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Abstract: Accurate state-of-charge (SOC) estimation is essential for maximizing the lifetime of battery-
powered wireless sensor networks (WSNs). Lightweight estimation methods are widely used in
WSNs due to their low measurement and computation requirements. However, accuracy of existing
lightweight methods is not high, and their adaptability to different batteries and working conditions
is relatively poor. This paper proposes a lightweight SOC estimation method, which applies Peukert’s
Law to estimate the effective capacity of the battery and then calculates the SOC by subtracting the
cumulative current consumption from the estimated capacity. In order to evaluate the proposed
method comprehensively, different primary batteries and working conditions (constant current,
constant resistance, and emulated duty-cycle loads) are employed. Experimental results show that
the proposed method is superior to existing methods for different batteries and working conditions,
which mainly benefits from the ability of Peukert’s Law to better model the rate-capacity effect of the
batteries.

Keywords: state-of-charge (SOC); estimation; Peukert’s Law; primary battery; sensor node; wireless
sensor networks (WSNs)

1. Introduction

With the rapid development of sensors, embedded computing, and wireless commu-
nication technology, wireless sensor networks (WSNs) have been widely used in many
applications [1,2]. As it is difficult, if not impossible, to provide wired power supply in
many scenarios, such as areas that are inaccessible or dangerous to humans, sensor nodes
are usually powered by batteries [3]. From another point of view, using a battery instead of
a wired power supply makes node deployment more flexible, which helps to achieve the
goal of self-organization.

Both a primary and secondary battery have been widely used in WSNs. Sensor
nodes powered by a secondary battery (also called a rechargeable battery) could replenish
electricity through environmental energy harvesting technologies [4,5]. However, not all
scenarios can effectively harvest energy from the environment, such as the nodes deployed
under roads for vehicle detection [6]. In addition, for applications that are discarded after
use, using secondary battery will make the cost much higher. Therefore, primary batteries
such as alkaline batteries and carbon–zinc batteries are still an important power supply for
WSNs [6–10].

The limited capacity of the primary battery determines the lifetime of sensor nodes
and networks. It is necessary to dynamically schedule node tasks and network resources
according to the state of the battery to utilize its capacity effectively. Therefore, estimating
the state of the battery accurately, especially the state-of-charge (SOC), is essential for
maximizing the lifetime of nodes and networks [11–14]. Among existing SOC estimation
methods, the ones based on electrochemical, analytical, or stochastic models are more
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accurate [15–19]. However, computation complexity and measurement difficulty of these
methods make them unsuitable for sensor nodes.

Therefore, lightweight SOC estimation methods specially tailored for WSNs are more
popular. Among them, the fitting models based on terminal voltage [20,21] and cumulative
models based on current consumption [22–24] are widely used in WSNs because they are
much simpler. Unfortunately, accuracy of these methods is not high, and their adaptability
to different batteries and working conditions is relatively poor. With this in mind, this
paper firstly analyzes theoretically the estimation error of the cumulative models based
on current consumption and then proposes a lightweight SOC estimation method, which
applies Peukert’s Law to estimate the effective capacity of the battery and then calculates
the SOC by subtracting the cumulative current consumption from the estimated capacity.
To verify the accuracy of the proposed method, different primary batteries are employed
and different working conditions are designed. Experimental results show that compared
with existing methods, the proposed method is more accurate for different batteries and
working conditions.

1.1. Main Contributions of This Paper

The major contributions are summarized as follows: (1) Applicability of Peukert’s Law
for commonly used primary batteries is verified. (2) Estimation error of the cumulative
models based on current consumption is analyzed theoretically and verified with experi-
ments. (3) A lightweight and accurate SOC estimation method based on Peukert’s Law is
proposed, which considers the rate-capacity effect of the battery more reasonably. (4) The
proposed method is verified and compared with existing ones using different primary
batteries and working conditions (constant current, constant resistance, and emulated
duty-cycle loads).

1.2. Organization of This Paper

The rest of this paper is organized as follows. In Section 2, related work is reviewed.
Existing lightweight SOC estimation methods are described in detail in Section 3, and the
proposed estimation method is explained in Section 4. This is followed by the experimental
setup in Section 5. Experimental results are discussed in Section 6. Finally, conclusions are
presented and suggestions are made for future work.

2. Related Work

This section describes the previous work related to this paper. Firstly, by analyzing the
limitation of battery capacity in WSNs, the importance of SOC estimation is presented. Then,
popular SOC estimation methods for WSNs are summarized, especially the lightweight
methods studied in this paper. Finally, the work related to Peukert’s Law is summarized,
as Peukert’s Law is the basis of the estimation method proposed in this paper.

