

k js
p−pj+2
j + sp+1

3 β21 + s
p+1
p2

3 β22

+
2

∑
j=1

e
p−pj+1
j ḋj − (λ2 − c2)e

p−p2+2
2 − (λ1 − 2c1)e

p−p1+2
1 .

(27)

STEP 3. Similarly to Step 2, consider s3 = x3 − α3 and (24). We have

ṡ3 =ẋ3 − α̇3

=xp3
4 + φ3(x3) + d3 −

2

∑
j=0

∂α3

∂ν(t)(j)
ν(t)(j+1) −

2

∑
j=0

∂α3

∂y(j)
d

y(j+1)
d

−
2

∑
j=1

∂α3

∂xj

(
x

pj
j+1 + φj(xj) + dj

)
−

2

∑
j=1

∂α3

∂d̂j
λjej. (28)

Choose the following Lyapunov function:

V3 = V2 +
sp−p3+2

3
p− p3 + 2

+
ep−p3+2

3
p− p3 + 2

.

By combining (9), (27), and (28), the derivative of V3 is concluded as
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V̇3 =V̇2 + s
p−pj+1
3 ṡ3 + ep−p3+1

3 ė3

≤−
2

∑
j=1

k js
p−pj+2
j + sp+1

3 β21 + s
p+1
p2

3 β22 +
3

∑
j=1

ep−pi+1
j ḋj

+ sp−p3+1
3

(
xp3

4 + φ3(x3) + d3 −
2

∑
j=0

∂α3

∂ν(t)(j)
ν(t)(j+1) −

2

∑
j=0

∂α3

∂y(j)
d

y(j+1)
d

−
2

∑
j=1

∂α3

∂xj

(
x

pj
j+1 + φj(xj) + dj

)
−

2

∑
j=1

∂α3

∂d̂j
λjej

)
− λ3ep−p3+2

3 − (λ1 − 2c1)e
p−p1+2
1 − (λ2 − c1)e

p−p2+2
2

≤−
2

∑
j=1

k js
p−pj+2
j − sp−p3+1

3

2

∑
j=1

∂α3

∂xj
ej + sp−p3+1

3 (xp3
4 − α

p3
4 )

+ sp−p3+1
3

[
α

p3
4 + sp3

3 β21 + sp3
3 β22 + φ3x3 + e3 + d̂3 −

2

∑
j=0

∂α3

∂ν(t)(j)
ν(t)(j+1)

−
2

∑
j=0

∂α3

∂y(j)
d

y(j+1)
d −

2

∑
j=1

∂α3

∂xj

(
x

pj
j+1 + φj(xj) + d̂j

)
−

2

∑
j=1

∂α3

∂d̂j
λjej

]

+
3

∑
j=1

e
p−pj+1
j ḋj − λ3ep−p3+2

3 − (λ1 − 2c1)e
p−p1+2
1 − (λ2 − c2)e

p−p2+2
2 , (29)

where p3 = p+1
p3−1 − (p− p3 + 1) is a non-negative constant under the second condition of

Assumption 1.
Currently, α4 is designed as

α4

=

[
− sp3

3 − (a3 + â3 + k3)s3 − sp3
3 β21 − sp3

3 β22 − φ3x3 − d̂3 +
2

∑
j=0

∂α3

∂ν(t)(j)
ν(t)(j+1)

+
2

∑
j=0

∂α3

∂y(j)
d

y(j+1)
d +

2

∑
j=1

∂α3

∂xj

(
x

pj
j+1 + φj(xj) + d̂j

)
+

2

∑
j=1

∂α3

∂d̂j
λjej

] 1
p3

, (30)

where k3 > 0, a3 and â3 are designed later.
Meanwhile, by applying Lemma 5, it follows that

|e3sp−p3+1
3 | ≤ c3|e3|p−p3+2 + a3|s3|p−p3+2,

− sp−p3+1
3

2

∑
j=1

(∂α3

∂xj
+

∂α3

∂d̂j
λj

)
ej ≤

2

∑
j=1

cj|ej|p−pi+2 + â3|s3|p−p3+2,
(31)

where

c3 > 0,

a3 =
p− p3 + 1
p− p3 + 2

( 1
(p− p3 + 2)c3

) 1
p−p3+1

,

â3 =
2

∑
j=1

p− p3 + 1
p− p3 + 2

( 1
(p− p3 + 2)cj

) 1
p−p3+1

(∂α3

∂xj
+

∂α3

∂d̂j
λj

)p−p3+2
.

