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Abstract: Multi-project parallelism is an important feature of open source communities (OSCs), and 

multi-project collaboration among users is a favorable condition for an OSC’s development. This 

paper studies the robustness of this type of community. Based on the characteristics of knowledge 

collaboration behavior and the large amount of semantic content generated from user collaboration 

in open source projects, we construct a directed, weighted, semantic-based multi-project knowledge 

collaboration network. Using analysis of the KCN’s structure and user attributes, nodes are divided 

into knowledge collaboration nodes and knowledge dissemination nodes that participate in either 

multi- or single-project collaboration. From the perspectives of user churn and behavior degrada-

tion, two types of failure modes are constructed: node failure and edge failure. Based on empirical 

data from the Local Motors open source vehicle design community, we then carry out a dynamic 

robustness analysis experiment. Our results show that the robustness of our constructed network 

varies for different failure modes and different node types: the network has (1) a high robustness to 

random failure and a low robustness to deliberate failure, (2) a high robustness to edge failure and 

a low robustness to node failure, and (3) a high robustness to the failure of single-project nodes (or 

their edges) and a low robustness to the failure of multi-project nodes (or their edges). These find-

ings can be used to provide a more comprehensive and targeted management reference, promoting 

the efficient development of OSCs. 

Keywords: open source community; multi-project collaboration; directed weighted network;  

robustness 

 

1. Introduction 

As the physical carrier for the implementation of open source modes and ideas, the 

open source community (OSC) has accumulated many volunteers from all over the world. 

Through in-depth interaction and collaboration of volunteers, OSC members have broken 

through the barriers of traditional production methods in a creative storm, collaborative 

design, knowledge sharing, and dissemination. The OSC’s many advantages (e.g., open-

ness, low running cost, high efficiency, high project conversion rate, and high customer 

satisfaction) have made it highly valued by people from all walks of life, as well as by 

governments, enterprises, and universities around the world [1–3]. 

The open source model was first applied to open source software (i.e., freeware) [4–

6], where its many advantages (e.g., cost efficiency, low risk of trial and error, fostering 

talent, and other aspects) have led to 97% of individual developers and 99% of enterprises 

now using such software worldwide [7]. Under the philosophy that all knowledge should 

be freely available to everyone, the open source model has since established itself in many 

specific industries (e.g., industrial design, e-commerce, education, commercial market-

Citation: Zhang, X.; Lei, S.; Sun, J.; 

Kou, W. Robustness of Multi-Project 

Knowledge Collaboration Network 

in Open Source Community. Entropy 

2023, 25, 108. https://doi.org/10.3390/ 

e25010108 

Academic Editors: Yong Deng, 

Minyu Feng, Liang-Jian Deng and 

Feng Chen 

Received: 1 November 2022 

Revised: 25 December 2022 

Accepted: 27 December 2022 

Published: 4 January 2023 

 

Copyright: ©  2023 by the authors. 

Licensee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/). 



Entropy 2023, 25, 108 2 of 19 
 

 

ing), and many product users have gone on to become product developers through com-

munity collaboration [8–11]. However, despite many successful OSCs and fruitful aca-

demic research results, there are also many cases of failure. For example, regarding the 

OSCs built by most of the Fortune 100 companies, their expected returns in product inno-

vation and economic benefit have not been achieved because of low user collaboration, 

lack of valuable contributions, serious loss of user resources and other factors [12,13]. The 

openness, knowledge characteristics, democracy, and collaborative nature of the OSC it-

self determine that any rigid organizational structure or strong organizational control will 

inhibit the creativity of the community, which will ultimately lead to the loss of users and 

the failure of open source projects (OSPs). Therefore, it is of great practical significance for 

the stable development of OSCs and OSPs to (1) study the evolution process of the KCN’s 

structure and user attributes, and (2) build a multi-project knowledge collaboration net-

work (KCN) and study its robustness and failure conditions. 

The robustness of a network is the ability to maintain the structural integrity and 

functional continuity of the system in case of failures of nodes or links [14–16]. Many 

scholars have researched the robustness of the OSC, providing practical and valuable in-

sights. However, some issues remain in the areas of network construction and attack strat-

egy. 

First, regarding network construction, whether through empirical and qualitative re-

search methods or simulation modeling and experimental analysis, many studies build 

their social network models using social network methods and system analysis ideas from 

complex networks. For example, Zhang et al. [17] built an undirected, unweighted net-

work based on the knowledge collaboration between users to study the topology charac-

teristics and robustness of the open IDEO open source design network. Knowledge col-

laboration distinguishes OSCs from other online communities, and constructed networks 

should reflect this. Zhou et al. [18–20] built a KCN to study the impact of user loss in the 

OSP community on the robustness of OSPs and OSCs. They screened out behaviors where 

users were in deep knowledge collaboration with each other. However, their constructed 

KCN does not reflect the content of knowledge collaboration, that is, the strength of 

knowledge collaboration is reflected only by the frequency of collaboration, which is not 

fully realistic. When building a semantic-based KCN, Lei et al. [21,22] considered the fre-

quency and content strength of knowledge collaboration between users, but their research 

was limited to individual OSPs in the OSC, not to the multi-project OSC as a whole. 

