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Abstract: Fine particulate matter (PM2.5) pollution brings great negative impacts to human health and
social development. From the perspective of heterogeneity and the combination of national and urban
analysis, this study aims to investigate the variation patterns of PM2.5 pollution and its determinants,
using geographically and temporally weighted regression (GTWR) in 273 Chinese cities from 2015 to
2019. A comprehensive analytical framework was established, composed of 14 determinants from
multi-dimensions, including population, economic development, technology, and natural conditions.
The results indicated that: (1) PM2.5 pollution was most severe in winter and the least severe in
summer, while the monthly, daily, and hourly variations showed “U”-shaped, pulse-shaped and
“W”-shaped patterns; (2) Coastal cities in southeast China have better air quality than other cities,
and the interaction between determinants enhanced the spatial disequilibrium of PM2.5 pollution;
(3) The determinants showed significant heterogeneity on PM2.5 pollution—specifically, population
density, trade openness, the secondary industry, and invention patents exhibited the strongest positive
impacts on PM2.5 pollution in the North China Plain. Relative humidity, precipitation and per capita
GDP were more effective in improving atmospheric quality in cities with serious PM2.5 pollution.
Altitude and the proportion of built-up areas showed strong effects in western China. These findings
will be conductive to formulating targeted and differentiated prevention strategies for regional air
pollution control.

Keywords: PM2.5; spatiotemporal heterogeneity; variation characteristics; determinants; GTWR; China

1. Introduction

China has undergone persistent and serious atmospheric pollution in the past [1]. In
2015, 265 of 338 (78.4%) prefecture-level cities exceeded the national ambient air quality
standards. In particular, PM2.5 (a complex particle with a diameter of ≤2.5 µm) is the
primary atmospheric particulate pollutant [2], which can endanger human health and
interfere with social development [3–6]. In 2016, the mortality related to exposure to PM2.5
represented about 9.98% of the total reported deaths in China [7]. In 2017, the cost of health
hazard induced by PM2.5 exposure was 3344.8 billion Yuan, accounting for 3.85% of GDP in
China [8]. Therefore, exploring the characteristics and determinants of PM2.5 concentrations
will be of great significance to formulate effective prevention and control strategies.

Previous studies have long been concerned with the variation characteristics of PM2.5
concentrations and examined different scales. For instance, Yang and Christakos [9] eval-
uated PM2.5 variations from the dimension of time and space in the Shandong province
in 2014. Shen et al. [10] detected the distribution characteristics of PM2.5 pollution in
Chinese representative urban agglomerations from 2015 to 2017. Zhou et al. [11] studied
the evolution characteristics of atmospheric pollution in 337 cities in China between 2015
and 2019. Luo et al. [12] discussed the variations of PM2.5 concentrations in Harbin in 2017,
revealing that air quality exhibited a significant “weekend effect” in time.
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Numerous studies have worked to explore the determinants of PM2.5 concentrations.
For instance, Li et al. [13] established the automatic computer algorithms to explore the
meteorological formation conditions conducive to PM2.5 concentrations in north China.
Cai et al. [14] concluded that the frequent haze in Beijing was probably attributed to the
circulation changes induced by the greenhouse gas discharge. Some scholars discussed
that the weather conditions exhibited a stronger influence when PM2.5 pollution was
at a higher level [15]. In evaluating the effect of anthropogenic determinants on urban
PM2.5 levels in China, Jiang et al. [16] demonstrated that industrial structures exhibited
the strongest driving force. Zhou et al. [17] revealed that wind direction determined the
spatial patterns of PM2.5 pollution, and that the spillover effects of anthropogenic variables
were more significant in the North China Plain. Yang et al. [18] compared the strength
of natural and socioeconomic environments on PM2.5 concentrations, revealing that the
natural environment performed a stronger role in China.