Similarly, the processing of (26) in Step 2 leads to
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sp−p3+1
3 (xp3

4 − α
p3
4 ) ≤2p3−1 p3|s3|p−p3+1|s4|p3 +

(
2p3−1 + 1

)
p3|s3|p−p3+1|s4||α4|p3−1

≤sp+1
3 + sp+1

4 β31 + s
p+1
p3

4 β32, (32)

where β31 = p32p3−1 p3
p+1

(
p+1

p−P3+1
1

p32p3

)− p−p3+1
p3 , and β32 =

(2p3−1+1)p2
3

p+1(
p+1

p−p3+1
1

p3(2p3+2)

)− p−p3+1
p3 α

(p+1)(p3−1)
p3

4 .
By substituting (31) and (32) and the control law (30) into (29), it is rewritten as

V̇3 ≤−
3

∑
j=1

k js
p−pj+2
j + sp+1

4 β31 + s
p+1
p3

4 β32 +
3

∑
j=1

e
p−pj+1
j ḋj

− (λ3 − c3)e
p−p3+2
3 − (λ1 − 3c1)e

p−p1+2
1 − (λ2 − 2c2)e

p−p2+2
2 .

(33)

STEP i. At Step i − 1 with i = 4, . . . , n− 1, we assume there exists a continuously

differential function Vi−1 =
i−1
∑

i=1

s
p−pj+2

j
p−pj+2 +

i−1
∑

i=1

e
p−pj+2

j
p−pj+2 such that

V̇i−1 ≤−
i−1

∑
j=1

k js
p−pj+2
j + sp+1

i βi−1,1 + s
p+1
pi−1
i βi−1,2

+
i−1

∑
j=1

e
p−pj+1
j ḋj −

i−1

∑
j=1

(λj − (i− j)cj)e
p−pj+2
j .

(34)

It is obvious that when i = 4, (34) is (33). In what follows, we will give strict proof that
(33) also holds at the ith step:

For this purpose,

ṡi =ẋi − α̇i

=xpi
i+1 + φi(xi) + di −

i−1

∑
j=0

∂αi

∂ν(t)(j)
ν(t)(j+1) −

i−1

∑
j=0

∂αi

∂y(j)
d

y(j+1)
d

−
i−1

∑
j=1

∂αi
∂xj

(
x

pj
j+1 + φj(xj) + dj

)
−

i−1

∑
j=1

∂αi

∂d̂j
λjej,

and the Lyapunov function Vi can be chosen as follows:

Vi = Vi−1 +
sp−pi+2

i
p− pi + 2

+
ep−pi+2

i
p− pi + 2

. (35)

Enlightened by (9), (11), and (34), we get the following inequality spontaneously:
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V̇i ≤−
i−1

∑
j=1

k js
p−pj+2
j − sp−pi+1

i

i−1

∑
j=1

∂αi
∂xj

ej + sp−pi+1
i (xpi

i+1 − α
pi
i+1)

+ sp−pi+1
i

[
α

pi
i+1 + spi

i βi−1,1 + spi
i βi−1,2 + φixi + ei + d̂i −

i1

∑
j=0

∂αi

∂ν(t)(j)
ν(t)(j+1)

−
i−1

∑
j=0

∂αi

∂y(j)
d

y(j+1)
d −

i−1

∑
j=1

∂αi
∂xj

(
x

pj
j+1 + φj(xj) + d̂j

)
−

i−1

∑
j=1

∂αi

∂d̂j
λjej

]

+
i

∑
j=1

e
p−pj+1
j ḋj −

i

∑
j=1

(λj − (i− j)cj)e
p−pj+2
j − λie

p+pi+2
i ,

(36)

where pi =
p+1
pi−1 − (p− pi + 1) is a non-negative constant under the second condition of

Assumption 1.
Currently, αi+1 is designed as

αi+1 =

[
− spi

i − (ai + âi + ki)si − spi
i βi−1,1 − spi

i βi−1,2 − φixi − d̂i +
i−1

∑
j=0

∂αi

∂ν(t)(j)
ν(t)(j+1)

