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Abstract: Flooding is one of the most frequently occurring meteorological disasters nowadays, and 

its occurrence can cause significant socio-economic losses. Aiming at the problem that traditional 

optical remote sensing makes it difficult to monitor floods, this paper designs a scheme to jointly 

extract the scope of the affected area by using heterogeneous satellite-based SAR images acquired 

at different times within the flood period. This paper takes the “7-20” rainstorm in Zhengzhou City 

as an example and uses two kinds of heterogeneous SAR images, Sentinel-1A and GF-3, to extract 

the flooding damage in the main urban area. In addition, combinations with the vector data of the 

Gaode road network were performed to further monitor and analyze the “7-20” rainstorm damage 

in the main urban area of Zhengzhou. The results showed that the main urban area of Zhengzhou 

City was affected by the “7-20” rainstorm. The roads in the main urban area of Zhengzhou were 

seriously affected, and the total length of the affected roads reached 1324.63 km. The monitoring 

scheme for flooding road network damage using Sentinel-1A and GF-3 heterogeneous SAR images 

has certain feasibility. 
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1. Introduction 

Extremely heavy rainfall phenomena frequently occur in China. According to data re-

leased by China’s Ministry of Emergency Management, floods affected a total of 59.01 mil-

lion people in 2021. These floods caused direct economic losses of 245.89 billion yuan, ac-

counting for 73.62 percent of natural disasters’ total direct economic losses. After the flood-

ing disaster, quickly and effectively identifying the storm inundation area and the damage 

to the features is an essential guide for the relevant departments to grasp the disaster data 

and improve the emergency rescue and disaster prevention and mitigation capabilities. 

In recent years, the rapid development of remote sensing technology has made it 

widely used in pre-disaster prediction and post-disaster rescue [1]. The methods to 

achieve water body extraction by remote sensing flood dynamic monitoring can be clas-

sified into three types: threshold, object-oriented, and deep learning [2]. The threshold 

method, also known as model classification, classifies the images by analyzing the spectral 

characteristic curves of water bodies. Select a suitable band to construct a model and an 

appropriate classification threshold to obtain a binary map of water bodies and non-water 

bodies [3]. The main methods of image segmentation based on thresholding are the his-

togram bimodal method, Otsu maximum interclass variance method, EM algorithm (Ex-

pectation-Maximum), water body index method, etc [4]. Mason et al. monitored flooding 

in urban and rural areas in the UK using a threshold method and change monitoring [5]. 

Martinis et al. fully automated near real-time flood detection by fuzzy logic and threshold 

methods for Germany, Thailand, Albania, and Montenegro [6]. Mcfeeters used TM images 
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in green and near-infrared bands to construct the Normalized Difference Water Index 

(NDWI) to extract water body information within the city limits, which can better sup-

press vegetation information [7]. The NDWI can hide the vegetation information and sup-

press the influence of soil, buildings, and shadows to highlight the water body infor-

mation. This method is simple, fast, efficient, and widely used in water body extraction. 

In addition, it can achieve better classification results in plain areas with slight variations 

in topographic relief [8,9]. 

The object-oriented method takes the image object as the primary processing unit. It 

makes homogeneous image elements into objects of different sizes by various segmenta-

tion algorithms, thus realizing the extraction of image information by an object as a unit 

[10]. With the increasing spatial resolution of remote sensing images, the classification 

methods to achieve target feature extraction using the images’ rich spectral and complex 

texture features are becoming increasingly sophisticated [11]. Yu et al. introduced multi-

ple SAR image texture features for water body information extraction and compared them 

with the traditional classification method to improve water body extraction accuracy [12]. 

Foroughnia uses supervised and unsupervised classification methods, combined with 

multispectral and SAR data, to assess the precision and accuracy of flood extraction [13]. 

