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Abstract: Graph data are widely collected and exploited by organizations, providing convenient
services from policy formation and market decisions to medical care and social interactions. Yet,
recent exposures of private data abuses have caused huge financial and reputational costs to both
organizations and their users, enabling designing efficient privacy protection mechanisms a top
priority. Local differential privacy (LDP) is an emerging privacy preservation standard and has
been studied in various fields, including graph data aggregation. However, existing research studies
of graph aggregation with LDP mainly provide single edge privacy for pure graph, leaving het-
erogeneous graph data aggregation with stronger privacy as an open challenge. In this paper, we
take a step toward simultaneously collecting mixed attributed graph data while retaining intrinsic
associations, with stronger local differential privacy protecting more than single edge. Specifically,
we first propose a moderate granularity attributewise local differential privacy (ALDP) and formulate
the problem of aggregating mixed attributed graph data as collecting two statistics under ALDP. Then
we provide mechanisms to privately collect these statistics. For the categorical-attributed graph, we
devise a utility-improved PrivAG mechanism, which randomizes and aggregates subsets of attribute
and degree vectors. For heterogeneous graph, we present an adaptive binning scheme (ABS) to
dynamically segment and simultaneously collect mixed attributed data, and extend the prior mech-
anism to a generalized PrivHG mechanism based on it. Finally, we practically optimize the utility
of the mechanisms by reducing the computation costs and estimation errors. The effectiveness and
efficiency of the mechanisms are validated through extensive experiments, and better performance is
shown compared with the state-of-the-art mechanisms.

Keywords: data privacy; local differential privacy; graph aggregation; heterogeneous graph

1. Introduction

Graph data are widely spread in people’s lives from policy formation and market deci-
sions to medical care and social interactions, whose exploitation and utilization are crucial
to improve the overall quality of data-driven services. However, the heavy dependence of
these services on personal graph data brings up serious concerns about the abuses of their
private information. In recent years, a number of organizations have been exposed for abus-
ing and compromising personal data privacy [1–3], and these incidents have caused huge
financial and reputational damage to both organizations and their users. In order to avoid
these negative outcomes, some countries and regions have actively enacted relevant laws
to provide legislative authorities for privacy protection, such as GDPR [4] and CCPA [5].
Therefore, devising privacy protection mechanisms, which reveal overall valuable statistical
information without violating the privacy of individual data, has become a top priority for
organizations and research fields nowadays.

Due to its rigorous theoretical guarantees, differential privacy (DP) [6,7] has become
the de facto standard of privacy preservation. DP mechanisms utilize a centralized trust-
worthy data curator to collect individual private data, and ensure that the overall output
statistics does not reveal individual private information by adding calibrated noise to
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aggregated results. As the scale of Web-enabled distributed devices grows, localized
version of DP has been recently proposed to further reduce the risk of privacy breaches.
Local Differential Privacy(LDP) [8] relies on no hypothetically trustworthy third-party data
curator as in the conventional centralized DP, and provides on-device data perturbation
and out-device purified statistics with rigorous privacy guarantee. Many companies have
employed LDP based services, such as Apple [9,10], Google [11,12] and Microsoft [13].

LDP studies have been conducted in various fields, such as categorical data frequency
publication [8,14–16] and numerical data mean estimation [13,17,18]. Subsequent research
studies expand the scope to more complex data types, such as itemset release on set-valued
data [19–21], decomposed distribution estimation on multidimensional data [22,23], and
related data collection on key-value data [24,25]. However, studies on heterogeneous graph
data are still scarce, which is a widely exploited data type in real-world applications, and
data service providers wish to aggregate these heterogeneous graph data to analyze indi-
vidual usage patterns and use them to improve the quality of services such as commodity
recommendation [26,27], marketing [28] and pandemic tracking [29]. Consider heteroge-
neous social network as an example, each user (node) interacts through the social services
belonging to multiple organizations or parties, and such communication linkages (edges)
thus carry different numerical attributes, such as contacting frequencies and time intervals,
and these attributes are potentially characterized as linkage weights. Users/organizations
may also label part of edges as friendship, coworker-ship, kinship, political preference and
sexual relationship. Accordingly, these attributed linkages represent the user engagement
and usage frequency of corresponding social services, which is widely used in user profiling
and recommendation systems. Another example is social–financial networks, where the
users in one social network also have financial transactions. The social linkages between
users may be attributed as friendship, coworkership and family, while the financial linkages
between users contain fund transfer amount/time and trade amount/time. Aggregating
the social–financial graph data is vital in marketing. As various social services provide
location tracking systems, the so-called geosocial networks are also an important applica-
tion of heterogeneous graphs. While part edges of the geosocial network are attributed
social linkages, the geographical edges with trajectory distance and tracking time form a
graph-based trajectory network. Combining and collecting these geosocial graphs provides
significant pandemic tracking services.

Recently, graph data aggregation mechanisms under LDP constraint have been studied.
By collecting perturbed degrees of pure graph data, Ref. [30] proposes to generate synthetic
graph and [31] manages to aggregate subgraph statistics with extended privacy definition.
Ref. [32] broadens the research scope to graph with node attributes. However, existing
research studies mostly protect single edge privacy with edge-based LDP, while users in
heterogeneous graph may require stronger privacy guarantee such as protecting a group of
equally sensitive attributed edges from the statistical aggregation (e.g., protect all the sexual
or political relations), and existing mechanisms may be insufficient to satisfy the potential
heterogeneous graph privacy demands. Furthermore, existing mechanisms generally
focus on single-attributed graph such as the weighted graph or the categorical-attributed
graph, and leaves the heterogeneous graph aggregation challenge unresolved, which is
to simultaneously collect mixed attributed graph data and intrinsic associations (between
attributes and edges) while providing desirable utility.

In this paper, we take a step toward aggregating heterogeneous graph data with
stronger local differential privacy protecting more than single edge. First of all, we charac-
terize the two conventional variants of LDP definitionfor heterogeneous graph, integrate
their characteristics and propose a fine-grained privacy definition with trade-offs between
preservation strength and estimation accuracy. Under the moderate LDP definition, the
problem of aggregating heterogeneous graph is addressed through two incremental stages,
which are collecting categorical-attributed and heterogeneous graphs. For the former, we
design a PrivAG mechanism to simultaneously sample and perturb subsets of encoded
attribute and degree vectors, while retaining the relations reside within them. For the
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latter, we present an optimal binning scheme to segment and merge mixed attributed data,
which serves as a preceding subtask for subsequent mechanism. Lately, we extend PrivAG
mechanism to uniformly aggregate heterogeneous graph, and further devise optimization
techniques targeting user-side randomization and server-side estimation, achieving better
privacy–utility tradeoff.

The main contributions of this paper are summarized as follows:

• We propose an attribute-wise local differential privacy (ALDP) notion with moderate
granularity between conventional node-based LDP and edge-based LDP, trading-
off privacy and utility between them, and formulate the problem of aggregating
heterogeneous graph data under the ALDP notion as collecting attribute frequency
and attribute-degree distribution.

• We apply padding and truncating for categorical-attributed graphs to handle the
large data domain, and encode graph data as corresponding attribute and degree
vectors. Then a utility-improved PrivAG mechanism is proposed to privately and
simultaneously aggregate subsets of attribute and degree data.

• We present an adaptive binning scheme (ABS) to dynamically segment weighted
edges and simultaneously collect mixed attributed data in the same process, reducing
the computation cost to local devices and the estimation error caused by inconsistent
distribution.

• We extend the privacy field to handle heterogeneous graphs and devise optimization
techniques for user-side randomization and server-side estimation. The adaptive
binning scheme and optimization techniques are integrated into the extended PrivHG
mechanism.

• We validate the effectiveness and efficiency of our mechanisms based on extensive
experiments, which are shown to have better performance than the state-of-the-art
mechanisms.

The remainder of this paper is organized as follows. Section 2 introduces two conven-
tional variants of LDP definition in graph data, and proposes a moderate attributewise local
differential privacy. Section 3 formulates the problem of analyzing heterogeneous graph
with ALDP and presents straightforward approaches. Section 4 proposes PrivAG mecha-
nism for collecting the categorical-attributed graph. Section 5 designs an adaptive binning
scheme to extend the privacy field to heterogeneous graph, and provides optimization
techniques for extended PrivHG mechanism. Section 6 shows the extensive experimental
results of PrivHG and baseline mechanisms. Section 7 reviews related literature. Finally,
Section 8 concludes the paper.

2. LDP in Graph

In this section, two variants of local differential privacy in graph data are briefly
introduced with their pros and cons. Then an eclectic notion is proposed to better trade-off
privacy and utility for heterogeneous graph data in local settings.