+
i−1

∑
j=0

∂αi

∂y(j)
d

y(j+1)
d +

i−1

∑
j=1

∂αi
∂xj

(
x

pj
j+1 + φj(xj) + d̂j

)
+

i−1

∑
j=1

∂αi

∂d̂j
λjej

] 1
pi

, (37)

and ki > 0, ai, and âi are designed later.
Now applying Lemma 5 again, it follows that

|eis
p−pi+1
i | ≤ ci|ei|p−pi+2 + ai|si|p−pi+2,

− sp−pi+1
i

i−1

∑
j=1

( ∂αi
∂xj

+
∂αi

∂d̂j
λj

)
ej ≤

i−1

∑
j=1

cj|ej|p−pi+2 + âi|si|p−pi+2,
(38)

where

ci > 0,

ai =
p− pi + 1
p− pi + 2

( 1
(p− pi + 2)ci

) 1
p−pi+1

,

âi =
i−1

∑
j=1

p− pi + 1
p− pi + 2

( 1
(p− pi + 2)cj

) 1
p−pi+1

( ∂αi
∂xj

+
∂αi

∂d̂j
λj

)p−pi+2
.

Furthermore,

sp−pi+1
i (xpi

i+1 − α
pi
i+1) ≤2pi−1 pi|si|p−pi+1|si+1|pi +

(
2pi−1 + 1

)
pi|si|p−pi+1|si+1||αi+1|pi−1

≤sp+1
i + sp+1

i+1 βi1 + s
p+1
pi

i+1 βi2, (39)

where βi1 = pi2pi−1 pi
p+1

(
p+1

p−Pi+1
1

pi2
pi

)− p−pi+1
pi , and βi2 =

(2pi−1+1)p2
i

p+1(
p+1

p−pi+1
1

pi(2
pi+2)

)− p−pi+1
pi α

(p+1)(pi−1)
pi

i+1 .



Entropy 2023, 25, 103 14 of 19

By substituting (38) and (39) and the control law (37) into (36), it is rewritten as

V̇i ≤−
i

∑
j=1

k js
p−pj+2
j + sp+1

i+1 βi1 + s
p+1
pi

i+1 βi2

+
i

∑
j=1

e
p−pj+1
j ḋj −

i

∑
j=1

(λj − (i− j + 1)cj)e
p−pj+2
j .

(40)

STEP n. In particular, the actual controller u(t) that we truly need can be found at the
last step. ṡn can be expressed as

ṡn =ẋn − α̇n

=xpn
n+1 + φn(xn) + dn −

n−1

∑
j=0

∂αi

∂ν(t)(j)
ν(t)(j+1) −

n−1

∑
j=0

∂αi

∂y(j)
d

y(j+1)
d

−
n−1

∑
j=1

∂αi
∂xj

(
x

pj
j+1 + φj(xj) + dj

)
−

n−1

∑
j=1

∂αi

∂d̂j
λjej,

and the Lyapunov function Vn also can be chosen as

Vn = Vn−1 +
sp−pn+2

n
p− pn + 2

+
ep−pn+2

n
p− pn + 2

.

Through the same process above, we select

u(t) = xn+1 = αn+1

=

[
− (an + ân + kn)sn − spn

n βn−1,1 − spn
n βn−1,2 − φnxn − d̂n +

n−1

∑
j=0

∂αn

∂ν(t)(j)
ν(t)(j+1)

+
n−1

∑
j=0

∂αn

∂y(j)
d

y(j+1)
d +

n−1

∑
j=1

∂αn

∂xj

(
x

pj
j+1 + φj(xj) + d̂j

)
+

n−1

∑
j=1

∂αn

∂d̂j
λjej

] 1
pn

, (41)

and the derivative of Vn can be found straightforwardly:

V̇n ≤ −
n

∑
j=1

k js
p−pj+2
j +

n

∑
j=1

e
p−pj+1
j ḋj −

n

∑
j=1

(λj − (n− j + 1)cj)e
p−pj+2
j . (42)

Remark 5. In the whole process above, in order to counteract the crossing terms consisting of the
coupling among disturbances, system states, and compensation errors, two sets of auxiliary terms,
ai and âi, are constructed and introduced into both the virtual laws and actual control input of the
back-stepping control design.

