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Abstract: In the actual maintenance of manufacturing enterprises, abnormal changes in after-sale 

parts demand data often make the inventory strategies unreasonable. Due to the intermittent and 

small-scale characteristics of demand sequences, it is difficult to accurately identify the anomalies 

in such sequences using current anomaly detection algorithms. To solve this problem, this paper 

proposes an unsupervised anomaly detection method for intermittent time series. First, a new ab-

normal fluctuation similarity matrix is built by calculating the squared coefficient of variation and 

the maximum information coefficient from the macroscopic granularity. The abnormal fluctuation 

sequence can then be adaptively screened by using agglomerative hierarchical clustering. Second, 

the demand change feature and interval feature of the abnormal sequence are constructed and fed 

into the support vector data description model to perform hypersphere training. Then, the unsuper-

vised abnormal point location detection is realized at the micro-granularity level from the abnormal 

sequence. Comparative experiments are carried out on the actual demand data of after-sale parts of 

two large manufacturing enterprises. The results show that, compared with the current representa-

tive anomaly detection methods, the proposed approach can effectively identify the abnormal fluc-

tuation position in the intermittent sequence of small samples, and also obtain better detection re-

sults. 

Keywords: anomaly detection; safety stock; intermittent sequence; unsupervised learning;  

after-sale parts management 

 

1. Introduction 

Aftermarket parts safety stock management and optimization are important tools for 

core manufacturing enterprises to meet the daily business needs of parts chain sites at all 

levels. A reasonable safety stock strategy can not only reduce the pressure of enterprise 

stocking and inventory cost, but also enhance the efficiency of enterprise inventory allo-

cation and realize the safe operation of inventory [1]. In the actual business of enterprises, 

the safety stock strategy of after-sales parts is often determined by business needs such as 

replacement of defective parts and new project launches, but “abnormal parts demand” 

in non-business situations also occurs from time to time. For example, the accumulation 

of historical trouble work orders caused by a salesman’s error in reporting or natural fac-

tors such as seasonal hot weather, flurries, and sand can lead to abnormal demand. This 

kind of abnormal demand can easily interfere with the development of safety stock strat-

egy and cause safety stock decision errors. Therefore, identifying abnormal demand and 

correcting it is an important problem that manufacturing companies need to solve in 

smart inventory management nowadays. 

Due to the uncertainty of aftermarket parts demand, resulting in poor continuity of 

parts data, weak time series, and more intervals between zero demand and demand, the 

aftermarket parts demand data present typical intermittent and small-sample character-

istics compared with the general time series. As shown in Figure 1, Figure 1a gives the 
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time series data of a patient’s electrocardiogram, which contains 2560 sampling points, 

and Figure 1b shows the 34-month demand plan data of a certain accessory for a large 

domestic manufacturing enterprise. In contrast, the sequence in Figure 1a has an obvious 

periodicity and trend, while the demand data sequence in Figure 1b is more sparse, and 

the regularity of data distribution is not obvious and has strong intermittency. For the 

abnormal demand detection of such intermittent sequences, enterprises mostly rely on 

experienced operation and maintenance experts to define them, which is slow and diffi-

cult to meet the demand for parts management of the large-scale business. Therefore, it is 

necessary to theoretically study the anomaly detection of intermittent time series to opti-

mize the safety stock strategy and improve the operational efficiency of manufacturing 

enterprises. 

 
(a) 

 
(b) 

Figure 1. Comparison of different types of time series shapes. (a) Electrocardiogram timing data 

sequence of a patient. (b) A large vehicle manufacturer’s after-sales parts demand sequence. 

Anomaly detection of time series is to detect a small number of points with outliers, 

oscillations and other anomalies in the time series data [2]. Due to the high cost of labeling 

time series data, which cannot be applied to large-scale data [3], currently, the most dom-

inant method for time series anomaly detection is the unsupervised detection method. 

The most common unsupervised anomaly detection methods include One-Class Support 

Vector Machines (OCSVMs) [4], a Local Outlier Factor (LOF) [5], K-Nearest Neighbors 

(KNN) [6], and Isolation Forest (IForest) [7]. These models measure the outlier degree of 

data points and score anomalies by density, statistics, distance, and are computationally 

fast and suitable for small-sample data. With the rapid development of deep neural net-

works, deep learning has also been applied to time series anomaly detection [8]. Niu et al. 

proposed a hybrid LSTM-based VAE-GAN (Variational AudoEncoder-Generative adver-

sarial networks) model for time series anomaly detection, which uses LSTM networks for 

training and detects anomalies based on reconstructed difference and discriminant results 

[9]. Ji et al. proposed the LSTMAD model to learn structural features from normal training 

data and then detect anomalies based on the prediction error of the observed data and 

using statistical strategies [10]. Such methods generally require a large amount of data for 

training. Although all the above methods have achieved better results, they are all based 

on the assumption of continuous data with more periodic changes for anomaly detection. 