2.1. Power Supply for Sensor Nodes

Both a primary and secondary battery have been widely used in WSNs. In some
outdoor scenarios, sensor nodes powered by a secondary battery could replenish electricity
through solar energy harvesting [4,5]. However, not all scenarios can effectively harvest
energy from the surrounding environment. In these cases, primary batteries are more
appropriate [6–10]. For example, Bajwaa et al. proposed a wireless sensor network that
estimates the weight of moving vehicles from pavement vibrations caused by vehicular
motion [6]. In their work, sensor nodes are powered by a primary battery (specifically,
a lithium–thionyl chloride battery), because they are buried under the road and cannot
harvest energy from the environment. However, regardless whether a primary battery or
secondary battery is used, the capacity is limited, as energy harvesting technologies are
greatly affected by the environment and usually difficult to provide unlimited energy at
any time.
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2.2. Battery-Aware Power Management

As battery capacity is very limited, an important optimization goal of WSNs is power
minimization. Many dynamic power management (DPM) mechanisms have been invented
to minimize the power consumption of sensor nodes. However, it is generally difficult to
utilize battery capacity efficiently if the state of the battery is not considered in the DPM.
It makes battery-aware or battery-driven power management more important for WSNs.
Recent studies have fully shown that considering the state of the battery when designing
medium-access control protocols, trajectory-tracking algorithms, and data-transmission
policies will help to prolong the lifetime effectively [12–14]. Therefore, accurate estimation
methods for the state of the battery, especially those for SOC, are necessary for maximizing
the lifetime of sensor nodes and networks.

2.3. SOC Estimation Methods for WSNs

Existing methods for SOC estimation include models based on electrochemical, analyt-
ical, and stochastic techniques, among others. For example, the KiBaM model, based on the
chemical kinetic process of the battery, has been widely used in UAV, smart phones, and
other fields [15,16]. Additionally, some complex algorithms such Bayesian inference [17,18]
and Kalman filter [19] have also been used in SOC estimation. Although these models are
more accurate, their computation complexity and measurement difficulty are too high for
resource-constrained sensor nodes. Therefore, this paper only considers lightweight SOC
estimation methods especially tailored for WSNs.

Considering that the battery terminal voltage is directly proportional to SOC, estima-
tion models can be established based on terminal voltage measurement. The linear voltage
model (LVM) is a common SOC estimation method used in the early stage [22,23]. LVM
assumes that the battery is a linear voltage source. Although it is the simplest, its accuracy
is difficult to guarantee. In order to improve the accuracy, Valle et al. firstly acquired the
residual capacity and terminal voltage curve using MicaZ nodes powered by a carbon–zinc
battery and then established the SOC estimation model through polynomial fitting [20].
However, as the residual capacity and terminal voltage curve is greatly affected by the load,
accuracy of this method is still not high.

In addition to the fitting models based on terminal voltage, the cumulative models
based on current consumption (also known as ampere hour integration methods) are
also common SOC estimation methods used in the early stage [21,24,25]. These methods
require the sensor node to provide data about the working currents. At present, several
cost-efficient circuit implementations have been proposed to add current measurement
capability to sensor nodes [21,26,27]. Traditional ampere hour integration methods usually
use the nominal capacity of the battery as its initial capacity. However, the nonlinearity of
batteries makes the actual available capacity not equal to the nominal one, which degrades
the accuracy of these methods inevitably.

To solve this problem, Cunha et al. proposed an effective discharge-rate-based model
(EDRM), which accounts for the effect of discharge rate on the effective capacity [21,24].
The effective capacity is modeled as a polynomial function of the current consumed by
the sensor nodes. Experimental results show that EDRM is more accurate than LVM and
traditional ampere hour integration methods. Rukpakavong et al. suggested that Peukert’s
Law be applied to correct the cumulative current consumption, and proposed the dynamic
node lifetime estimation (DNLE) method [28]. The authors claimed that DNLE is more
accurate than traditional ampere hour integration methods.

2.4. Peukert’s Law

Peukert’s Law was proposed to describe the discharge characteristics of lead–acid
batteries [29]. Owing to its low complexity and simple modeling process, Peukert’s Law
has also been applied to lithium-ion batteries, supercapacitors, nickel–cadmium batteries,
etc., in recent years [30–36]. However, it is mainly used for discharge time prediction with
the known current profile, rather than online estimation of SOC [30–32,35,36]. Yang et al.
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studied the dependence of the Peukert constant of supercapacitors on voltage, aging, and
temperature, and pointed out that the Peukert constant increases when the temperature
is lower, although the change is moderate [32]. Xie et al. studied the impact of battery
thermal evolution on the Peukert constant of LiFePO4 batteries and also found that the
Peukert constant is little affected by temperature [33].