3.2. Stability Analysis

So far, the design of a back-stepping control protocol has been achieved. The two
conclusions areas follows.

Theorem 1. Consider the control developed by observer error system (9), corresponding system
(11), and controller (41) under Assumptions 1 and 2. The closed-loop system (1) is input-to-state
stable (ISS).
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Proof of Theorem 1. Choose the Lyapunov function as

Vn =
n

∑
i=1

s
p−pj+2
j

p− pj + 2
+

n

∑
i=1

e
p−pj+2
j

p− pj + 2
;

according to former work (42), one has

V̇n ≤−
n

∑
j=1

k js
p−pj+2
j +

n

∑
j=1

e
p−pj+1
j ḋj −

n

∑
j=1

(λj − (n− j + 1)cj)e
p−pj+2
j . (43)

In order to facilitate the following theoretical analysis, we select a constant σ, 0 < σ < 1,
and let λj = µj + (n− j + 1)cj, µj > 0, µ̂ = min{µ1, . . . , µn}. Then, (43) is rewritten as

V̇n ≤−
n

∑
j=1

k js
p−pj+2
j +

n

∑
j=1

e
p−pj+1
j ḋj −

n

∑
j=1

µie
p−pj+2
j

≤−
n

∑
j=1

k js
p−pj+2
j + ‖ ḋ ‖‖ e ‖p−pj+1 −µ̂ ‖ e ‖p−pj+2

=−
n

∑
j=1

k js
p−pj+2
j + ‖ ḋ ‖‖ e ‖p−pj+1 −σµ̂ ‖ e ‖p−pj+2 −(1− σ)µ̂ ‖ e ‖p−pj+2 ,

(44)

where e = (e1, . . . , en)T , ḋ = (ḋ1, . . . , ḋn)T .

Consider (44). It is plain that when ‖ e ‖≥ ‖ḋ‖µ̂σ , one has

V̇n ≤ −
n

∑
j=1

k js
p−pj+2
j − (1− σ)µ̂ ‖ e ‖p−pj+2

≤ −
n

∑
j=1

k js
p−pj+2
j − (1− σ)µ̂ ‖ e ‖2 .

Therefore, according to Lemma 1, regarding e and ḋ as state and input, respectively, the
closed-loop system is input-to-state stable. Furthermore, it follows that si, ei are uniformly
ultimately bounded [36].

3.3. Prescribed Performance and Convergence Analysis

Next, we discuss the asymptotical output tracking of system (1) with disturbances and
the prescribed performance control.

Theorem 2. Under Assumptions 1 and 2, consider the nonlinear system (1) with disturbance
observer (7) and composite controller (41). Then, the following three control objectives are achieved:

(i) the disturbance estimation error ei asymptotically converge to zero;
(ii) the tracking error E(t) satisfies lim

t→∞
E(t) = 0;

(iii) the prescribed performance (3) is guaranteed.

Proof of Theorem 2. According to Theorem 1, regarding ḋi(t) as the control input to sys-
tem (1), with the help of the second condition of Assumption 1 and Lemma 2, the states
satisfy
lim
t→∞

si(t) = 0, lim
t→∞

ei(t) = 0, which implies that

lim
t→∞

s1(t) = lim
t→∞

(1
2

ln
T(χ(t)) + δ

δ− T(χ(t))
− 1

2
ln

δ

δ

)
= 0.
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Then, we have lim
t→∞

T(χ(t)) = 0; therefore,

lim
t→∞

E(t) = lim
t→∞

ν(t)T(χ(t)) = 0.

In addition, since s1(t) is bounded, χ(t) is bounded. According to the properties
of transforming function T(χ(t)) in Remark 2, −δ < T(χ(t)) < δ, which means that
−δν(t) < E(t) < δν(t). Thus, the tracking error E(t) with prescribed error performance (3)
is achieved.

Remark 6. The control protocol proposed in this paper can achieve a global results for any initial
conditions, and also can satisfy any performance constraints about the speed of convergence, the
steady-state error, and the overshoot, which are various in practical engineering applications.

Remark 7. In the proposed control protocol, the selection of the parameters δ, ν(0) and δ should
be proper to guarantee the initial conditions of prescribed performance −δν(0) < E(0) < δν(0).
For instance, a large χ(t) will lead the tracking error E(t) to be close to its boundary, which causes
a large control input u(t). However, this situation may be too strict to fit the limitations of the
hardware. Reselecting the parameters δ, ν(0) and δ may be a practicable solution.