Once the data have intermittent distribution, the above traditional detection methods 
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based on density, statistics and distance are very easy to identify normal intermittent data 

as discrete points, while the depth methods are also difficult to learn the distribution char-

acteristics of intermittent sequences, resulting in poor accuracy of anomaly detection. 

Since intermittent sequences are not only reflected in abnormal values at a certain time 

point but also have the phenomenon that the fluctuation pattern of the whole sequence 

shows abnormal posture, unlike the above-mentioned conventional time series abnormal-

ity detection practices, the abnormality detection of intermittent sequences needs to be 

combined with the characteristics of intermittent data to evaluate the abnormality in two 

dimensions—sequence and time point. 

A comprehensive analysis shows that the key to improving the effect of intermittent 

time series anomaly detection is: (1) how to quantify the anomalous fluctuation pattern of 

intermittent sequences and identify the sequences with anomalous fluctuation posture; 

(2) how to effectively use the demand change characteristics and interval time information 

in intermittent sequences to improve the detection accuracy of small-sample intermittent 

sequences. To address the above two points, this paper proposes an unsupervised anom-

aly detection method for intermittent sequences based on multi-granularity anomaly pat-

tern mining. First, a new anomaly fluctuation similarity index FlucSim (Fluctuation-Sim-

ilarity) is constructed, which incorporates the squared coefficient of variation ( 2CV ) [11,12] 

difference between sequences and the maximal information coefficient (MIC) [13], and the 

identification of abnormal sequences is achieved by using cohesive hierarchical clustering. 

Secondly, in order to fully obtain the abnormal demand information in the abnormal se-

quences, this paper constructs demand variation features and interval features from the 

demand variation and demand interval characteristics of each time point in these se-

quences, and merges them into a Demand variation characteristics and interval character-

istics ( DVIC ) matrix, and input to the support vector data description (SVDD) [14] model 

for hypersphere training and abnormal detection. The experimental results prove the ef-

fectiveness of the method in two large vehicle manufacturers’ aftermarket parts demand 

datasets. 

The contributions of the work in this paper can be summarized as follows. 

(1) An abnormal volatility metric for intermittent time series is proposed. The index not 

only considers the difference in volatility patterns between series but also the corre-

lation between series, so as to achieve an the accurate quantification of abnormal vol-

atility of intermittent time series. 

(2) An unsupervised anomaly detection method for intermittent sequences based on 

multi-granularity anomaly pattern mining is constructed. Compared with the tradi-

tional anomaly detection methods, the method can identify anomalous sequences by 

mining the sequence anomaly fluctuation patterns from macroscopic and macro-

scopic perspectives, and effectively use the information of demand point value 

change in the sequence to locate the anomalous demand in anomalous sequences, 

which improves the intermittent sequence detection accuracy. 

2. Related Theories 

2.1. Demand Model Classification 

In complex businesses such as heavy machinery manufacturing, automotive parts, 

and accessory after-sales maintenance services, and large equipment repair, the demand 

for spare parts presents different demand patterns. The current common classification 

scheme for demand is proposed by Syntetos and Boylan [15]. This scheme classifies de-

mand sequences into four types: smooth, intermittent, unstable and lumpy based on the 

average demand interval (ADI) and the coefficient of variation of the squared demand 

size ( 2CV ) at the time of demand occurrence. =ADI N / Z , N  denotes the length of the 

sequence, and Z denotes the number of non-zero demands in the sequence. ( )=
2

2CV S x

. In the formula, S denotes the standard deviation of non-zero demands in the sequence, 
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S  is calculated as ( )
=

= −
n

2

i
i 1

S x x n , x denotes the mean of non-zero demands, 
i

x de-

notes the demand value of the i-th non-zero demand, and =i 1,2, ,n , n denotes the num-

ber of non-zero demands. Since ADI and 2CV  can describe the characteristics of inter-

mittent demand data very well [16], it is possible to classify the sequence of aftermarket 

parts demand in the actual business of the company. 