Various methods have been employed to quantify the driving forces of PM2.5 con-
centrations. There were two main types of methods, one of which was global regression
models adopted to analyze the average influence of determinants in a single region with
prominent air pollution or the nationwide, such as the dynamic panel model [19], the spatial
econometric method [20], and the structural equation model [21]. As a country with un-
balanced regional development and prominent geographical diversity, different indicators
and their links with PM2.5 pollution may exhibit differences across China. Therefore, the
second was local regression models applied to detect the influences of different indicators
on PM2.5 concentrations in different regions or cities, such as geographically weighted
regression (GWR) [22], geographically and temporally weighted regression (GTWR) [23,24].
Wang et al. [25] adopted the global regression models and GWR to explore the variations
and driving forces of PM2.5 pollution in 2014, realizing the combination of global regression
and local regression.

To sum up, previous studies have fully examined the determinants of PM2.5 concen-
trations and have achieved rich results. However, the mechanism of atmospheric pollution
is complicated [26]. Both the global regression models and the local regression models
can only analyze the force of a single determinant, and exclude the consideration of the
interaction between determinants. At present, the interaction analysis of determinants of
PM2.5 pollution is limited to the study of the nation as a whole [27] or the regions with
prominent air pollution [28]. Few studies have analyzed the interaction and spatiotemporal
heterogeneity of determinants of air pollution from national and local perspectives. In this
sense, this paper combines the advantages of the geographical detector technique and the
GTWR model to enrich the current literature. A comprehensive analytical framework was
established, composed of 14 determinants from multiple dimensions. To be specific, this
paper investigated the mechanism of the spatial disequilibrium of PM2.5 concentrations
in China between 2015 and 2019 from a national perspective. The interaction among de-
terminants of spatial disequilibrium of PM2.5 concentrations was explored. Secondly, this
study evaluated the strength of different determinants on PM2.5 pollution in various cities,
using the GTWR model from a local regression perspective. Additionally, with the help
of the analysis framework of the IPAT (Human Impact Population Affluence Technology)
model [29], the current paper selected nine socioeconomic indicators that affect PM2.5 pollu-
tion from three dimensions, including population, economic development, and technology;
five key natural factors were combined in the framework. The use of this framework was
conducive to examining the possible causes of PM2.5 pollution.

The innovativeness of this study mainly lies in the following aspects. Firstly, we
considered the spatiotemporal heterogeneity of the influencing factors and realized the
combination of global and local analysis, finding that variables exhibited weak temporal
heterogeneity and obvious spatial heterogeneity on PM2.5 pollution. Furthermore, this
study revealed that there were heterogeneous impacts of driving forces on the local and
global levels. Additionally, interactions between the influencing factors were explored,
revealing that there were complex interactions and coupling relationships between differ-
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ent factors on the spatial disequilibrium of PM2.5 pollution, with an effect of “1 + 1 > 2”.
The objective of this paper is to detect the spatiotemporal heterogeneity and influencing
factors of PM2.5 concentrations from the national and urban levels, thus providing in-
spiration for developing targeted and differentiated prevention strategies for current air
pollution control.

2. Materials and Methods

PM2.5 data were available from China National Environmental Monitoring Center
(http://www.cnemc.cn, accessed on 29 June 2021). According to the Ambient Air Quality
Standard (GB3095-2012) of China for the validity of PM2.5 data, we excluded records with
missing or invalid PM2.5 h values in the original data [30]. Considering that the number
of monitoring stations varies in different cities, this study took the average observations
of the stations located in the city to represent a city’s PM2.5 pollution. Through the above
processing, the PM2.5 monitoring sites finally selected in 2015, 2016, 2017, 2018, and 2019
were distributed in 363, 361, 364, 362, and 360 cities across China. Referring to prior
studies [31,32], the Kriging interpolation was adopted to reflect the spatial patterns of the
yearly mean of PM2.5 concentrations in China between 2015 and 2019.

Ehrlich and Holdren [33] put forward the classic environmental pressure equation,
namely I = PAT, which describes the effects of the population (P), economic development
(A), and technology (T) on environmental (I) factors [34]. Referring to the IPAT analysis
framework and according to previous findings [35–40], combined with the availability of
socioeconomic data at the urban level, this paper selected nine socioeconomic indicators
that affected PM2.5 pollution from three dimensions, including population, economic devel-
opment, and technology. Specially, this paper used population density (PD, described here
in terms of the ratio of total resident population to total area) to represent the population
factor; per capita GDP (PCGDP), the degree of trade openness (TO), urbanization rate (UR),
the proportion of built-up areas (BU), greening rate of built-up area (BUG), and industrial
structure (IS) to represent economic development; and electricity consumption (EC) and
the number index of invention patents granted (IP) to represent technology.