Deep learning has been widely used in remote sensing water extraction with its 

unique advantages, such as powerful feature representation and automatic feature learn-

ing from data through deep neural network structures [14], commonly used deep learning 

image segmentation algorithms FCN (full convolutional networks) [15] and U-Net net-

works [16]. Li et al. combined multi-temporal TerraSAR-X data and interferometric coher-

ence as training samples to propose an active self-learning time-integrated convolutional 

neural network framework (A-SL CNN) [17]. Xu presents a novel Synthetic Aperture Ra-

dar (SAR) image change detection method that integrates effective image preprocessing 

and Convolutional Neural Network (CNN) classification [18]. Results show that the pro-

posed method has higher accuracy in comparison with traditional change-detection meth-

ods. Wang et al. applied the constructed full convolutional neural network model for wa-

ter body extraction experiments. The results showed that the fully convolutional neural 

network model is more automated, better applicable, and has higher extraction accuracy 

than the traditional threshold method for water body extraction [19]. 

Since floods are mostly accompanied by various types of cloudy and rainy weather 

extremes, traditional optical remote sensing images cannot obtain ground information in 

a timely and accurate manner. SAR satellites can acquire ground information around the 

clock and in all-weather due to their wavelength characteristics [20]. More and more meth-

ods are based on SAR images to monitor the changes in water bodies, which has become 

an indispensable data source in flood emergency monitoring [21]. However, most current 

studies mainly focus on improving the accuracy of water body extent extraction, and rel-

atively little research has been conducted on the damage to road networks in flooded ar-

eas. The urban road network is dense in form and complex in structure, carrying various 

types of traffic flows, which is the key to maintaining the city’s regular operation. There-

fore, it is essential to identify the inundated location and damage to the road network 

under extreme weather conditions for post-disaster relief. In the event of flooding, due to 

the number of satellite constellations and revisit cycles, a specific type of satellite often 

does not meet the longtime series monitoring requirements for flooding, which also be-

comes an important problem for flood rescue and post-disaster assessment. 

To quantitatively monitor the road damage in the “7-20” rainstorm in Zhengzhou, 

this paper designs a scheme to extract the road network damage in the flood disaster by 

combining the heterogeneous SAR data and the road network data before, during, and 

after the rainstorm. At the same time, a time-series monitoring of the disaster process of 

the “7-20” mega rainstorm is carried out. The length of flooded roads was extracted by 

the SAR image threshold segmentation method and GIS spatial analysis method to pro-

vide data support for quantitative road damage assessment. 
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2. Study Area and Data 

2.1. Study Area 

Zhengzhou is a megacity and one of the major economic centers in central China, the 

capital city of Henan Province, and an important railroad and highway transportation 

hub in China. 12.6 million people live in Zhengzhou City, the first in the province, accord-

ing to the seventh national census in 2020. Zhengzhou is bordered by the Yellow River to 

the north and has 124 large and small rivers in its territory, spanning two significant ba-

sins: the Yellow River and the Huai River. The Yellow River basin includes parts of 

Gongyi and Shangdi, with an area of 2011.8 square kilometers, accounting for 27% of the 

city’s total area. The Huai River basin includes all of Xinzheng, Zhongyuan District, Erqi 

District, Guancheng District, and parts of Xinmi, Jinshui District, and Huiji District, with 

an area of 5499.5 square kilometers, accounting for 73% of the city’s total area. The city 

has 124 rivers of various sizes, with 29 rivers with larger watershed areas (≥100 square 

kilometers), including 6 in the Yellow River basin and 23 in the Huai River basin. The 

rivers crossing the border are the Yellow River and the Ilo River. 

In July 2021, under the guidance of the airflow of the Pacific subtropical high pres-

sure, a large amount of water vapor was continuously transported from the sea to the 

land, which was influenced by the topography to collect rain within Henan Province. 