Since its inception [6], differential privacy (DP) has become the standard for preserving
private data. By introducing the concept of neighboring databases that only differ in one
record, a randomized mechanismM under differential privacy constraint can guarantee
statistical indistinguishability for these two databases D and D′. Although differential
privacy has been extensively developed, practical scenarios lead to new challenges in
local settings, therefore local differential privacy (LDP) is proposed [8], which relies on no
trustworthy data curator and protects individual privacy on local devices. The privacy
definition in local settings is based on user’s perspective of local private data. As for graph
data, two variants of LDP are given in [30] with different perspective, and we review two
LDP definitions on local graph as follows:
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Definition 1 (Node-based Local Differential Privacy [30]). A randomized mechanism M
satisfies ε-node local differential privacy if and only if for any two neighboring graph G, G′ differing
in one node, and any O ∈ range(M),

Pr(M(G) ∈ O) ≤ exp(ε) · Pr(M(G′) ∈ O)

Definition 2 (Edge-based local Differential Privacy [30]). A randomized mechanismM satis-
fies ε-node local differential privacy if and only if for any two neighboring graph G, G′ differing in
one edge, and any O ∈ range(M),

Pr(M(G) ∈ O) ≤ exp(ε) · Pr(M(G′) ∈ O)

Despite the conventional privacy definitions of node-based LDP and edge-based LDP,
there are certain drawbacks if applying them to heterogeneous graphs. On the one hand,
node-based local differential privacy is a very promising and rigorous one, but directly
applying node-based notion may introduce excessive noises and reduce the utility vastly.
On the other hand, users may require a stronger notion than edge-based local differential
privacy by protecting several equally sensitive attributed edges together, for the reason that
similarly attributed relations deserve similar protection. Considering the privacy demand
and the nature of attributed graph data, we combine the characteristics of these two notions,
and propose an eclectic notion as attributewise local differential privacy(ALDP).

Definition 3 (Attributewise Local Differential Privacy). A randomized mechanismM satisfies
ε-attributewise local differential privacy, if and only if for any two neighboring attributed local
graph data G, G′ differing in one attribute and related edges, and any O ∈ Range(M)

Pr[M(G) ∈ O] ≤ exp(ε) · Pr[M(G′) ∈ O]

Through trading off the rigorousness of node-based LDP and utility of edge-based
LDP, we define neighboring private data from attribute level, that is to say, two attributed
local graphs are neighboring if one can be obtained from another by altering one certain
attribute along with all related edges. Intuitively, the privacy budget ε in ALDP is split
among a subset of edges, where ε in node-based LDP is split in all edges and ε in edge-
based LDP is used as a whole. Both node-based LDP and edge-based LDP can be viewed
as extreme cases of ALDP. In one extreme case, the whole graph has only one attribute,
and altering it is equivalent to altering all the edges, then ALDP corresponds to node-
based LDP. In another extreme case, each edge of the whole graph has a distinct attribute
value, and altering one certain attribute is equivalent to altering only one edge, then ALDP
corresponds to edge-based LDP. Besides the extreme cases, ALDP in the nonextreme case
actually trade-offs between the two definitions, thus achieving better estimation accuracy
than the former and providing stronger privacy protection strength than the latter. In this
paper, we aim to analyze edge-attributed graph under ALDP.

Some useful properties [8] of differential privacy provide theoretical guarantees for the
design of subsequent mechanisms, the allocation of privacy budgets, and the optimization
of perturbation results.

Theorem 1 (Sequential Composition [8]). If randomized mechanismMi satisfies εi-local differ-
ential privacy for i = 1, . . . , k, then the sequential compositionM = (M1, . . . ,Mk) on private
data G satisfies ∑k

1 εi-local differential privacy.

Theorem 2 (Parallel Composition [8]). If randomized mechanism Mi(Gi) satisfies εi-local
differential privacy for i = 1, . . . , k, then the parallel compositionM = (M1(G1), . . . ,Mk(Gk))
on private data G satisfies max εi-local differential privacy.



Entropy 2023, 25, 130 5 of 27

Theorem 3 (Postprocessing [8]). If randomized mechanismM satisfies ε-local differential pri-
vacy, and f is a randomized mapping function, then f ◦M satisfies ε-local differential privacy.

3. Problem Definition and Naive Approach
3.1. Problem Definition

Consider an edge-attributed graph as an undirected graph G = (V, E, A), where V
represents nodes in the graph, E = {eu,v|u, v ∈ V} represents edges, and each edge between
two nodes is related to one attribute aj from the universal attribute set A. Without lose of
simplicity, in this paper we assume that each local graph may have several attributes but
each edge of the graph has only one attribute. A graph with multidimensional attributes
is beyond the scope of this paper, and we leave it for our future work. We assume that
there are totally |V| nodes, |E| edges and |A| attributes in graph G, which are all publicly
known. Beyond the global parameters, local graph data Gi is stored on each individual
i’s device, and is considered as private. These private data include linked edges Ei and
possessed attributes Ai. Take Figure 1 as an example to encode local graph data, user
u holds four attributes from the universal attribute set (friend, coworker, kin, political,
sexual), so the attribute vector of u is represented as (1, 1, 0, 1, 1) with kinship as 0 as in
upper right of Figure 1. There is one edge attributed as friend, which means the degree of
attribute friend is 1, thus the first vector in lower right of Figure 1 is set to (1, 0, 0, 0), so are
other degree vectors. As for attributes not exist in graph, that rows are simply set to 0. The
main notations are listed in Table 1.

Table 1. Notations.

Symbol Meaning

G(V, E, A) attributed graph
Gi local graph of i-th user
Ai possessed attribute set of i-th user
m categorical attribute domain size |Ac| = m
w numerical attribute domain size |An| = w
` maximum attributes each user have |Ai| ≤ `
aj the jth attribute from A

degi(aj) number of edges in Gi have attribute aj ∈ A
θ maximum degree bound
va attribute vector
ud degree vectors
φa frequency of attribute a
ψd degree distribution of d

The objective of this paper is to provide tools for data curators to analyze heteroge-
neous local graphs, while satisfying ε-local differential privacy. Precisely speaking, through
collecting perturbed attribute vector and attribute-degree vectors, we focus on estimating
two fundamental statistics:

• Attribute frequency estimation. The attribute frequency φj is the ratio of users who
possessed certain attribute aj among whole users in the graph (e.g., fraction of users
who installed certain social App among all Appstore users):

φj =
#{Gi|∃aj ∈ Ai}

n
(1)
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• Attribute-Degree distribution estimation. The attribute-degree distribution ψd
j is

attributed version of degree distribution. Formally speaking, ψd
j is the number of

nodes that have exactly d edges with attribute aj:

ψd
j =

#{Gi|∃aj ∈ Ai and degi(aj) = d}
n · φj (2)

Figure 1. An example of attributed local graph Gu, right half is encoded vectors of Gu.

3.2. Data Preprocessing

Considering the practical flexibility, analyzing edge-attributed graph data still needs
precaution before getting down to algorithm details. For attribute estimation, domain of
real-world graph attributes can be enormous, and each user may possess several edge
attributes in their local graph data. For simplicity, we assume, as in recent work [19,20],
that the number of edge attributes in each user’s local graph is fixed by parameter `.
As for degree estimation, when user opting out one attribute under attributewise local
differential privacy, related edges will also be altered simultaneously, thus brings the high
sensitivity of graph analysis, which in the worst case may reach the maximum degree,
|V| − 1. Therefore, method to neutralize the effect of high sensitivity and retain better
utility should be considered. Existing research studies mainly limit the magnitude of noises
by projecting the original graph into a bounded graph with maximum degree equals θ.

In this paper, we first fix number of possessed attributes in each user’s local graph,
i.e., |Ai| = `. If a user has more than ` edge attributes in her local graph, she randomly
sample ` attributes from the origin graph, together with related edges, forming a new
graph with fixed ` edge attributes. For user with less than ` attributes, `− |Ai| dummy
items are padded to her graph, which are ignored by data curator in analyzing process.
Then, for each attribute aj possessed in user’s local graph Gi, we set the maximum number
of related edges in local graph as θ. When the number of edges with attribute aj exceeds
the given parameter, we truncate extra edges and bound the degree with θ. After the
preprocessing of padding and truncating, we get the resulting attributed local graph Ḡi.
With the bounded local graph, we can further compare the allocation of privacy budget
among different privacy notions: for attribute frequency estimation, budget εa in ALDP
and edge LDP is used as a whole, while it is split as εa/` for each attribute in node LDP;
for degree estimation, budget εd in edge LDP is used as a whole, while it is split as εd/θ for
each edge in ALDP and node LDP. In summary, ALDP strike a balance between edge LDP
and node LDP.

3.3. Naive Approach

The first intuitive approach is adopting Laplace mechanism under ALDP, each user
preprocesses her local graph into a bounded one, calculates numerical statistics and perturbs
the statistics with Laplace noises. Specifically, given the initial parameters (including
attribute set size `, maximum degree θ and privacy budget ε), each user first encodes the
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bounded graph as a numerical vector, in which each bit representing correlated number
of edges with certain attribute, then adds Laplace noises sampled from Lap(∆

ε ). In the
bounded local graph, changing one attribute will change the numerical vector at most
2θ + 1 bits, thus the sensitivity bound is ∆ = 2θ + 1. Based on the Laplace approach,
attribute-degree distribution can be estimated by aggregating the perturbed vectors from
all users, and attribute frequency estimation can be derived from attributes with nonzero
degree. However, the error of estimation is related to θ and the results can be highly
inaccurate with a large θ, and when estimating attribute frequency solely, the sensitivity
should be 2 instead of 2θ + 1, thus extra noises are added to the origin data.