2.2. Hierarchical Clustering 

Hierarchical clustering is a kind of unsupervised learning clustering method, which 

can be divided into “bottom-up” cohesive hierarchical clustering or “top-down” split hi-

erarchical clustering methods according to the direction of clustering. Both of clustering 

methods are stable [16]. However, cohesive hierarchical clustering starts with all the sam-

ples to be divided as initial clusters, i.e., each sample forms its own class, and then the 

clusters with high similarity are merged to form a larger cluster based on the predefined 

coalescence criterion, and iteratively merged upward until the set number of clusters, 

which has lower computational complexity. In contrast, split hierarchical clustering [17]is 

to initialize all samples to be divided into one class cluster, and then gradually split down-

ward to form multiple smaller class clusters, and iteratively split to a set number of class 

clusters, which has a larger computational overhead. Therefore, cohesive hierarchical 

clustering is more widely used in practical application scenarios. Due to the existence of 

matrix computation in the hierarchical clustering algorithm, it has greater time and space 

complexity and is suitable for smaller datasets [16]. By defining the similarity index be-

tween sequences, hierarchical clustering is suitable for time series clustering [18]. At the 

same time, the clustering results can visually reflect the correlation degree between the 

sequences. So hierarchical clustering is chosen as the clustering method for intermittent 

time series. 

2.3. SVDD 

The support vector data description algorithm is a single-value classification algo-

rithm whose main function is to be able to distinguish between target and non-target sam-

ples. The main process of this algorithm is as follows: firstly, the data are mapped from 

the original space to a higher latitude feature space, and then a hypersphere with the 

smallest volume is found in this feature space, and all target samples are included in the 

hypersphere as much as possible while considering outliers. To construct this minimum 

hypersphere, the support vector data description algorithm needs to optimize the follow-

ing objective function. 




 



=


+


−  +


  =




n

2

ia ,R ,
i 1

2
2

i i

i

minR C

s.t.   (X ) a R ,

0, i 1,2, ,n

 (1) 

where a  is the center of the hypersphere, R is the radius of the hypersphere,   is the 

relaxation factor, C is the penalty factor that weighs the volume of the hypersphere and 

the misspecification rate, =
i

X (i 1,2, ,n)  is the training sample, n  is the number of sam-

ples, and ( )
i

X is the function that maps the training sample
i

X to the high-dimensional 

space. The detailed derivation process can be found in the literature [14]. 
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3. Unsupervised Anomaly Detection Method for Intermittent Sequences Based on 

Multi-Granularity Anomaly Pattern Mining 

This section proposes an unsupervised anomaly detection method for intermittent 

time series, which consists of two main parts: the first part is to find the patterns of anom-

alous fluctuations in intermittent time series and identify the anomalous sequences, and 

the second part is to perform unsupervised anomaly detection on these sequences. 

In the first part, the information on the regularity of multiple dimensions of the se-

quences is taken into account, and this paper proposes a new anomalous fluctuation sim-

ilarity index and constructs a corresponding cohesive hierarchical clustering algorithm for 

clustering. The role of this part is to identify anomalous sequences with abnormal fluctu-

ations from known sequences. 

In the second part, using the information on the number of demands and non-zero 

demand interval time at each time point in the anomalous sequence, this paper reorgan-

izes a sequence into a matrix of demands at a set of time points and inputs this matrix into 

the SVDD model for unsupervised anomaly detection. The function of the second part is 

to improve the unsupervised anomaly detection of intermittent sequences with small sam-

ples by using the variation of demands in the sequence and the intermittency of the se-

quence. The flow chart of the method in this paper is shown in Figure 2. The details are 

described below. 

 

Figure 2. Flow chart of the method. 

3.1. Construction of Anomalous Fluctuation Similarity Index for Intermittent Series 

In the intermittent time series characterization, 2CV  indicates the squared coeffi-

cient of variation, which reflects the stability of the series and can effectively describe the 

fluctuating changes in the demand of the series. Some examples are given here to illus-

trate, as shown in Figure 3: For four intermittent sequences a, b, c, and d, the four se-

quences have the same sparsity and the calculated ADI is the same, so the size difference 

of 2CV  of the sequences can be directly compared. For the two sequences a and b in ex-

ample 1, the basic elements and the number of elements in the two sequences are the same, 

but the element value of sequence a at position 7 is “7”, while the value of the element in 

the same position of sequence b is “3”, the volatility of sequence a is greater, so the 2CV  

of sequence a is larger than that of sequence b, indicating that the size of the element has 

a greater impact on 2CV . In example 2, the sequences a and c only change the position of 

element “7”, but the overall volatility of the sequences does not changed, and the 2CV of 

sequence a and c does not change, indicating that the change in the position of the ele-
ments does not affect the 2CV . Similarly, from the above two conclusions, the reason for 
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the difference in 2CV of sequences b and c can be known. In example 3, sequences a and 

d, sequence d changes in quantity level based on a, but does not affect the 2CV value, it 

can be concluded that 2CV is only concerned with the fluctuation of the sequence and can 

measure the fluctuation of demand for different kinds of accessories. 

 

Figure 3. Schematic diagram of CV2 calculation for intermittent time series. 