From 18:00 on 18 July to 0:00 on 21 July, Zhengzhou received heavy rainfall, with a cumu-

lative average precipitation of 449 mm. The single-day downpour broke the 60-year his-

torical record since the establishment of the Zhengzhou weather station in 1951. This ex-

ceeded the regional flood control and drainage capacity [22]. The Investigation Report of 

the “720” Very Heavy Rainstorm Disaster in Zhengzhou states that the heavy rainstorm 

caused extensive flooding in urban and rural areas, severe flooding in urban streets and 

depressions, short-lived flooding in rivers and reservoirs, and direct economic losses of 

40.9 billion yuan. This study selected the road network in the main urban area of Zheng-

zhou City (Jinshui District, Huiji District, Zhongyuan District, Erqi District, and Guan-

cheng Huizu District) for monitoring, and the specific study area is shown in Figure 1. 

 

Figure 1. The main urban area of Zhengzhou. The black dotted line represents the boundary of the 

main urban area of Zhengzhou. The red diamond shows the location of Zhengzhou on the map of 

China. 

2.2. Different SAR Datasets 

Sentinel-1A is the first satellite developed by the European Commission and the Eu-

ropean Space Agency for the Copernicus Global Earth Observation Project, which was 
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launched in April 2014 with C-band imaging. Sentinel-1A contains four operating modes: 

SM, IW, EW, and WV, including an interferometric wide-field mode with a resolution of 

5 m × 20 m and an amplitude of 250 km and a revisit period of 12 days. Sentinel-1A SAR 

data are freely available, providing rich data support for global scholars to monitor the 

global land and coastal zone. 

The GF-3 satellite, the first Chinese high-resolution SAR remote sensing satellite with 

1 m spatial resolution, was launched on August 10, 2016, using C-band imaging and con-

taining 12 imaging modes. Depending on the imaging modes, GF-3 can provide multi-

polarized SAR images with 1 m to 500 m resolution and 10 km to 650 km width to achieve 

global monitoring of ocean and land resources [23]. The imaging mode used in this paper 

is fine striping with HV polarization and 10 m azimuthal resolution of the image. 

Due to the satellite revisit cycle at the time of the “7-20” rainstorm disaster, this paper 

combines two kinds of heterogeneous SAR satellites, Sentinel-1A and GF-3, as well as the 

observation data of the “7-20” rainstorm in Zhengzhou. The Sentinel-1A VH SAR image 

was imaged on 15 July 2021. The two views of GF-3 SAR images were imaged on 20 and 

22 July 2021, respectively, and HV polarization was used. The specific parameters of the 

heterogeneous SAR images with different phases are detailed in Table 1. Each SAR image 

is shown in Figure 2. 

Table 1. Experimental data of this study. 

Data Type Imaging Time Band 
Imaging 

Mode 
Polarization 

Resolution/

m 

Sentinel-1A 15 July 2021 10:20 C IW VH 5 × 20 

GF-3 20 July 2021 22:28 C FSII HV 10 × 10 

GF-3 22 July 2021 10:38 C FSII HV 10 × 10 

. 

Figure 2. Heterologous SAR images in different phases ((a) is Sentinel-1A’s 15 July 2021 VH-polar-

ized SAR image (before the disaster); (b) is GF-3’s 20 July 2021 HV-polarized SAR image (at the time 

of the disaster); (c) is GF-3’s 22 July 2021 HV-polarized SAR image (after the disaster); the bottom 

image is Google’s remote sensing image of Zhengzhou City). 
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3. Methods 

This paper used VH-polarized Sentinel-1A images on 15 July 2021, and HV-polarized 

GF-3 images on 20 and 22 July. We selected the dB values of typical water bodies in dif-

ferent SAR images through image alignment, multi-viewing, filtering, geocoding, radio-

metric calibration, and other processing. Then, we applied the threshold segmentation 

method to extract water bodies in different SAR images to generate before, during, and after 

the rainstorm. The binary maps of water bodies and non-water bodies are generated before, 

during, and after the rainstorm. After acquiring the changes in water bodies, this paper com-

bines the vector data of the Gaudet road network to count the length of affected roads using 

the GIS spatial analysis method. Figure 3 shows the road damage monitoring flow chart in 

Zhengzhou City during the “7-20” rainstorm using heterogeneous SAR images. 