Another naive approach to solve the problem is applying Randomized Response [33],
and separately perturbing attribute possession and degree distribution by flipping two
different coins. In particular, given the initial parameters, each user first encodes local
graph as an attribute vector φa and degree vectors ψd, where φa is a binary vector indicating
local attribute possession and ψd consists of m one-hot vectors denoting the degrees of
corresponding attribute. By preprocessing and encoding local graphs, each user splits
privacy budget ε in two parts ε1 and ε2 to perturb attribute and degree vectors respectively.
In the attribute perturbation phase, the user splits ε1 into 2` parts and invokes GRR [11],
which is an enhanced version of Randomized Response, to perturb bits in attribute vector
with flipping probability: p = 1

exp( ε1
2` )+1

. In the degree perturbation phase, the user splits ε2

into 2θ parts, and perturbs the bits in degree vectors with probability: p = 1
exp( ε2

2θ )+1
. After

the local perturbation, data curator collects perturbed vectors from all users and performs
an unbiased estimation of attribute frequency and attribute-degree distribution. We regard
this GRR approach as a baseline to our problem.

By observing these two approaches, some hurdles can be found. The conventional
Laplacian mechanism is easy to implement, however, the noises added to origin data is
θ-related, and the choice of θ is empirical and relies on specific graph data. Invoking
Randomized Response twice as in GRR approach is a remedy to the problem, but pays
the price of utility degrading by splitting privacy budget too fractionally. Furthermore,
the attribute frequency and its degree distribution in one local graph should be correlated,
and these two naive approaches fail to capture this property. In the next chapter, we tackle
these hurdles in our PrivAG mechanism.

4. PrivAG Mechanism
4.1. General Mechanism

In order to tackle the aforementioned shortage of intuitive approach, we manage to
reduce the fragmentation of privacy budget and retain the correlation between attribute
possession and degree in PrivAG. The main idea of the mechanism is to first output an
randomized attribute subset of fixed size k, where k relies on given parameters, and then
accordingly perturb degree vectors based on the result of randomized attribute data. Specif-
ically, PrivAG is comprised of two components, randomization and estimation component:

Randomization component. This component includes two phases that separately
randomize attribute and degree vectors. One previously observed hurdle of naive approach
is tiny split privacy budget and excessive noises, and the key coping idea for attribute
randomization, which is inspired by the recent work [19], is to locally sample an attribute
subset of size k as a whole to reduce introduced noises, without splitting privacy budget
ε1. As for degree randomization, inspired by research studies [34,35], we take OUE [34]
as building block for degree randomization in this paper, which eliminates the effect of
θ on the variance and transmits bit 1s and 0s differently. Note that the OUE method is
replaceable in our mechanism, and GRR [33] or other methods could be an alternative
for extremely sparse graphs with θ < 3exp(ε2) + 2. After the randomization, additional
postprocessing is executed to sustain the correlation between attribute and degree. The
algorithmic detail of randomization component is presented in next subsection.
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Estimation component. To reduce computational cost, data curator first broadcasts
needed parameters to every user in the initializing phase of PrivAG, including public
parameters and set size k in randomization component. k is calculated based on other
public parameters, and the optimal k∗ can be derived to further maximize utility, through
treading off the theoretical error bounds of attribute frequency and degree distribution
estimation. After each user invokes randomization component, data curator collects the
perturbed data, and make an unbiased estimation about attribute and degree. Next, we
present the two components in detail.

4.2. Data Randomization

Attribute randomization. In this phase, each user i encodes attribute set Āi ⊆ Ḡi as
a binary vector vi

a = (vi
a1

, . . . , vi
am), then samples and outputs k elements from vi

a with
noisy probability consuming privacy budget ε1. Denote the output as ṽi

k = (ṽi
a1

, . . . , ṽi
ak
),

which is one possible result from output domain vk of all k-sized attribute vectors. This
randomization phase is implemented based on the general Exponential Mechanism, which
outputs element of maximum utility score u with the probability proportional to exp( εu

2∆u ).
Given an input vi

a and output domain vk of all k-sized attribute vectors, we first define
the essential utility function u(vi

a, ṽi
k) to score the similarity between m-sized vector vi

a and
k-sized vector ṽi

k pairs. To keep the noisy probabilities stable, we define our utility function
as a indicator function, indicating whether the `1 distance on the sampled k elements
between vi

a and ṽi
k is within k:

u(vi
a, ṽi

k) = [|vi
a − ṽi

k|1 < k]

It can be derived that the sensitivity of utility function is 1:

∆u = max
ṽi

k⊆vk

max
||vi

a−vi′
a ||1≤1

|u(vi
a, ṽi

k)− u(vi′
a , ṽi

k)|

= max
ṽi

k⊆vk

max
||vi

a−vi′
a ||1≤1

|[|vi
a − ṽi

k|1 < k]− [|vi′
a − ṽi

k|1 < k]| = 1

Through defining the low-sensitivity utility function u(vi
a, ṽi

k), the noisy probability of
outputting ṽi

k with input vi
a is given by:

Pr[M(vi
a) = ṽi

k] ∝ exp(
ε1u(vi

a, ṽi
k)

∆u
), ṽi

k ⊆ vk

Substituting ∆u = 1, the attribute randomization probability can be derived by
aggregating all the proportional probabilities above:

Pr[M(vi
a) = ṽi

k] =
exp(ε1u(vi

a, ṽi
k))

∑ṽk∈vk
exp(ε1u(vi

a, ṽk))

The implementation of attribute randomization phase is illustrated in the Algorithm 1
from line 2 to line 14. During the line 2 and line 8, each user computes a series of proba-
bilities, where Σ is the normalizer Σ = ∑ṽk∈vk

exp(ε1u(vi
a, ṽk)), and each pi with i ∈ [0, k]

represents the probability that the number of selected origin attributes a ∈ Āi is exactly
i, pi = Pr[#{aj|aj ∈ Ai and ṽk[aj] = 1} = i]. Since u is an indicator function, the output
domain of vk contain (m+`

k ) outputs, and u = 0 when selecting k attributes from noninitial
m + `− ` = m attributes, so Σ can be calculated with given parameters. The probabilities
pi is calculated iteratively. From line 8 to line 14, each user randomly generates a number ks
based on the previous probabilities, separately samples ks attributes from Āi and samples
k− ks attributes from the rest noninitial attributes set, and vectorization the union set as ṽi

k,
which is the perturbed attribute vector to be contributed.
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Algorithm 1 Data Randomization Component (DRC).

Input: attributed local graph Gi, privacy budget ε, m, l, θ
Output: perturbed attribute–degree vectors ŝ ∈ S

1: //locally truncate and pad origin graph
2: Ḡi ← pre− processing(Gi)
3: //attribute perturbation
4: Σ← (m

k ) + exp(ε1)((
m+`

k )− (m
k ))

5: p0 ←
(m

k )
Σ

6: for i ∈ [1, k] do

7: pi ← pi−1 +
exp(ε1)(

m
i )(

`
k−i)

Σ
8: end for
9: ratt ← random(0.0, 1.0)

10: ks ← 0
11: while pks ≤ ratt do
12: ks ← ks + 1
13: end while
14: ṽk ← vectorization(sample(ks, Ai) ∪ sample(k− ks, A− Ai))
15: for aj ∈ ṽk and aj /∈ Gi do
16: t← random(1, θ)

17: uj
t ← 1

18: end for
19: //degree randomization
20: for aj ∈ ṽk do
21: for t ∈ [1, θ] do
22: Perturbs as

Pr[ũj
t = 1] =


pd =

1
2

, uj
t = 1

qd =
1

eε2/k + 1
, uj

t = 0

23: end for
24: end for
25: for aj ∈ A do
26: ũj ← ũjaj
27: end for
28: return ṽk and ũd

Degree randomization. As mentioned above, we adopt OUE to serve as our attribute-
degree perturbation primitive. To be specific, for a individual’s local graph Gi, after
projected to Ḡi, the number of edges with every attribute is known and limited, thus can be
encoded as one-hot attribute-degree vector uj = [uj

0, . . . , uj
θ ], where the subscript j stands

for attribute aj ∈ Ai and only degi(aj)-th bit is 1 in this degree vector of attribute aj. For
one-hot vectors like ud, OUE takes noncomplementary probabilities for bits 1 and 0, bit 1 in
ud stays as 1 in ũd with probability p = 1/2, in the meantime, bits 0 in ud are flipped with
probability q. The general randomization process can be sketched as:

Pr[M(ũi = 1)] =

{
p, ui = 1

q, ui = 0

One shortage of baseline approach is that it fails to capture the intrinsic correlation
between attribute and its degree, for example when aj is perturbed as 0 after attribute

randomization phase, the related degree vector uj
d should also be 0 after perturbation. After

the attribute randomization phase in PrivAG, there are k selected attributes as a whole to
be perturbed as 1, with the rest bits in attribute vector va as 0, thus there should be k related
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vectors ud with nonzero degree. Degree randomization process is executed k times for each
selected attribute in ṽi

k, with split privacy budget ε2/k, and for the rest attributes not in ṽi
k,

the degree vector is postprocessed to stay 0 with attributes simultaneously. Furthermore,
parameter k take a role in both phases, and the optimal k is determined by estimation of
both phases in theoretical analysis section. Therefore, the correlation between attribute
and degree is retained. As shown from line 18 to line 24, in degree randomization phase,
each user splits privacy budget as ε2/k, and utilizes each share to flip one attribute-degree
vector of selected attribute from attribute randomization phase.