Second, regarding attack strategies, there are usually two types of attacks: random 

attacks and targeted attacks [23,24], where targeted attack strategies are mainly based on 

network topology information [25]. Basing the attack strategy on network topology infor-

mation was first proposed by Holme et al. [26] when measuring the robustness of scientific 

cooperation networks and Internet traffic networks. They considered the deletion of nodes 

and edges based on degrees and betweenness, respectively. Later, many scholars studied 

the robustness of various complex networks based on the combination and expansion of 

the above attack strategies. For example, Bellinger et al. [27] designed (a) node failure, 

which is based on the order of node degree, node strength, node intermediary, and 

weighted node intermediary, and (b) edge failure, which is based on the order of edge 

weight removal from strong to small and weak to large. They constructed the respective 

unweighted and weighted networks of six real networks (e.g., the American airport flight 

transportation network, and British teachers’ social network) to study how the difference 

in weight affects them. Iyer et al. [28] also conducted comparative experiments in six real 

networks, using not only node removal strategies of node degree and node betweenness 

but also the change rule of network connectivity under the strategy of removing nodes by 

eigenvector centrality and closeness centrality. Zhang et al. [29] studied methods to im-

prove the robustness of small-world networks, deleting nodes or edges in order of their 

edge weight, edge betweenness, and node betweenness. Their results show that as the 

average degree of the network increases, so does the robustness of the network. Tang et 

al. [30] adopted a node removal strategy based on the node betweenness in their research 
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on the robustness of the regional collaborative innovation network structure. Based on the 

analysis of the above literature, we found that the attack strategy is mainly based on the 

network topology information, that is, the structural characteristics of nodes or edges. 

However, multi-project parallelism is an important feature of OSCs. Research shows that 

developers participate in multiple OSPs at the same time and are willing to make long-

term contributions. They focus on one or two active projects at a time, and after finishing 

their activity in a project, they soon select a new project in which to collaborate [31]. The 

obvious project characteristics of community users are rarely noticed in most robustness 

studies. 

Further, most attack strategies are based on node failure. Open source design is an 

innovative design mode, with core characteristics that include self-organization and large-

scale, deep collaboration of its users. Many studies have pointed out that collaborative 

behavior degradation and failure (i.e., edge degradation and failure) have a serious impact 

on the network [32,33]. For example, Griffith et al. [34] stated that the collaboration net-

work formed by large-scale interactive discussion and collaboration among users is the 

best way to share, innovate and disseminate knowledge. Singh et al. [35] asserted that the 

deep collaboration behavior represented by mutual comments among users in the OSC is 

the power source that enables new products to be quickly recognized and distributed, and 

effectively improves the efficiency of product development. Using user activity and pro-

ject attraction as indicators. Midha et al. [36] studied the factors that affect the success of 

the OSC. They found that attracting many users into the community and guiding users to 

continue their interaction and collaboration are the fundamental elements for the survival 

and development of the OSC. Many community failures are caused by users leaving or 

having a reduced willingness to collaborate. Li et al. [37] stated that the autonomy and 

mobility of community participants have an important impact on the network structure 

and sustainable development of the community. Crowston et al. [38] argued that the qual-

ity and quantity of user collaboration are more important than the number of users enter-

ing the community. Ransbotham et al. [39] stated that a very important reason for the 

inefficient operation of an OSC is the lack of truly valuable contributions by community 

members. These studies show that user mobility and collaboration behavior are key to the 

success of the community or project. In this robustness study, we comprehensively con-

sider the impact of node and edge failures on network performance, so that more targeted 

management strategies can be formulated for the efficient and stable development of the 

OSC. 

The remainder of this paper is organized as follows. In Section 2, we construct a di-

rected weighted KCN that takes into account the characteristics of multi-project collabo-

ration in the open source design community and the large amount of semantic text infor-

mation generated in the user collaboration process. We also analyze the KCN’s structure 

and user attributes, dividing nodes into knowledge collaboration nodes and knowledge 

dissemination nodes that participate in either multiple- or single-project collaboration. In 

Section 3, two basic failure modes (i.e., node failure and edge failure) are combined to 

construct the robustness research framework. In Section 4, a simulation model is built to 

determine changes in network performance for each of the failure modes. Our conclusions 

are given in Section 5, including our recommendations for community management strat-

egies. 

2. Construction and Characteristics Analysis of Multi-Project KCN 

2.1. Construction of Semantic-Based KCN 

2.1.1. Data Selection and Processing of Empirical Research 

We use the project data of Local Motors (an open source automobile community) as 

the research object. Until its dissolution in 2022, Local Motors was the largest car design 

exchange community in the world, with nearly 10,000 care enthusiasts from 121 countries. 

They had an online community for designing and communicating automobile-related 
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products and a microfactory for their offline production and manufacturing. Their com-

munity’s innovation process, project design process, research and development, and pro-

duction process reflect typical characteristics of an OSC, such as a high concentration of 

users and project types, the strong creation and dissemination of knowledge, and the 

closed-loop integration of production and marketing. They, therefore, make a suitable re-

search object for this study. Specifically, we select 11 projects from the Local Motors OSC 

as research objects: 3D-PC, Airbus C, Air C, Darpa, LM SF-01, Olli, Open T, Rally F, Road 

R, Sketchover, and Verrado DT. We crawl the complete collaboration data, which includes 

project information, time information, and comments. According to the project statistics, 

1689 users participated in 11 project collaborations, with a total of 25,472 collaborative 

interactions. 

In an OSC, users participate in product design through large-scale, in-depth interac-

tion and collaboration, where “knowledge collaboration” is the main means with which 

to achieve innovative design. Therefore, it is necessary to establish a KCN rather than an 

information dissemination network. The first step when building a KCN is to screen for 

interactions that have knowledge collaboration characteristics. We use machine learning 

to screen out the knowledge collaboration behaviors from all communication behaviors. 

As shown in Figure 1, between 20 May 2008 and 15 November 2018, there were 18,469 

knowledge collaboration interactions throughout the 11 Local Motors OSPs, which were 

completed by 1410 users. 

 

Figure 1. Number of users and knowledge collaboration interactions in each project. 

2.1.2. Construction Method of Semantic-Based Multi-Project KCN 

To successfully build the KCN of an OSC, an in-depth analysis of knowledge collab-

oration behavior is essential. Knowledge collaboration behavior includes both (a) 

knowledge-level behavior, which is measured by the collaborative content between users, 

and (b) non-knowledge-level behavior, which is measured by the collaborative frequency. 