4. Simulation

In order to show the practical effectiveness of the design protocol proposed in this
paper, we applied it to the following second-order nonlinear system as an application and
illustration: 

ẋ1(t) = xp1
2 (t) + d1(t),

ẋ2(t) = up2(t)− 49
10

sin x1(t) + d2(t),

y(t) = x1(t),

(45)

where p1 = 1, p2 = 3, p = 3. Our objective was to track the expected signal yd(t).
In this case, consider yd(t) = 0.3 sin(t) + 0.2 cos(0.5t), and the disturbances are given as

d1(t) =


0, 0 < t < 10

cos(t), 10 ≤ t < 25,

1.8, t ≥ 25

d2(t) =


0, 0 < t < 10

0.2 sin(t), 10 ≤ t < 25.

1, t ≥ 25

In addition, let the initial condition x1(0) = 0, x2(0) = 0. Additionally, we selected
the parameters t0 = 1, ν0 = 2, ν∞ = 0.1, ρ∞ = 0.1, δ = 1, and δ = 2; and k1 = 1, k2 = 1, c1 =
2, c2 = 2, λ1 = 5, and λ2 = 22 of the prescribed performance function and the composite
controller, respectively.

Figure 1 shows the simulation results. Firstly, as Figure 1a shows, the prescribed
performance of tracking error E(t) can be confirmed, and disturbances have been rejected
superbly by the controller, which shows the effectiveness of the proposed control protocol.
Secondly, Figure 1b presents the curves of the output y(t), the given signal yd(t), and the
state of x2(t), which indicates that x2 is bounded and y(t) can fit yd(t) completely in less
than 5 s. Thirdly, The curve of input u(t) can be seen in Figure 1c, which is also bounded.
It is noted that when there are large fluctuations in disturbances from t = 10 to t = 25, u(t)
also changes considerably at t = 25 and u(t). Lastly, Figure 1d ensures the effectiveness of
disturbance observer by showing that d1(t) and d2(t) can be well estimated. Therefore, it is
obvious that the proposed composite controller achieves all the control objectives, which
proves that it has good tracking control and anti-disturbance performance.
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(a) the curve of tracking error E(t) (b) the curves of y(t), yd(t) and x2(t)

(c) the curve of input u(t) (d) the curves of d(t) and d̂(t)

Figure 1. Response curves of system (45).

Remark 8. It is worth noting that the first-order case of above example can be applied to the
single-link robot dynamic equation as a engineering application. The single-link robot dynamic
equation proposed by Ho et al. [39] can be described asMq̈ +

1
2

mgL sin q = u,

y = q,
(46)

where m, L, and q are the mass, the length, and the angle of the link; M = 1 and g = 9.8m/s denote
the moment of inertia and the gravity coefficient, respectively; u is the controlling torque. Let q and
q̈ be x1(t) and x2(t); d1(t) and d2(t) are unknown external disturbances. (46) can be written as

ẋ1(t) = x2(t) + d1(t),

ẋ2(t) = u(t)− 49
10

mL sin x1(t) + d2(t),

y(t) = x1(t).

(47)

Let m = L = 1, (47) is the first-order case of (45) as
ẋ1(t) = x2(t) + d1(t),

ẋ2(t) = u(t)− 49
10

sin x1(t) + d2(t),

y(t) = x1(t).
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5. Conclusions

In this article, the prescribed performance tracking control and anti-disturbance control
problems have been solved for a class of high-order, strict-feedback systems with external
disturbances. With the help of the PPC method, the DOB technique, the back-stepping
method, and the technique of adding a power integrator, a novel composite controller was
developed to guarantee that all states in the closed-loop system are stable and the tracking
error maintains the prescribed performance throughout the evolution. In addition, the
output tracking error converges to zero when the disturbances satisfy a weak assumption
of boundedness. At last, a numerical simulation was presented to show the effectiveness of
the theoretical result.