3. Problem Definition and Design Motivation

Existing studies have shown that accuracy of the cumulative models based on current
consumption is significantly higher than that of the fitting models based on terminal
voltage [21,24,28]. This paper intends to further improve the accuracy of the cumulative
models based on current consumption. This section explains the design motivation behind
the proposed method by theoretically analyzing the estimation error of the cumulative
models based on current consumption.

3.1. Typical SOC Estimation Methods for WSNs

Firstly, typical SOC estimation methods used in WSNs are described in detail, and their
mathematical expressions are given. Only lightweight estimation methods are considered
because they are more suitable for resource-constrained sensor nodes. The methods listed
in this section are also used to compare with the method proposed in this paper to verify
its accuracy. For ease of description, Table 1 summarizes the variables used in subsequent
analysis.

Table 1. Variables used in subsequent analysis.

Variable Description

SOCest estimated SOC
SOCreal actual SOC

Vt terminal voltage
I discharge current

∆t sampling interval for Vt and I
Ii discharge current at the ith sampling interval
ai coefficients of the polynomial function
k Peukert constant
Q empirical constant of Peukert’s Law

Cest(I) estimated available capacity under current I
Cnominal nominal capacity of battery
Creal(I) actual capacity under current I

3.1.1. Models Based on Terminal Voltage

LVM is a common SOC estimation method used in the early stage [20,21]. The mod-
eling process is as follows: Firstly, the terminal voltage and current are recorded when
discharging the battery with a specific load. Then, SOC is calculated and the linear model
of SOC and terminal voltage is fitted, as shown in (1):

SOCest = a1Vt + a0 (1)

The modeling process for the polynomial voltage model (PVM) is similar to that of
LVM. Firstly, the terminal voltage and current are recorded when discharging the battery
with a specific load. Then, SOC is calculated and the polynomial model of SOC and terminal
voltage is fitted, as shown in (2). Existing studies have shown that a good fitting effect
could be obtained by using a third-order polynomial [25].

SOCest = anVn
t + an−1Vn−1

t + · · ·+ a1Vt + a0 (2)
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3.1.2. Models Based on Current Consumption

EDRM accounts for the effect of discharge rate on the effective capacity, which is
modeled as a function of the current consumed by the sensor node [22,23], as shown in
(3). After the effective capacities under different discharge rates are tested, the function
between them can be modeled by polynomial fitting.

SOCest = (1 −

i=n
∑

i=0
Ii∆t

Cest(In)
)× 100% (3)

DNLE applies Peukert’s Law to correct the cumulative current consumption to intro-
duce the rate-capacity effect [28], as shown in (4). The nominal capacity of the battery is
used in DNLE. The Peukert constant k should be determined for the operation of DNLE,
which can be obtained by using the discharge time under different discharge rates. Peuk-
ert’s Law is also used in the method proposed in this paper. Different from DNLE, Peukert’s
Law is applied to estimate the effective capacity of the battery instead of correcting the
cumulative current consumption. Experimental results show that the approach adopted in
this paper is more accurate and can be adapted to different batteries and working conditions.
See Section 4 for detailed analysis.

SOCest = (1 −

i=n
∑

i=0
Ik
i ∆t

Cnominal
)× 100% (4)

3.2. Error Analysis and Design Motivation

SOC estimation error of the cumulative methods based on current consumption can
be expressed as shown in (5). It can be seen that the estimation error of such methods
presents several obvious characteristics: First, the estimation error in the initial stage is
very low, because the accumulated current consumption is very small compared with
the actual capacity. Second, with the increase in accumulated current consumption, the

estimation error continues to increase, because
i=n
∑

i=0
Ii∆t/Creal continues to increase. Third,

the maximum error depends on the accuracy of the estimated capacity Cest. The closer Cest
is to the actual capacity Creal, the smaller the error is, and vice versa.