Among the nine socioeconomic factors (Table 1), the index of the number of invention
patents granted was obtained from the Center for Enterprise Research of Peking Univer-
sity (https://opendata.pku.edu.cn/dataverse/pkucer, accessed on 29 June 2021). Other
socioeconomic data were available from the 2016–2020 China City Statistical Yearbook and
the corresponding China Province Statistical Yearbook. Finally, the socioeconomic data of
273 cities were obtained to match PM2.5 data and natural data. The units and abbreviations
of each indicator are shown in Table 1.

Table 1. Definitions of variables.

Variable Set Variables Definition Units

Natural factors

DEM Altitude m
PRE Total annual precipitation mm
WS Yearly mean of wind speed m/s
RH Yearly mean of relative humidity %

TEM Yearly mean of temperature ◦C

Socioeconomic factors

PD The number of population per unit area Person per km2

PCGDP GDP divided by total population Yuan
UR Urban population divided by total population %
BU Built-up area divided by urban area %

BUG Greening area divided by built-up area %
TO The actual use of foreign capital Ten thousand U.S. dollars
IS The ratio of the added value of secondary industry %
EC The electricity consumption 10,000 kWh
IP The number index of invention patents granted

http://www.cnemc.cn
https://opendata.pku.edu.cn/dataverse/pkucer
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Natural conditions play an important role in atmospheric quality by affecting the emis-
sions, chemical reaction rate, and transport of air pollutants [41]. Based on the meteorology
theory and previous studies [42–46], this study considered five natural factors—namely,
altitude (DEM), precipitation (PRE), wind speed (WS), relative humidity (RH), and temper-
ature (TEM) (Table 1). DEM data came from the CGIAR Consortium for Spatial Information
website (http://srtm.csi.cgiar.org, accessed on 29 June 2021); PRE, WS, RH, TEM data were
obtained from the China Meteorological Administration (http://data.cma.cn/, accessed on
29 June 2021; the basic data came from 699 meteorological monitoring stations, captured
from 2015 to 2019. The Inverse Distance Weighted interpolation was applied to form annual
meteorological data for 273 cities.

As an important method to investigate the mechanism of the spatial distribution of
geographic elements, the geographical detector technique is widely adopted to explore
spatial differentiation and uncover its potential determinants [47]. The factor detector
is adopted to test whether a specific element is the cause of the differentiation of PM2.5
concentrations in space. This model is presented as follows [48]:

q = 1− 1
Nσ2

L

∑
h=1

Nhσ2
h (1)

In the formula, q as the explanation intensity of the differentiation of PM2.5 ranges
from 0 to 1. The degree of differentiation for PM2.5 depends on the value of q and changes
in the same direction. The model requires the independent variables to be categorized,
rather than numerical; the natural breaks classification method was adopted to classify
each variable into L layers; and the categorized independent variables were matched with
PM2.5 data. h is the integer between 1 and L. N and Nh represent the quantity of cities in
the whole area or the layer h, and σ2 and σ2

h are the variances.
The interaction detector can explore the interactions between various factors. The

specific calculation process is to initially obtain the q value of two variables, namely q(X1)
and q(X2) from equation (1). Hence, overlaying the two factor layers generated a new
layer, namely X1∩X2 and ∩, which stands for the intersection between the two factor
layers [49]. Then, q (X1∩X2) can be obtained from equation (1). Based on the links among
q (X1), q (X2) and q (X1∩X2), the types of interactions are “weaken, univariate” (the
interaction between the two variables is less than the minimum or within the maximum
and minimum), “enhanced, bivariate” (the interaction between the two variables is greater
than the maximum),”independent” (the interaction between the two variables equals to
the sum of them), and ”nonlinearly enhance” (the interaction is greater than the sum of the
two variables).