However, 2CV can only describe the fluctuating evolution information of a single 

sequence, which is not sufficient to reflect the similarity between different series. In order 

to measure the volatility correlation between different intermittent series, this subsection 

introduces the MIC indicator, which can effectively detect linear and nonlinear correla-

tions between variables, as well as measure the evolutionary trend of a series, and the 

specific calculation method is described in the literature [19]. Therefore, the combination 

of 2CV and MIC indicators can effectively measure the evolutionary trend of series fluc-

tuations. 

Based on the above analysis, this section designs the serial volatility difference indi-

cator *CV  to measure the volatility difference between the two series as follows. 

( )
− −

=
+

2 2
i j

*

i j k CV (T ) CV (T )

1
CV T ,T

1 e
 (2) 

where ( )2

i
CV T  and 2

j
CV (T )  denote the squared coefficients of variation of the se-

quences 
i

T  and 
j

T , respectively, and k  is the variable coefficient. It can be seen that the 

smaller the difference in the values of 2CV  between the two sequences, the smaller the 

values of *CV  between these two sequences, i.e., the smaller the difference in the fluctu-

ations of the two sequences. 

In order to measure the similarity of fluctuations between sequences, based on the
*CV  indicator and combined with the MIC indicator, this paper constructs an abnormal 

fluctuation similarity indicator FlucSim . For a given set of sequences  =
1 2 n

T T ,T ,T , n

is the number of sequences, where the first i sequence  =
i 1 2 m

T x ,x , ,x , m is the num-

ber of elements in the sequence, and then FlucSim indicator is shown in Equation (3). 

( ) ( )( )
( )

=
i j i j

*

i j

FlucSim T ,T 1- MIC T ,T

CV T ,T
 (3) 

3,2,0,2,3,0,7,2,1
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Where ( )i j
MIC T ,T  denotes the MIC value between sequences 

i
T  and sequences 

j
T ,  

denotes Hadamard product notation. Hadamard product is a class of matrix operations 

in which two matrices of the same dimension are multiplied by the corresponding posi-

tion elements and produce a third matrix of the same dimension. ( )*

i j
CV T ,T  indicates 

the fluctuation difference between sequences 
i

T  and sequences 
j

T . As can be seen from 

Equation (3), the formula integrates the fluctuation difference and correlation information 

between intermittent sequences. The smaller the FlucSim , the more similar the fluctuation 

pattern and sequence trend between two sequences, and the more detectable information 

it contains. 

In order to fully mine the sequence anomalous patterns, firstly, using the similarity 

index of anomalous fluctuations calculated by Equation (3), this section constructs a 

coarse-grained anomalous pattern mining hierarchical clustering algorithm for intermit-

tent time series, which divides intermittent sequences containing anomalous sequences 

into normal and anomalous sequences from the bottom up. The steps are as follows. 

(1) Partitioning the original dataset based on the ADI and 2CV indicators to identify in-

termittent sequences. 

(2) Considering each intermittent sequence as a class cluster. 

(3) Calculating the similarity distance between each class cluster using Equation (4). 

( ),
1 ( , )

i j

i j

T B

D A B FlucSim T T
 

=  A B

T A

 (4) 

where   1 i, j n,i j , A and B denote the number of sequences contained in the class 

cluster A  and the class cluster B  that participate in the distance calculation, respectively, 

and n  denotes the number of sequences. 

(4) Merging the two closest class clusters into one class cluster. 

(5) Repeating steps (3) (4) until all sample sequences are divided into a set number of 

classes. 

(6) Calculating the 2CV of each sequence in the class cluster obtained from step (5), and 

calculate the average 2CV value in each class cluster, with the 2CV  value exceeding 

a preset threshold set as an abnormal sequence, and the rest are normal sequences. 

3.2. Unsupervised Anomaly Detection Method for Intermittent Sequences Based on Multi-Gran-

ularity Anomaly Pattern Mining 

In the actual business of an enterprise, the sudden change in after-sales parts demand 

and the length of interval between adjacent demands may often be two important factors 

that imply abnormal parts demand. Therefore, in order to fine-grained mining and ana-

lyze the abnormal demand point characteristics in the abnormal sequence, this section 

constructs demand change features and interval features based on each time point de-

mand in the abnormal sequence and merges them into a matrix of DVIC  to describe the 

demand change and demand interval of the time point demand by doing a feature extrac-

tion for each time point demand in the sequence and discretizing the sequence into a set 

of features of the time point demand. For the set of anomalous sequences  1 2 M
T= T ,T , ,T

, M  denotes the number of anomalous sequences, and the specific approach to construct 

features for the i -th anomalous sequence  i 1 2 m
T = x ,x , ,x  is as follows. 