Error = SOCest − SOCreal

= (1 −

i=n
∑

i=0
Ii∆t

Cest
)− (1 −

i=n
∑

i=0
Ii∆t

Creal
)

=
i=n
∑

i=0
Ii∆t( 1

Creal
− 1

Cest
)

=

i=n
∑

i=0
Ii∆t

Creal
(Cest−Creal

Cest
)

(5)

Therefore, SOC estimation error can only be reduced effectively by improving the
estimation accuracy of the effective capacity of the battery. Obviously, accuracy of the
traditional ampere hour integration methods is bound to be very low because it uses the
fixed nominal capacity as the effective capacity. In order to improve the estimation accuracy
of the effective capacity, nonlinear characteristics of the battery must be considered, the
most important of which is the rate-capacity effect. However, existing methods did not
solve this problem very well. Considering the advantage of Peukert’s Law in modeling the
rate-capacity effect, introducing it into the estimation of effective capacity will certainly
improve the accuracy of SOC estimation.
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4. SOC Estimation Based on Peukert’s Law
4.1. Peukert’s Law

Peukert’s Law models the relationship of discharge time and discharge rate, as shown
in (6):

Q = Ikt (6)

where Q is an empirical constant. Peukert constant k is related to the material, structure,
and other battery parameters. In order to obtain the value of k and Q, taking the logarithm
of (6) and rearranging gives:

ln t = −k ln I + ln Q (7)

which means that the relationship between ln I and ln t is linear. Therefore, after discharging
the battery with different I and obtaining corresponding discharge time t, k and Q can be
calculated by using linear regression.

4.2. SOC Estimation Method Based on Peukert’s Law

This paper applies Peukert’s Law to estimate Cest and proposes a novel SOC estimation
method. Although existing studies have verified the applicability of Peukert’s Law for
lithium-ion batteries and supercapacitors, among others [29–31], its applicability for the
commonly used primary batteries remains unrealized. Therefore, the applicability of
Peukert’s Law for the commonly used primary batteries was verified initially and the
results are analyzed in Section 6.1.

Firstly, Peukert’s Law is processed to reflect the relationship between discharge capac-
ity and discharge rate. Similar to the original Peukert’s Law, it is still treated under the
assumption of constant discharge rate. When the battery is discharged with constant rates,
its capacity is the product of discharge rate and discharge time, that is:

Cest = It (8)

where Cest denotes the estimated effective capacity. Combined with Peukert’s Law, there is:

Q = Cest Ik−1 (9)

Further, the relationship between Cest, k and Q can be obtained:

Cest =
Q

Ik−1 (10)

Using this relationship, a Peukert’s Law-based SOC estimation method (PLM) is
proposed, expressed as follows:

SOCest = (1 −
(

i=n
∑

i=0
Ii∆t)× Ik−1

n

Q
)× 100% (11)

5. Experimental Setup

This section describes the experimental setup, including the testbed for battery dis-
charging, the primary batteries used, and the working conditions designed to obtain
data for modeling and verification. On this basis, the fitted models for all the candidate
estimation methods used in this paper are given.

5.1. Testbed for Discharging

In this work, the CT3001C microcurrent battery test system from LAND Electronic
(http://www.whland.com/en (accessed on 15 October 2022)) was used to discharge the
battery, as shown in Figure 1. The reasons for choosing a special battery test system
instead of actual sensor nodes are twofold: First, the CT3001C not only supports common

http://www.whland.com/en
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constant current and constant resistance discharge tests, but also supports discharge tests
with programmable loads, which could be used to emulate the actual loads of sensor
nodes. Second, the CT3001C has eight independent programmable channels, which can
support eight-channel parallel discharge tests. As the working current of sensor nodes
is usually below 50 mA, the time of a single discharge test is typically as high as several
hundred hours. Therefore, a multichannel parallel test can effectively shorten the whole
time required for all the discharge tests.
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Figure 1. The microcurrent battery test system with eight independent programmable channels
for different discharge conditions including constant current, constant resistance, and emulated
duty-cycle discharge.

5.2. Target Batteries

Commonly used primary batteries include alkaline batteries, carbon–zinc batteries,
coin-cell batteries, and others. Additionally, the commonly used WSN nodes, such as
MicaZ [37] and TelosB [38], all use AA-size batteries. Therefore, the coin-cell battery was
not considered in this paper and only AA-size alkaline and carbon–zinc batteries were
employed for testing. The specific models are the LR6AA alkaline battery from NanFu
Battery (https://www.nanfu.com/products.html (accessed on 30 December 2022)) and the
R6PNU carbon–zinc battery from Panasonic (https://consumer.panasonic.cn (accessed on
20 December 2022)). Considering that the cut-off voltage for typical sensor nodes is usually
not lower than 1.8 V, and two AA batteries are required in series, the cut-off voltage for
discharge tests was set to 0.9 V.