Sentienl-1A GF-3

Multi-look processing

Images filter

Radiative calibration

Geocoding

Images registration

Typical water

A:SAR dataset Preprocessing B:Submerged Area Extraction

Determining thresholds

Submerged area

Road network

Road network 
submerged area

Length of Damaged Road 

C:Road Network Analysis

GIS Spatial Analysis 

Key submerged areas

Genetic analysis

Network Topology

Zhengzhou 7·20 rainstorm road submerged area analysis system

Road risk 
assessment results

 

Figure 3. Flow chart of heterogeneous SAR images for road damage monitoring in Zhengzhou City 

during the “7-20” rainstorm. 

3.1. SAR Dataset Processing 

The pre-processing of the heterogeneous SAR images of Sentinel-1A and GF-3 mainly 

includes the steps of image alignment, multi-view, filtering, radiation correction, etc. Fig-

ure 4 shows the processing of the GF-3 image on 20 July. 

  
 

(a) (b) (c) 

Figure 4. GF-3 SAR image on 20 July (drawing mode is Square Root). (a) Multi-looking. (b) Filtering. (c) 

Geocoding and Radiometric Calibration. 

(1) Multi-looking processing: The Sentinel-1A SLC image is multi-view processed 

with a view number ratio of 4 × 1, and the GF-3 SLC image is multi-view processed with 

a view number ratio of 2 × 2 to attenuate the influence of coherent speckle noise infor-

mation on the image quality. 
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(2) SAR image filtering: In this paper, the enhanced Lee filtering method is used for 

SAR image filtering, which effectively overcomes the shortcomings of the traditional Lee 

filtering method for non-homogeneous areas with poor filtering effects and adopts the 

process of distinguishing the target distribution in the image area and divides the SAR 

image area into the homogeneous area, the non-homogeneous area, and the separation 

point target area. In this paper, the enhanced Lee filtering method with a window size of 

5×5 is selected to filter SAR images, which can effectively maintain the edge information 

of radar images while suppressing noise information. 

(3) Geocoding and radiometric calibration: Geometric and radiometric corrections 

are performed to eliminate distortions and obtain the backscatter coefficients of the im-

ages by using the 30 m resolution digital elevation data NASA SRTM released. 

(4) Image registration: By selecting control points on the image, the three SAR images 

taken before, during, and after the rainstorm are registered and geometrically corrected. 

The SAR system can obtain the power ratio of the measured emission and return 

pulses, and this ratio (backscattering) is projected to the slant range geometry to better 

compare SAR images’ geometric and radiation characteristics under different SAR sensors 

and receiving modes. It is necessary to perform geometric and radiation calibration on the 

slant range SAR data and convert it into a geographic coordinate projection. 

The range of geometric distortion in the SAR image is large, mainly caused by the 

change in terrain. Based on the given digital elevation model, the relationship between 

the three-dimensional coordinates of the ground point and the two-dimensional coordi-

nates of the slant distance image is established by the distance-Doppler geometric model 

and the backward projection algorithm. The range-Doppler model is expressed as [20,21]: 

 � = � − �  (1)

 �� =
2����� − �����

�|��|
 (2)

where �� is the tilt range, � and � are the sensor and backscatter unit positions, �� and 

��  are the sensor and backscatter unit velocities, ��  is the carrier frequency, �  is the 

speed of light, and �� is the processed Doppler frequency. 

For better comparison of heterogeneous SAR image data, the radar data need to be 

radiometrically calibrated using the radar equation to achieve calibration of the radar 

backscatter coefficient. The radar backscatter coefficient refers to the radar reflectivity per 

unit area of the target in the incident direction, and the backscatter coefficient can also be 

regarded as a combination of three elements: unit cross-section, reflectivity, and direction-

ality. The general form of the radar equation is: 

 �� =
����

4�����
�  (3)

where, ��is the transmitting power of the radar transmitter, � is the effective scattering 

transceiver area, � is the slope distance from the antenna phase center to the target point, 

� is the electromagnetic wave wavelength, and � is the radar scattering cross section. 