Author Contributions: Conceptualization, X.T. and H.J.; methodology, X.T.; software, X.T.; validation,
X.T. and H.J.; writing—original draft preparation, X.T.; writing—review and editing, X.T.; supervision,
H.J.; project administration, H.J.; funding acquisition, H.J. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported jointly by National Natural Science Foundation of China
(62163035), by the Key Project of Natural Science Foundation of Xinjiang (2021D01D10), by Xin-
jiang Key Laboratory of Applied Mathematics (XJDX1401), and by the Special Project for Local
Science and Technology Development Guided by the Central Government (ZYYD2022A05).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the publica-
tion of this paper.

References
1. Kim, B.; Calise, A. Nonlinear flight control using neural networks. J. Guid. Control Dynam. 1997, 20, 26–33.
2. Nijmeijer, H.; Van der Schaft, A. Nonlinear Dynamical Control Systems, 3rd ed.; Springer: Berlin, Germany, 1996.
3. Liu, C.; Liu, X.; Wang, H.; Lu, S.; Zhou, Y. Adaptive control and application for nonlinear systems with input nonlinearities and

unknown virtual control coefficients. IEEE Trans. Cybern. 2022, 52, 8804–8817.
4. Oishi, Y.; Sakamoto, N. Optimal Sampled-Data Control of a Nonlinear System. arXiv 2021, arXiv:2112.145072021.
5. Kawan, C.; Mironchenko, A.; Swikir, A.; Noroozi, N.; Zamani, M. A Lyapunov-based small-gain theorem for infinite networks.

IEEE Trans. Autom. Control 2021, 66, 5830–5844.
6. Sontag, E. Stabilization implies coprime factorization. IEEE Trans. Autom. Control 1989, 34, 435–443.
7. Yu, P.; Qi, D.; Sun, Y.; Wan, F. Stability analysis of impulsive stochastic delayed Cohen-Grossberg neural networks driven by Levy

noise. Appl. Math. Comput. 2022, 434, 127444.
8. He, D.; Huang, H. Input-to-state stability of efficient robust H∞ MPC scheme for nonlinear systems. Inf. Sci. 2015, 292, 111–124.
9. Lin, Z.; Liu, Z.; Zhang, Y.; Philip Chen, C. Adaptive neural inverse optimal tracking control for uncertain multi-agent systems. Inf.

Sci. 2022, 584, 31–49.
10. Pu, Z.; Rao, R. LMI-based criterion on stochastic ISS property of delayed high-order neural networks with explicit gain function

and simply event-triggered mechanism. Neurocomputing 2020, 377, 57–63.
11. Nekhoroshikh, A.; Eflmov, D.; Fridman, E.; Perruquetti, W.; Furtat, L.; Polyakov, A. Practical fixed-time ISS of neutral time-delay

systems with application to stabilization by using delays. Automatica 2022, 143, 110455.
12. Mancilla-Aguilar, J.; Haimovich, H. (Integral-)ISS of switched and time-varying impulsive systems based on global state weak

linearization. IEEE Trans. Autom. Control 2021, 67, 6918–6925.
13. Gao, L.; Liu, Z.; Wang, S.; Qu, M.; Zhang, M. Input-to-state stability for discrete hybrid time-delay systems with admissible

edge-dependent average dwell time. J. Franklin I. 2021. https://doi.org/10.1016/j.jfranklin.2021.08.029.
14. Gong, Y.; Guo, Y.; Ma, G.; Ran, G.; Li, D. Predefined-time tracking control for high-order nonlinear systems with control saturation.

Int. J. Robust Nonlinear Control 2022, 32, 6218–6235.
15. Zhang, X.; Wang, Y.; Cheng, D. Output tracking of Boolean control networks. IEEE Trans. Autom. Control 2019, 65, 2730–2735.
16. Wu, C.; Pan, W.; Sun, G.; Liu, J.; Wu,L. Learning tracking control for cyber-physical systems. IEEE Internet Things J. 2021, 8,

9151–9163.
17. Yu, Z.; Yu, S.; jiang, H.; Hu, C. Distributed consensus for multi-agent systems via adaptive sliding mode control. Int. J. Robust

Nonlin. 2021, 31, 7125–7151.
18. Zhao, Y.; Liu, Y.; Ma, D. Output regulation for switched systems with multiple disturbances. IEEE Trans. Circuits Syst. Regul. Pap.

2020, 67, 5326–5335.