5.3. Working Conditions

Three different working conditions were used in this experiment, namely constant
current, constant resistance, and emulated duty-cycle loads, to fully evaluate the accuracy
of the proposed method. Similar to typical practices [20–23,28], constant current discharge
tests were used for modeling. Considering the actual range of working currents for sensor
nodes [39], 10, 20, 30, 40, and 50 mA were used. In order to ensure reliability, the discharge
test for each current was carried out twice. For model verification, all three working
conditions were used. Likewise, a discharge test under each configuration was also carried
out twice. Configurations for verification tests are described as follows:

(1) Verification with constant resistance discharge

For constant resistance discharge, 50 and 70 Ω were used. The selection of these
resistances makes the current in the range 10 to 50 mA in the whole discharge process. As
the current changes continuously and slowly during constant resistance discharge, its effect
on the accuracy of the SOC estimation methods can be evaluated.

(2) Verification with emulated constant current discharge

Typical working currents of MicaZ nodes were used for constant current discharge
verification. Two situations were emulated: First, only the MCU of MicaZ works, for which
the typical current is 8 mA [39]. Second, the MicaZ is in receive-state, for which the typical
current is 23.3 mA [39].

https://www.nanfu.com/products.html
https://consumer.panasonic.cn
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(3) Verification with emulated duty-cycle loads

In practical applications, sensor nodes usually work in duty-cycle modes to minimize
power consumption [12]. Therefore, emulating the actual node loads helps to analyze the
accuracy of the SOC estimation methods more realistically. Duty cycles of 50%, 20%, 10%,
and 5% were emulated. In particular, discharging 100 ms with 8 mA and then discharging
100 ms with 23.3 mA emulates a duty-cycled discharge with a 50% duty cycle. Similarly,
discharging 400, 900, and 1900 ms with 8 mA and then discharging 100 ms with 23.3 mA
emulates duty-cycled discharges with 20%, 10%, and 5% duty cycles, respectively.

5.4. Fitted Estimation Methods

As the time of a single discharge test is as high as several hundred hours and there are
many combinations of battery types and working conditions, even though eight-channel
parallel test was adopted, the whole experiment still lasted nearly 2 months. Figure 2
shows the discharge characteristics of alkaline and carbon–zinc batteries under constant
current discharge tests. All SOC estimation methods were fitted using the same data, and
the results are shown in Tables 2 and 3. Among them, LVM and PVM were fitted with the
mean value of data under different discharge rates. It should be pointed out that the model
parameters for these SOC estimation methods are inevitably affected by the discharge
conditions, such as the cut-off terminal voltage and the experimental temperature. If the
discharge conditions change, model parameters of these SOC estimation methods should
be fitted again using the discharge data of the corresponding conditions.
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Figure 2. Discharge characteristics of alkaline and carbon–zinc batteries under constant current
discharge tests: (a) alkaline battery; (b) carbon–zinc battery.

Table 2. The fitted SOC estimation methods for the alkaline battery.

Fitted Methods Alkaline Battery

LVM SOC = 216.65Vt − 220.38
PVM SOC = −1212.53V3

t + 4627.91V2
t − 5618.21Vt+2208.14

EDRM
SOC = (1 −

i=n
∑

i=0
Ii∆t

0.27×In
2−23.56×In+3366

)× 100%

DNLE
SOC = (1 −

i=n
∑

i=0
Ii

1.06∆t

2994.98 )× 100%

PLM
SOC = (1 −

(
i=n
∑

i=0
Ii∆t)×I0.06

n

3651.89 )× 100%
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Table 3. The fitted SOC estimation methods for the carbon–zinc battery.

Fitted Methods Carbon–Zinc Battery

LVM SOC = 338.35Vt − 377.23
PVM SOC = −1775.27V3

t + 6731.81V2
t − 8153.99Vt+3186.82

EDRM
SOC = (1 −

i=n
∑

i=0
Ii∆t

−0.03×In
2−1.13×In+1063

)× 100%

DNLE
SOC = (1 −

i=n
∑

i=0
Ii

1.07∆t

1025.76 )× 100%

PLM
SOC = (1 −

(
i=n
∑

i=0
Ii∆t)×I0.07

n

1245.84 )× 100%

6. Performance Verification and Analysis
6.1. Verification of Peukert’s Law

Firstly, the applicability of Peukert’s Law for the commonly used primary batteries
was verified. The relationship between discharge rate and discharge time for the alkaline
battery is shown in Figure 3a. It can be seen that ln I and ln t have an obvious linear
relationship. It means that Peukert’s Law is applicable within the target range of currents
for the alkaline battery. The fitted Peukert constant k = 1.06 and Q = 3651.89. Similarly,
Peukert’s Law is applicable for the carbon–zinc battery, as shown in Figure 3b, for which
the fitted Peukert constant k = 1.07 and Q = 1245.84. Existing studies have pointed out
that parameters k and Q are not fixed and affected by several factors, the important one of
which is the cut-off voltage. Therefore, k and Q were fitted using different cut-off voltages,
as shown in Figure 4. It is obvious that both k and Q change with the cut-off voltage.
Therefore, it is necessary to determine the value of k and Q according to the target cut-off
voltage in practice.
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Figure 3. The relationship of discharge rate and discharge time: (a) alkaline battery; (b) carbon–zinc
battery.
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Figure 4. Effect of the cut-off voltage on k and Q: (a) alkaline battery; (b) carbon–zinc battery.