3.2. Road Network Processing 

To monitor the damage to roads in the main urban area caused by the July 20 rain-

storm, the author obtained the road network data of the main urban area of Zhengzhou 

in 2021 using the Python web crawler tool. Road information includes ten categories of 

urban first-grade roads, urban second-grade roads, urban third-grade roads, urban 

fourth-grade roads, expressways, national roads, provincial roads, railways, county 

roads, and township roads in the main urban area of Zhengzhou. The processing of road 

network data mainly includes: 
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(1) Culling small roads. The rich variety of roads in the Gaode road network data 

contains some redundant roads with too short lengths. Fine roads less than 5 m were ex-

cluded from this study to reduce data redundancy. 

 �� = {�|� > 5}  (4)

where �� is the set of road elements and L is the length of the road. 

(2) Topology check. The original road network data is intricate and overloaded with 

details, so it is necessary to perform topological checks on the roads to avoid errors in the 

subsequent analysis. We check each line element for topological errors such as line seg-

ment self-intersection, line overlap, hanging points, and pseudo-nodes. Finally, we obtain 

the corrected road network data for the study area shown in Figure 5. 

 

Figure 5. The road network and part of the corresponding Google image in the study area. 

Three feature areas with different spatial distributions were selected to verify 

whether the processed road network data fit the actual road network. Their processed 

road network information was confirmed with the corresponding Google images. The 

three areas have different road network characteristics due to different geomorphological 

and spatial distribution characteristics. Area A is located near the intersection of Science 

Avenue and Xushui River Road, where the road network is dominated by Xushui River 

Road on both sides of the river, and the road network information of Science Avenue and 

Xushui River Road can be seen from the enlarged map of area A in Figure 5. The B area is 

located near the Longhubei subway station. The road network information in this area is 

relatively simple, and the comparison is also apparent. C area is located at the intersection 

of West Haoheng Road and West Fourth Ring Road, which is dominated by elevated 

bridges and has more accurate road network information. In summary, this paper’s pro-

cessed road network information is reliable after comparing it with Google images. 

3.3. Water Body Extraction 

Threshold segmentation uses the gray difference between the target and the back-

ground in the image to be extracted. It separates the target from the background by setting 

different thresholds to divide the pixel level into several classes. The general process is to 

determine whether a pixel point in an image belongs to the target or background region 

by judging whether each pixel point’s feature attributes meet the threshold requirements, 

thus converting a grayscale image into a binary image. 
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 �(�, �) = �
1, �(�, �) ≤ �
0, �(�, �) > �

 (5)

where �(�, �) is the image after thresholding, �(�, �) denotes the image element value 

of the point (�, �), the pixel marked as 1 corresponds to the target object, the pixel marked 

as 0 corresponds to the background, and � is the target object segmentation threshold 

interval. 

Determining the threshold value of water bodies on different images is key to this 

experiment. In this paper, we use manual empirical selection to superimpose the SAR im-

ages to be processed on Google Earth, find the obvious water body sample points such as 

water bodies and lakes, and identify the DN value of the water body image element. The 

DN value of the image element is the backscattering coefficient of the image element in 

dB. Figure 6 shows the backscattering coefficients of Sentinel-1A and GF-3 for two differ-

ent SAR images of some typical water samples. Based on the analysis of the statistical 

characteristics of the sample points, the optimal interval where the water body thresholds 

are located is determined as [0, 0.001] for the Sentinel-1A image water body extraction 

threshold interval and [0, 0.009] for the GF-3 image water body extraction threshold inter-

val in this experiment. 

 

Figure 6. dB values of typical water bodies in different SAR images. The figure marks the highest 

dB value. 

4. Results 

4.1. Analysis of Regional Floods 

Three radar images on 15 (before the rainstorm), 20 (during the rainstorm), and 22 

(after the rainstorm) were extracted using threshold segmentation. The images before and 

after the rainstorm were superimposed to determine the extent of rainstorm inundation. 