Entropy 2023, 25, 103 19 of 19

19. Liu, S.; Feng, J.; Wang, Q.; Song, W. Adaptive consensus control for a class of nonlinear multi-agent systems with unknown time
delays and external disturbances. Trans. Inst. Meas. Control 2022, 44, 2063–2075.

20. Huang, J.; Chen, Z. A general framework for tackling the output regulation problem. IEEE Trans. Autom. Control 2004, 49,
2203–2218.

21. Back, J.; Shim, H. Adding robustness to nominal output-feedback controllers for uncertain nonlinear systems: A nonlinear version
of disturbance observer. Automatica 2008, 44, 2528–2537.

22. Wang, W.; Guo, P.; Hu, C.; Zhu, L. High-performance control of fast tool servos with robust disturbance observer and modified
H∞ control. Mechatronics 2022, 84, 102781.

23. Santina, C.; Turby, R.; Rus, D. Data-driven disturbance observers for estimating external forces on soft robots. IEEE Robot. Autom.
Lett. 2020, 5, 5717–5724.

24. Zhang, J.; Chen, D.; Shen, G.; Sun, Z.; Xia, Y. Disturbance observer based adaptive fuzzy sliding mode control: A dynamic sliding
surface approach. Automatica 2021, 129, 109606.

25. Zhang, W.; Wei, W. Disturbance-observer-based finite-time adaptive fuzzy control for non-triangular switched nonlinear systems
with input saturation. Inf. Sci. 2021, 561, 152–167.

26. Krstic, M.; Kokotovic, P.; Kanellakopoulos, I. Nonlinear and Adaptive Control Design; John Wiley & Sons, Inc.: New York, NY,
USA, 1995.

27. Wang, J.; Rong, J.; Lu, L. Reduced-order extended state observer based event-triggered sliding mode control for DC-DC buck
converter system with parameter perturbation. Asian J. Control 2020, 23, 1591–1601.

28. Bechlioulis, C.; Rovithakis, G. Prescribed performance adaptive control of SISO feedback linearizable systems with disturbances.
In Proceedings of the 2008 16th Mediterranean Conference on Control and Automation, Ajaccio, France, 25–27 June 2008.

29. Bechlioulis, C.; Rovithakis, G. Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed
performance. IEEE Trans. Autom. Control 2008, 53, 2090–2099.

30. Fu, D.; Yin, H.; Huang, J. Controlling an uncertain mobile robot with prescribed performance. Nonlinear Dyn. 2021, 5, 2347–2362.
31. Bai, W.; Wang, H. Robust adaptive fault-tolerant tracking control for a class of high-order nonlinear system with finite-time

prescribed performance. Int. J. Robust Nonlinear Control 2020, 30, 4708–4725.
32. Chen, L.; Yang, H. Adaptive neural prescribed performance output feedback control of pure feedback nonlinear systems using

disturbance observer. Int. J. Adapt. Control 2020, 34, 520–542.
33. Huang, Y.; Lin, S.; Liu, X.H∞ synchronization and robustH∞ synchronization of coupled neural networks with non-identical

nodes. Neural Process. Lett. 2021, 53, 3467–3496.
34. Gao, F.; Chen, W. Disturbance rejection in singular time-delay systems with external disturbances. Int. J. Control Autom. 2022, 20,

1841–1848.
35. Chen, F.; Dimarogonas, D. Leader-follower formation control with prescribed performance guarantees. IEEE Trans. Control Netw.

2020, 8, 450–461.
36. Vidyasagar, M. Nonlinear Systems Analysis; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2002.
37. Yang, B.; Lin, W. Homogeneous observers, iterative design and global stabilization of high-order nonlinear systems by smooth

output feedback. IEEE Trans. Autom. Control 2004, 49, 1069–1080.
38. Qian, C.; Lin, W. Non-lipschitz continuous stabilizers for nonlinear systems with uncontrollable unstable linearization. Syst.

Control Lett. 2001, 42, 185–200.
39. Ho, H.; Wong, Y.; Rad, A. Adaptive fuzzy approach for a class of uncertain nonlinear systems in strict-feedback form. ISA Trans.

2008, 47, 286–299.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction
	Problem Formulation and Preliminaries
	Problem Formulation
	Prescribed Performance
	Disturbance Observer

	Main Results
	Composite Controller
	Stability Analysis
	Prescribed Performance and Convergence Analysis

	Simulation
	Conclusions
	References