6.2. Accuracy of SOC Estimation for the Alkaline Battery

This section compares the accuracy of all the candidate SOC estimation methods for
the alkaline battery by using the discharge data for verification, as described in Section 5.3.
Firstly, discharge characteristics under different working conditions are presented. Then,
the accuracy of all the candidate SOC estimation methods under these working conditions
is analyzed.

6.2.1. Discharge Characteristics under Different Working Conditions

Figure 5a shows the terminal voltage of the battery during the whole discharge process.
It is obvious that the curves under constant current and constant resistance discharge are
much smoother than those under duty-cycle discharge. From the enlarged part of the curves
in Figure 5a, it can be seen that the terminal voltage of the battery is not monotonically
decreasing under duty-cycle discharge. Instead, fluctuating voltage appears. This is
because the recovery effect works under duty-cycle discharge, which makes the terminal
voltage of the battery increase when the discharge rate becomes smaller. Figure 5b shows
the relationship of SOC and terminal voltage for the battery under different working
conditions. It is obvious that fluctuation of the terminal voltage under duty-cycle discharge
makes SOC and terminal voltage no longer in one-to-one correspondence. Undoubtedly,
this leads to poor performance of the fitting models based on terminal voltage.
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Figure 5. Discharge characteristics of the alkaline battery under different working conditions for
verification: (a) Vt~t; (b) SOC~Vt.
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6.2.2. Verification with Constant Current Discharge

Figure 6a shows the actual SOC and estimated SOC of all the candidate methods under
constant current discharge. Obviously, errors of the fitting models based on terminal voltage
are much larger. Additionally, they behave very differently under different discharge rates.
Owing to the difference in the initial voltage of the batteries, the estimated SOC of the fitting
models based on terminal voltage even exceeds 100% in the initial stage. Compared with
the fitting models based on terminal voltage, accuracy of the cumulative models based on
current consumption is much higher, especially for EDRM and PLM proposed in this paper.
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Figure 6. Estimation accuracy of SOC under constant current discharge for the alkaline battery:
(a) actual SOC vs. estimated SOC; (b) average error for every 10% SOC interval.

In order to describe the performance of the cumulative models based on current
consumption more clearly, Figure 6b shows the average error for every 10% SOC interval.
It can be seen that the error variation in such methods conforms to the theoretical analysis
in Section 3.2 very well. That is, the estimation error in the initial stage is very small,
and it continues to increase with the increase in accumulated current consumption. The
estimation error of DNLE increases very fast as it applies Peukert’s Law to correct the
cumulative current consumption. In contrast, much better results are obtained when PLM
applies Peukert’s Law to estimate the effective capacity of the battery. The accuracy of
EDRM is close to but a little less than that of PLM. More importantly, PLM proposed in this
paper is more adaptive to different discharge currents.

6.2.3. Verification with Constant Resistance Discharge

Figure 7a shows the actual SOC and estimated SOC of all the candidate methods under
constant resistance discharge. Performance of these methods is basically consistent with
that under constant current discharge. It can be seen that errors of the fitting models based
on terminal voltage are still much larger and they behave very differently under different
resistances. Compared with the fitting models based on terminal voltage, accuracy of the
cumulative models based on current consumption is much higher, especially for EDRM
and PLM proposed in this paper. Figure 7b shows the average error for every 10% SOC
interval. Obviously, the error variation in such methods conforms to the theoretical analysis
in Section 3.2 very well. The estimation error of DNLE still increases very fast. The accuracy
of EDRM is close to but a little less than that of PLM. More importantly, PLM proposed in
this paper is more adaptive to different discharge resistances.
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Figure 7. Estimation accuracy of SOC under constant resistance discharge for the alkaline battery:
(a) actual SOC vs. estimated SOC; (b) average error for every 10% SOC interval.