This paper extracted and counted the flood disaster area time sequence changes in each 

main urban area in three periods after obtaining the flood disaster conditions in Zheng-

zhou. The change in water body area in each district (7.15, 7.20, and 7.22) is shown in 

Figure 7, and the detailed water body area is shown in Figure 8. 

By observing the comparison of water body areas in the three time periods in Figures 

7 and 8, the storm reached its maximum rainfall on 20 July, with huge fluctuations in 

water bodies in all five urban areas. 

The inundated area of water bodies within Guancheng District increased the most, 

from 7897.10 m2 before the rainstorm to 41,299.30 m2, which was the most severely af-

fected. As can be seen from the chronological changes in Figure 7, the village of Wuzhuang 

in the northeast of Guancheng District was severely affected, and the roads in that area 

were still not restored to normal in some of the affected areas until 22 July. The Chang-

zhuang Reservoir in Zhongyuan District was also severely flooded, with an affected area 

of 27,174.9 m2. Due to the continuous heavy precipitation and a large amount of water 

flowing upstream of the reservoir, the water level in the reservoir remained high. Affected 

by this, the water level of the river section in this area also rose to a certain extent. In 

addition, due to the reservoir spillway encroachment blockage and other circumstances, 

the water level in the Guojiazui reservoir in Erqi District on the 21 July rose significantly 
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to the maximum full overflow water depth of 0.5 m, the occurrence of the reservoir flood-

ing became its 22 July retreat area of the least urban areas. 

 7.15 7.20 7.22 

Erqi 

   

Jinshui 

   

Zhongyuan 

   

Huiji 

   

Guancheng 

   

Figure 7. Water extraction results before, during, and after the rainstorm. 
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Figure 8. Variation of the water body area in each district of Zhengzhou. 

Comparing the changes in water bodies in each district in Figure 8, Huiji District was 

the least affected by this extreme weather, which is inseparable from the unique natural 

environment within the region. Huiji District is located in the northern part of Zhengzhou 

City, and the terrain generally shows highs in the west and lows in the east. The Yellow 

River runs through the northern part of the district for 27 km, making it the richest eco-

logical water system in Zhengzhou. In addition, the high forest cover in the district pro-

vides favorable conditions for stormwater infiltration and drainage. When heavy rainfall 

occurs in the area, the infiltration of water absorbed by the plant soil layer and the timely 

drainage of the river do not cause large areas of water to accumulate on the ground. 

Overall, Zhengzhou’s “7-20” rainstorm affected each of Zhengzhou’s five main urban 

areas to varying degrees of disaster. As of 22:00 on 20 July, the area of water bodies in 

Guancheng District grew the fastest, with a total increase of 33,402.2 m2, while the total 

area of water bodies in Zhongyuan District increased by 27,174.9 m2. As of 10:00 on 22 

July, the total area of water bodies in all urban areas of Zhengzhou City decreased com-

pared to the total area of water bodies on 20 July. The total area of water bodies in all city’s 

urban areas decreased compared to the 20th. Erqi District recovered the most slowly, with 

a recovery area of 12,461.1 m2. 

4.2. Road Disaster Situation 

The inundation extent of the storm determined by the threshold segmentation 

method above was converted into vector surface layers, and the pre-processed road net-

work data of the study area was overlaid, and the extracted inundated road network was 

shown in Figure 9 using the GIS spatial analysis method as shown in Equation (6). With 

the help of spatial analysis tools, the road network conditions within the inundated area 

during the 15th to 20th were partitioned for quantitative statistics to obtain specific road 

damage, as shown in Table 2. 

 � = (� ∪ �) − (� ∩ �)  (6)

where � is the set of road elements within the water body before the storm, � is the set 

of road elements within the water body after the storm, and � is the set of road elements 

within the affected water body. 
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Figure 9. Flooded Road network in Zhengzhou. 