(1) Demand change features: the three-dimensional demand change characteristics are 

obtained by calculating the demand difference between the current time node de-

mand
t

x and the previous time node demand
−t 1

x , the first two-time node demands

−t 2
x and the first three time node demands

−t 3
x , which reflect the demand change. 

(2) Demand interval features: The length of the demand interval is reflected by calculat-

ing the interval between the demand at the non-zero demand time node
i

x  and the 
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demand at the previous non-zero demand time node
j

x , where  1 t,i, j m  and m  

represent the length of the sequence 
i

T . DVIC  The matrix is shown in 0. 

Table 1. DVIC matrix. 

Original 

Sequence 

Demand Change Characteristics Demand  

Interval  

Characteristics 

Previous Demand 

Difference 

Top Two Demand 

Differentials 

Top Three Demand 

Differentials 

0 0 0 0 0 

1 1 0 0 2 

0 −1 0 0 0 

1 1 0 1 2 

0 −1 0 −1 0 

0 0 −1 0 0 

0 0 0 −1 0 

0 0 0 0 0 

1 1 1 1 5 

0 −1 0 0 0 

0 0 −1 0 0 

0 0 0 −1 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

Then, the matrix of DVIC constructed from the anomalous sequence
i

T is divided into 

training data and test data according to a certain ratio, and the default training data are 

mostly normal demand, which is input to the SVDD model for hypersphere training. The 

trained hyperspheres are used to check the occurrence position of outliers in the test data. 

Unsupervised anomaly detection of intermittent sequences is achieved in this way. Simi-

larly, the same approach is used for the detection of other anomalous sequences. 

Combining the above steps, this chapter constructs an unsupervised anomaly detec-

tion method for intermittent sequences based on multi-granularity anomaly pattern min-

ing. The steps of the method are as follows. 

Input: Intermittent time series  1 2 n
T= T ,T , ,T , where  i 1 2 m

T = x ,x , ,x , number of 

class clusters K . 

Step 1: Construct coarse-grained anomaly pattern mining hierarchical clustering al-

gorithm to realize sequence clustering. 

(1) Set
i

T  into a class c
i
 separately and obtain the class cluster. 

 =C c c c
1 2 n
, , ,   

(2) Find the two class clusters c
i
and c

j
with the shortest similarity distance from the class 

cluster C . The formula for calculating the similarity distance is shown below. 

( ) ( )
 

= 



T c T c

c c FlucSim T T
c c i i j j

i j i j

i j

1
D , ,  (5) 

(3) Merge the class clusters c
i
and c

j
into a new class cluster c

n
and update the class cluster 

C . 

(4) If the class cluster C  has been divided into K class clusters, go to step (5); otherwise 

loop to step (2). 
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(5) Calculate the 2CV for each sequence in C separately and calculate the average 2CV

for all sequences in each category. 

(6) If the average 2CV is smaller than the preset threshold, the corresponding class is set 

to the normal class normal_class , and the rest to the abnormal class: 

 = c c c
1 2 p

abnormal_class , , , , .  

Step 2: For each sequence in abnormal_class , construct point-in-time demand change 

features and interval features and merge them into a DVIC matrix, and then construct 

SVDD anomaly detection models for unsupervised anomaly detection separately. 

Output: The abnormal values in the test data for each abnormal sequence in 

abnormal_class . 

4. Experimental Analysis 

4.1. Dataset Introduction 

In order to verify the reliability of this paper, the application effect is verified on two 

datasets, respectively. The first dataset is the spare parts demand of heavy equipment en-

terprises, which was provided by Zoomlion China, a famous vehicle manufacturer, in the 

Fifth National Industrial Internet Data Innovation and Application Competition. The ac-

cess link is “https://www.industrial-bigdata.com/Competition”. After registration, users 

can download the dataset for test. The second dataset is an after-sales parts demand da-

taset of a large vehicle manufacturing enterprise provided by a high-speed train manu-

facturing company in China with which this paper has cooperation. This company is a 

leading global supplier of rail transportation equipment in terms of size, variety and tech-

nology. We feel very sorry that we cannot publish the dataset to the public due to a data 

privacy agreement with the provider. Among them, the heavy equipment enterprise spare 

parts demand dataset provides 1200 types of spare parts with 30 months of historical data 

from January 2018 to June 2020. The dataset mainly contains the historical sales data of 

aftermarket spare parts, the retention of equipment corresponding to the spare parts and 

the start-up of equipment corresponding to the spare parts in this period. It is denoted as 

dataset 1 in the rest of the content. The aftermarket parts demand dataset of a large vehicle 

manufacturer contains a total of 16 warehouses, with 23 material replacement groups for 

a total of 34 months from November 2018 to August 2021. This dataset is represented in 

the remaining content as dataset 2. Both datasets are identified by month to determine the 

time nodes, and their specific details are shown in Table 2. In addition, Table 3 shows 

some statistical indicators of the two datasets, including the mean and standard deviation. 