6.2.4. Verification with Emulated Duty-Cycle Discharge

Figure 8a shows the actual SOC and estimated SOC for all the candidate methods
under emulated duty-cycle discharge. The fitting models based on terminal voltage still
perform poorly. Compared with the fitting models based on terminal voltage, accuracy of
the cumulative models based on current consumption is much higher, especially EDRM and
PLM proposed in this paper. Figure 8b shows the average error for every 10% SOC interval.
The estimation error of DNLE increases much faster under duty-cycle discharge. Obviously,
it can be seen that the accuracy of both PLM and EDRM becomes worse under duty-cycle
discharge. This is because both of these models only consider the rate-capacity effect of the
battery. When discharging in duty-cycle modes, other nonlinear effects of the battery such
as recovery effect come into play and make the performance of PLM and EDRM worse.
This can also be confirmed by the discharge characteristics shown in Figure 5. However,
compared with EDRM, PLM has higher accuracy. Table 4 summarizes the average error of
all the candidate methods for the alkaline battery under different working conditions. It is
obvious that PLM is the best under all working conditions owing to Peukert’s Law’s ability
to better model the rate-capacity effect.

Table 4. Average error of SOC estimation for the alkaline battery under different working conditions.

Working Conditions PLM EDRM DNLE PVM LVM

constant
current

8 mA 0.39 0.50 10.49 8.83 10.88
23.3 mA 1.07 1.27 9.42 2.55 5.07

constant
resistance

50 Ω 0.73 0.95 13.14 4.30 6.80
70 Ω 0.51 0.52 12.77 7.18 8.91

emulated
duty cycle

5% 1.61 2.35 15.30 9.92 11.68
10% 4.83 4.84 18.90 8.62 10.36
20% 5.13 5.18 21.46 6.32 8.50
50% 7.08 9.04 24.78 8.92 8.83
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Figure 8. Estimation accuracy of SOC under duty−cycle discharge for the alkaline battery: (a) actual
SOC vs. estimated SOC; (b) average error for every 10% SOC interval.

6.3. Accuracy of SOC Estimation for the Carbon–Zinc Battery

This section compares the accuracy for all the candidate SOC estimation methods for
the carbon–zinc battery, using the discharge data for verification, as described Section 5.3.
Firstly, discharge characteristics under different working conditions are presented. Then,
the accuracy of all the candidate SOC estimation methods under these working conditions
is analyzed.

6.3.1. Discharge Characteristics under Different Working Conditions

The discharge characteristics of the carbon–zinc battery are basically consistent with
those of the alkaline battery. Figure 9a shows the terminal voltage of the battery during
the whole discharge process. It is obvious that the terminal voltage of the battery is also
not monotonically decreasing under duty-cycle discharge. Instead, fluctuating voltage
appears. This is because the recovery effect works under duty-cycle discharge, which
makes the terminal voltage of the battery increase when the discharge rate becomes smaller.
Figure 9b shows the relationship of SOC and terminal voltage of the battery under different
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working conditions. Similarly, SOC and terminal voltage are also no longer in one-to-one
correspondence under duty-cycle discharge. Undoubtedly, this leads to poor performance
of the fitting models based on terminal voltage.
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Figure 9. Discharge characteristics of the carbon–zinc battery under different working conditions for
verification: (a) Vt~t; (b) SOC~Vt.

6.3.2. Verification with Constant Current Discharge

The results and conclusions for the carbon–zinc battery are basically consistent with
those for the alkaline battery. Figure 10a shows the actual SOC and estimated SOC for
all the candidate methods under constant current discharge. It can be seen that errors of
the fitting models based on terminal voltage are still much larger and they behave very
differently under different discharge rates. Owing to the difference in the initial voltage
of the batteries, the estimated SOC of the fitting models based on terminal voltage even
exceeds 100% in the initial stage. Compared with the fitting models based on terminal
voltage, accuracy of the cumulative models based on current consumption is much higher,
especially for EDRM and PLM proposed in this paper. Figure 10b shows the average error
for every 10% SOC interval. Obviously, error variation in such methods conforms to the
theoretical analysis in Section 3.2 very well. It can be seen that the estimation error of
DNLE still increases very fast. The accuracy of EDRM is close to but a little worse than
that of PLM. More importantly, PLM proposed in this paper is more adaptive to different
discharge rates.
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Figure 10. Estimation accuracy of SOC under constant current discharge for the carbon−zinc battery:
(a) actual SOC vs. estimated SOC; (b) average error for every 10% SOC interval.
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6.3.3. Verification with Constant Resistance Discharge

Figure 11a shows the actual SOC and estimated SOC for all the candidate methods
under constant resistance discharge. It can be seen that errors of the fitting models based
on terminal voltage are still much larger and they behave very differently under different
discharge resistances. Owing to the difference in the initial voltage of the batteries, the
estimated SOC of the fitting models based on terminal voltage even exceeds 100% in the
initial stage. Compared with the fitting models based on terminal voltage, accuracy of the
cumulative models based on current consumption is much higher, especially for EDRM
and PLM proposed in this paper. Figure 11b shows the average error for every 10% SOC
interval. It can be seen that error variation in such methods conforms to the theoretical
analysis in Section 3.2 very well. Obviously, the accuracy of EDRM is close to but a little
worse than that of PLM. More importantly, PLM proposed in this paper is more adaptive
to different resistances.
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Figure 11. Estimation accuracy of SOC under constant resistance discharge for the carbon−zinc
battery: (a) actual SOC vs. estimated SOC; (b) average error for every 10% SOC interval.