However, most research on OSC networks considers only the collaborative frequency (i.e., 

the non-knowledge-level behavior) between users when calculating the network weight. 

If the collaborative content (i.e., the knowledge-level behavior) between users is not also 

considered, then the intensity of the collaboration between users is not truly reflected. 

To construct a directed, weighted, semantic-based KCN, 𝐺(𝑉, 𝐸, 𝑊) : (1) the 

knowledge collaboration users and knowledge dissemination users are taken as the 

nodes, 𝑉 ; (2) the collaboration behaviors between nodes are taken as the connecting 
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edges, 𝐸; and (3) the weighted processing of collaboration content and collaboration fre-

quency (i.e., both parts of knowledge collaboration behavior) by users are taken as the 

edge weight, 𝑊. 

As shown in Figure 2, users are taken as nodes, 𝑣𝑖, and the collaboration behaviors 

between nodes are taken as edges, 𝑒𝑖𝑗. The edge weight, 𝜔𝑖𝑗 , is obtained by weighting 

the collaborative content intensity, 𝑔𝑖𝑗, and the collaborative frequency intensity, 𝑘𝑖𝑗, be-

tween users. The calculation of the edge weight of the network is: 

{
𝜔𝑖𝑗 = 𝛼𝑔𝑖𝑗 + 𝛽𝑘𝑖𝑗           𝑘𝑖𝑗 > 0

0                                       𝑘𝑖𝑗 < 0 
  (1) 

where 𝛼 and 𝛽 are the influence coefficients of the content intensity and frequency in-

tensity, respectively, satisfying 𝛼 + 𝛽 = 1. The collaborative frequency intensity, 𝑘𝑖𝑗, is 

obtained by normalizing the one-way collaboration times, 𝑘𝑖𝑗, from designers  𝑣𝑖  to  𝑣𝑗. 

The collaborative content intensity, 𝑔𝑖𝑗, is calculated by the matching degree of key-

words contained in user comments. The keyword matching score calculated from a user’s 

comments on the whole project or community is the semantic weight of the user, 𝑔𝑖. Here, 

the calculation of content intensity,  𝑔𝑖𝑗, includes word segmentation, construction of the 

co-occurrence matrix and calculation of the candidate word weight, among others, as de-

scribed in detail by Lei [21,22]. 

 

Figure 2. Schematic diagram of network nodes and connections. 

2.2. Analysis of User Behavior Characteristics and Structural Attributes of the Network 

To study a network’s robustness, it is a prerequisite to deeply analyze the network 

characteristics and the formation process of collaborative behavior. Specifically, for a 

KCN, individual user characteristics and behaviors should be considered. 

2.2.1. Structural Attributes of the Network 

For the construction of a semantic-based, multi-project KCN, Ucinet software is used 

to measure the network size, some static topology parameters and the network character-

istics, as shown in Table 1. 

Table 1. Network topology parameters and structural characteristics of the multi-project KCN. 

Network Size Topological Parameters Structural Characteristics 

Nodes Edges 
Average 

Out-Strength 
Density 

Average 

Path Length 

Clustering 

Coefficient 

Small-World 

Characteristic 

Scale-Free 

Property 
Assortativity 

1410 18,469 0.119 0.0001 3.105 0.097 Yes Yes No 

Note: According to Davis, Yoo and Baker [40], the small-world parameters can be expressed 

as SW = [𝐶𝑎𝑐𝑡𝑢𝑎𝑙/𝐿𝑎𝑐𝑡𝑢𝑎𝑙]  ∗ [Lrandom/Crandom], where 𝐶𝑎𝑐𝑡𝑢𝑎𝑙 is the average clustering coef-

ficient of the network, 𝐿𝑎𝑐𝑡𝑢𝑎𝑙 is the average path length, 𝐿𝑟𝑎𝑛𝑑𝑜𝑚 =  𝑙𝑛(𝑛)/𝑙𝑛(‹𝑘›), 𝐶𝑟𝑎𝑛𝑑𝑜𝑚 =

‹𝑘›/𝑛, 𝑛 is the number of nodes and ‹k› is the average degree. The network efficiency is 𝐸 =
1

𝑛(𝑛−1)
∑

1

𝑑𝑖𝑗
𝑖≠𝑗 , where 𝑑𝑖𝑗 is the length of the weighted shortest path from node 𝑖 to 𝑗 [41]. 

In Table 1, network size reflects the number of users involved in the network (i.e., the 

nodes) and the degree of collaboration between users (i.e., the edges). The average out-

strength and density of the network are low; these topological parameters are calculated 

based on the directed weighted network, where the value of the edge weight is within the 
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range of [0, 1], resulting in the small values shown. However, this also shows that users 

who enter the community have a greater potential for knowledge collaboration. It is nec-

essary to analyze the knowledge collaboration behavior of different users and provide 

corresponding incentive strategies. The clustering coefficient is 0.097 and the average path 

length is 3.105, which indicates that the network shows obvious small-world characteris-

tics and users in the network form multiple small groups of different sizes. There are key 

“connections” between small groups that connect the whole network. This is because of 

the open source nature of the community, that is, user autonomy enables them to choose 

which projects they collaborate on. Some users participate in many projects, while others 

only participate in those projects they find most interesting. 

2.2.2. Node Attributes 

The high degree of autonomy of community members in the OSC determines that 

users can freely choose collaborative objects and collaborative projects. To comprehen-

sively examine the characteristics of nodes, we analyze them from two perspectives: struc-

tural attributes and project attributes. The structural attributes of nodes include the posi-

tion, role, and cooperation degree of nodes in the network, which is generally analyzed 

using centrality. The project attribute of nodes is used to divide nodes based on the num-

ber of items (i.e., projects) they participate in. 