By combining the two phases, the Data Randomization Component(DRC) is presented
in Algorithm 1, in the initializing stage, each user gets public parameters from data curator,
preprocesses local graphs, and divides privacy budget as ε = ε1 + ε2 for subsequent
randomization. In the final stage, each user multiples the perturbed degree vectors with the
related attribute vector value, ensuring that the two phases are perturbed simultaneously.

4.3. Distribution Estimation

In this subsection, we present the complete PrivAG framework, including attribute fre-
quency and attribute-degree distribution estimation component. In Algorithm 2, each user
executes DRC on her edge-attributed local graph, and contributes the sanitized results to
data curator. After collecting the perturbed data from all users, data curator aggregates the
results and accordingly infers the attribute frequency φa and attribute-degree distribution
ψd. The thorough estimation phase of PrivAG framework is given below.

Algorithm 2 PrivAG.

Input: local graphs G, privacy budget ε
Output: attribute frequency φa, attribute–degree distribution ψd

1: //user-side randomization
2: each user locally perturbs Gi by DRC, and report ṽi

k and ũi
d

3: //count bits 1 in the randomized vectors
4: cj ← count(ṽk)
5: dt(aj)← count(ũd)
6: //estimate from recorded counts
7: for j ∈ [1, m] do

8: φj =
cj/n−qa

pa−qa
9: end for

10: for j ∈ [1, m] and t ∈ [0, θ] do

11: ψt
j =

dt(aj)/n−qd
pd−qd

12: end for
13: return φa and ψd

Attribute frequency. In this phase, data curator aggregates bit 1s in perturbed vector ṽk
from n individuals as a counting vector cj = #{ṽi

k|ṽ
i
k[aj] = 1} and calibrates the frequency.

During the calibration process, two probabilities are critical, which we denote as pa and
qa. For a user i and an attribute aj ∈ A, if aj both appears in the origin vector of Ai and the
perturbed result ṽk, the probability is denoted as pa:

pa = Pr[ṽk[j] = 1|vj = 1]

=
exp(ε1)(

m+`−1
k−1 )

(m
k )+exp(ε1)((

m+`
k )−(m

k ))

(3)
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Similarly, if aj is beyond user’s possessed attributes aj /∈ Ai, but the perturbed result
ṽk contains aj, then the probability is denoted as qa:

qa = Pr[ṽk[j] = 1|vj = 0]

=
(m−1

k−1 )+exp(ε1)((
m+`−1

k−1 )−(m−1
k−1 ))

(m
k )+exp(ε1)((

m+`
k )−(m

k ))

(4)

By calculating these probabilities pa, qa and the counting vector ca, the unbiased estimation
of attribute frequency aj is:

φj =
cj/n− qa

pa − qa
(5)

Attribute-Degree distribution. The estimation of attribute-degree distribution is pretty
similar to the previous phase. Data curator first aggregates bits 1s in vectors ũd contributed
by n individuals as a counting vector dt(aj) = #{ũi

d|ũ
i
t[aj] = 1}. By combining the two

important probabilities already given in Algorithm 1: pd = 1
2 and qd = 1

1+eε2/k . Then data
curator estimates the attribute-degree distribution as:

ψt
j =

dt(aj)/nj − qd

pd − qd
(6)

With split privacy budget ε = ε1 + ε2, the above mechanism PrivAG satisfies ε-
attributewise local differential privacy. Upon analysis, the categorical-attributed graph
with PrivAG mainly has two kinds of errors, relating to two estimation objectives. Next,
we theoretically analyze these two errors and optimize key parameter to reduce estima-
tion variance.

Error analysis on attribute frequency estimation. Based on the probabilities calculated
in the previous subsection, the variance of an attribute aj ∈ A frequency is:

Var[φj] =
nqa(1− qa)

(pa − qa)2 (7)

Error analysis on attribute-degree distribution estimation. Similarly, the variance of an
attribute aj ∈ A frequency is:

Var[ψt
j ] =

nqd(1− qd)

(pd − qd)2 (8)

5. PrivHG: Extending to Heterogeneous Graph

The aforementioned PrivAG mechanism is efficient and effective to perform analysis
tasks for categorical-attributed graph. In this section, the privacy field is generalized
from categorical attribute to heterogeneous attributes, such as the heterogeneous social
networks, social–financial networks and geosocial networks, and an enhanced version of
PrivAG mechanism (denoted as PrivHG) is presented to aggregate two statistics φa and
ψd of local heterogeneous graph. The estimation accuracy and computation overhead of
PrivHG are further optimized both in user-side randomization component and server-side
estimation component.

The premise of extending PrivAG from categorical-attributed graph to heterogeneous
graph is to collect categorical and numerical attribute possessions #a|a ∈ A and mixed-
attributed edge degrees {deg(a)|a ∈ A}. An available approach is to separately collect
these mixed statistics: leave categorical-attributed data to PrivAG and aggregate numerical-
attributed data with hierarchy-based approach. The hierarchy approach commonly con-
structs an additional hierarchical structure and perturbs private data with multiple privacy
granularity. Despite the additional computation cost of the hierarchical data structure build-
ing process, the limited privacy budget ε will be allocated proportionately between PrivAG
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and hierarchy-based mechanisms when separately randomizing categorical-attributed
and numerical-attributed data, which is also inefficient and impractical. Therefore, it is
inappropriate to apply hierarchy-based approach for numerical data of heterogeneous
graph in PrivHG mechanism. Another way is to apply binning-based approach to segment
continuous numerical attributes a ∈ An into discrete r intervals with binning scheme
B = (b1, b2, . . . , br), and deal with them equally as categorical data. By applying binning-
based approach in PrivHG mechanism, categorical-attributed and numerical-attributed
statistics a|a ∈ Ac ∪ B and {deg(a)|a ∈ Ac ∪ B} can be aggregated under the same process,
and privacy budget ε is utilized as a whole. In the following, PrivHG adopts binning-based
approach as a building block to collaboratively analyze private heterogeneous graph along
with PrivAG, a resizing binning technique is further designed in PrivHG to handle the large
domain problem of heterogeneous graph, which reduces the aggregation and estimation
error compared with straightforward application of binning-based approach.

Despite the intuitive outline of the extended PrivHG mechanism, there are still limita-
tions on the details of aggregating heterogeneous graph data, leaving room for following
improvement.

• In the initialization process of PrivHG mechanism, the binning scheme B = (b1, b2, . . . , br)
is directly applied to the local data to aggregate statistics, thus determines the estimation
accuracy brought by subsequent truncation and perturbation processes. Since the hetero-
geneous graph data are potentially distributed unevenly but truncated uniformly with
maximum degree parameter θ, different binning scheme B ∈ B, which groups data with
different granularity of sparsity, affects the gap between truncation range [1, θ] and actual
data range [min(deg(bi)), max(deg(bi))] for each bin bi ∈ B, therefore having an impact
on the accuracy of subsequent attribute-bins-related estimation for aj ∈ bi. To be more
specific, considering two extreme cases: if the binning scheme B is too fine, most bins
bi ∈ B contain only sparse attributed edges and aggregation of these sparse data falls far
below the truncation threshold max(deg(bi)) � θ, then excessive θ-related noises are
introduced into these sparse bins and associated attributed graph during perturbation
process; On the other hand, a too coarse binning scheme B groups numerous attributed
edges together, then the aggregated statistics of these large bins bi ∈ B may exceed the
truncation parameter θ too much max(deg(bi)) � θ, resulting in enormous error due
to excessive attributed edges being truncated. Note that this unevenly distributed but
uniformly truncated limitation applies for both categorical-attributed and numerical-
attributed data in heterogeneous graphs. Therefore, finding optimal binning scheme
in unified PrivHG mechanism is critical, and perturbation with inappropriate binning
scheme could suffer from high randomization error with sparse data and high truncation
error with dense data.