Differing from the traditional ordinary least squares (OLS) method, which neglects the
spatial correlation and spatial heterogeneity that may exist in the data, Fotheringham et al. [50]
first put forward the GWR model. By introducing spatial weights, local regression of the
study area can be realized through the GWR. To further consider the comprehensive effects
of spatiotemporal factors, Huang et al. [51] extended the GTWR to combine time coordinate
to conduct spatiotemporal heterogeneity of variables. The specific formula of the GTWR
model is presented as below:

yi = β0(ui, vi, ti) + ∑ βk(ui, vi, ti)xki + ξi (2)

where yi denotes the value of PM2.5 in city i; (ui, vi, ti) represents the spatiotemporal
coordinate; β0(ui, vi, ti) denotes the intercept value; xki denotes the k at city i; ξi is the error
term; βk(ui, vi, ti) is the coefficient of variable k, which is estimated as below:

β̂(ui, vi, ti) = [XTW(ui, vi, ti)X]
−1

XTW(ui, vi, ti)Y (3)

http://srtm.csi.cgiar.org
http://data.cma.cn/
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where W(ui, vi, ti) denotes the spatiotemporal weighted diagonal matrix. This study
chooses the Gaussian distance decay-based function, namely:

Wij = exp[−
(dST

ij )2

h2
ST

] (4)

dST
ij =

√
λ[(ui − uj)

2 + (vi − vj)
2] + µ(ti − tj)

2 (5)

where dST
ij is the space-time distance; µ and λ as the scale indicators can reflect the influence

of various spatiotemporal distances [52]; hST is the bandwidth, the cross validation (CV)
method is adopted to select bandwidth. The expression is:

CV =
n

∑
i
[Yi − Ŷi(h)]

2 (6)

Among the 14 variables, to eliminate heteroscedasticity and the effects of unit changes,
logarithms of non-ratio and non-index variables are taken to calculate the GTWR model.
Before the regression analysis, the 14 variables were tested for multicollinearity. The
variance inflation factor (VIF) of each variable in the collinearity results was less than 3,
and the tolerance of each variable was less than 1, indicating that the variables selected in
this study were without existing multicollinearity (Table 2).

Table 2. Multicollinearity test of variables.

Variable Set Variables VIF Allowance

Natural factors

lnDEM 1.481 0.675
lnPRE 1.584 0.631
lnWS 2.186 0.457
RH 1.600 0.625

lnTEM 2.440 0.410

Socioeconomic factors

lnPD 2.446 0.409
lnPCGDP 2.734 0.366

UR 1.324 0.755
BU 1.283 0.779

BUG 2.290 0.437
lnTO 1.365 0.733

IS 1.720 0.581
lnEC 2.734 0.366

IP 1.360 0.735

The final model form is:

PM2.5 = β0(ui, vi, ti) +
14

∑
j=1

β′j(ui, vi, ti)X + ξi (7)

X = (ln DEM, ln PRE, ln WS, RH, ln TEM, ln PD, ln PCGDP, UR, BU, BUG, ln TO, IS, ln EC, IP)′ (8)

ln is the logarithmic operator.

3. Results and Discussion
3.1. Temporal Changes of PM2.5 Concentrations

PM2.5 concentrations in Chinese cities decreased from 50 µg/m3 in 2015 to 37 µg/m3

in 2019. At the seasonal level, PM2.5 pollution was most severe in winter (January, February,
and December) and least severe in summer (June to August) (Figure 1a). From 2015 to
2019, the average PM2.5 concentrations over four seasons fluctuated slightly, but the overall
trends continued to decline, decreasing 12 µg/m3 in spring, 14 µg/m3 in summer, 13 µg/m3
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in autumn and 15 µg/m3 in winter, which decreased by 24%, 38%, 7% and 20%, respectively.
The monthly average variation of PM2.5 pollution showed a “U”-shaped pattern within a
year (Figure 1b). December and January were the most polluted months, while July and
August were the least polluted months. Compared to 2015, PM2.5 pollution in each month
in 2019 has decreased significantly. Among these, December has the largest decrease, of
20 µg/m3, while March has the smallest decrease, of 9 µg/m3. PM2.5 concentrations in all
months decreased by more than 16%.
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The daily average curve of PM2.5 pollution presented a pulse- type fluctuation (Figure 1c).
The fluctuation cycles in winter and spring were short and frequent (about 6–8 days), but
were longer and less frequent in summer and autumn (about 10–15 days). From 2015 to
2019, the daily average maximum value dropped from 135 µg/m3 to 90 µg/m3, which
decreased by 33%. The daily average minimum value dropped from 26 µg/m3 to 12 µg/m3,
which decreased by 53%. It shows that the air quality in Chinese cities improves gradually,
while the daily average maximum value is still severe, indicating that the air quality needs
to be further improved. The hourly variation showed a “W”-shaped fluctuation from
0:00 to 23:00, and decreased year by year (Figure 1d). During the day, PM2.5 pollution
reached its peak around 10:00 and 23:00–00:00; around 06:30 and 17:00, it dropped; around
17:00, there were minimum values of PM2.5.