The original datasets are huge, with hundreds of sequences each. In terms of the ADI and 

CV² indicators, some sequences with obvious intermittent characteristics and large data 

fluctuations are selected for comparative evaluation, as shown in Figures 4–9. Other se-

quences in the dataset have similar effects. The above two datasets have been uploaded 

to “https://github.com/Miss-Lyan/z_datasets-”. 

Table 2. Experimental dataset information. 

Dataset 
Number of 

Samples 

Number of 

Features 
Properties 

Heavy equipment parts 

requirements dataset 
1200 8 

Material number, sales quantity, 

sales time, number of hosts kept, 

host type, hours started in the 

week, number of hosts started in 

the week, host type 

A large vehicle manufac-

turer’s after-sales parts 

demand dataset 

684 4 

Warehouse number, part num-

ber, item number, month, 

monthly demand 

+ =p 1 K



Entropy 2023, 25, 123 10 of 19 
 

 

Here, Table 3 gives the statistical count information for both datasets. 

Table 3. Dataset Statistical Indicators. 

Dataset  Mean 
Standard  

Deviation 

Heavy equipment parts  

requirements dataset 

Min 0.4988 0.6515 

Mode 1.007 1.2143 

Median 1.669 1.7983 

Max 93.7312 132.0505 

A large vehicle manufacturer’s af-

ter-sales parts demand dataset 

Min 0.324 0.648 

Mode 0.5277 1.4133 

Median 0.4842 1.1151 

Max 1.6129 5.595 

Figure 4 shows some of the accessory data in the two datasets. It can be seen that the 

demand sequence of accessories has a obvious intermittency and a certain distribution 

similarity between different sequences. In order to improve the drawing efficiency, the 

figure titles of 0 and the following effect figures indicate the numbers of accessories. 

 
(a) 

 
(b) 

Figure 4. The original distribution of the experimental data in this paper. (a) Distribution of origi-

nal data in dataset 1. (b) Distribution of original data in dataset 2. 

4.2. Evaluation Metrics 

As with most anomaly detection problems, this paper uses precision, recall and F1 

score as evaluation metrics for this paper’s method and comparison methods. Their cal-

culation formulas are shown below. 
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Pr =
+

TP
ecision

TP FP
 (6) 

Re =
+

TP
call

TP FN
 (7) 

Pr Re

Pr Re


= 

+

ecision call
F1 2

ecision call
 (8) 

4.3. Experimental Results 

The coarse-grained anomaly pattern mining hierarchical clustering algorithm in Sec-

tion 3.1 was used to cluster the two datasets separately. The algorithm clustered the da-

tasets into different types of sequences, which are normal sequences and anomalous se-

quences. The clustering results are shown in 0 and 0. 

 

 
(a) 
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(b) 

Figure 5. Example of partial clustering results for dataset 1. (a) Example of distribution of partial 

normal sequences. (b) Example of distribution of some anomalous sequences. 

 

 
(a) 

 

 
(b) 

Figure 6. Example of partial clustering results for dataset 2. (a) Example of distribution of partial 

normal sequences. (b) Example of distribution of some anomalous sequences. 
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It can be seen that the values in the abnormal sequences are highly random and vol-

atile, with demand at certain points in time being significantly greater than the general 

level of demand. This sudden demand is bound to have a special impact on the present 

material inventory management. Therefore, it has detectability. In contrast, the normal 

sequences have small demand, relatively stable overall demand and have a certain distri-

bution pattern, so there is no need for anomaly detection for such. 

In order to verify the superiority of the anomalous fluctuation similarity index Flusim 

proposed in this paper, this paper adds the use of Dynamic Time Warping algorithm 

(DTW) [19] as an index for screening anomalous sequences based on the original experi-

ment. The DTW algorithm is used to calculate the similarity between two time series sex 

by extending and shortening the time series. This algorithm is currently a more used 

method to calculate the similarity between sequences. 

  

  
(a) 

  

  
(b) 

Figure 7. Some examples of abnormal sequences obtained using DTW clustering. (a) Example of 

anomalous sequence using DTW clustering for dataset1. (b) Example of anomalous sequence using 

DTW clustering for dataset2. 

As shown in 0, the DTW indicator will be influenced by its own characteristics when 

performing sequence screening. It will group sequences with similar patterns into one 

category. However, the graph of similar morphology may often indicate that the accesso-

ries that match these similar shapes are sets of outgoing libraries that do not reflect the 
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abnormal fluctuations of the sequences. Therefore, using the DTW indicator to screen ab-

normal sequences does not achieve good results. 