Structural Attributes of Nodes 

Centrality is a measure of the importance of a node and its ability to collaborate with 

other nodes [42,43]. Therefore, we analyze the structural attributes of nodes in a multi-

project KCN from two perspectives: strength centrality [44] and betweenness centrality 

[45]. 

(1) Strength centrality: In the multi-project KCN, the weight of connecting edges be-

tween nodes is obtained by combining the collaboration frequency of two nodes and 

the evaluation of the collaboration content. Therefore, we first determine the top ten 

nodes in the network in terms of the frequency, semantic weight, out-strength, and 

in-strength of the active collaboration of nodes, as shown in Table 2. The order of the 

top ten nodes is different for each indicator value, but the nodes are completely con-

sistent. Further, Table 2 shows that nodes with professional knowledge are willing 

to actively seek collaboration after entering the community, and they also occupy a 

central position in the network. These nodes have greater influence in the commu-

nity, and other nodes are willing to actively collaborate with them. If this willingness 

to collaborate decreases, the network performance will be affected to some extent. 

Table 2. Top ten nodes in terms of frequency, semantic weight, out-strength, in-strength, and be-

tweenness. 

Node Frequency Node 
Semantic 

Weight 
Node 

Out- 

Strength 
Node 

In- 

Strength 
Node Betweenness 

19,803 981 1282 2064.25 19,803 9.715 19,803 10.137 19,803 218,981.32 

1439 841 19,803 2041.85 1282 8.449 37 5.321 37 145,842.98 

1282 749 1347 1385.80 1439 7.486 1282 5.269 1282 128,908.91 

1347 598 1439 1338.17 1347 6.210 1439 3.669 1439 126,908.63 

52 563 52 846.88 52 4.911 1347 3.297 52 106,636.11 

14,052 365 407 747.14 37 3.321 14,052 3.274 1347 91,292.38 

37 362 37 624.39 407 3.249 52 2.664 10 56,544.84 

10 328 10 451.30 14,052 2.965 198 2.255 407 45,410.023 

407 305 14,052 442.07 10 2.775 1 2.186 14,052 33,045.941 

198 301 198 439.51 9606 2.525 407 1.996 9606 24,465.762 

(2) Betweenness centrality: Table 3 shows the top ten nodes in terms of the betweenness 

value in the network. There is a large difference between these nodes, and 55.6% of 

all nodes in the network have a betweenness value of 0. This indicates that only a few 
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users occupy key collaborative positions in the network, making it important to iden-

tify them. Table 2 also shows that among the three indicators of betweenness central-

ity, out-strength, and in-strength, the coincidence degree of the top five nodes 

reached 80%, indicating that users who have strong collaboration abilities in the net-

work also have important connection bridges. 

Table 3. Top ten edges in terms of weight and betweenness. 

 Edge Weight Edge Betweenness 

1 19803–1282 2 59581–19803 19005.7 

2 1282–19803 1.6504 37–19785 16021.19 

3 19803–49253 0.9645 1–10 14437 

4 49253–1282 0.7702 11–52 9265.211 

5 37–1282 0.6407 37–1439 8151.022 

6 62210–19803 0.6252 37–1347 7816.247 

7 14052–6 0.6147 1282–19803 7495.167 

8 3606–1439 0.5746 10–3134 6752.929 

9 1–1 0.5518 19803–52 6735.993 

10 14052–10 0.5128 19803–1347 6569.205 

Project Attributes of Nodes 

As previously stated, nodes have the autonomy to choose to participate in one or 

more projects in the OSC. The more projects that users participate in, the more satisfied 

they are with the project settings and the more loyal they are to the community. Figure 3 

shows the number of projects that users participated in. We see that the majority of users 

(83.26%) collaborated on only one project in the community. Further, the users that par-

ticipated in multiple projects account for only 16.74% (only 0.56% of the users participated 

in seven or more projects), and the collective out-strength of these nodes accounted for 

56.32% of the total. Among those nodes who participated in the collaboration of only a 

single project, some have high betweenness values and occupy key positions in the net-

work. Therefore, to explore the importance of nodes that participated in multiple projects 

and nodes that participated in single projects in the OSC, we first divide them according 

to the number of projects they participated in (m). If m ≥ 2, these nodes are called multi-

project nodes, and if m = 1, these nodes are called single-project nodes. 

 

Figure 3. Distribution of the number of projects users participated in. 

It is a coarse-grained method to divide users by the number of projects they collabo-

rated on, and many are divided to the same level. Further, through topological analysis, 
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we find that the values of out-strength and betweenness of the nodes are different despite 

the nodes having collaborated on the same number of projects. This indicates that their 

roles and contributions to the community are different. Figure 4 shows the respective out-

strength and relative betweenness of the ten nodes who participated in the most projects. 

Here, we see that the values of out-strength and relative betweenness of nodes who par-

ticipated in more projects are lower than those who participated in fewer projects. This 

shows that in the multi-project KCN, it is still necessary to sort the importance of nodes 

according to their different topological attributes, to identify the characteristics of nodes 

with different roles and failure modes. 

 

Figure 4. Out-strength and relative betweenness of top ten nodes (based on the number of projects 

they collaborated on). 

2.2.3. Characteristics of Knowledge Collaboration Behavior between Nodes 

Our analysis shows that users have different behaviors and positions in the commu-

nity, including those who (1) actively contribute knowledge, (2) act as “intermediaries” to 

disseminate knowledge, and (3) are at the edge of browsing and searching. 

To analyze edge connection attributes, we first divide knowledge collaboration be-

havior into our two primary areas of focus: knowledge contribution behavior and 

knowledge dissemination behavior. The edge weight of our KCN is weighted based on 

the strength of both the collaboration content and collaboration frequency, so it can effec-

tively describe the knowledge collaboration behavior between nodes. If the order is based 

on the size of the edge weight, it can reflect the order of the knowledge collaboration be-

havior between nodes. In addition, the edge betweenness in the network is the number of 

times that the edge acts as the intermediary in the network, which is an important param-

eter used to measure knowledge dissemination behavior. If the order is based on the edge 

betweenness, it can reflect the strong and weak order of knowledge transmission between 

nodes. Table 3 shows the top ten edges in terms of weight and betweenness. 