Overall, PM2.5 concentrations in China have dropped significantly in recent years.
This decrease is linked to the implementation of the corresponding atmospheric governance
strategies in the last few years [53]. For instance, the Chinese government implemented
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the Air Pollution Prevention and Control Action Plan 2013–2017 [54]. In 2018, the Chinese
government issued the Blue Sky Protection Campaign, to reduce haze and improve air
quality [55].

3.2. Spatial Patterns of PM2.5 Concentrations

The spatial patterns of PM2.5 concentrations in China are shown in Figure 2. From 2015
to 2019, the overall trend of PM2.5 pollution in different cities was declining. Specifically,
the ratio of cities lower than 15 µg/m3 increased from 0.55% in 2015 to 3.89% in 2019,
while the ratio of cities higher than 90 µg/m3 decreased from 3.31% in 2015 to 0.28% in
2019. During this period, the number of cities exceeding the second level concentration
limit of the environmental quality standard (35 µg/m3) was 288, 268, 249, 209, and 175,
respectively. The most polluted cities were predominantly located in Xinjiang, the North
China Plain, the Northeast Plain, and the Middle-Lower Yangtze Plain. The top 30 cities
with the most serious pollution during the study period were all distributed in the north
of China. Generally, PM2.5 pollution showed obvious north–south differentiation. The air
quality in the southwest cities and southeast coastal cities was better.
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3.3. Driving Forces of Spatial Disequilibrium of PM2.5 Concentrations

From 2015 to 2019, PM2.5 pollution showed obvious north–south differentiation; the
air quality in the southwest cities and southeast coastal cities was better. To reveal the
potential mechanism of the spatial disequilibrium of PM2.5 pollution, this paper selected
14 variables in 273 cities from 2015 to 2019, to analyze the force of indicators and their nexus
on PM2.5 concentrations using geographical detector technique from a national perspective
(Figure 3).
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Figure 3. The results of geographical detector technique. Note: The main diagonal is the result
of factor detector; others are interaction detector. All coefficients passed the significance test of
0.05. DEM: altitude; PRE: precipitation; TEM: temperature; RH: relative humidity; WS: wind speed;
PD: population density; PCGDP: per capita GDP; UR: urbanization rate; BU: built-up area divided
by urban area; BUG: greening area divided by built-up area; TO: trade openness; IS: the ratio of the
added value of secondary industry; EC: electricity consumption; IP: invention patents.

From the factor detector, the top four factors that have the greatest impact on the
spatial differentiation of PM2.5 concentrations were: temperature; precipitation; the pro-
portion of built-up areas; and the degree of trade openness. Previous studies noted that
temperature was the strongest and most stable factor affecting PM2.5 pollution [56,57].
According to the results of the interaction detector, all variables have the strongest interac-
tion with temperature. The interactions between different variables were all determined
to “nonlinearly enhance”—namely, the interaction of any two variables was greater than
their sum, establishing an effect of “1 + 1 > 2”. This further indicated that there were
complex interactions and coupling relationships between different factors on the spatial
disequilibrium of PM2.5 concentrations, demonstrating that the effect of multiple factors
should be comprehensively considered for urban PM2.5 control.