The monitoring results in Table 2 show that the roads in the main urban area of 

Zhengzhou are seriously affected, with a total length of 1324.63 km. The most seriously 

flooded road among the five main urban areas is in Zhongyuan District, with a total in-

undation length of 349.17 km. The reason for such a phenomenon is that this jurisdiction 

is one of the earliest built-up areas in Zhengzhou. Due to the lack of scientific planning 

and imperfect drainage facilities in the early stages, the high-intensity rainfall exceeded 

its drainage capacity in a short period, resulting in many small-scale rainstorms waterlog-

ging within a certain range. In addition, the long-term urban construction makes the res-

idential buildings and various public facilities in this area have a high density, and the 

road network is relatively dense. The natural surfaces and grass are covered with asphalt 

or concrete, and the area of impervious water has increased dramatically. A large amount 

of rainwater floods the dense urban roads due to the lack of urban drainage capacity un-

der heavy rainfall in a short period, which in turn causes numerous safety hazards. 

Table 2. Statistics of the flooded length of the road network in each district. 

Type Erqi Jinshui Zhongyuan Huiji Guancheng Total 

Length of affected 

road network/km 
167.94 327.13 349.17 189.66 290.73 1324.63 

5. Discussion 

5.1. Time Sequence of Disaster Roads in Key Areas 

5.1.1. Time Series Analysis of Disaster-Hit Roads in Guancheng 

Guancheng District is a recent river alluvial plain area. Its terrain is generally high in 

the southwest and low in the northeast, with a sloping slope of about 2% and an altitude 

between 100 and 150 m. The main rivers in the area are the Xionger River, Qili River, and 

Chao River, with a total watershed area of 435.9 square kilometers, all of which belong to 

the Huai River system. 

Guancheng District was more seriously affected by this storm disaster, and this sec-

tion selects the district as the characteristic area for the time-series analysis of the flooded 

roads in the storm disaster. Figure 10 shows the time-series changes of the water body 

area in Guancheng District on 15 July, 20 July, and 22 July, and the specific water body 
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area of that day is indicated in Figure 10. From the water body area, Guancheng District 

increased rapidly on the 20th. A comparison of the time-series change map shows that the 

spatial distribution of the location of the increase in water body area on the 22nd is gen-

erally more dispersed. However, in the northeast of Guancheng District, Wu Zhuang Vil-

lage (Figure 10 in the red circle area) shows an obvious aggregation-type increase. Wu 

Zhuang village is adjacent to the Dongfeng Canal to the north, the main function of which 

is to drain water for urban sewage. It was reported that the roads in the city were seriously 

waterlogged on 20 July, and the Dongfeng canal continued to operate at high water levels 

as an urban drainage channel. Dongfeng Canal is the main flood relief river during heavy 

rainfall in Zhengzhou. Xiong’er River, Qili River, and other major urban rivers converge 

here, and their precipitation sinks into the Jialu River, flowing from northwest to south-

east to achieve the drainage effect. Hence, the water flow of the canal is large. In the vicin-

ity of Wuzhuang Village, two rivers converge, and the place is located at the bend of the 

Dongfeng Canal, where the rapid flow of water can easily form on land and cause flood-

ing. 

 

Figure 10. Guancheng District 15, 20, and 22 July water body area time series changes (the upper 

left corner of the figure shows statistics for the total area of water bodies in Guancheng District time 

series changes; blue arrows point to the location of the East Wind Drain; the red circle is the location 

of Guancheng District Wu Zhong Village). 

5.1.2. Time Series Analysis of Disaster-Hit Roads in Zhongyuan 

Due to long-term geological changes in the Central Plains, the southwestern part of 

the district is an eroded and shallow hilly area, and the rest is a loess-like inclined plain. 

According to the geomorphology, 78% of the region’s total area is plains, and 22% is hills. 

The entire topography of the region is high in the west, low in the east, high in the south-

west, and low in the northeast, i.e., the southwest to the northeast slope. 