Table 3 shows that even among the top ten edges (in terms of weight and between-

ness), the edge weights increased by 74.36% from the minimum to the maximum, and the 

edge betweenness increased by 64.56%. This shows that connections at the same node are 

different from one another: some are the main knowledge collaboration behavior and 

some are the main knowledge dissemination behavior. Further, their contributions to 

knowledge and the extent of knowledge dissemination are also different. Then, the will-

ingness of nodes to cooperate decreases, and different connections have different effects 

on network performance. 

3. Dynamic Robustness Analysis of Knowledge Collaboration Network 

10 1439 19803 1282 8161 14052 20016 64204 37

relative betweenness 2.85 6.37 11.038 6.492 0.631 1.666 0.341 0.014 7.346
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3.1. Robustness Evaluation Index 

Network robustness can be defined as the degree of retention of network perfor-

mance when network nodes or edges fail [46]. The impact of such failure for the KCN of 

an OSC includes (1) the destruction of network connectivity, which reduces the 

knowledge collaboration intensity, and (2) the decrease of network efficiency, which in-

creases the difficulty of knowledge collaboration. As such, the robustness evaluation in-

dex proposed in this paper includes both network connectivity and weighted efficiency. 

3.1.1. Relative Size of Network Connectivity, 𝑆 

To reflect the degree of network connectivity retention after the network is attacked, 

the relative network connectivity size, 𝑆, is defined as the relative size of the largest con-

nected sub-graph node intensity of the network: 

𝑆 =
𝑆𝑙𝑐

’

𝑆𝑙𝑐
  (2) 

where 𝑆𝑙𝑐
′  is the sum of the node intensity of the maximum connected sub-graph of the 

network after being attacked, and 𝑆𝑙𝑐 is the sum of the node intensity of the original net-

work. 

The calculation formula for the sum of the node intensity is 

𝑆𝑙𝑐 = ∑ 𝑤𝑖𝑗
𝑁
𝑗=1   (3) 

where 𝑁 is the total number of nodes in the network and 𝑤𝑖𝑗 is the edge weight of nodes 

𝑖 and 𝑗. In the weighted KCN of the OSC, node intensity represents the knowledge col-

laboration intensity. The smaller the value of 𝑆, the greater the decrease in knowledge 

collaboration intensity after the network is attacked (i.e., the lower the robustness of con-

nectivity), and vice versa. 

3.1.2. Relative Size of Weighted Efficiency, H 

Network efficiency describes the difficulty of information dissemination. It is ex-

pressed as the sum of the efficiency of all nodes, where node efficiency is the reciprocal of 

the shortest path between two nodes [47]. In the directed weighted network, the efficiency 

of knowledge collaboration, 𝐸𝐺, is expressed as 

𝐸𝐺 =
1

𝑛(𝑛−1)
∑

1

(𝑑𝑤)𝑖,𝑗
𝑖≠𝑗   (4) 

where the directed weighted shortest path, (𝑑𝑤)𝑖,𝑗, is the minimum sum of the weights 

necessary to travel from nodes 𝑖 to 𝑗. To reflect the degree of knowledge collaboration 

efficiency retention after the network is attacked, the relative knowledge collaboration ef-

ficiency size, 𝐻, is defined as 

 𝐻 =  
𝐸𝐺

′

𝐸𝐺
  (5) 

where 𝐸𝐺
′ is the weighted efficiency of the attacked network and 𝐸𝐺 is the weighted ef-

ficiency of the original network. The value range of 𝐻 is [0, 1]. When 𝐻 = 0, network ef-

ficiency drops to its lowest after the attack, that is, designers in the network do not have 

any form of collaboration. When 𝐻 = 1, the efficiency of the whole network remains at 

the original level, where the failure of edge weights has no impact on network efficiency. 
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3.2. Failure Mode Design 

The design of failure modes is key to robustness analysis. We design two failure 

modes to study the robustness of the multi-project KCN: (1) node failure, where user re-

sources are lost due to the impact of both the external environment and the internal ecol-

ogy; and (2) edge failure, where the degradation of knowledge collaboration behavior is 

caused by a reduction in the willingness of users to participate in collaboration and the 

decline of collaboration strength. 

3.2.1. Node Failure 

The node failure mode represents the performance of a node exiting the project or 

ceasing collaboration. Nodes can be categorized in two ways. First, by those that partici-

pate in multi-project collaboration and those that participate only in single-project collab-

oration. Second, by those that have high out-strength and actively participate in 

knowledge collaboration (known as knowledge collaboration nodes) and those that have 

high betweenness and act as important “bridge” nodes in the network, maintaining infor-

mation transmission distance and knowledge collaboration efficiency (known as 

knowledge dissemination nodes). As such, the nodes can be classified as either (1) multi-

project knowledge collaboration nodes, (2) multi-project knowledge dissemination nodes, 

(3) single-project knowledge collaboration nodes or (4) single-project knowledge dissem-

ination nodes. The failure modes and calculation process of the above four nodes are 

shown in Table 4. 

Table 4. Node Failure Modes. 

 Failure Mode Failure Process 

Node 

Failure 

Mode 

Failure of multi-project 

knowledge collaboration 

nodes (MW) 

(1) Multi-project nodes are ranked according to the number of projects they 

participate in, where nodes with the same number are also ranked according 

to their out-strength. (2) The hihighest-rankedode and its connected edges are 

removed. This is repeated 𝑛 times to simulate successive node failure. 

Failure of multi-project 

knowledge dissemination 

nodes (MB) 

(1) Multi-project nodes are ranked according to the number of projects they 

participate in, where nodes with the same number are also ranked according 

to their betweenness. (2) The highest-ranked node and its connected edges are 

removed. This is repeated 𝑛  times to simulate successive node failure. 