Based on the sequence clustering, the DVIC matrices of the obtained anomalous se-

quences for the point-in-time demands are constructed separately, and the unsupervised 

anomaly detection modeling is performed using SVDD. Considering that the sequence 

lengths in both datasets are relatively short, the first 20 months of demand data of the 

anomaly sequence in dataset 1 are used as training data to test the anomalies in the last 10 

months in this experiment. The demand data of the first 24 months of the anomalous se-

quence of dataset 2 are used as training data to examine the anomalies of the last 10 

months. Among them, the real labels of the test data are obtained through communication 

with relevant technical experts of the enterprises. 

In order to verify the reasonableness of the sequence DVIC matrix being constructed, 

this paper conducted experimental comparison before and after feature generation on two 

datasets, respectively, and the comparison results are shown in 0 and 0. In these figures, 

the red dashed line divides a sequence into two parts, the former part represents the train-

ing data of the model and the latter part represents the test data. The anomaly detection 

results of the sequences are also labeled on the test set, with the symbol “o” marking the 

true label of the sequence and the symbol “x” indicating the anomaly detection results. 

 

 
(a) 

 

 
(b) 
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Figure 8. An example diagram of anomaly detection results before feature construction. (a) Example 

of anomaly detection results for part of dataset 1. (b) Example of anomaly detection results for part 

of dataset 2. 

 

 
(a) 

 

 
(b) 

Figure 9. An example of anomaly detection results for some anomalous sequences of the method in 

this paper. (a) Example of anomaly detection results for some parts of dataset 1. (b) Example of 

anomaly detection results for some parts of dataset 2. 

The comparison shows that the anomaly detection result is better after feature con-

struction. This is mainly because when SVDD modeling is performed on the original data, 

the model is more influenced by the training data when training the hypersphere, and the 

outliers in the training data will cause the radius of the hypersphere to increase[20,21]. 

Considering only the outliers of the numerical dimension in the sequence, all the outlier 

demands cannot be effectively detected. Additionally, after feature construction, the 

model not only takes into account the influence factors of outliers during training, but also 

is able to detect demand data with obvious demand changes and abnormal intervals. The 

model is less influenced by a single dimension, so the anomaly detection effect is im-

proved, which verifies the effectiveness of the method in this paper. 
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4.4. Comparison Method 

The comparison methods contain both traditional unsupervised anomaly detection 

methods such as OCSVMs and the latest unsupervised anomaly detection method CO-

POD [22]. The details are shown in Table 4. 

Table 4. Comparison methods. 

Algorithm Type Algorithm Name 

Linear model OCSVM [4] 

Based on density LOF [5] 

Based on distance KNN [6] 

Based on statistics COPOD [22] 

Tree based IForest [7] 

Since the abnormal sequences account for a relatively small proportion of all parts 

demand sequences, in dataset 1, the sequence of abnormal accessories 41 and 648 is se-

lected as the experimental object in this paper. In dataset 2, the sequence of accessories 37 

and 30 is selected as the experimental object. The sequence demand trend of these acces-

sories is shown in Figure 10. 

 

Figure 10. Sequence demand chart of experimental accessories. 

Tables 5 and 6 list the detection results and performance metrics of this paper’s 

method and other anomaly detection benchmark methods on two experimental datasets 

of anomalous sequences. In the column of time node detection results in the table, the 

symbol “-” indicates that the detected demand is a normal point, and the symbol “o” in-

dicates an abnormal point. 

Table 5. Table of experimental comparison results for dataset 1. 

Acces-

sory 

Number 

Algorithm 

Name 

Time Node Detection Results Performance Index % 

21 22 23 24 25 26 27 28 29 30 Precision Recall F1 

41 

Real Tags - - o - - - - - o -    

OCSVM o - o - - - - - o - 100.00 87.50% 93.33 

IForest o - o - - - - - o - 100.00 87.50 93.33 

KNN - - o - - - - - o - 100.00 100.00 100.00 

LOF - - o - - - - - - - 88.89 100.00 94.12 

COPOD - - o - - - - - o - 100.00 100.00 100.00 

Methodology of 

this article 
- - o - - - - - o - 100.00 100.00 100.00 
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648 

Real Tags - o - - - - - - - -    

OCSVM - o o o - - o - o o 100.00 44.44 61.54 

IForest - o - - - - - - - - 100.00 100.00 100.00 

KNN - - - - - - - - - - 90.00 100.00 94.74 

LOF - - - - - - - - - - 90.00 100.00 94.74 

COPOD - o - - - - - - - - 100.00 100.00 100.00 

Methodology of 

this article 
- o - - - - - - - - 100.00 100.00 100.00 

The symbol “-” indicates that the detected demand is a normal point, and the symbol “o” indicates 

an abnormal point. 