3.4. Influencing Factors of PM2.5 Pollution
3.4.1. GTWR Regression Analysis

Since the results of geographical detector technique only provided the explanatory
force of variables and their interactions on the spatial disequilibrium of PM2.5 pollution
from a national perspective, it failed to reveal the direction of each influencing factor in
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different cities. Therefore, the GTWR was adopted to detect the influencing factors of PM2.5
concentrations in cities, serving as a supplement to the analysis results of the geographical
detector technique.

By sorting out the regression coefficients from 2015 to 2019, six statistics are presented
in Figure 4. In terms of the positive and negative ratio of the coefficients, the coefficients
of altitude and precipitation in all cities were negative during the studied period; other
variables had different positive and negative influences on PM2.5 concentrations. Influ-
encing factors in the urban analysis showed different strengths from the national analysis,
indicating that the determinants were spatially unstable and heterogeneous.
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3.4.2. Spatial Distribution of Regression Coefficients

In terms of time, the regression coefficients of each variable changed relatively steadily
from 2015 to 2019, with weak temporal heterogeneity and obvious spatial heterogeneity.
During the study period, no noticeable climate abnormalities occurred, and the socioeco-
nomic situation was stable; thus, variables did not show significant volatility in the time
dimension. Referring to previous literature of Zhang et al. [58], the average regression
coefficients of each variable in each city from 2015 to 2019 are spatially visualized.

Figure 5 shows the spatial patterns of coefficients for natural indicators across cities.
The altitude and precipitation exhibited negative links with PM2.5 in all cities, indicating
that altitude and precipitation helped to reduce air pollution. The negative effects of
altitude in central cities were smaller than those in western and eastern cities (Figure 5a).
PRE in the North China Plain and the Northeast Plain exhibited the greatest negative
impact on PM2.5 pollution, while, in southern coastal cities, altitude showed the least
effect (Figure 5b). Precipitation was an important factor to effectively reduce atmospheric
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pollution through the washing effect [59,60]. Combined with the spatial distribution of
PM2.5 pollution, precipitation was more effective to improve atmospheric quality in cities
with serious PM2.5 pollution and less rainfall.
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Figure 5c presents that wind speed can improve air quality in 71.06% of the cities.
There was a boundary for different correlations between air pollutants and WS [61]. The
moderate increase in WS promoted the diffusion of atmospheric pollution, which helped
keep pollutants at lower concentrations [62], while high winds under dry climate conditions
resulted in the higher probability of dust events in late winter and early spring [63], which
performed a considerable role in formatting haze pollution. The positive effects were found
in central China and the southeast coastal areas. Since the northwest monsoon prevails in
winter in China, the severe atmospheric pollution generated in northern regions during
winter would be further transported by wind direction, thus aggravating air pollution in
central China and the southeast coastal areas. For the northeast region, when the wind
speed reached a certain level, dust on the ground would be swept up, and the smog
pollution of the atmosphere would be aggravated.

Figure 5d indicates that relative humidity can reduce PM2.5 concentrations in most
cities (94.14%), especially in cities with more prominent pollution. According to meteorolog-
ical theory, RH increased to promote efficient precipitation, which presented a scavenging
impact on air pollutants [64], while the increase in relative humidity in some cities in
northeast and northwest China has aggravated air pollution. This was because higher
humidity promoted the hygroscopic growth of PM2.5 [65]. In addition, under high solar
radiation and temperature, the increase in RH would accelerate secondary formation of
PM2.5 [66,67].

Temperature exhibited a negative influence on PM2.5 pollution in 69.96% of cities,
showing obvious north–south differences in China (Figure 5e). The impact direction of tem-
perature on atmospheric pollutants exhibited disequilibrium under different mechanisms.
The negative effect mainly lay in temperature-related air convections and the vaporization
loss of PM2.5 [43]. Low temperatures reduced air convection and promoted the aggregation
of PM2.5 [68]. High temperatures promoted the evaporation loss of PM2.5 [69], which
helped to reduce PM2.5 pollution. While the rise of temperature lead to the increase in
pollutant chemical reaction rate, which accelerated the formation of secondary PM2.5 [70].
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Combined with the distribution characteristic of coefficients, the influences of temperature
on PM2.5 in cities in the northeast area and Bohai region were primarily to promote the
formation of secondary PM2.5, while the influences of temperature in other cities on PM2.5
were primarily to promote the evaporation loss of pollutants.