This section further explains the temporal change of the water body area in the Cen-

tral Plains District. The temporal change of the water body area in the Central Plains Dis-

trict on 15, 20, and 22 July is detailed in Figure 11. Compared with 15 July, the water body 

area in the Central Plains District increased by 27,174 m2 on 20 July. The spatial distribu-

tion of the increased water body area is more scattered, and no aggregation-type water 

accumulation occurred. The total reservoir capacity of Changzhuang Reservoir in Zhong-

yuan District is 17.4 million cubic meters, and the storage capacity of Xingli is 7.14 million 

cubic meters. The storage capacity of Changzhuang Reservoir effectively relieved the 

flood pressure in Zhongyuan District and reduced the risk of flooding. 
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Figure 11. Time-series changes of water body areas in the Central Plains District on 15, 20, and 22 

July (the upper right corner shows the time-series changes of total water body areas in the Central 

Plains District). The blue arrow is the location of Changzhuang Reservoir. 

5.2. Limitations and Potential Improvements 

According to the news released by China’s Central Weather Bureau, from July 17 to 

23, 2021, Henan Province suffered from severe flooding because of the historically rare 

and extraordinarily heavy rainfall [24]. Especially the heaviest rainfall occurred in Zheng-

zhou city on 20 July, and the one-hour rainfall in Zhengzhou reached 201.9 mm between 

16:00 and 17:00 on that day, breaking the extreme historical value of hourly rainfall in 

mainland China. In this experiment, the GF-3 image acquisition time on 20 July was 22:28, 

which failed to monitor the maximum change in water level in time. The surface water 

level appeared to fall back, which in turn had some influence on the extraction of water 

from the inundation area and the road damage statistics in this experiment and might 

make the experimental results lower than the actual damage situation. 

This paper draws on the threshold segmentation algorithm to extract the area of wa-

ter bodies that is too coarse, and the classification accuracy still needs to be improved. In 

the future, we will introduce topographic features, texture features, etc., and use deep 

learning and other methods to improve the extraction accuracy of water bodies and obtain 

more accurate boundary information for inundated water bodies. At the same time, land 

use data is introduced to estimate the inundation of different land types, such as arable 

land, forest land, and residential land, to achieve rapid monitoring and post-disaster as-

sessment of flooding. 

6. Conclusions 

To solve the problems of difficult imaging and untimely acquisition of disaster infor-

mation during flooding by traditional optical remote sensing means, this paper designs a 

time-series monitoring scheme for flooding by combining heterogeneous SAR images 

with the “7-20” rainstorm in Zhengzhou City as an example. By studying two types of 

heterogeneous SAR data, Sentinel-1A and GF-3, which were in transit during the “7-20” 

rainstorm in Zhengzhou City, the scheme successfully realized the dynamic monitoring 

and information extraction of flooding before and after the mega rainstorm by using the 

threshold segmentation method. Meanwhile, remote sensing and GIS data are fused to 

analyze the damage to urban roads under the influence of flooding, demonstrating the 

capability and application of obtaining disaster spatial and temporal information from 

multiple perspectives supported by multi-source SAR data. The results show that: (1) 
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Guancheng District was the most affected area in the “7-20” rainstorm disaster in Zheng-

zhou City, and the total area of water bodies in this district increased by 33,402.2 m2 by 20 

July 2021. The recovery of the affected area in Erqi District was slow. As of 22 July 2021, 

the water body area in Erqi District has been reduced by 12,461.1 m2 compared with that 

on July 20. This phenomenon is related to the dam failure of Guojiazui Reservoir in Erqi 

District. (2) In this rainstorm disaster, the total length of the road network in the main 

urban area of Zhengzhou was affected by 1324.63 km, of which the road network in 

Zhongyuan District was most seriously affected, reaching 349.17 km. 

This scheme adopts two kinds of heterogeneous SAR images to obtain detailed infor-

mation on flood time sequence changes in the “7-20” rainstorm disaster in Zhengzhou 

City. It demonstrates the advantage of a joint observation scheme using heterogeneous 

radar image data in extracting timely and accurate information on surface flooded water 

bodies in rainstorms and flood disasters. 
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