• During the randomization process of heterogeneous graph, the intrinsic correlations
between attributed edges need to be reflected in the simultaneous randomization of
attributes (bins) and degrees, and retained in the estimation of attribute frequency
φa and degree distribution ψd. Especially, if a nonpossessed attribute (aj = 0) is
perturbed as a possessed one on (aj = 1) when perturbing a private local graph, a fake
attributed degree deg(aj) needs to be generated as a counterpart; On the contrary, if a
possessed attribute (aj = 1) is perturbed as a nonpossessed one on (aj = 0), related
degree deg(aj) is set to 0. The fake degree deg(aj) in PrivAG mechanism is randomly
generated from range [1, θ] without prior knowledge, which skews the estimation
results of degree distribution ψd.

• The sampling size k of randomized data set is determined on the server side without
considering local devices’ capabilities, which lead to O(k ∗ θ) computation and com-
munication overhead on the user side. A large k represents that lots of data needs to
be sampled, randomized and contributed from each user, which means much burden
to user’s device. However, practical local devices have various capabilities, and im-
posing heavy burden to the low-capability local devices in turn brings difficulties to
data collection.
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• The randomization strength and estimation accuracy in PrivAG mechanism is con-
trolled by the privacy budget ε. When ε is split many times among heterogeneous
graphs, the outliers generated by data randomization component may obscure graph
data characteristic and have a relatively huge impact on the estimation results, but
PrivAG mechanism is lack of corresponding techniques to correct randomization
outliers and neutralize estimation variance.

The overview of PrivHG mechanism is shown in Figure 2, which mainly extends the
privacy field to heterogeneous graph data and optimizes the above limitations. Taking the
real-world applications of heterogeneous social network and social–financial network as
examples, the brief process of running PrivHG mechanism can be summarized as: First,
during the initialization phase, the whole heterogeneous social graph or social-financial
network is divided as two user groups. Users in group 1 preprocess the numerical attributes
(e.g., contacting time intervals in heterogeneous social network or fund transfer amount in
social–financial network) according to the binning scheme, and encode their local graph
data as illustrated in Figure 1. Then the numerical-attributed data (e.g., contacting time
intervals and fund transfer amount) and categorical-attributed data (e.g., social linkage
type and financial activity type) are equally randomized and collected with randomization
mechanism. After the data curator aggregates the statistics, a generalized optimal binning
scheme is output, covering mixed attributes with minimal estimation error. In the following
phase, the optimal binning scheme and necessary parameters are informed to user group 2,
and each user preprocesses and randomizes his/her local data with optimization techniques.
Finally, these randomized vectors are aggregated by the server, then unbiased estimations
about the data distribution of heterogeneous social network or social–financial network
are generated. Specifically, the techniques of extending to PrivHG mainly include the
following components: Adaptive Binning Scheme is firstly proposed to find an optimal
binning scheme Bo ∈ B for mixed attributes based on a portion of the heterogeneous
graph data (Section 5.1). The binning Bo in ABS strikes a balance between truncation and
perturbation error, ensuring that the final aggregated statistics are approximately around the
threshold max(deg(bi)) ≈ θ for bi ∈ Bo. Then, the byproducts of Adaptive Binning Scheme
enable subsequent optimizations. During the perturbation process, the sample set size k
is chosen by trading off communication overhead and estimation accuracy (Section 5.2),
and correlated fake degrees are calibrated based on the estimated data distribution in ABS
rather than random values (Section 5.2). Finally, considering the heterogeneous graph data
properties, the aggregated statistics are corrected by filtering out the outliers (Section 5.3).

Figure 2. Overview of PrivHG mechanism.

5.1. Adaptive Binning Scheme

This subsection elucidates the process of finding the optimal binning scheme Bo in
Figure 2. As previously stated, binning schemes are designed to discretize numerical-
attributed data, so that heterogeneous graphs can be perturbed uniformly with PrivHG
mechanism. As different binning schemes influence the final estimation accuracy differently,
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the intuition to find a proper binning scheme requires keeping aggregated statistic of each
bin as close to the truncation threshold as possible max(deg(bi)) ≈ θ for bi ∈ Bo, in the mean
time minimizing both the estimation error from perturbations and the truncation error from
binning, and reducing the dependence on background knowledge of data distribution.

Two basic binning schemes for heterogeneous graph data are uniform binning and
geometric binning. Uniform binning is pretty straightforward and intuitive. For numer-
ical attribute range a ∈ [1, w], uniform binning divides it into bins with equal width,
B = bi|i ∈ (1, r) where bi = (1 + (i − 1) ∗ δ, 1 + i ∗ δ) and δ = w−1

r . Geometric binning
is another feasible scheme, where the bins are covered by a geometric series δi and the
width of bins varies from narrow to wide, which mimics the long tail distribution nature
of some graph data. Formally speaking, the [1, w] interval is divided geometrically as
bi = (1 + δi−1, 1 + δi), where i ∈ (1, r) and δ is a predefined parameter controlling the vari-
ations of bin width. However, there are drawbacks when applying the two basic binning
schemes. First of all, finding the parameter δ that controls the width of bins in the binning
schemes requires practical experience, and to guarantee finding the optimal parameter
is a nontrivial effort. Second, the two binning schemes rely on certain data distribution
to achieve accurate estimation and they may perform poorly in other scenarios, for ex-
ample, uniform binning suffers from the unevenly distributed but uniformly truncated
problem, and geometric binning suffers from nongeometric data distributions. Third, once
the two binning schemes are defined, they are only suitable for the covered graph and not
applicable to other graphs. Last but not least, uniform binning scheme may cover a set of
categorical attributes and geometric binning scheme may cover a set of numerical attributes,
but the PrivHG mechanism requires a unified scheme to cope with mixed attributes of
heterogeneous graphs. As a precursor subtask of the PrivHG mechanism, we propose
Adaptive Binning Scheme (ABS), which integrates the merits of above schemes and allows
PrivHG to be conveniently extended to the mixed-attributed data of heterogeneous graph.

As shown in Algorithm 3, ABS first divides numerical attribute as discrete intervals
with basic binning scheme (we take uniform binning Bu = (1 + (i− 1) ∗ δ, 1 + i ∗ δ) where
i ∈ (1, r) and δ = b−1

r in PrivHG for simplicity, while geometric or other binning is al-
ternative), and aggregates both numerical-attributed and categorical-attributed data of
heterogeneous graph. Then ABS estimates the error and cost variations of resizing and
merging the bins for all possible binning schemes B ∈ B, and finds the binning scheme
with minimum overall cost. Finally the optimal binning Bo is distributed to subsequent
subtasks. Comparing with uniform and geometric binning scheme, the benefits of ABS are
evident: 1. The large domain problem of heterogeneous graph and predefined binning is
neutralized in ABS by combining sparse bins and reducing overall bin counts. 2. Attributed
data that are comparatively below the maximum degree threshold θ are collected simul-
taneously, trading off truncation error and perturbation noises. 3. ABS is feasible for
both numerical- and categorical-attributed graph data, which collects heterogeneous data
under one mechanism and avoids overdivision of privacy budget. 4. Byproduct of ABS
provides access to subsequent optimization techniques of PrivHG, which is illustrated in
the following subsection.

Based on the essential objective of adaptive binning scheme is to ensure that the
maximum aggregated degree of each bin is as close to the truncation parameter θ as possible,
while ensuring the overall cost of executing ABS as small as possible. We formalize the ABS
objective as minimizing the following three components of overall cost under the constraint
of predefined parameter θ:

Binning Resize Cost. This component captures the cost of binning and truncating
processes for the resulting estimation, which mainly introduced by the resizing from
basic bins to optimal bins. For aforementioned basic bins with fixed bin size for single
attribute a ∈ A, if the correlated maximum degree is below the truncation threshold
max(deg(a)) < θ, then vacant bits [umax(deg(a))+1, . . . , uθ ] in the encoded degree vector u
are randomized as outliers after executing the perturbation mechanism with probability
qd = 1

1+eε2/k , which further reduces the estimation accuracy. The larger deviation between
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correlated maximum degree and parameter |θ − max(deg(a))|, the more vacant bits are
randomized as outliers, therefore the higher estimation error is. By merging sparse and low-
degree attributed data (basic bins), binning scheme B enables that the aggregated maximum
degree of merged attributes/bins (b ∈ B) is close to truncation threshold max(deg(b)) ≈ θ,
which reduces the error of perturbing the vacant bits in the related degree vectors. Due to
the reduction of vacant bits, binning part of overall resizing cost in general is a negative
value. However, under extreme circumstances, some merged bins may also lead to extra
data being truncated. For the merged attributes/bins a ∈ b, if the related degree exceed θ,
then extra truncating cost is denoted by degrees∑a∈b deg(a)− theta. On the other hand, if
the maximum aggregated degree of merged bin max(deg(b)) is still below the truncating
parameter θ, then additional truncating cost of resizing this bin is 0. Summing the binning
costs and truncating costs up, the overall resizing cost is given as below, where B is a
binning scheme, qd is the probability of randomizing vacant bits as 1 and ε2 is privacy
budget for degree randomization.