Table 6. Table of experimental comparison results for dataset 2. 

Accessory 

Number 

Algorithm 

Name 

Time Node Detection Results Performance Index % 

25 26 27 28 29 30 31 32 33 34 Precision Recall F1 

37 

Real Tags - - o - - - - - - -    

OCSVM - o o o - o o o - - 100.00 44.44 61.54 

IForest - o o o - o o o - - 100.00 44.44 61.54 

KNN - o o o - o o o - - 100.00 44.44 61.54 

LOF - o o o - o o o - - 100.00 44.44 61.54 

COPOD - o o o - o o o - - 100.00 44.44 61.54 

Methodology of 

this article 
- - o - - - - - - - 100.00 100.00 100.00 

30 

Real Tags - - - - - - - - o -    

OCSVM o - - o - - - - o - 100.00 77.78 87.50 

IForest o - - o - - - - o - 100.00 77.78 87.50 

KNN - - - - - - - - o - 100.00 100.00 100.00 

LOF - - - - - - - - o - 100.00 100.00 100.00 

COPOD - - - - - - - - o - 100.00 100.00 100.00 

Methodology of 

this article 
- - - - - - - - o - 100.00 100.00 100.00 

The accessory anomaly demand sequences used in the experiments are obtained by 

the processing method in this paper. Due to the small number of anomalous sequences, 

this paper takes out two kinds of accessories in two datasets for experiments, respectively. 

The comparison method directly performs unsupervised anomaly detection on the un-

processed anomaly sequences. 

As can be seen from the two tables above, the detection results of the OCSVM algo-

rithm on several accessory demand data perform poorly relative to other methods, This is 

because it is difficult to train a suitable support vector to classify demand samples from a 

short length and large fluctuation. The IForest algorithm is an integrated method based 

on data cutting, which can determine the degree of abnormality based on the number of 

times the sample points are split apart as needed. It can be inferred from the result table 

that the method can detect some abnormal demands with few cuts, but it also mistakenly 

detects some normal demand points as abnormal demands. The method does not have 

high accuracy in detecting intermittent data. The The KNN algorithm performs anomaly 

detection based on the class of samples in the majority of the K most adjacent samples in 

the feature space. It can be seen that the method has high detection accuracy in detecting 

anomalous samples with prominent local demand changes, but the detection results on 

continuous, demand-intensive and stable demand data have higher errors. The LOF algo-

rithm marks sample points located in sparse regions as anomalous by searching the near-

est neighbors by means of density estimation. Similar to the KNN algorithm, it is also 
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better at detecting local anomalous salient demands. The COPOD algorithm evaluates 

anomalies by estimating the probability of the tail end of sample points, in other words 

the probability that the sample points are distributed at extreme locations. The method 

has good detection results on overall demand data, but for demand-type data with grow-

ing demand, the method flags some new demand samples with large values as anomalous 

demand as the number of samples increases. 

It can be seen that the traditional method of anomaly detection by density and dis-

tance is not good at detecting anomalous demands in demand sequences because it ig-

nores the changing situation of demands in the sequences and the intermittency of the 

sequences. The method in this paper is to improve the detection accuracy by constructing 

DVIC matrix for the original sequence, fine-grained analysis of each demand characteris-

tic in the sequence and the interval characteristics of non-zero demand, and mining the 

abnormal information in the demand sequence from multiple dimensions. It can be seen 

that in most cases, this method can obtain better detection results and is more stable than 

other methods. The effectiveness of this method is verified by the fact that the F1 scores 

of this method are higher than or equal to those of other detection methods in two differ-

ent datasets. 

5. Concluding Remarks 

This paper studys an unsupervised anomaly detection method for intermittent se-

quences based on multi-granularity anomaly pattern mining. The method can effectively 

identify coarse-grained anomalous patterns in known sequences and screen out anoma-

lous sequences in terms of volatility differences in intermittent time series and evolution-

ary similarity information between sequences. The DVIC matrix of time point demand is 

also constructed using the demand size of each time point of the anomalous sequence for 

unsupervised anomaly detection modeling. The advantage of this method is that it can 

effectively utilize the variation of demand in the sequence and the intermittency of the 

sequence to improve the detection accuracy of intermittent time sequences under small 

samples. The experimental results show that the method in this paper can effectively de-

tect anomalous demand points with different intermittency distribution characteristics 

and has good practicality. 

In the next step, we plan to combine the abnormal demand points of intermittent time 

series with the enterprise inventory stocking plan. We will classify different types of ab-

normal demand and construct fine-grained inventory optimization strategies for different 

types of abnormal categories to meet the actual inventory stocking demand of enterprises 

and reduce their inventory stocking pressure. 
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