Figure 6 presents the spatial patterns of coefficients for socioeconomic indicators
across cities. Figure 6a shows that the increase in population density has exacerbated PM2.5
pollution in 41.76% of cities. Higher positive coefficients were located in the BTH region
and Yunnan province. For the BTH region, the increase in population density led to the
increase of urban traffic flow and production scale, thereby aggravating haze pollution. Due
to special geomorphology, fragile ecological environment and weak population carrying
capacity, the increase in production activities attributed to the increase in population
would deteriorate the ecological environment and cause atmospheric pollution in Yunnan.
However, for other cities, population aggregation with an intensive and higher energy
utilization could reduce PM2.5 pollution [71]. In addition, the increase in PD could reduce
the average cost of energy consumption and public transport services, which could promote
economies of density, thus reducing atmospheric pollution [72,73].
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PCGDP mainly negatively influenced PM2.5 in studied cities (96.34%), indicating that
the increase in PCGDP of these cities was not the cause of haze (Figure 6b). The potential
reason for this was that the higher PCGDP promoted greater environmental awareness,
which was conducive to improving air quality [74]. Combined with the distribution feature
of PM2.5 pollution, areas with prominent PM2.5 pollution tended to have the greatest
negative effect of PCGDP; this was because areas with severe air pollution would be
subject to various restrictions, such as emission reductions, in the process of economic
development, and special concern would be given to the coordination of economic growth
and environmental protection. On the contrary, for the southeast coastal areas where
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atmospheric pollution was weak, the negative impact elasticity of economic development
on atmospheric pollution was weak.

Figure 6c demonstrates that the increase in urbanization rate has reduced PM2.5
pollution in 68.13% of cities (Figure 6c). This finding was distinct from most current
studies [75,76]. However, none of the previous studies were based on the GTWR model at
the urban scale. Moreover, Luo et al. [77] found that higher urbanization helps to reduce
PM2.5 pollution in northwest China and northeast China. In addition, Guan et al. [78]
noted that rural household energy consumption was an important cause of primary PM2.5
pollution, and urbanization would greatly decrease this emissions component. Therefore,
this finding was supported by the mechanism of PM2.5 discharge. The positive effects were
found in the southeast coastal cities, the Bohai region, and Cheng-Yu region (Figure 6c).
The potential reason lied in the relatively high level of urbanization in these areas, while
the continued increase in urban population would bring about “big city diseases”, such as
traffic congestion, resource shortages, and environmental pollution [79,80].

BU in most cities (82.05%) was positively correlated with PM2.5. The impact showed
gradual weakening from the western to the eastern cities (Figure 6d). Differing from the
BTH region and eastern coastal areas, the development space of the construction industry
in the central and western regions was relatively large, which would cause a large amount
of building dust to enter the atmospheric environment and aggravate air pollution.

Figure 6e reflects that BUG was conductive to reducing PM2.5 pollution in most cities
(90.48%), suggesting the greening rate exhibited a mitigation impact on PM2.5 pollution [81].
Figure 6f presents that TO aggravated air pollution in 95.6% of cities, indicating the current
trade openness has aggravated air pollution, thereby confirming the Pollution Haven
Hypothesis [82,83]. Higher coefficients were distributed in north China, central China, and
east China, indicating that, while developing foreign trade to attract foreign investment,
China should continue to raise market access thresholds and truly implement environmen-
tal regulations.