RC(B, ud, θ, ε2, k) = BC(B, ud, θ, ε2, k) + TC(B, ud, θ)

= ∑
bi∈B

(|θ −max(deg(bi))|qd − ∑
a∈bi

|θ −max(deg(a))|qd)

+ ∑
bi∈B

max( ∑
a∈bi

deg(a)− θ, 0)

= ∑
bi∈B

(
1

1 + exp(ε2/k)
(|θ −max(deg(bi))| − ∑

a∈bi

|θ −max(deg(a))|)

+ max( ∑
a∈bi

deg(a)− θ, 0))

(9)

Attribute Randomization Cost. This component captures the cost brought by binning
schemes for the attribute randomization. After ABS merging bins with attribute a ∈ A
(or basic bin b ∈ B) on the server side, the possession of local attributes is replaced by the
possession of local merged bins, thus v̄i = 1 if ∃va = 1 and a ∈ bi, and v̄i = 0 if ∀va = 0
and a ∈ bi. During local randomization component, if a merged bin bi ∈ B is possessed
by user, the indicating bit in binning vector is set to 1 v̄i = 1, which is equivalent to all
corresponding attribute bits being estimated as 1 va = 1 for a ∈ bi, while these attributes
may not all be possessed by local user and the actual value of these bits may be 0. Attribute
randomization cost comes from the difference between indicating bits in resized binning
vector (v̄1, . . . , v̄i, . . . , v̄r) for merged bins bi ∈ B and indicating bits in attribute vector
(v1, . . . , vj, . . . , vm) for attributes aj ∈ A, which is formalized as AC(B, v̄b, va).

AC(B, v̄b, va) = ∑
bi∈B

∑
aj∈bi

|v̄i − vj| = ∑
bi∈B

v̄i(|bi| − ∑
aj∈bi

vj) (10)

Degree Estimation Cost. This component captures the cost brought by binning scheme
for the degree estimation. When aggregating attributed degrees based on the binning
scheme B in ABS, the degree of each attribute a is estimated as the average degree of
related bin bi ∈ B for a ∈ bi. Furthermore, if the merged degrees of bins exceed truncation
parameter θ, extra edges are truncated on local devices, then the aggregated degree of
each bin bi ∈ B is the minimum value of parameter θ and sum of attributed degree
deg(bi) = ∑a∈bi

deg(a); therefore, the estimated degrees of the including attributes are

replaced by the statistical average ˆdeg(a) = deg(bi)
|bi |

for a ∈ bi. Degree Estimation Cost comes
from this deviation.

DC(B, ud, θ) = ∑
bi∈B

∑
a∈bi

|deg(bi)− deg(a)| = ∑
bi∈B

|bi| − 1
|bi|

min( ∑
a∈bi

deg(a), θ) (11)
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Combining these three components, the objective function of overall binning scheme
cost can be summarized as following, and an optimized binning scheme is found by solving
this Minimum Binning Scheme Cost Problem.

min ∑
bi∈B

(RC(bi, ud, θ, ε2, k) + AC(bi, v̄b, va) + DC(bi, ud, θ))

s.t.


ud, v̄i, vj ∈ {0, 1}d ∈ [1, . . . , θ]
i ∈ [1, . . . , r]
j ∈ [1, . . . , m]
1 ≤ k ≤ r ≤ m
ε2 = ε/2

(12)

Algorithm 3 Adaptive Binning Scheme (ABS).

Input: Local graphs G, attribute frequency φa, attribute-degree distribution ψd, privacy
budget ε, basic binning Bu.

Output: Optimized binning scheme Bo with minimal overall cost.
1: //compute cost for all possible binning schemes
2: for B ∈ B do
3: //merge basic bins a ∈ Bu with degree truncation
4: for bi ∈ B and a ∈ bi do
5: v̄i = 1 if ∃va = 1 and a ∈ bi
6: deg(bi) = min(∑a∈bi

deg(a), θ)

7: ˆdeg(a) = deg(bi)
|bi |

8: //compute three cost components for merged bins
9: RC(bi) = ( 1

1+exp(ε) (|θ − max(deg(bi))| − ∑a∈bi
|θ − max(deg(a))|) +

max(∑a∈bi
deg(a)− θ, 0))

10: AC(bi) = v̄i(|bi| −∑aj∈bi
vj)

11: DC(bi) =
|bi |−1
|bi |

min(∑a∈bi
deg(a), θ)

12: end for
13: end for
14: //solving the objective function
15: Bo = argminB∈B ∑bi∈B(RC(bi) + AC(bi) + DC(bi))
16: return Bo

The pseudocode of Adaptive Binning Scheme is presented in Algorithm 3, which
mainly computes the overall cost for each possible binning scheme in universal set B and
outputs the optimized one. Due to its independence on background knowledge, ABS relies
on the estimation of noisy graph data, where each user locally counts the statistics based on
uniform binning Bu of heterogeneous attributes and randomly perturbs graph data with
privacy budget ε (Note that uniform binning Bu in ABS is alternative and other reasonable
binning scheme is applicable). After local private graph being perturbed with binning
and truncating processes, data curator correspondingly collects the estimation of binning
vectors (v̄1, . . . , v̄i, . . . , v̄r) and degrees deg(bi) for each bin bi ∈ B, then the overall cost of a
binning scheme B ∈ B is calculated according to Equations (9)–(11). Finally, the optimal
binning scheme Bo is obtained with dynamic programming by solving Minimum Binning
Scheme Cost Problem in Equation (12). Because ABS is executed on the server side, it brings
no computational overhead to local devices.

5.2. Randomization Optimization

On the basis of aforementioned optimal binning scheme Bo generated by ABS, minimal
overall binning cost is achieved when aggregating heterogeneous graph data. One direct
benefit is that ABS generally scales the domain size of graph attributes from |A| = m down
to |Bo| = r and reduces the storage and communication burden reduction on local devices.
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Furthermore, this subsection continues to provide optimizing strategies for user-side local
randomization of the PrivHG mechanism, which mainly contains two parts sampling
subset size and fake degree generation.

Sampling subset size. During the data randomization component of PrivHG, k-sized
subset of attribute and degree data are sampled, randomized and contributed, with privacy
budget ε split among these k pairs of data. Therefore, altering k strictly affects estimation
accuracy, budget usage and communication overhead. Under the circumstance that privacy
budget and communication resources are sufficient, theoretically optimal parameter ko can
be selected by taking estimation accuracy into account and minimizing the variance.

ko = argmin( ∑
j∈[1,r]

Var[φj] + ∑
j∈[1,r],t∈[1,θ]

Var[ψt
j ])

Although the derivation of a closed-form optimal ko is almost impossible, due to the
complexity of computing variances Var[φj] and Var[ψt

j ], ko can still be selected from thor-
ough computation based on public parameters. Before distributing parameters for PrivHG,
data curator first computes all Var[PrivHG] = ∑j∈[1,r] Var[φj] + ∑j∈[1,r],t∈[1,θ] Var[ψt

j ] of
every possible k ∈ [1, m], and select one with minimal variance as the ko. However, under
circumstances where privacy budget or communication resources are limited, a large k
will bring about much difficulties in practical execution of PrivHG. Therefore, a feasible
approach is to sacrifice a minor proportion of estimation accuracy in exchange for a com-
munication overhead reduction and overall privacy budget utilization by fixing k = 1,
which is denoted as ke-PrivHG.

Deployment of PrivHG on heterogeneous graph with ko or ke is pretty empirical.
Hardware resource constraint is a viable standard as stated above. Another feasible
standard is based on the sparsity of heterogeneous graph data, because the performance
of randomization relies on data sparsity and practical heterogeneous graphs may have
pretty different data distributions. When perturbing sparse graph data, the aggregation
and estimation are usually inaccurate, so the optimal ko-PrivHG is picked to improve
the estimation accuracy. When perturbing dense graph data, diminution of sampling
size with ke-PrivHG is reasonable, which reduces communication overhead and utilizes
privacy budget as a whole. The general principle is that deploying ko-PrivHG on small
and sparse graph data and picking ke-PrivHG otherwise. In the experiment section, We
reasonably pick these two mechanisms for different datasets, and leave the fine-grained
contextual-dependent selection of k-PrivHG for heterogeneous graph as future work.