6.3.4. Verification with Emulated Duty-Cycle Discharge

Figure 12a shows the actual SOC and estimated SOC of all the candidate methods
under emulated duty-cycle discharge. The fitting models based on terminal voltage still
perform poorly. Compared with the fitting models based on terminal voltage, accuracy of
the cumulative models based on current consumption is much higher, especially for EDRM
and PLM proposed in this paper. Figure 12b shows the average error for every 10% SOC
interval. Obviously, error variation in such methods conforms to the theoretical analysis in
Section 3.2 very well. The estimation error of DNLE increases much faster under duty-cycle
discharge. Obviously, it can be seen that the accuracy of both PLM and EDRM becomes
worse under duty-cycle discharge. This is because both these models only consider the
rate-capacity effect. When discharging in duty-cycle modes, other nonlinear effects of
the battery such as recovery effect come into play and make the performance of PLM
and EDRM worse. This can also be confirmed by the discharge characteristics shown in
Figure 11. However, compared with EDRM, PLM has higher accuracy. Table 5 summarizes
the average error of all the candidate methods for the carbon–zinc battery under different
working conditions. It is obvious that PLM is the best under almost all working conditions
owing to Peukert’s Law’s ability to better model the rate-capacity effect.
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Figure 12. Estimation accuracy of SOC under duty−cycle discharge for the carbon−zinc battery:
(a) actual SOC vs. estimated SOC; (b) average error for every 10% SOC interval.

Table 5. Average error of SOC estimation for the carbon–zinc battery.

Working Conditions PLM EDRM DNLE PVM LVM

constant
current

8 mA 0.79 0.46 9.77 17.34 22.52
23.3 mA 0.10 0.79 10.85 10.14 15.02

constant
resistance

50 Ω 0.32 1.19 13.30 8.54 13.33
70 Ω 0.48 1.03 11.28 12.23 17.15

emulated
duty cycle

5% 1.08 2.22 16.38 14.74 20.29
10% 2.36 3.07 16.20 14.90 19.35
20% 7.34 7.79 21.29 14.36 18.97
50% 6.34 6.54 19.68 13.15 17.65
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7. Conclusions

Accurate estimation of battery SOC is very important to realize dynamic power
management of sensor nodes and effective utilization of battery capacity. Owing to the
limited resources of sensor nodes, SOC estimation methods are required to be as simple as
possible in both measurement and computation. This makes the fitting models based on
terminal voltage and cumulative models based on current consumption widely used in
WSNs. Unfortunately, accuracy of existing methods is not high, and their adaptability to
different primary batteries and working conditions is relatively poor. With this in mind,
this paper initially analyzes the estimation error of the cumulative models based on current
consumption theoretically and then proposes a lightweight SOC estimation method that
applies Peukert’s Law to estimate the effective capacity of the battery, which considers the
rate-capacity effect of the battery more reasonably.

Applicability of Peukert’s Law for the commonly used primary batteries was verified
initially. Experimental results show that Peukert’s Law is applicable for both the alkaline
and carbon–zinc battery. Then, different discharge conditions, including constant current,
constant resistance, and emulated duty–cycle discharge, were used to compare the proposed
method with similar estimation methods. Experimental results show that the error variation
in the cumulative models based on current consumption conforms to the theoretical analysis
very well. Additionally, the proposed method is superior to existing methods for different
batteries and working conditions, which benefits from Peukert’s Law’s ability to better
model the rate-capacity effect of the battery.

However, it can also be seen that, similar to existing lightweight methods, accuracy of
the proposed method also becomes obviously worse under duty–cycle discharge. This is
because although Peukert’s Law can better model the rate-capacity effect, it cannot affect
the recovery effect, another important nonlinear characteristic of the battery. Therefore, in
the future, the impact of other nonlinear effects of the battery, such as the recovery effect,
needs to be considered to further improve the accuracy of lightweight SOC estimation
methods. Additionally, more comprehensive discharge tests will be conducted to study the
performance of SOC estimation more deeply.
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