Failure of single-project 

knowledge collaboration 

nodes (LW) 

(1) Single-project nodes are ranked according to their out-strength. (2) The 

highest ranked node and its connected edges are removed. This is repeated 𝑛  

times to simulate successive node failure. 

Failure of single-project 

knowledge dissemination 

nodes (LB) 

(1) Single-project nodes are ranked according to their betweenness. (2) The 

highest-ranked node and its connected edges are removed. This is repeated 𝑛  

times to simulate successive node failure. 

Random 

failure 

Random failure of nodes 

(RA) 

A random node and its connected edges are removed. This is repeated 𝑛 

times to simulate the irregular failure of users. 

3.2.2. Edge Failure 

The edge failure mode is a manifestation of the degradation of a node’s willingness 

to collaborate in the OSC. Research shows that a good collaboration mechanism, mutual 

benefit mechanism, and enterprise incentive mechanism are important to promote the 

sustainable collaboration of community members [41]. The rationality of these mecha-

nisms will determine the willingness of users to participate in knowledge innovation and 

collaboration in the OSC. If the community does not (a) formulate corresponding incen-

tive measures for different users, (b) establish a good collaborative behavior agreement 

and coordination mechanism, and (c) clearly determine the intellectual property, a user’s 

willingness to collaborate will decrease. Using the same criteria as with the node division 
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stated in Section 3.2.1, four edge failure modes are designed. These failure modes and 

their respective calculation processes are shown in Table 5. 

Table 5. Edge Failure Modes. 

 Failure Mode Failure Process 

Edge 

Failure 

Mode 

Edge failure of multi-

project knowledge col-

laboration nodes 

(MWN) 

(1) Multi-project nodes are ranked according to the number of projects they partic-

ipate in, where nodes with the same number are also ranked according to their 

out-strength. (2) Reduce the weight of directed edges (point from the highest 

ranked node to other nodes) to the original value ε times. This process is repeated 

𝑛 times to simulate successive failure. 

Edge failure of multi-

project knowledge dis-

semination nodes 

(MBN) 

(1) Multi-project nodes are ranked according to the number of projects they partici-

pate in, where nodes with the same number are also ranked according to their be-

tweenness. (2) Reduce the weight of directed edges (point from the highest ranked 

node to other nodes) to the original value ε times. This process is repeated 𝑛 times 

to simulate successive failure. 

Edge failure of single-

project knowledge col-

laboration nodes 

(LWN) 

(1) Single-project nodes are ranked according to their out-strength. (2) Reduce the 

weight of directed edges (point from the highest ranked node to other nodes) to 

the original value ε times. This process is repeated 𝑛  times to simulate successive 

failure. 

Edge failure of single-

project knowledge dis-

semination nodes 

(LBN) 

(1) Single-project nodes are ranked according to their betweenness. (2) Reduce the 

weight of directed edges (point from the highest ranked node to other nodes) to 

the original value ε times. This process is repeated 𝑛 times to simulate successive 

failure. 

Random 

failure 

Random failure of 

edges (RN) 

Reduce the weight of directed edges (point from the random node to other nodes) 

to the original value ε times. This is repeated n times to simulate successive failure. 

4. Multi-Project Network Robustness Simulation Experiment 

4.1. Robustness Simulation Test and Result Analysis under Node Failure Mode 

The simulation process for the node failure mode is shown in Figure 5. This starts 

from the final developmental stage of the multi-project network, and it simulates the 

changes in robustness indicators during the node failure process. We use Python 3.7 pro-

gramming to simulate the change process of the index value after the network faces the 

failure of different nodes, and we use Origin Pro 9.0 software to create a comparison chart 

of the experimental results. To compare the change of network robustness under different 

failure modes, the first 80 simulation results are taken for comparative analysis, where 

Figure 6a shows the change in the relative size of network connectivity under the node 

failure mode and Figure 6b shows the change of the relative size of knowledge collabora-

tion efficiency. 
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Figure 5. Node failure flow chart for (a) multiple-project nodes and (b) single-project nodes. 
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Figure 6. Robustness index values for (a) the relative size of network connectivity, 𝑆, and (b) the 

relative size of weighted efficiency, 𝐻. 

Figure 5 shows that the robustness index values of the multi-project KCN show a 

downward trend when nodes fail successively. This decline rate is fastest when multi-

project nodes (i.e., MW or MB) fail successively, followed by single-project nodes (i.e., LW 

or LB), then random nodes (i.e., RA). 

A paired T-test is conducted on the index values under the five failure modes, as 

shown in Table 6. The index values are significantly different for each failure mode. Re-

garding robustness: RA > LB > LW > MW > MB. 
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Table 6. Paired sample T-test under different failure modes (α = 0.05). 

 
Failure 

Mode 
M SD 

95% Confidence 
t df Sig 

Lower Limits Upper Limits 

H 

RA-LW 0.20588 0.008792 0.188384 0.223378 23.416 80 0.000 

LW-LB 0.01042 0.004013 0.002433 0.018408 2.596 80 0.011 

LB-MW 0.16216 0.006394 0.149192 0.175128 25.360 36 0.000 

MW-MB 0.01422 0.005219 0.003592 0.024855 2.725 32 0.010 

S 

RA-LW 0.131216 0.034775 0.123527 0.138906 33.960 80 0.000 

LW-LB 0.008251 0.036572 0.000164 0.016337 2.031 80 0.046 

LB-MW 0.186069 0.044733 0.173615 0.198523 29.995 51 0.000 

MW-MB 0.021539 0.009019 0.003143 0.039934 2.388 31 0.023 

Figure 6 shows that with the failure of nodes, the decline rate of indicator values is 

the smallest under successive random node failure (RA). When the failure index values of 

multi-project nodes decline by 90% in succession, random failure only decreases by 30%. 