Fake degree generation. Due to the intrinsic correlation within heterogeneous graph
data, the perturbation of attributes and degrees should remain correlated, otherwise the
information loss results in inaccurate estimates. PrivHG ensures that degree randomization
follows the result of attribute randomization. Specifically, there are four possible cases for
randomizing indicating bit of merged bins v̄b → ṽb: 1→ 0, 1→ 1, 0→ 0, 0→ 1. When an
indicating bit of merged bin is perturbed to ṽb = 0 (v̄b = 1 or v̄b = 0), the corresponding
aggregated binning degree deg(b) should be set as 0 (equivalent to set degree vector
ũb = [0, . . . , 0]) regardless of perturbed degree value, otherwise the correlation between
them will be violated. When v̄b = 1 is randomized as ṽb = 1, degree bit ũdeg(b) is normally
randomized and retained ( The corresponding randomization in Algorithm 4 is achieved
by multiplying two randomized vectors ũb = ũb · ṽb). In the case of v̄b = 0 and ṽb = 1, the
corresponding aggregated binning degree needs to satisfy deg(b) 6= 0, but local user has no
related degree data to be randomized, therefore PrivAG randomly generates a fake degree
from [1, θ] as deg(b), which skews the estimation of attributed degree distribution. With
the help of Algorithm 3, the fake degree generation is further refined in PrivHG, therefore
neutralizing the skewing effect on the estimation. For v̄b = 0 being randomized as ṽb = 1,
the generation range of fake degree is scaled to [min(deg(b)), max(deg(b))] instead of [1, θ]
to prevent outliers being generated, and the generation probability is set to the estimated
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frequency of degrees ψt
j instead of equal probabilities 1

θ to reduce the skewness. deg(b) and
ψt

j can be inferred from the postprocessed statistics of ABS without violating ε-ALDP.

5.3. Estimation Optimization

This subsection corresponds to the last step in Figure 2 and provides optimization
techniques for server-side aggregation and estimation. Similar to Algorithm 1, PrivHG ag-
gregates bit 1s in perturbed attribute and degree vectors, and makes an unbiased estimation
based on the aggregation. Since the estimated statistics should follow the characteristic of
heterogeneous graph data, two postprocessing approaches are further proposed in PrivHG
to filter out the aggregated outliers and correct the final statistical estimation.

Attribute Bin Frequency Estimation. The probabilities of Equations (3) and (4) are
critical to make an unbiased estimation of attribute distribution φa. Since ABS resizes the
domain size through aggregating attributes into bins, then the two binning randomization
probabilities of p̂b = Pr[v̂b = 1|v̄b = 1], and q̂b = Pr[v̂b = 1|v̄b = 0] are derived as follows.

p̂b =
exp(ε1)(

r+`′−1
k−1 )

(r
k) + exp(ε1)((

r+`′
k )− (r

k))

q̂b =
(r−1

k−1) + exp(ε1)((
r+`′−1

k−1 )− (r−1
k−1))

(r
k) + exp(ε1)((

r+`′
k )− (r

k))

Based on the above probabilities, the expected counts of aggregated bins Ĉb is denoted
as:

E[ĉb] = E[#{i|v̂i
b = 1, i ∈ [1, n], b ∈ [1, r]}] = φbnp̂b + (1− φb)nq̂b (13)

Then unbiased estimation of attribute bin frequency is:

φb =
ĉb − nq̂b

n( p̂b − q̂b)
(14)

The common way to optimize frequency estimation like φb is to clip it with range
[0, 1]. In PrivHG, a better lower bound is given based on the characteristic of heterogeneous
graph. Assume an extreme case, where there is only one edge exy corresponding to a
merged bin b in the whole heterogeneous graph, then at least two nodes x and y report
attribute data v̂x

b = 1 and v̂y
b = 1, and the least aggregated bits count ĉb for each merged bin

b is 2, therefore the lower bound of φb should be 2
n . The estimation of attribute distribution

φ̂b is derived by clipping φb with range [ 2
n , 1].

Binned Degree Frequency Estimation. Similar to the estimation in Section 4, binned
degrees are estimated based on the aggregated bins in Bo. The expected counts of binned
degree d̂t

b is derived as follows, where p̂d = 1
2 and q̂d = 1

exp(ε2/k)+1

E[d̂t
b] = E[#{i|ût

b(i) = 1}] = ψt
bnφb p̂d + (1− ψt

b)nφb q̂d (15)

Then unbiased estimation of binned degree frequency is:

ψt
b =

d̂t
b − nφb q̂d

nφb( p̂d − q̂d)
(16)

Since the attributed degree distribution cannot be negative, the ψ̂t
b is first clipped with

[0, 1] for each bin in B = [b1, . . . , br] to eliminate negative influences of outliers. Then the
estimations are further corrected based on the nature of graph data. Considering the one
characteristic of graph edges that the total number of edges have an upper bound n(n−1)

2 ,
which is the edge number of complete graph with n nodes. Similarly in the context of
PrivHG, the maximum degree is truncated as θ for each bin in B, therefore the total number
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of edges cannot exceed that of θ-complete graph with nj nodes, where nj is the number of
binned nodes with bj ∈ B and can be derived by corresponding estimated attribute bin

frequency as nφb, then the upper bound of total edges is nφbθ
2 . Since the lower bound of

total edges is 1, the total edges ∑t∈[1,θ] tnbtψ
t
b for each bin b ∈ B is bounded as:

1 ≤
∑t∈[1,θ] tnbtψ

t
b

2
≤ nφbθ

2
(17)

Given that 2 < θ, the refined estimation of binned degree frequency is derived by
substituting Equation (17) into (16):

ψ̂t
b =

d̂t
b − nφb q̂d

tnφb( p̂d − q̂d)
·max(

2
∑t∈[1,θ] ψt

bt
, 1) ·min(

θ

∑t∈[1,θ] ψt
bt

, 1) (18)

5.4. PrivHG Mechanism

In this subsection, we present the overall PrivHG mechanism based on aforementioned
building blocks. The detailed pseudocode of PrivHG is listed in Algorithm 4.

Algorithm 4 PrivHG.

Input: local heterogeneous graphs G, privacy budget ε.
Output: attribute frequency φ̂a, attribute-degree distribution ψ̂d.

1: //user-side randomization with basic binning
2: Bu = {bi = (1 + (i− 1)δ, 1 + iδ)|i ∈ (1, r), δ = w−1

r }
3: Ḡ′ ← pre− process(G′, Bu)
4: φa, ψd ← PrivAG(Ḡ′)
5: //server-side optimal binning scheme selection
6: B′u ← Bu ∪ Ac
7: Bo ← ABS(Ḡ′, φa, ψd, ε2/k, B′u)
8: redistribute parameters Bo, ke or ko
9: //user-side randomization with optimal binning

10: Ḡ′′ ← pre− process(G′′, Bo)
11: v̂b, ût

b ← DRC(Ḡ′′)
12: //server-side estimation with correction
13: cj ← count(v̂b)

14: dt
b ← count(ût

b)
15: for b ∈ [1, r] do
16: estimate attribute bin frequency: φb = ĉb−nq̂b

n( p̂b−q̂b)

17: clip φb with [ 2
n , 1]

18: end for
19: for b ∈ [1, r] and t ∈ [1, θ] do
20: estimate binned degree frequency with refinement as:

ψ̂t
b =

d̂t
b−nφ̂b q̂d

tnφ̂b( p̂d−q̂d)
·min( θ

∑t∈[1,θ] ψt
bt , 1)

21: clip ψ̂t
b with [ 1

nφ̂b , 1]
22: end for
23: return φ̂a and ψ̂d

To elaborate, PrivHG mechanism first generalizes Algorithm 3 as a fundamental
subtask to deal with mixed-attributed data in local graph. There are two conventional
approaches regarding the execution of subtasks, one is to divide the privacy budget ε as
several parts for each subtask to execute on the complete data set, and the other is to divide
the user data while each subtask consuming the complete privacy budget ε to execute on a
portion of data set. The former approach of dividing privacy budget ε leads to inaccurate
estimations especially for heterogeneous graph. In contrast, executing subtasks separately
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on divided data sets utilizes the full privacy budget and comparatively reduces the overall
error, which has been adopted by several recent studies and is also applied in our PrivHG
mechanism. The heterogeneous graph G is divided as two groups G′ and G′′, where ABS
subtask is executed on G′ to derive the optimized binning Bo and Bo is employed on G′′ to
make an unbiased estimation.

During the initialization phase of PrivHG, numerical-attributed data of G′ is divided
by a basic uniform binning Bu (other schemes like geometric binning is alternative), and
each interval is treated equally as the categorical attributes. Based on Bu, Algorithm 2
aggregates statistics of preprocessed G′. Then on the server side, ABS outputs generalized
optimal binning scheme Bo for mixed attributes by enlarging the input domain as Bu ∪ Ac,
which is the union set of numerical-attributed and categorical-attributed data. Generalized
ABS makes no assumption about the attribute type, and solely optimizes Equation (12)
based on the degrees of each merged bin bi ∈ B′u. In order to further mitigate the influences
brought by noisy degree outliers, we choose to remove 5% marginal data when practically
executing ABS in this paper. On the one hand, these marginal values may be biased outliers
that are randomly generated from vacant vector bits, and the estimation error will be
reduced if removing these outliers. On the other hand, even actual marginal data may
account for a relatively small proportion of whole data due to the data distribution of graph,
which have a minor impact on the results. In the following phase, the optimal binning
scheme Bo and necessary parameters are informed to the other subset of heterogeneous
graph G′′, and each user preprocesses and randomizes local data as Algorithm 1, in which
fake degree generation is calibrated as stated in Section 5.2 instead of randomly selected.
Finally, these randomized vectors are aggregated by the server, then unbiased estimations
with correction and refinement are made according to Section 5.3.