The effect of industrial structures on PM2.5 pollution was positive in 96.34% of cities
(Figure 6g), indicating that secondary industry showed a negative impact on air quality.
Higher coefficients were located in the Cheng-Yu region and north China. The IS of
the Cheng-Yu region was dominated by machinery and chemical industry, while there
were plenty of energy and heavy industries in north China, which directly caused higher
pollutant emissions. The coefficients in the southeast coastal area were lower, which
was related to the local industrial structure, which is dominated by the tertiary industry.
Figure 6h shows that electricity consumption mainly negatively affected PM2.5 pollution
in most cities (89.01%). Compared with coal, electricity with lower emissions was an
effective way to solve the dilemma of energy supply and atmospheric pollution [84]. In
China, electricity was produced from fossil and non-fossil fuels. PM2.5 pollution would be
controlled through clean retrofit of thermal power plants and gas treatment facilities [85].
The negative effects of electricity consumption in the BTH region were the most significant,
the reason mainly being the replacement of residential coal consumption with natural gas
and electricity for space heating in winter, to control atmospheric pollution. For instance,
nearly 2.53 million households have realized the switch from coal burning stoves to natural
gas or electricity stoves in rural areas around the BTH region since 2017 [84].

It was noteworthy that the innovation patents have aggravated air pollution in most
cities (Figure 6i). Cities with positive high values were located in the BTH region and
north China, revealing that the current invention patents of these cities failed to highlight
the role of energy-saving and emission reductions. Yan et al. [86] noted that progress in
technology helped to alleviate pollution, while Wang et al. [87] found that the increase in
research and development spending aggravated air pollution in 72.13% of studied Chinese
cities. This paper revealed that the current technological innovation in most cities was
more based on the pursuit of production efficiency, rather than the impact of environmental
pollution, which might cause increased consumption attributed to the rebound effect, thus
deteriorating the environment [88]. Green innovation could promote the introduction
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and development of clean technologies, which would ensure that the entire process from
production to end products has minimal environmental damage [89]. However, the adop-
tion of green technology innovation brought obstacles to companies [90], which limited
the green technology innovation behavior of the small- and medium-sized enterprises in
cities [91]. When creating innovation patents, cities should emphasize the cleaner produc-
tion and energy-saving and emission reductions, continuously improve patent protection
mechanisms, increase incentives for green technological innovation and diffusion, and
truly realize a win-win mode of technological progress and environmental protection.

Since natural factors are difficult to control, efforts to reduce air pollution should
focus on socioeconomic factors. Based on its findings, this paper provides the following
inspiration for developing targeted and differentiated prevention strategies for urban air
pollution control. Cities in the southeast coastal areas and the BTH region should rationally
guide population flow, control population size, and improve the quality of urbanization.
Cities in the central region, western region and northeastern region should rationally
promote the expansion of urban built-up areas to avoid air pollution caused by urban
sprawl. In addition, cities in the Yangtze River Delta and the Pearl River Delta should
dedicate themselves to the introduction and diffusion of green technology innovation and
actively perform a demonstration effect.

Nevertheless, natural and socioeconomic environments are only part of the factors
affecting PM2.5 pollution; other conditions, including regional pollution transport and
transformation, should be further identified in future studies. In addition, more natural
and socioeconomic data need to be collected to verify and enrich the current findings.

4. Conclusions

This paper is devoted to examining the spatiotemporal heterogeneity of PM2.5 pollu-
tion and its determinants from national and urban perspectives in China between 2015 and
2019. Referring to the IPAT equation to select socioeconomic factors and considering the
key natural factors, this study revealed:

1. PM2.5 concentrations in Chinese cities declined from 50 µg/m3 in 2015 to 37 µg/m3 in
2019, exhibiting obvious regularity at different time scales. In space, PM2.5 pollution
showed significant north–south differentiation. The air quality in the southwest cities
and southeast coastal cities was better.

2. At the national level, temperature showed the greatest impact on the spatial dise-
quilibrium of PM2.5 concentrations in China. The interactions between determinants
enhanced the pattern, while, at the urban level, natural and socioeconomic factors
exhibited weak temporal heterogeneity and significant spatial heterogeneity on PM2.5
pollution in different cities. Generally, population density, trade openness, secondary
industry, and invention patents exhibited the strongest positive impacts on PM2.5
concentrations in the North China Plain. Relative humidity, precipitation and per
capita GDP were more effective in improving atmospheric quality in cities with se-
rious PM2.5 pollution. Altitude and the proportion of built-up areas showed strong
effects in western China. Wind speed, temperature, urbanization rate, greening rate of
built-up areas and electricity consumption mainly negatively affected PM2.5 pollution
in most cities.
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