This is due to the large-scale, loose state of the multi-project KCN. Most nodes are at the 

edge, and the probability of random loss is high. Their failure causes less damage to the 

network than the four other types of failure (i.e., LB, LW, MW and MB), which demon-

strates that the network has a high robustness to the random failure of nodes. In contrast, 

the robustness is low both for the failure of single-project nodes and particularly for the 

failure of multi-project nodes. 

Figure 6 also shows that when 10 nodes in the network fail, the relative connectivity 

size decreases by 50% for the MB failure mode, 45.36% for the MW failure mode, 30.8% 

for the LB failure mode and 26.58% for the LW failure mode. In addition, the relative effi-

ciency of knowledge collaboration decreases by 47.69% for the MB failure mode, 50.3% 

for the MW failure mode, 20.2% for the LB failure mode and 18.96% for the LW failure 

mode. When 20 multi-project nodes are removed, the relative sizes of network connectiv-

ity and knowledge collaboration efficiency decrease by 60%, while the same degree of 

decline requires the failure of 80 single-project nodes. This shows that most multi-project 

nodes are in the center of the network, and they have contact with more users than single-

project nodes. When multi-project nodes leave the community, they quickly disperse the 

network, dividing it from a huge, connected graph to isolated sub-graphs. 

Based on the node attributes of the multi-project KCN, nodes with a higher between-

ness and out-strength in the initial network have a higher overlap rate, so the changes in 

initial index values of the node failure simulation are more consistent. The continuous 

failure of knowledge dissemination nodes is more harmful to the network than the con-

tinuous failure of knowledge contribution nodes (i.e., the network shows lower robust-

ness). In the early stage of the simulation experiment, the declining rule of the index value 

presents as a ladder shape. This is because node division in the failure mode setting was 

first based on the number of projects that the nodes participated in (as stated in Table 4). 

Many nodes were sorted to the same level, so the betweenness and out-strength of nodes 

in the same level show large differences. However, only a small number of single-project 

nodes have a high betweenness and out-strength, so the index value decreases greatly in 

the early stage of failure simulation. The subsequently failed nodes are all from the outer 

layer of the network, and their failure has progressively less impact on network perfor-

mance. As such, the decline of the index value also progressively decreases. 

4.2. Robustness Simulation Experiment and Result Analysis of Edge Failure Mode 

Based on the edge failure modes constructed in Section 3.2.2, Figure 7 shows a simu-

lation flow chart for (a) edge failure for multi-project nodes and (b) edge failure for single-

project nodes. To more clearly observe the impact of edge failure on robustness, the deg-

radation coefficient ε = 0.8 is taken. We use Python 3.7 to program and simulate the in-

dex changes of multi-project network robustness when the network faces edge failure. As 
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241 nodes participate in multi-project collaboration in the KCN, the simulation process 

runs 240 times. We then use Origin Pro 9.0 to draw the experimental results for (a) the 

trend of the relative size of network connectivity and (b) the trend of the relative size of 

knowledge collaboration efficiency, as shown in Figure 8. 

  

(a) (b) 

Figure 7. Edge failure flow chart for (a) multi-project nodes and (b) single-project nodes. 

The number of simulations is limited because of the small number of multi-project 

nodes in the community. However, Figure 8 still shows that when the edge failure of 

multi-project nodes (i.e., MWN or MBN) occurs, the decrease of the index value is signif-

icantly larger than that of the edge failure of single-project nodes (i.e., LWN or LBN). This 

is because multi-project nodes have a higher strength and are more connected, that is, they 

have more edges through which to collaborate, so the failure of these nodes is more de-

structive to the network. The decrease of the edge failure index value of random nodes 

(i.e., RN) is the smallest. Further, for multi-project nodes, the edge failure of knowledge 

dissemination nodes (i.e., MBN) is more destructive to the network than the edge failure 

of knowledge collaboration nodes (i.e., MWN), whereas, for single-project nodes, the edge 

failure of knowledge dissemination nodes (i.e., LBN) is less destructive to the network 

than the edge failure of knowledge collaboration nodes (i.e., LWN). 
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Figure 8. Robustness index values for (a) the relative size of network connectivity, 𝑆, and (b) the 

relative size of weighted efficiency, 𝐻. 

A paired T-test is conducted on the index values under the five failure modes, as 

shown in Table 7. The index values are significantly different for each failure mode. Re-

garding robustness: RN > MBN > MWN > LWN > LBN. 

Table 7. Paired sample T-test under different edge failure modes. (α = 0.05). 

 Failure Mode M SD 
95% Confidence 

t df Sig 
Lower Limits Upper Limits 

H 

RN-LBN 0.048859 0.003368 0.042156 0.055563 14.504 50 0.000 

LBN-LWN 0.058749 0.003126 0.052528 0.064970 18.793 50 0.000 

LWN-MWN 0.223773 0.008269 0.207219 0.240326 27.059 50 0.000 

MWN-MBN 0.044454 0.003763 0.036883 0.052024 11.813 50 0.010 

S 

RN-LBN 0.122428 0.006578 0.109335 0.135520 18.609 50 0.000 

LBN-LWN 0.003362 0.002658 −0.00192 0.008652 1.265 50 0.021 

LWN-MWN 0.165131 0.007121 0.150908 0.179354 23.187 50 0.000 

MWN-MBN 0.021268 0.002186 0.016901 0.025635 9.726 50 0.000 

Figure 8 shows that although the number of multi-project nodes is limited, when 

their edges fail, network connectivity and knowledge collaboration efficiency decrease 

significantly (i.e., by 60%). In contrast, failure of the same number of edges of single-pro-

ject nodes reduces these values by only 30%. Among the multi-project nodes, the degree 

of damage to the network is slightly higher for the edge failure of knowledge collaboration 

nodes than for the edge failure of knowledge dissemination nodes. This result has also 

been verified many times in other research literature [26]. 