According to composition and postprocessing theorems, aggregating the two statistics
of heterogeneous graph under PrivHG mechanism satisfies ε-attributewise local differential
privacy, and proof of which is omitted due to the triviality.

6. Experimental Evaluation

In this section, we evaluate the estimation performance of proposed PrivHG and
comparison mechanisms on extensive scenarios.

Evaluated Mechanisms. For attribute and degree distribution estimation on categorical-
attributed graph, we utilize the generalized randomized response (GRR) mechanism to
perturb local data as in [36,37], which is compared with PrivAG and PrivHG (PrivHG
executes ABS solely on categorical-attributed data). For estimation on heterogeneous graph
with mixed-attributed data, we combine GRR and basic binning scheme (both uniform
binning Bu and geometric binning Bg schemes) to uniformly perturb heterogeneous data,
which is denoted as BGRR, and PrivAG is also tentatively extended to heterogeneous graph
with basic binning scheme. These two mechanisms are compared with PrivHG.

General Setting. The experiments are implemented on various synthetic Erdos–Renyi
random graphs [38], which gives a general simulation about the real-world datasets. To be
specific, we separately generate graphs with different attributes based on parameter m, w
and n, and merge them together as a heterogeneous graph in each experiment epoch, the
number of users/nods n is set to 5000, the categorical attribute domain size m ranges from
8 to 32, the numerical attribute range bound w varies from 10 to 20. To simulate different
attributed data sparsity of heterogeneous graphs, the maximum number of synthetic edges
for each attribute follows the Uniform/Gaussian distribution (µ = 0 and σ = 10). During
the data preprocess part, truncation parameter θ range from 10 to 50, and the privacy
budget ε ranges from 0.005 to 5.0, with ε1 = ε2 = ε/2. Each setting of the experiments runs
100 times, and the result are average of these experiments.
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Performance Metrics. The performance of attribute and degree distribution estimation
is evaluated by MSE (`2-norm error):

‖φ̂a − φa‖2 = E[
√
‖φ̂a − φa‖2

], ‖ψ̂d − ψd‖2 = E[
√
‖ψ̂d − ψd‖2

] (19)

where φa and ψd (resp. φ̂a and ψ̂d) are the true distribution of attributes and attribute-
degrees (resp. estimated).

Influence of categorical attribute domain size. Figure 3 shows the estimation error of
categorical-attributed graph aggregation, with different categorical attribute domain size
m and privacy budget ε settings. It can be observed from the figures that the estimation
error reduction grows larger as the domain size m increases, and PrivHG is less affected by
domain size than other two mechanisms. In most settings, PrivHG outperforms GRR and
PrivAG on both attribute frequency and attribute-degree distribution estimation.

Figure 3. Categorical-attributed graph aggregation with different attribute domain size.

Influence of numerical attribute domain range. Figure 4 shows the results of heteroge-
neous graph aggregation with varied numerical attribute domain w and fixed categorical
attribute domain size m = 32, where BGRR and PrivAG apply uniform binning scheme
to deal with numerical-attributed data. PrivHG outperforms BGRR and PrivAG in most
settings. As w increases, the reduction of attribute frequency estimation error among three
mechanisms is minor, while the degree distribution estimation error of PrivHG decreases
faster than other two mechanisms.

Influence of truncation parameter. Figure 5 shows the results of heterogeneous graph
aggregation with different truncation parameter θ and privacy budget ε settings. When θ
grows larger, the degree estimation accuracy of BGRR and PrivAG degrades a lot due to
excessive vacant bits being randomized as noises, but results of PrivHG have a relatively
significant improvement. The error reduction of attribute estimation is slightly affected by
truncation parameter θ between PrivHG and other mechanisms. In most cases, PrivHG
outperforms BGRR and PrivAG on distribution estimation.
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Figure 4. Heterogeneous graph aggregation with different numerical attribute range.

Figure 5. Heterogeneous graph aggregation with different truncation parameter.

Influence of data distribution and binning scheme. Figure 6 shows the results of
heterogeneous graph aggregation with different data distribution/sparsity and various
binning schemes. As can be summarized from these figures, the estimation error reduction
between PrivHG and other two mechanisms is rather noticeable when the data distribution
and binning scheme are dissimilar, which could be due to the reliance of BGRR and PrivAG
on the consistency of intrinsic graph data distribution and binning scheme. In most settings,
PrivHG is stable and outperforms BGRR and PrivAG on both attribute frequency and
attribute-degree distribution estimation.
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Figure 6. Heterogeneous graph aggregation with uniform binning and Uniform distribution
(left), uniform binning and Gaussian distribution (middle), geometric binning and Gaussian
distribution (right).

In summary, above experiments show that it is feasible to preserve privacy for hetero-
geneous graph data under ε-ALDP with high fidelity, and PrivHG mechanism significantly
outperforms baseline mechanisms on statistical results by reducing 43% estimation error
in average. Furthermore, the proposed PrivHG mechanism is well suited to deal with
various heterogeneous graphs and does not rely on specific data sparsity or attribute
binning scheme.

7. Related Work

The de facto Differential Privacy (DP) notion have form the theoretical basis of a
considerable amount of research literature for past decade. By assuming a centralized and
trustworthy data curator [15,39], several fundamental mechanisms achieving differential
privacy constraint have been proposed to deal with numerical and categorical data, in-
cluding Laplace mechanism in [6] and Exponential mechanism in [7]. However, under
the gradually increasing risk of adversaries prying into personal privacy and the growing
expectation to keep private data on personal devices, the emphasis of privacy-preservation
studies has shifted from centralized settings to local settings.

Local Differential Privacy [40] ensures that private data are perturbed locally on
each user’s devices, thus avoiding the reliance on trustworthiness of data curator and
broadening the applicable scenario of DP. A variety of studies protecting local differential
privacy have been constantly emerging. The pioneer study of Randomized Response,
which was proposed by [33], satisfies local differential privacy guarantee well, and many
following studies are built on it. Its variants play an important role in the categorical
data domain [8,11,14,41–43]. Later on, the study of LDP is expanded to more promising
fields. Ref. [34] summarizes the characteristics of existing mechanisms and proposes
OUE and OLH to better adapt to various novel scenarios. Ref. [20] presents a two-
phase framework for aggregating set-valued data under local differential privacy, and [19]
proposes a generalized mechanism PrivSet to perturb a sampled subset of set-valued data
domain and provides optimized estimation guarantee. As for numerical data, Ref. [44]
utilizes square wave and smoothing mechanism to maximum the estimation expectation of
numerical data distribution, and [45] proposes an adaptive hierarchy-based mechanism to
privately answer range query. Beyond the single datatype, Ref. [24] designs an iterative
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mechanism PrivKVM to locally privately collect key-valued data, and retain the correlation
between key-value pairs. Ref. [25] optimizes the estimation accuracy and communication
cost of PrivKVM mechanism. These studies offer powerful tools for tackling our problem.

Due to its intrinsic complexity, preserving private graph requires additional concerns.
According to the variations of privacy granularity, differential privacy for graph data can be
generally divided into two groups [46]: node-based and edge-based, which provide protec-
tion either on edge-level privacy or on node-level privacy. Based on different privacy gran-
ularity, various problems are studied, such as publishing private degree frequency [47,48],
aggregating graphic statistics [49,50] and synthetic graph generation [51,52]. Recently,
graph data aggregation mechanisms under LDP constraint have been studied. Ref. [53]
manages to aggregate node degrees and weighted edges based on 1-neighborhood graph
in the local setting. By defining neighboring clusters, collecting neighboring degrees and
refining the clusters, Ref. [30] proposes an iterative graph generation framework LDP-
Gen to generate synthetic graphs. Ref. [31] introduces a novel privacy notion DDP for
social networks, and provides a multiphased framework to aggregate subgraph statistics.
Ref. [32] presents a graph generative framework AsgLDP, capturing node features and
generating node-attributed graph. Ref. [37] extends the research fields to multiplex graphs
and proposes to locally privately estimate clustering coefficients on them. However, these
research studies of preserving local private graph data mainly focus on edge-based LDP
for graph and neither of them provides stronger privacy guarantee while aggregating
heterogeneous graph data.

8. Conclusions

In this paper, we study the heterogeneous graph aggregation with a unified, efficient
and effective PrivHG mechanism under local differential privacy. We combine characteris-
tics of two conventional LDP variants and propose a fine-grained privacy definition for
locally private heterogeneous graph, which generally provides stronger privacy guarantee
than edge-based LDP and higher estimation accuracy than node-based LDP. We design
a unified mechanism PrivHG to aggregate two statistics of heterogeneous graph while
protecting the fine-grained attributewise local differential privacy. Furthermore, we pro-
pose several optimization techniques for reducing the computation costs and estimation
errors of PrivHG mechanism in practical application. The effectiveness and efficiency of
the PrivHG mechanism are validated through extensive experiments.

We will investigate the application of PrivHG with other graph analysis tasks and
extend the perturbation mechanisms for other correlated and heterogeneous data types for
future work.
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