For the multi-project nodes, edge failure of knowledge dissemination nodes has a 

large impact on network performance. For the edge failure of single-project nodes, the 

opposite is true (the edge failure of knowledge collaboration nodes is more destructive to 

the network than knowledge dissemination nodes). This is because most single-project 

nodes occupy non-core positions in the network, so their edge failures only destroy the 

collaboration between the outer nodes of the network, which causes limited damage to 

the network. By comparing the network robustness indicators under the node failure 

mode with those under the edge failure mode, we find that the robustness of the network 

under edge failure is significantly higher than under node failure. For example, when 20 

multi-project nodes fail, the network connectivity and knowledge collaboration efficiency 
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decline by 60%, while the same percentage of decline requires the edge failure of 240 

nodes. This is because when a node in the network fails, all collaborative relationships 

connected to the node are destroyed. In contrast, it is difficult to destroy the network 

structure through edge failure alone because such a failure only reduces the strength of 

the collaboration relationship between two nodes. Finally, when 150 multi-project 

knowledge dissemination nodes fail, the network connectivity and knowledge collabora-

tion efficiency decrease by 50% and 53.6%, respectively, whereas for 150 multi-project 

knowledge collaboration nodes, they decrease by 45% and 47.3%, respectively. This shows 

that in the loose multi-project KCN, although the number of core nodes is small, they are 

critical to the network. When they leave the community or their willingness to collaborate 

decreases, it brings serious harm to the network. 

5. Conclusions 

This paper analyzes the characteristics of a multi-project KCN in the OSC, designs 

specific failure modes, and conducts robustness research. The following conclusions are 

drawn: 

(1) The robustness of the multi-project network has the following characteristics: (a) low 

robustness in the case of deliberate failure, and high robustness in the case of random 

failure; (b) low robustness in the case of a node failure, and high robustness in the 

case of edge failure; and (c) low robustness in the case of a failure of multi-project 

nodes (or their edges), and high robustness in the case of a failure of single-project 

nodes (or their edges). 

(2) For the node failure mode, the failure of multi-project nodes leads to the quick decline 

of network performance and later the collapse of the network. In contrast, the failure 

of single-project nodes leads to a slow decline in network performance, yet the net-

work will still eventually collapse. For either scenario, the network is more sensitive 

to the failure of knowledge dissemination nodes than knowledge collaboration nodes. 

(3) For the edge failure mode, the network has a low robustness to the failure of the 

edges of multi-project nodes and a high robustness to the failure of the edges of sin-

gle-project nodes. For the multi-project nodes, the edge failure of knowledge dissem-

ination nodes causes more damage to the network than the edge failure of knowledge 

collaboration nodes. For single-project nodes, the edge failure of knowledge collabo-

ration nodes cause more damage to the network than the edge failure of knowledge 

dissemination nodes. 

According to the analysis results, the following management recommendations can 

be obtained: 

(1) Community managers should optimize their community’s ecology and create a good 

knowledge collaboration environment. The failure of nodes will quickly destroy the 

structure and performance of the network. Therefore, the primary concerns should 

be to optimize the community’s environment, improve the community’s competi-

tiveness, effectively prevent the loss of users and improve users’ willingness to share 

knowledge [48]. Managers can start by (a) building a safe and stable community en-

vironment with clear intellectual property rights, (b) setting up reasonable incentive 

measures and (c) improving the conversion rate of products. In addition, essential 

tasks in the daily management and maintenance of the community include optimiz-

ing the collaboration platform, and making users have a good use of the community 

platform. 

(2) Community managers should promote multi-project collaboration. Most multi-pro-

ject nodes occupy a central position in the network. These nodes play a very im-

portant role in network connectivity and knowledge collaboration efficiency, and 

their continuous failure will completely destroy the robustness of the network, par-

ticularly if they are knowledge dissemination nodes. Therefore, managers should (a) 

strengthen the protection of multi-project users, (b) encourage such users to actively 
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participate in collaboration, (c) improve the quality of knowledge collaboration, and 

(d) quickly spread any collaborated knowledge throughout the network. In addition, 

research shows that most users are willing to participate in multi-project collabora-

tion [31]. Therefore, managers should encourage single-project users to collaborate 

on other projects by continuously optimizing the community ecology, releasing more 

attractive and innovative projects, creating more training opportunities, and setting 

reasonable project task modules. 

Author Contributions: Conceptualization, S.L.; methodology, X.Z.; software, J.S.; formal analysis, 

S.L.; investigation, S.L.; resources, S.L.; data curation, S.L.; writing—original draft preparation, S.L.; 

writing—review and editing, S.L. and X.Z.; visualization, S.L. and W.K.; supervision, X.Z.; project 

administration, X.Z. All authors have read and agreed to the published version of the manuscript. 

Funding: This research was funded by the National Natural Science Foundation of China, grant 

number 71871018. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: The used and analyzed datasets during the present study are available 

from the corresponding author upon reasonable request. 

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the 

design of the study; in the collection, analyses, or interpretation of data; in the writing of the manu-

script, or in the decision to publish the results. 

Abbreviations 

The following abbreviations are used in this manuscript: 
KCN Knowledge Collaborative Network 

OSC Open source communitiy 

OSP Open source project 

MW Failure of multi-project knowledge collaboration nodes 

MB Failure of multi-project knowledge dissemination nodes 

LW Failure of single-project knowledge collaboration nodes 

LB Failure of single-project knowledge dissemination nodes 

RA Random failure of nodes 

MEN Edge failure of multi-project knowledge collaboration nodes 

MBN Edge failure of multi-project knowledge dissemination nodes 

LWN Edge failure of single-project knowledge collaboration nodes 

LBN Edge failure of single-project knowledge dissemination nodes 

RN Random failure of edges 
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